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Abstract

Concerning the fact that the number of wind turbines is increasing worldwide, it

seems necessary to implement monitoring systems. To respond to this demand,

this PhD thesis studies di�erent fault diagnosis techniques in order to improve the

reliability and reduce maintenance costs. Based on the fact that a considerable

amount of data is stored via SCADA in every industry nowadays, the methods

developed on historical data (called data-driven methods) can be very bene�cial.

By analysing the historical data, the changing trends of a nonlinear dynamics, such

as a wind turbine, can be predicted. Moreover, by applying suitable approaches,

one can distinguish di�erent faults based on the output of the system.

The �rst part in this research reviews a neural network identi�cation method

by decoupling linear and nonlinear parts of a wind turbine model. As for the

linear part, a Luenberger observer is designed, while for the nonlinear part, a

neural network observer is proposed. By having an identi�cation model for a wind

turbine system, residual-based fault detection is studied.

The second part in this research proposes a novel neuro-robust fault estimation

method to deal with the occurred faults on actuators or sensors. The challenge in

this method is environmental disturbances and sensor noises. To overcome these

problems and simultaneously estimate the faults and the states, an augmented

system is proposed in di�erent scenarios of actuator faults or sensor faults. Then, a

neural network updating rule is calculated along with the robust performance index

to fully achieve this goal. The stability of the augmented system is guaranteed by

having a Lyapunov function and input-to-state stability criteria.

The third and �nal part in this research studies di�erent structures of Convolu-

tional Neural Networks for the problem of fault classi�cation in a wind turbine.

As working with time-series signals is challenging in deep learning classi�cation,

a pre-processing analysis is applied to prepare the data of system outputs for the

input of the model.



iii

Each proposed method is applied to a 4.8 MW wind turbine benchmark and ob-

tained results are illustrated and discussed to validate the accuracy and perfor-

mance of the approach.

Keywords Wind Turbine, fault estimation, fault detection, deep learning, neural

networks, convolutional neural networks.
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Chapter 1

Introduction

1.1 Research Motivations

As environmental pollution and concerns about global warming are increasing year

by year, the importance of using renewable and green energy becomes more vital.

As a result, as one of the cleanest energy resources, wind turbine industries, have

been receiving considerable attention and budgets. Gradually, wind energy has

become an integrated component in the grid worldwide. In the UK, wind turbines

are responsible for over 20% of the consumed electricity in 2020 [1]. Precisely

speaking, by August 2020, there are 10911 installed wind turbines with the ca-

pacity of 24000 MW, of which 13600 MW onshore and the rest o�shore. This

production makes the United Kingdom the sixth-largest producer of wind power

in the world [1]. The plan for expanding this potential is to increase the capacity

of wind power up to 50000 MW by 2030[1]. Therefore, regarding this plan, careful

considerations should be made to have a reliable energy resource in the grid.

However, wind turbines, just like any other electro-mechanical system, may en-

counter several unexpected and severe faults [2, 3]. These faults can reduce the

1
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reliability of the wind turbines in the grid, increase the number of unanticipated

shutdowns, and increase maintenance requirements. Detecting any abnormalities

in wind turbines in a timely manner, may also reduce the potential hazards and

risks, especially o�-shore. In addition, due to the high loads and extreme con-

ditions in which a wind turbine normally works, its maintenance may be quite

challenging [4]. Therefore, it seems only logical to invest in developing a fault

monitoring system, helping prevent the system's undesirable behaviours and extra

costing.

Fault monitoring systems can be extended to di�erent strategies. In many indus-

trial systems, there are conventional alarm boards, showing di�erent faults and

their severity happening in a speci�c section. They are merely working based

on de�ning several thresholds for each signal and data directly from SCADA [5].

There are also fault detection methods, which are developed based on the model

or the historical data of the plants. The aim of these methods is detecting any

occurrence of faults even if they are so low in magnitude as soon as possible [6, 7].

In addition to the fault detection methods, industrial companies can bene�t from

some more complicated approaches, called fault diagnosis, which can help identify

the magnitude, the pattern and/or the probabilities of repetitions of the faults

[8, 9]. These techniques can also be bene�cial in designing more robust controller

[10] and can lead to the stability of the system.

As it is evident in recent years, more and more arti�cial intelligence (AI) methods

have been introduced in everyday life. The applications of them are varied from

software in recognizing tra�c lights and autonomous driving [11, 12] to the fraud

and anomaly detection in �nancial transactions [13, 14]. The most crucial ability of

AI is its strength in predicting and coping with unknown dynamics and processing

a massive amount of data to provide the most accurate and comprehensive outputs

[15]. The reliable performance of these methods attracts many research interests to
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them [16]. This point is also valid in the �eld of fault diagnosis, in which there are

always some unknown dynamics, perturbed parameters and a huge amount of data

to analyse, that simply conventional methods are unable to deal with. Therefore,

it is very reasonable to use AI in order to improve data diagnosis techniques.

Based on the facts mentioned earlier, this PhD thesis concentrates on proposing

novel data-driven methods, using arti�cial intelligence to develop fault diagnosis

methods to cope with the problem of unknown dynamics, environmental distur-

bances, sensor noises and data loss. The investigating faults in this thesis, may

come from electrical system or mechanical parts, such as gear boxes. The origins

of faults will be further discussed in 2.1.7. However, the proposed algorithms can

be extended to di�erent categories of faults. The accuracy and performance of

the proposed methods can increase the reliability of wind turbines and decrease

maintenance costs.

1.2 Contributions and Overview

The contributions of this thesis can be categorised as follows:

� Grey-box model identi�cation and fault detection using arti�cial neural net-

works.

As there are some uncertainties and unknown parameters in a wind turbine

benchmark, an arti�cial neural network (ANN) based identi�cation and fault

detection is proposed. This method contains two parts: in the �rst one,

an ANN observer is developed to be considered as a substitution for the

real dynamics. The problem is that we cannot apply neural networks state

estimation directly for a wind turbine system, because we need all the states

measurable, which does not happen in a wind turbine benchmark. In a
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typical wind turbine dynamics, only four out of six states are measurable.

Hence, to confront this problem, a Luenberger observer is designed conjointly

with ANN to identify the dynamics. The second part of this method is

applying a residual-based method to detect faults.

The results of this research contribution is highlighted in the following pub-

lication:

{ R. Rahimilarki and Z. Gao, \Grey-box model identi�cation and fault

detection of wind turbines using arti�cial neural networks," in 2018

IEEE 16th International Conference on Industrial Informatics (INDIN),

pp. 647{652, IEEE, 2018.

� Robust neural network fault estimation approach for nonlinear dynamic sys-

tems.

In wind turbine systems, there are always some unexpected faults, envi-

ronmental disturbances, and sensor noises. Designing a fault estimation

method to tackle all these problems can be challenging. The novel robust

neural network fault estimation method is proposed to not only confront

these challenging points but also to estimate the occurred faults on both

actuator signals or the four of the sensors. In this method, the idea of back-

propagation neural networks is combined with robust optimization theorem.

It also guarantees the stability of the system via Lyapunov function and

input-to-state stability criteria.

The results of this research contribution are highlighted in the following

publications:

{ R. Rahimilarki , Z. Gao, A. Zhang, and R. Binns, \Robust neural

network fault estimation approach for nonlinear dynamic systems with
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applications to wind turbine systems," IEEE Transactions on Industrial

Informatics, vol. 15, no. 12, pp. 6302{6312, 2019.

{ R. Rahimilarki , Z. Gao, N. Jin, R.Binns, and A. Zhang, \Data-

driven sensor fault estimation for the wind turbine systems," in 2020

IEEE 29th International Symposium on Industrial Electronics (ISIE),

pp. 1211-1216, IEEE, 2020.

� Time-series deep learning fault detection.

In order to achieve a fault detection method to classify even minimal anoma-

lies, four Convolutional Neural Network (CNN) structures are proposed. The

data from the benchmark contains sensor noises, rather than actuator and

sensor faults. By considering deep learning methods and a pre-processing

technique of converting time-series signals into 2-D images, a novel approach

is proposed that can classify di�erent faults in a wind turbine.

The results of this research contribution are presented in the following pub-

lications:

{ R. Rahimilarki , Z. Gao, N. Jin, and A. Zhang, \Time-series deep

learning fault detection with the application of wind turbine bench-

mark," in 2019 IEEE 17th International Conference on Industrial In-

formatics (INDIN), pp. 1337{1342, IEEE, 2019.

This thesis is divided into six chapters. As we overviewed the introduction in this

chapter, Chapter 2 is going through the dynamics of a wind turbine in details

and the main occurred faults for this system. The literature review and comple-

mentary explanation about di�erent methods of fault detection and diagnosis are

also studied in this chapter. Moreover, at the end of this chapter, supplementary

information of neural networks and convolutional neural networks are explained.
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In Chapter 3, grey-box model identi�cation and fault detection methods are pre-

sented along with validating simulation. Chapter 4 focuses on robust neural net-

work fault estimation approach for nonlinear dynamic systems. In this chapter,

the essential mathematics and considerations are explained, and the stability of the

system is proved in two di�erent scenarios. Chapter 5 introduces time-series deep

learning fault detection using convolutional neural networks. The pre-processing

analysis, needed for better accuracy, is also discussed in this chapter. In the end,

conclusion and future works are brought in Chapter 6.



Chapter 2

Literature Review

In this chapter, the benchmark of a wind turbine is explained along with the di�er-

ent categories of fault diagnosis and their applications in general and speci�cally

in wind turbine systems. In section 2.1, the model of the wind turbine benchmark

is introduced based on its nonlinear dynamics and state-space matrices. The po-

tential faults that can happen in this system and their rate of occurrence are also

discussed. Following to this part, section 2.2 presents the various types of fault di-

agnosis methods and the obstacles in this area. Moreover, the di�erent techniques

of fault diagnosis, speci�cally with the application of a wind turbine system are

reviewed in this section. Based on the fact that the main contributions in this

thesis are about mathematical analysis of ANN and deep learning in fault diag-

nosis, a brief introductions to those topics are brought in 2.3. At the end of this

chapter, a comprehensive summary is also brought in 2.4.

2.1 Model Dynamics of the Wind Turbine

Over the past few years, wind energy has received signi�cant attention owing to the

concerns about global warming, environmental issues, and fossil fuels reduction.

7
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During the past decade, numerous investments have been aimed to wind energy

industries and the wind turbine installed capacity had a constant increase. Design-

ing the structure and caging of the wind turbines have been improved due to the

more accurate engineering and more robust composites. However, the generators,

drive and control systems roughly remain the same.

Wind turbines have been built horizontally or vertically. As it can be seen in Fig.

2.1.a, in vertical wind turbines, the blades are installed vertically [17]. One of the

advantages of this kind of wind turbines is that the conversion systems and the

gearboxes are located on the ground, while, the disadvantage of this type is that

the maintenance is somehow complicated as it normally requires rotor removal

[18]. Besides, the e�ciency of converting wind energy to electrical one is lower

compared to horizontal turbines. For these reasons, nowadays, the modern wind

turbines usually have been built horizontally, as shown in Fig. 2.1.b [19].

Figure 2.1: (a) Vertical-axis Structure. (b) Horizontal-axis Structure.

In this thesis, only the three-blade horizontal wind turbine is discussed. However,

the approaches may be extended to any other structure with little adjustments.
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The schematic structure and di�erent components of a typical wind turbine are

presented in Fig. 2.2 [20]. Wind energy rotates the blades and produces mechanical

power, transmitted to the system via a shaft, which is connected to these blades.

A generator converts mechanical energy to electrical one based on the rotation

of the blades. The blades angles can vary to handle the wind speed variations.

Meanwhile, the yaw structure is designed to align the whole wind turbine based

on the direction of the anemometer.

Figure 2.2: A typical schematic of a wind turbine.

A wind turbine benchmark model was proposed in [21], based on a three-blade

horizontal wind turbine driven by variable speeds, with a full converter coupling

and a rated power of 4.8 MW. It can be modelled in several subsystems as follows:

� Blade and Pitch Systems.

� Drive Train

� Generator and Converter

� Controller

The signal relation between these subsystems can be shown in Fig. 2.3 [21].

As illustrated in this �gure, each of the subsystems may require some signals



Chapter 2. Literature Review 10

from other subsystems and supply a feedback to them. From the left side, the

velocity of the wind (vw) is working as the input of the Blade and Pitch system;

so, it generates the required rotor torque (� r ) for the Drive Train subsystem. By

receiving the feedback of generator torque (� g), it also produces two states of the

system, ! r and ! g, which are the rotor speed and generator speed, respectively.

The Generator and Converter subsystem, receives the desired generator torque,

� g;r and produce the generator power,Pg. The responsibility of the controller here,

is to generate the desired pitch angle (� r ) and the desired generator torque,� g;r ,

for related subsystems, by getting feedback from the other three subsystems.

Figure 2.3: Wind turbine subsystems.

In the following sections, di�erent subsystems, various parameters, their relating

physical equations and the wind model are fully explained [21].

2.1.1 Wind Model

The wind can be generally modelled in four parts: the mean wind (slow wind

variations) vm (t), a stochastic partvs(t), the wind shearvws(t) (which is the e�ect

of wind energy lost at the surface of the earth, commonly resulting in an increasing

wind speed as the distance to earth surface increases), and the tower shadowvts (t).

The combined wind model is given by:

vw(t) = vm (t) + vs(t) + vws(t) + vts (t): (2.1.1)
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Figure 2.4: The variation of wind in the model.

The variation of the wind velocity in this benchmark can be seen in Fig. 2.4. As it

can be seen in this �gure, the velocity of the wind is varied between 4-20 m/s, with

some spike of 25 m/s. As discussed in [21], it is an acceptable range, in which, the

generator can operate normally.

2.1.2 Blade and Pitch System

This model is comprised of two parts: the aerodynamic model and pitch model.

2.1.2.1 Aerodynamic Model

The aero torque applied to the rotor is modelled as below:

� r (t) =
1
2

��R 3Cq(� (t); � (t))v2
w ; (2.1.2)

where� is the air density, R is the radius of the rotor,Cq is the torque applied to

the rotor coe�cient which is a function of the pitch angle � and tip-speed-ratio�
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given by:

� (t) =
R! r (t)
vw(t)

; (2.1.3)

where! r is the turbine rotor angular speed.

2.1.2.2 Pitch System Model

The pitch system considered in this model is hydraulic. The closed-loop dynamic

of the pitch system is described by a second-order system [21]:

� (s)
� r (s)

=
! 2

n

s2 + 2�!ns + ! 2
n

(2.1.4)

where� r is the pitch reference.

2.1.3 Drive Train Model

The drive train model is a two-mass model provided by [21]:

2

6
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4

_! r (t)

_! g(t)

_� � (t)

3

7
7
7
7
5

= ADT

2

6
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4

! r (t)

! g(t)

� � (t)

3

7
7
7
7
5

+ BDT

2

6
4

� r (t)

� g(t)

3

7
5 ; (2.1.5)

where � g is the generator torque,! g is the generator rotating speed and� � is the

torsion angle of the drive train. The state-space matrices are:

ADT =

2

6
6
6
6
6
6
6
6
4

�
Bdt + B r

Jr

Bdt

NgJr
�

K dt

Jr

� dtBdt

NgJg

�
� dtBdt

N 2
g

� Bg

Jg

� dtK dt

NgJg

1 �
1

Ng
0

3

7
7
7
7
7
7
7
7
5

; Bdt =

2

6
6
6
6
6
4

1
Jr

0

0 �
1
Jg

0 0

3

7
7
7
7
7
5

;
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whereJr and Jg are the rotor and generator moment of inertia,B r and Bg are the

rotor and generator external damping,BDT is the torsion damping coe�cient, Ng

and � DT are the gear ratio and e�ciency of drive train, and K DT is the torsion

sti�ness.

2.1.4 Generator and Converter Model

On a system level of the wind turbine, the generator and converter dynamics can

be modelled as a �rst-order transfer function [21]:

� g(s)
� g;r (s)

=
� gc

s + � gc
(2.1.6)

where � gc is the generator and converter model parameter. The power produced

by the generator is given by:

Pg = � g! g(t)� g(t) (2.1.7)

where� g is the e�ciency of the generator.

2.1.5 Controller

A simple control scheme, such as a PID controller is often used in wind turbine

systems. More details and numerical values of the control parameters can be found

in [21].
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2.1.6 Overall Model

The overall benchmark model can be obtained by integrating these subsystems

[22]:

_x = A(x)x + Bu;

y = Cx;
(2.1.8)

wherex = [ ! r ! g � �
_� � � g]T is the state vector andu = [ � g;r � r ]T is the

control input from the pre-designed controller.
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7
5 ; (2.1.9)

By substituting (2.1.3) - (2.1.7) in (2.1.9), the following state-space equation of

the wind turbine can be obtained:
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(2.1.10)
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where A11 = �
Bdt + B r

Jr
+

1
2Jr � 2 ��R 5Cq(�; � )! r , A12 =

Bdt

NgJr
, A13 = �

K dt

Jr
, A21 =

� dtBdt

NgJg
, A22 =

�
� dtBdt

N 2
g

� Bg

Jg
, and A23 =

� dtK dt

NgJg
. The physical meaning and the

numerical quantity of each parameter can be found in Table 2.1 [21, 22].

Since just four out of six states of the system are measurable, output vector is

de�ned as y = [ ! r ! g � � g]T . Therefore, the output matrix can be clearly

written as below:

C =

2

6
6
6
6
6
6
6
4

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7
7
7
7
7
7
7
5

; (2.1.11)

It is worth to mention that � � and _� are immeasurable and it is one of the challenges

to design NN observer for wind turbines. In chapter 4, an algorithm is proposed

to deal with this problem.

As it is clearly stated in A11, this parameter, which is part of the matrixA of the

system, depends on the parameterCq(�; � ), de�ned as the torque applied to the

rotor coe�cient. As � is a state of the system, it is concluded that matrixA is

depending on one of the state of the system. Therefore, it is not independent and

the value of it depends on� . Hence, the equation (2.1.10) is nonlinear. Due to the

nonlinearity of the model, the identi�cation and observer designing is challenging.

The novel ideas to relax this condition will be discussed thoroughly in chapters 3,

4 and 5.
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Table 2.1: Numerical quantity and their physical meanings
of wind turbine parameters.

Param. Physical Meaning Value

Bdt Torsion Damping Coe�cient 775:49
Nm:s
rad

B r Rotor External Damping 7:11
Nm:s
rad

Jr Rotor Moment of Inertia 55� 106Kg:m2

� Air Density 1:225
Kg
m3

R Rotor Radius 57:5m

Ng Gear Ratio 95

K dt Torsion Sti�ness 2:7 � 109 Nm
rad

Jg Generator Moment of Inertia 390Kg:m2

� dt E�ciency of Drive Train 0:97

Bg Generator External Damping 45:6
Nm:s
rad

� Damping Ratio 0:6

! n Natural Frequency 11:11
rad
s

� gc Generator and Converter Parameter 50
rad
s
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2.1.7 Breakdown and Faults in a Wind Turbine

Similar to other complex industries, faults may occur in wind turbines due to age

or unexpected events, which may cause breakdown and relatively high-cost main-

tenance. Faults in wind turbines can be both in electrical parts and mechanical

ones. The nature of the faults can be based on environmental factors, such as

high uctuations of the wind, or based on physical aspects of the components, e.g

aging, saturation, or thermal problems. The most occurred faults and their ratios

are illustrated in Fig. 2.5 [23].

27 Electrical System
16 Electronic Control Unit
11 Hydraulic System
9 Sensors
7 Yaw System
6 Rotor Blade
6 Rotor Hub
5 Mechanical Break
5 Gear Box
4 Housing
2 Drive Train
2 Generator

Electrical System
27%

Electronic Control Unit
16%

Hydraulic System
11%

Sensors
9%

Yaw System
7%

Rotor Blade
6%

Rotor Hub
6%

Mechanical Break
5%

Gear Box
5%

Housing
4%

Drive Train
2%

Generator
2%

Figure 2.5: The ratio of occurred faults in wind turbines .

Apart from the faults with the basis of high wind uctuations, many of the faults

can be prevented or e�ectively decreased by a suitable monitoring system. If a

typical and low-risk fault occurs, and it is not detected and resolved in proper time,

it may lead to a severe failure and probable breakdown. Besides, substandard

reliability directly decreases the availability of wind power in the grid. Based

on the mentioned issues, fault detection plays an essential role in increasing the

reliability of wind turbines.
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2.2 Fault Diagnosis Techniques

Fault diagnosis can be categorized into three main methods:model-based, signal-

based, and knowledge-basedapproaches following the classical literature survey[24],

[25].

2.2.1 Model-Based Fault Diagnosis Approach

In model-based methods, the model of the system to be monitored should be

available to the designers. The fault diagnosis is developed based on the model of

systems, and the accuracy of the approach depends on the accuracy of physical

parameters and the precision of mathematical modelling [26, 27]. Two cascade

steps are usually applied in a typical model-based fault diagnosis:Residual Gen-

eration, and Residual Evaluation. In the step of residual generation, the output

of the designed model is compared to the output of the real system as follows[28]:

r (t) = y � ŷ (2.2.1)

where,y is the output of the real system and ^y is the output of the model. After

this step, the step of residual evaluation should be designed. In this step, based on

the expert decision, some thresholds are set to reect the conditions of the system,

which can be healthy or faulty. This step may also include some mathematical

or statistical approaches to design a model-based fault observer. In [29], a hidden

Markov model-based on scalar quantisation was proposed to solve the problem of

accuracy and sensitivity of fault diagnosis in wind turbines. Performance degra-

dation was addressed in [30] and an approach based on classi�er adapting, and

a regression model was proposed to cope with this problem. In [31], an interval-

based observer with analytical redundancy relations was studied to design a fault
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diagnosis method. A method consists of a model-based fault detection technique,

and the proportional-integral observer was presented in [32] to address the problem

of noise �ltering and to achieve a suitable convergence.

Moreover, many approaches were studied in order to reduce the e�ects of envi-

ronmental disturbances and modelling error. [33] propounded a model-based fault

diagnosis and detection in order to correct signals in uncertainty and actuator

faults conditions. A sensor failure detection scheme was proposed in [34] using

robust analytical performance. In [35], a fault detection and isolation method was

presented to attenuate the disturbance's e�ects based onH 1 performance index

and LMI approach. The problem of uncertain parameters in a class of nonlinear

systems was studied in [36] and an adaptive sliding mode observer was proposed in

order to approximate the fault signals. A similar approach was also studied in [37]

in order to solve the problem of oscillatory failure case in an actuator. Although

these approaches have a lot of advantageous, the main disadvantageous of them

are their inability to deal with immeasurable states.

2.2.2 Signal-Based Fault Diagnosis Approach

In signal-based methods, the input-output model is not necessary to be available.

However, the measured signals become essential, and the decision on fault diagno-

sis is made based on these signals, and their attributes [38]. Knowing about the

featured signals and how an occurred fault has a reection on the output signal,

needs a technical aspect of view.

In general, the signals that are used for fault diagnosis can be analysed in time-

domain or frequency-domain. In time-domain fault diagnosis, some time-domain

features, such as slope, and root mean square are analysed [39, 40]. In frequency-

domain fault diagnosis, the frequency-based parameters are studied to carry out a
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signal-based fault diagnosis approach. One of the examples of this category is using

wavelet for denoising of the vibration of the machinery systems [41]. There are

also some researches on having Fourier Transform in signal-based fault diagnosis

[42{44].

Moreover, signal-based fault diagnosis is vastly studied in the application of wind

turbines. In [45], fault diagnosis in wind turbine planetary gearboxes was analysed,

and an approach based on automatic sparse representation was proposed for de-

tecting weak transients. [46] addressed a multiscale �ltering construction approach

to solve the fault diagnosis problem under speed-varying and noisy conditions in

wind turbine gearboxes. In [47], a fault diagnosis method was suggested in order to

investigate bearing faults in wind turbine generators using variable shaft rotating

frequencies. [48] studied a diagnostic method based on Park`s vector phase angle

in the application of permanent-magnet synchronous generator drives of a wind

turbine. In [49], a fault diagnosis approach based on time-frequency maps was

considered in order to solve rotor asymmetry faults in the wind turbine generator

unit. Two fault classi�cation methods were proposed in [50, 51] based on Principle

Component Analysis technique, to deal with the problem of sinusoidal fault and

actuator e�ectiveness loss in a wind turbine benchmark.

2.2.3 Knowledge-Based Fault Diagnosis Approach

Alternatively, knowledge-based methods are particularly suitable for the cases with

a large amount of historical data, and where the explicit relationships of the sys-

tem dynamics are challenging to derive. From this aspect, knowledge-based fault

diagnosis is calleddata-driven approach [25]. Based on the fact that it is com-

plicated to model fault dynamics for a system in general and a wind turbine in

particular, it is very challenging to study fault diagnosis in the aforementioned



Chapter 2. Literature Review 21

complex system. Therefore, data-driven methods can be bene�cial in industrial

area [52]. [53] addressed a data-driven method in order to monitor nonlinear sys-

tems using available measurements. Recent results in key-performance-indicator

oriented prognosis and diagnosis with a Matlab toolbox Db-kit were reported in

[54]. A data-driven fault diagnosis approach was studied in [55], developed an

extreme learning machine in order to cope with the sensor fault problem.

Computational methods, such as Fuzzy [56, 57], Support Vector Machine (SVM)

[58, 59], Long Short-term Memory network (LSTM) [60, 61], Arti�cial Neural

Networks (ANN) [62], and Convolutional Neural Networks (CNN) [63] have been

widely used in the �eld of fault diagnosis and detection due to their spectacular

power to predict unknown parameters and identify the nonlinear systems. For

instance, in [64], a fault detection method based on LSTM was proposed in a

wind turbine benchmark. An LSTM based fault diagnosis was studied by [65] by

analysing frequency data. [66] proposed a fault diagnosis and isolation approach in

order to handle uncertain models and noisy signals, using a fuzzy method in wind

turbine systems. [10], and [22] addressed a robust method based on Takagi-Sugeno

Fuzzy systems for the problem of unknown fault diagnosis. The problem of fault

classi�cation for vibration signals was studied in [67] and a novel solution based

on Fuzzy and SVM were proposed. By using the current signal of the generator,

a fault identi�cation method was considered based on SVM in order to classify

di�erent faults occurred in the generator. Neuro-Fuzzy fault diagnosis approach

for the problem of bearing failures in wind turbines was suggested in [68]. In [69],

a CNN based approach was prposed for fault classi�cation in a wind turbine.
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2.2.4 Hybrid Fault Diagnosis Approach

The hybrid method is de�ned as using the combination of any of the previously

mentioned methods. In practice, many approaches can be categorized as a hybrid

method, since typically there is some information (e.g. the subsystems, some of

the parameters, states, outputs) available to the designers. Therefore, they can

use them to model a better and accurate technique. As for the examples of hybrid

methods, in [70], by using SVM and stochastic subspace identi�cation and signal

processing methods, a novel hybrid fault diagnosis approach was proposed. By

integrating Fuzzy method and Wavelet transform, [71] suggested a fault diagnosis

approach to deal with the problem of bearing faults. For the problem of gearbox

breakdowns, a method based on SVM and Wavelet transform was studied in [72].

In [73], a novel fault diagnosis method was proposed based on ANN and Wavelet

transform to solve the problem of identifying single and double components in a

generator.

In Chapter 3 and Chapter 4, two hybrid fault diagnosis methods based on ANN

and the model of the system are presented. However, as the main contribution

of this thesis is based on ANN and machine learning methods, the comprehensive

explanation will be given, in section 2.3.

2.3 Machine Learning

Machine Learning (ML) is growing rapidly in the �eld of data-driven methods as a

powerful means to handle a large amount of data in a complicated system. In this

part, we will provide an overview of the concept of Arti�cial Neural Networks,

its applications in fault diagnosis in wind turbine systems, deep learning and

speci�cally Convolutional Neural Networks.
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2.3.1 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) is widely applicable in the area of mapping

nonlinear functions and complex systems. It is worth to mention that, multi-

layer neural networks as one of the most e�ective computational intelligence (CI)

approaches, has received exceptional attention due to its ability as universal ap-

proximator [74], in identi�cation and modelling of industrial systems.

System identi�cation in grey-box modelling is very inuential in understanding

the behaviour of the system in tackling of the unpredicted faults. One of the

capable tools in modelling and identi�cation of the nonlinear functions is multi-

layer perceptron (MLP) neural networks. The schematic of a fully connected MLP

is presented in Fig. 2.6. As it can be seen in this �gure, a typical MLP contains an

input layer, which can be the states of the system (zi : i = 1; :::; n), a hidden layer

and an output layer (t i : i = 1; :::; p), that designed to be an approximation of

the system output. TheV̂ and Ŵ are weight matrices for the hidden and output

layers. This network is called fully connected, since each neuron in hidden and

output layers is connected to every neuron in the previous layer.

�]

�]

�]

�W

�W

�W�S

Figure 2.6: A Three-layer Fully Connected Neural Network.

One of the most widespread approaches to update the weights in an MLP isBack

Propagation Neural Networks(BPNN) algorithm. This method is composed of
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three main steps: initializing, feed-forward, and backward. The last two steps

recurred in each iteration until the error is less than a prede�ned value.

In initializing , all the wights are initialized by unsupervised approach, e.g. random

quantities. In feed-forward, input vector Z = [ z1; z2; :::; zn ]T goes through the

network as feed-forward and with the previous weight matrices, the output vector

T = [ t1; t2; :::; tm ]T is achieved follows:

T = Ŵ(� (V̂ Z)); (2.3.1)

In the last part of feed-forward step, the output of the network is compared to the

output of the system and the error vector is obtained.

In backwardstep, the error vector is applied to train the weightsŴ and V̂ using

an updating rule. The main task of each BPNN designing is to derive an equation

to update the training weights in each iteration based on the de�ned cost function.

2.3.2 Applications of ANN in Fault Diagnosis of Wind

Turbines

There are many researches on using ANN with the application of wind turbine

systems in the literature. In [75], power curve modelling was studied in a wind

turbine benchmark and an ANN method was suggested for parameters estimation.

In [76], by having standard deviation, the previous output power, and the wind

speed average, an ANN nonlinear model of the wind turbine was developed in order

to estimate the output power in future. [77] investigated using the experimental

results to train ANN in order to confront the problem of parameters �nding of a

counter-rotation wind turbine. In [78], an ANN concept was studied in order to
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estimate the imbalance faults in a wind turbine. In [28], a data-driven residual-

based fault detection is investigated by using ANN in wind turbine benchmark.

The robust fault estimation to prevent environmental disturbances in a wind tur-

bine system is proposed in [79, 80] by applying ANN with linear matrix inequalities

approach. Despite every useful aspect of ANN and also ML, some knowledge of the

system should be covered in order to design the ML/ANN techniques e�ectively.

2.3.3 Deep Learning

One of the subcategories of ML, which is highly developed in recent years for coping

the problem of black-box models and large systems is deep learning (DL). DL can

deal with raw data in a vast amount and provide feature extraction automatically

[81, 82]. Moreover, DL can guarantee an assuring and very e�ective solution in

fault diagnosis [83]. Many DL methods have been developed for fault diagnosis in

literature review, such as sparse �ltering [84], convolutional deep belief networks

[85], and convolutional neural network [86].

2.3.3.1 Convolutional neural network

CNN is categorised among the multi-layer perceptrons ANN, which was �rst de-

veloped to model the behaviour of visual cortex [87]. CNN is a potent method in

both classi�cation and regression problems. However, it is somehow di�erent from

a fully connected neural network (FCNN) in which each neuron is connected to

all neurons in the previous layer. However, in CNN, apart from a layer of FCNN,

there are other layers in which each neuron is connected to a small part of neurons

in the previous layer [88].

In a typical CNN, one can see three main layers: 1) convolutional layer, 2) pooling

layer and 3) fully connected layer [88]. In each convolutional layer, there are
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plenty of kernels, which behave as �lters to extract the features of the input data.

In pooling layer, down-sampling is applied in order to reduce the dimension of

features from the previous layer. In a fully connected layer, an FCNN is trained

in order to classify the scores and data in supervised learning [88]. In Fig. 2.7, a

simple form of CNN consists of three layers is depicted.

Class 1

Class 2
Class 3

Class n

���}�v�À�}�o�µ�š�]�}�v���o���=�W�}�}�o�]�v�P���>���Ç���Œ�&�µ�o�o�Ç�����}�v�v�����š�������>���Ç���Œ

Figure 2.7: A simpli�ed CNN consists of three main layers, used for classi�cation.

Before continuing to the application of CNN, there are some primary concepts in

this method, which are worth explaining.

Kernel: They are de�ned as the �lters in the convolutional layer, which applied to

a sample matrix of input data and produce a convolved result of it. For instance,

if there are kernels of the sizeK � K , and there is an input data ofN � N , the

output matrix of the convolved result of kernel and the image will be ((N � K )=S+

1) � ((N � K )=S + 1) [15], in which S is the stride of moving of kernel in input

data. The visual representation of this concept can be seen in Fig. 2.8.

ReLU: This function is used in the output of the convolutional layer as an acti-

vation function of each neuron. ReLU can be de�ned as [15]:

Z = max(0; T); (2.3.2)
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Figure 2.8: The kernel and its stride in convolutional layer.

in which, Z is the output of ReLU, and T is the input of it. The advantage

of ReLU compared to the sigmoid function is that it is faster and requires less

computational e�orts.

Max Pooling: This layer is categorised in the pooling layer, which is used to

downsample the previous layer. In max pooling, in aM � M sample, the maximum

cell is chosen and routed to the next layer. This layer helps the network omit the

weakest feature and express the strongest one. The simple form of max pooling

layer of 2� 2 is illustrated in Fig. 2.9.

�í �î �ï �ð

�ñ �ò �ó �ô

�õ �í�ì �í�í �í�î

�í�ï �í�ð �í�ñ �í�ò

�ò �ô
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Figure 2.9: The max pooling layer.

Softmax Layer: This layer is brought to CNN as an activation function for

the layer of FCNN. This layer can help the network choose a preferred class more
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smoothly and accurately [15]. Thej th output of this layer can be found as follows:

� (j ) =
exp(zj )

� P
p=1 exp(zp))

(2.3.3)

in which, zj is the output of j th neuron of FCNN, andP is the number of neurons

in the last layer of FCNN.

2.3.3.2 Applications of CNN

Convolutional neural network (CNN), as one of the most capable of DL methods,

has also been growing in recent years. It has shown great advantages in fault

diagnosis in the area of 2-D format images in biology [89] and also in mapping

[90]. In addition, there are fruitful researches in the area of classi�cation for the

problem of bearing faults [91{93]. CNN can also be helpful for fault diagnosis in

time-series format data [94]. In [88], time-series format data is converted to 2-D

images. Then, a CNN structure is developed in order to have a fault diagnosis

method in the application of motor bearing.

2.4 Summary

In this chapter, an introduction to ANN and CNN was explained as well as a

literature review on fault diagnosis and its categories. Since the studied benchmark

in this thesis is a 4.8 MW wind turbine, the model and the dynamics of the

benchmark was also investigated. As in many industrial systems, wind turbines

included, there is a considerable amount of data stored via SCADA systems, it is

very reasonable to use this data in order to investigate faults. Therefore, data-

driven fault diagnosis can be a reasonable solution to this problem.
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In the next chapters, we are going to study some fault diagnosis approaches in

order to cope with the critical problems in big industrial models, such as actua-

tor faults, sensor faults, noises, disturbances and unmodelled parameters. Then,

the proposed methods are applied to wind turbine benchmark to be evaluated in

performance.





Chapter 3

Grey-box Model Identi�cation

and Fault Detection Using

Arti�cial Neural Networks

In this chapter, a model identi�cation method based on ANN for wind turbine

dynamics is studied. The goal is to obtain a neural network based model to be

substituted for the real dynamics of the wind turbine due to the lack of complete

knowledge about the dynamics and the existence of nonlinearities.

Due to the fact that the wind turbine has a nonlinear dynamics with partially mea-

sured states, ANN cannot be applied directly. The reason is that two-layered ANN

uses all states and the matrices of the systems to calculate the output. To cope

with this problem, in section 3.1, �rst, a Luenberger observer is designed to esti-

mate the states (both measured and unmeasured ones), and then, for the nonlinear

part, a multi-input multi-output (MIMO) backpropagation neural-network-based

observer is proposed. By having an ANN model as the reference, a fault detection

method is studied based on the residual of the system. In section 3.3, this algo-

rithm is evaluated in simulation on the wind turbine benchmark, and the results

31
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approve satisfactory performance of the proposed approach. The main contribu-

tion in this chapter, is to de�ne the problem in the way that can be observed with

neural network observer, and to implement a fault detection technique to identify

even small anomalies.

3.1 Model Identi�cation and Fault Detection method

3.1.1 Model Identi�cation

Consider a nonlinear MIMO system which has available states as follows:

_x(t) = f (x; u);

y(t) = Cx(t);
(3.1.1)

in which the x 2 Rn is the state vector of the system,u 2 Rm is the input signal,

y 2 Rp and f is an unknown nonlinear function. The main goal is to design a

model identi�cation system to minimize the output error, de�ned as follows:

ex = x � x̂; (3.1.2)

in which x̂ is the estimated state vector andex is the estimation error. In multi-

layer neural network identi�cation, all states of the system should be available.

However, in some cases, similar to wind turbines (to be explained in section V),

not all states are measurable. In this case, it would better to �rst design an

observer to estimate the unmeasurable states and after that, train an ANN to

identify the model and make the system stable by decreasing the absolute value

of error in (3.1.2).
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In order to achieve this goal, two assumptions are made: the �rst one is that the

nonlinear system is observable and the second one is that the states of the system

are bounded inL1 [95].

Now, by adding and subtracting the term �Ax , system (3.1.1) becomes

_x(t) = �Ax + g(x; u);

y(t) = Cx(t);
(3.1.3)

where g(x; u) = f (x; u) � �Ax , �A is a Hurwitz matrix and the pair of (C; �A) is

observable. An important factor to design a neuro-observer is to design a conven-

tional observer to estimate the states and train a neural network to identify the

nonlinearity. By applying a Luenberger observer [96], the observer model of the

system (3.1.3) can be de�ned as follows:

_̂x(t) = �Ax̂ + ĝ(x̂; u) + G(y � Cx̂);

ŷ(t) = Cx̂(t);
(3.1.4)

whereG 2 Rn� m is selected so that�A � GC is Hurwitz. As far as establishing the

observability criteria of pair (C; �A), the Luenberger gain is feasible [96]. The block

diagram of the observer can be seen in Fig. 3.1. In this �gure,M (s) = ( sI � �A)� 1.

As it was discussed in section 2.3.1, a MLP neural network has the capability

of identifying the nonlinear function g(x; u) due to the universal approximator

theorem. Therefore, the below equation can be written:

g(x; u) = W� (V �x) + � (x) (3.1.5)

As explained before,W and V are weight matrices, �x = [ x u]T is the input of

the neural network and� (x) is the bounded approximation error. Therefore, the
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function g can be estimated by

ĝ(x̂; u) = Ŵ � (V̂ �̂x) (3.1.6)

Figure 3.1: Block diagram of neural network observer.

The proposed observer is then given by:

_̂x(t) = �Ax̂ + Ŵ � (V̂ �̂x) + G(y � Cx̂);

ŷ(t) = Cx̂(t);
(3.1.7)

From (3.1.2) and (3.1.7) one has

_ex(t) = �Ax + W� (V �x) � �Ax̂ � Ŵ � (V̂ �̂x)

� G(Cx � Cx̂) + � (x);

ey(t) = Cex(t);

(3.1.8)

whereey(t) = y � ŷ. By adding W� (V̂ �̂x) to and subtracting from (3.1.8), the error

dynamics can be written as below:

_ex(t) = Acex + ~W� (V̂ �̂x) + w(t)

ey(t) = Cex(t);
(3.1.9)



Chapter 3. Arti�cial Neural Networks Fault Detection 35

where Ac = �A � GC, ~W = W � Ŵ, and w(t) = W(� (V �x) � � (V̂ �̂x)) + � (x) is a

bounded disturbance error.

After introducing the structure of the neural network observer, the next step is

de�ning an updating rule to train W and V.

Theorem 1: Consider the dynamical model of (3.1.1) and observer of (3.1.8). If

the network weights are updated as

_̂W = � � 1(eyT CA� 1
c )T (� (V̂ �̂x))T � � 1jj eyjjŴ ;

_̂V = � � 2(eyT CA� 1
c Ŵ(I � �( V̂ �̂x))) T sgn( �̂x)T

� � 2jj eyjj V̂ ;

(3.1.10)

where �( V̂ �̂x) = diag
n

� 2
i (V̂i �̂x)

o
, and i = 1; 2; :::; m, then, ex; ~W; eV ;ey 2 L1 are the

estimation error, training weights error, and output error which are all bounded.

� 1 and � 2 are positive learning rate and� 1 and � 2 are small positive numbers. The

proof of this theorem can be found in [95].

3.1.2 Fault Detection

After training the ANN with the updating rule of (3.1.10), the model can be used

as a reference model in order to detect the occurred faults in the system by using

the residual as follows:

r (t) = y � ŷ (3.1.11)

By investigating the above equaion, ifjj r t jj > � T (� T is a pre-selected threshold

value), it indicates a fault happening. Otherwise, the system is healthy.
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3.2 Validating on Wind Turbine

The �rst step to simulate such a problem is to investigate the Luenberger gain in

equation (3.1.4). In order to do that, �A is considered as:

�A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 10 0 4 0 3 0

5 � 12 0 0 0 1

10 2 � 20 3 4 5

3 0 0 � 21 0 0

0 2 0 0 � 5 0

6 0 8 1 0 � 5

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

There are in�nite values to address�A. One of the easy way to choose this matrix is

putting big negative values in the main diagonal of the matrix and then calculate

the other values based on them. The important criteria in choosing this matrix is

that it should be Hurwitz and pair of (C; �A) is observable. By choosingG in the

form of (3.2.1), the matrix Ac = �A � GC becomes Hurwitz, too.

G =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 8 0 3 0

5 � 8 0 1

10 2 4 5

3 0 0 0

0 2 5 0

6 0 0 10

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; (3.2.1)

Choosing� 1 and � 2 is very challenging. In fact, choosing any hyper-parameters

in any neural network can be a di�cult and consuming task and mainly they are

chosen based on try and error and experts knowledge. It is recommended to start

with small values and change them step by step. In this simulation, by choosing
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� 1 = 2 � 107 and � 2 = 2 � 10� 7, the comparative results in Fig. 3.2, 3.3, 3.4, and 3.5

can be obtained. As it is obvious, the output estimations of the neural networks

can follow the main system outputs accurately in 4500s. In all four outputs, the

estimation errors converge to zero. The details of the related simulation can be

found in Appendix A.

Figure 3.2: Rotor speed signal and its estimation.

3.3 Fault Detection for Wind Turbine

In the next step, to study the e�ectiveness of the ANN reference model in detecting

faults, a case study consisting of 2% loss in actuator of generator torque reference

is considered. This fault happened between the time 2500 to 3500s. One can see

the e�ect of this fault in the fourth output of the system � g in Fig. 3.6. It is

not distinguishable by comparing the healthy torque and faulty one. By using the

approach of (3.1.11), the residual signal can be obtained and shown in Fig. 3.7.
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Figure 3.3: Generator speed signal and its estimation.

Figure 3.4: Pitch angle signal and its estimation.
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Figure 3.5: Generator torque signal and its estimation.

As one can see, the residual can successfully detect the fault even if the percentage

of fault is so small.

3.4 Summary and Conclusions

In this chapter, the model identi�cation and fault detection approach based on

arti�cial neural networks has been proposed. As in some systems such as wind

turbines, not all the states can be measured, neural networks observer cannot

work correctly. Therefore, Luenberger observer jointly with neural networks iden-

ti�cation method is proposed to deal with the issue of nonlinearity and being

unmeasurable, which is the novelty of this algorithm. Based on the trained model,

residual-based fault detection is investigated. The algorithm is simulated on the

wind turbine benchmark. A case study is carried out for 2% actuator fault. The
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results of both sections, identi�cation and fault detection, validate the e�ectiveness

of the proposed algorithm.

Figure 3.6: The healthy and faulty signal of � g.

Figure 3.7: The norm of residual.



Chapter 4

Robust Neural Network Fault

Estimation Approach for

Nonlinear Dynamic Systems

In this chapter, a robust fault estimation approach is proposed for multi-input

and multi-output nonlinear dynamic systems on the basis of back propagation

neural networks. The augmented system approach, input-to-state stability theory,

linear matrix inequality optimization, and neural network training/learning are

integrated so that a robust simultaneous estimate of the system states and faults

are achieved.

Based on the facts that there are always unexpected faults and disturbances in

industrial systems, it is very challenging to design an observer to tackle this prob-

lem and guarantee the robustness of the system in conjunction with thoroughly

estimating the occurred faults.

Augmented system methods achieve many advantages in estimating states and

faults simultaneously, among distinct fault estimation approaches. The pioneering

41
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works on this topic can be found in [97{99]. Recently in [100], a discrete-time ro-

bust fault tolerant control approach is proposed based on linear matrix inequalities

(LMI) techniques and augmented system approach in order to achieve input-to-

states stability of the system subjected to input disturbances.

In this chapter, two di�erent scenarios are considered: actuator fault estimation

and sensor fault estimation. Each of these scenarios needs speci�c model descrip-

tion and fault diagnosis method. In this chapter, the goal is to achieve a fault

estimator, which is robust against unknown inputs. As it is evident, unknown

inputs such as modelling defects, perturbations, environmental disturbances and

parameters uncertainties can inuence the stability of the system. To achieve

this goal, an augmented robust LMI optimization is proposed for each scenario

based on back propagation neural network (BPNN). The stability of the system

is guaranteed via Lyapunov and input-to-state stability criteria.

The main contribution in this chapter is proposing the novel robust fault estima-

tion algorithm to not only cope with nonlinear dynamics, but also can handle the

disturbances. The most important part of this novel contribution, is providing the

mathematical proof for the stability of the system.

4.1 Neuro-Robust Actuator Fault Estimation

Consider a nonlinear multi-input and multi-output (MIMO) system with consid-

eration of actuator faults and disturbances, as follows:

_x(t) = f (x(t); u(t)) + B f f a(t) + Bdd(t);

y(t) = Cx(t);
(4.1.1)



Chapter 4. Robust neural network fault estimation approach 43

in which the x 2 Rn is the state vector of the system,u 2 Rm is the input signal,

y 2 Rp is the output and f (x(t); u(t)) 2 Rn is an unknown nonlinear function.

f a(t) 2 Rm is the occurred actuator fault andB f is the related fault matrix. d(t)

is continuously di�erentiable and bounded disturbance andBd is the distribution

matrix. As it was mentioned earlier in section 3.1.1, in multi-layer ANN mapping,

all states of the model should be available. Nevertheless, in some cases, like wind

turbines, not all states are measurable. State estimation in a system plays an

important role in detecting and diagnosing the faults and monitoring the process

more vividly. Based on this fact, it would better to have an augmented system

not only to estimate the states but also identify the unanticipated faults at the

same time.

In order to obtain this aim, two assumptions are considered: �rst, the nonlinear

model is observable. Second, the states are bounded inL1 [95].

Now, by adding and subtracting the termAx, system (4.1.1) becomes:

_x(t) = Ax(t) + g(x(t); u(t)) + B f f a(t) + Bdd(t);

y(t) = Cx(t);
(4.1.2)

where g(x(t); u(t)) = f (x(t); u(t)) � Ax (t), A is an arbitrary Hurwitz matrix,

which has been chosen in the way that the pair of (C; A) is observable. The main

reason to decouple the system into linear and nonlinear blocks is to be able to

design a robust observer based on the LMI for the linear part while the nonlinear

block error is augmented into the disturbance vector. This vector plays the role

of exogenous input in the process of formulating the LMI. By this approach, the

nonlinear observability criteria are relaxed into linear observability criteria. More

explanation will be brought in Theorem 4.1 later on.

As it is evident that the dynamics of the fault is unknown, there are some methods
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to deal with this problem. For instance, in [22], it is assumed that the second-order

derivative of the occurred fault is zero. However, in this research, this condition

will be relaxed by considering the novel equation of (4.1.3) which is correct in all

situations instead of previous forms.

_f a = _f a � f a + f a: (4.1.3)

It is worth to mention that f a and _f a should be continuously di�erentiable and

bounded. By augmenting (4.1.3) and (4.1.2), the model of the system can be

written as:

_X (t) = �AX (t) + G + �Bd
�d;

y = �CX (t);
(4.1.4)

in which, �A =

2

6
4

A B f

0 � I

3

7
5, X (t) = [ x(t) f a]T , G = [ g(x(t); u) 0]T , �Bd =

2

6
4

Bd 0 0

0 I I

3

7
5,

�d = [ d _f a f a]T , and �C = [ C 0]. The main goal in this approach is to design

a model identi�cation system to minimize the augmented state error vector in

(4.1.5):

eX (t) = X (t) � X̂ (t); (4.1.5)

whereX̂ is the estimated state vector andeX is the estimation error vector.

[95] proposed a model to design a neural network observer (NNO) by decoupling

systems into linear and nonlinear blocks. By using this model and modifying it

by adding faults and disturbances, the NNO model can be seen in Fig. 4.1.

In this model, NNO is designed to estimate the nonlinear block of the model,

G, and a robust observer (described in the equation (4.1.6)) is designed to cope

with the disturbance and unexpected fault, which are augmented in�d. Moreover,
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Figure 4.1: The scheme of ANN based observer.

M (s) = ( sI � �A)� 1 and ŷ is the estimation ofy. The upper part is the main model

with its inputs, while the lower part is the estimation system. The input and the

output of the main model are applied to the estimation system. The whole system

is not closed loop since no signal from the estimation part is entering the main

model via feedback.

The observer model of the system (4.1.2) can be de�ned as follows:

_̂X (t) = �AX̂ (t) + Ĝ + L(y � �CX̂ (t)) ;

ŷ(t) = �CX̂ (t);
(4.1.6)

where L 2 R(n+ m)� p is selected so that the augmented system becomes robust

against the disturbance term of�d. Moreover,Ĝ is the output of the neural networks

of NNO and the estimation ofG. As it was discussed in (2.3.1),̂G can be written

as:

Ĝ = Ŵ � (V̂ �̂X (t)) ; (4.1.7)

in which, �̂X (t) = [ X̂ (t) u]T is the input of NNO.

By substituting (4.1.7) into (4.1.6), the following observer equation can be ob-

tained:

_̂X (t) = ( �A � L �C)X̂ (t) + Ŵ � (V̂ �̂X (t)) + L �CX (t);

ŷ(t) = �CX̂ (t);
(4.1.8)
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Procedure 1. For achieving the goal, the following procedure is applied:

i By having the idea of BPNN that was introduced in section II, in feed-

forward step after having the output of NNO, a robust observer gain is

designed via LMI in order to reduce the inuence of the unmodeled dynamics

and disturbances. In addition, the stability of the system is guaranteed

through Lyapunov function (to be addressed in Theorem 4.1). The output

error is calculated at the end of this step.

ii In the next step, the backward step of BPNN is applied, and the updating

rules for the weights of the NNO are obtained (to be presented in Theorem

4.2) via the prede�ned cost function and the output error, which is assessed

in the earlier step.

By considering the error function of (4.1.5), the error dynamics can be written as

follows:

_eX (t) = _X (t) � _̂X (t)

= �AX (t) � �AX̂ (t) + G � Ŵ � (V̂ �̂X (t))

� L( �CX (t) � �CX̂ (t)) + �Bd
�d:

(4.1.9)

By substituting ~G = G � Ŵ � (V̂ �̂X (t)), which is the error of nonlinear function

estimation, equation (4.1.9) is given as below:

_eX (t) = ~A ~X (t) + ~G + �Bd
�d; (4.1.10)

in which ~A = �A � L �C. (4.1.10) can be further simpli�ed as:

_eX (t) = ~A ~X (t) + ~B1
~F ; (4.1.11)
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in which ~F = [ ~G �d]T . Now, the system has the state vector ofeX (t) and the

exogenous input of~F .

Lemma 1 [101]: Considerf (x; u) is continuously di�erential function and globally

Lipschitz in (x; u). If _x = f (x; 0) has a globally exponentially stable equilibrium

point at the origin, then the system _x = f (x; u) is input-to-state stable.

Before presenting the main result of Theorem 4.1, we �rstly give the de�nitions

of the robust performance index and associated Hamiltonian function as follows

[102]:

J11 = jj eX (t)jjT f �  2jj ~F jjT f < 0: (4.1.12)

The associatedHamiltonian function is de�ned as:

J12 =
Z T f

0
(
dV( eX (t))

dt
+ eX T (t) eX (t) �  2 eF T eF ) dt (4.1.13)

Theorem 4.1. There exists robust observer (4.1.8) for the augmented system of

(4.1.4), so that: (i) the estimation error dynamics in (4.1.11) is input-to-state

stable; (ii) the estimation error satisfy the robust performance index (4.1.12), if

there are a positive de�nite matrixP and a matrix Q so that

2

6
4

P �A + �AT P � Q �C � �CT QT + I P ~B1

~B T
1 P �  2I

3

7
5 < 0 (4.1.14)

in which ~B1 = [ I �Bd]. Then, the observer gain is calculated asL = P � 1Q.

Proof : The proof of this theorem is divided into two parts: (i) input-to-state

stability, and (ii) robust performance index.
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(i) Proof of the input-to-state stability . For any ~X 1(t), ~X 2(t), ~F1, and ~F2, we

can have:

jh( ~X 1(t); ~F1) � h( ~X 2(t); ~F2)j

= j ~A( ~X 1 � ~X 2) + ~B1( ~F1 � ~F2)j

� � j ~X 1(t) � ~X 2(t)j + � j( ~F1 � ~F2)j;

(4.1.15)

where � = jj ~Ajj , and � = jj ~B1jj . As a result, h( ~X (t); ~F ) is globally Lipschitz in

( ~X (t); ~F ). It is evident that h( ~X (t); ~F ) is continuously di�erentiable.

Since the matrix ~A is Hurwitz, the unforced system _~X (t) = ~A ~X (t) = h( ~X (t); 0) is

globally exponentially stable at the origin. Therefore, by using Lemma 1, we can

conclude that the estimation error dynamics _~X (t) = h( ~X (t); ~F ) is input-to-state

stable.

(i) Proof of robust performance index . One can take the Lyapunov candidate

of V( ~X ) as follows:

V( ~X (t)) = ~X (t)T P ~X (t); (4.1.16)

in which P is positive de�nite symmetric matrix. By having derivative of (4.1.16),

one can have:

_V( ~X (t)) = ~X (t)T P _~X (t) + _~X (t)T P ~X (t)

= ~X (t)T P( ~A ~X (t) + ~B1
~F )

+ ( ~A ~X (t) + ~B1
~F )T P ~X (t):

(4.1.17)



Chapter 4. Robust neural network fault estimation approach 49

Therefore, by substituting (4.1.17) into (4.1.13),J12 can be obtained as:

J12 =
Z T f

0
( ~X (t)T P( ~A ~X (t) + ~B1

~F )

+ ( ~A ~X (t) + ~B1
~F )T P ~X (t)

+ eX T (t) eX (t) �  2 eF T eF ) dt:

(4.1.18)

By extracting the vector block ofZ = [ ~X (t) ~F ]T and usingSchur Complement,

(4.1.18) can be rewritten as:

J12 =
Z T f

0
Z T RZ dt; (4.1.19)

in which,

R =

2

6
4

P ~A + ~AT P + I P ~B1

~B T
1 P �  2I

3

7
5 (4.1.20)

Consequently, for havingJ12 < 0, R should be negative de�nite. By substituting

~A = �A � L �C, R < 0 is equivalent to the following LMI:

2

6
4

P �A + �AT P � Q �C � �CT QT + I P ~B1

~B T
1 P �  2I

3

7
5 < 0

whereQ = PL. As a result, the condition (4.1.14) impliesR < 0, then J12 < 0. It

is noticed that V( ~X (t)) � 0, and from (4.1.13) andJ12 < 0, the robust performance

index (4.1.12) can thus be obtained. Therefore, the gain matrix ofL = P � 1Q can

be calculated)

Now, by calculating the output error vector ofey = y � ŷ, the feed-forward step of

designing is �nished. The next step is to design a neural network and propose an

updating rule for weight matrices by using the output errorey.
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As it was discussed in [103], based on theUniversal Approximator theorem, a

multi-layer neural network (MLP) with three layers and updating rule of BPNN

has the capability of identifying any nonlinear function. Therefore, as it was

brought earlier, for estimating nonlinear function ofG, equation (4.1.7) with the

estimated weight matrices ofŴ and V̂ is considered. Moreover, the basic updating

rules in BPNN are as follows:

_̂W = � � 1(
@J2
@̂W

) � � 1jj eyjjŴ ;

_̂V = � � 2(
@J2
@̂V

) � � 2jj eyjj V̂ ;
(4.1.21)

in which, J2 is the cost function of the system that should be minimized. For

�nding an updating rule to minimize the cost function, the following theorem is

discussed.

Theorem 4.2. Given the nonlinear model of (4.1.1) and the observer scheme of

Figure 4.1 with observer equation of (4.1.8). If the ANN weights are trained as

_̂W = � � 1(eyT C ~A � 1)T (� (V̂ �̂X ))T � � 1jj eyjjŴ ;

_̂V = � � 2(eyT C ~A � 1Ŵ(I � �( V̂ �̂X ))) T �̂X T

� � 2jj eyjj V̂ ;

(4.1.22)

where �( V̂ �̂x) = diag
n

� 2
i (V̂i

�̂X )
o

, and i = 1; 2; :::; m, then, eX; ~W; eV ;ey 2 L1 are

the estimation error, the weights error, and the output error which are all bounded.

� 1 and � 2 are positive learning rate and� 1 and � 2 are small positive numbers.

Proof : By de�ning cost function J2 =
1
2

(eyT ey) and using the basic updating rule

for BPNN that is introduced in (4.1.21), it is obvious that the only terms that

should be changed into simpler terms are
@J2
@̂W

and
@J2
@̂V

. In order to solve this
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issue, two terms are introduced as below:

netŴ = Ŵ � (V̂ �̂X (t)) ;

netV̂ = V̂ �̂X (t):
(4.1.23)

Now,
@J2
@̂W

and
@J2
@̂V

can be decoupled into four partial derivatives of:

@J2
@̂W

=
@J2
@ey

�
@ey

@̂X
�

@̂X
@net̂W

�
@net̂W

@̂W
@J2
@̂V

=
@J2
@ey

�
@ey

@̂X
�

@̂X
@net̂V

�
@net̂V

@̂V

(4.1.24)

By using the cost function equation, one can get:

@J2
@ey

= eyT : (4.1.25)

By having ey = �C(X (t) � X̂ (t)), it can be obtained that:

@ey

@̂X
= � �C: (4.1.26)

For the third term of each equation in (4.1.24), by considering (4.1.8) and (4.1.23),

following equations can be achieved:

@_̂X
@net̂W

= ( �A � L �C)
@̂X

@net̂W
+ I;

@_̂X
@net̂V

= ( �A � L �C)
@̂X

@net̂V
+ Ŵ T @(� (V̂ �̂X (t)))

@net̂V
:

(4.1.27)
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By having partial derivatives of a vector on a vector, and by considering the

derivative of sigmoid function, one can have:

@(� (V̂ �̂X (t)))
@net̂V

=
@(� (V̂ �̂X (t)))

@(V̂ �̂X (t))

=

2

6
6
6
6
4

1 � � 2(V̂1
�̂X (t) 0

. . .

0 1� � 2(V̂n
�̂X (t)

3

7
7
7
7
5

in which, V̂i i = 1; :::; n is the i th row of the weight matrix V̂ . Therefore, the

above equation can be written as belows:

@(� (V̂ �̂X (t)))
@net̂V

= 1 � �( V̂ �̂X (t)) ; (4.1.28)

in which, �( V̂ �̂X (t)) = diag[� 2(V̂i
�̂X (t)] i = 1; :::; n.

In (4.1.27), static approximation of the gradient can be assumed due to the

fact that the network converges relatively fast [95]. Therefore,
@_̂X

@net̂W
= 0 and

@_̂X
@net̂V

= 0. Based on this assumption, (4.1.27) can be written as:

0 = ( �A � L �C)
@̂X

@net̂W
+ I;

0 = ( �A � L �C)
@̂X

@net̂V
+ Ŵ T @(� (V̂ �̂X (t)))

@net̂V
:

Consequently, by using above equation and (4.1.28), following equations can be

obtained:

@̂X
@net̂W

= � ( �A � L �C)� 1;

@̂X
@net̂V

= � ( �A � L �C)� 1Ŵ T (1 � �( V̂ �̂X (t))) ;

(4.1.29)
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By considering the de�nition of (4.1.23), the forth term of equations of (4.1.24)

are achieved:

@net̂W
@̂W

= � (V̂ �̂X (t)) ;

@net̂V
@̂V

= �̂X (t):
(4.1.30)

Now, by substituting (4.1.25), (4.1.26), (4.1.29) and (4.1.30) in (4.1.24), the fol-

lowing equation is obtained:

@J2
@̂W

= ( eyT C ~A � 1)T (� (V̂ �̂X ))T

@J2
@̂V

= ( eyT C ~A � 1Ŵ(I � �( V̂ �̂X ))) T �̂X T
(4.1.31)

By replacing (4.1.31) into the updating rule of (4.1.21), the equations of (4.1.22)

can be obtained and based on the BPNN approach and universal approximator

theorem, the neural network whose weight matrices are updated based on (4.1.22)

is stable)

Procedure 2. For designing the robust neural network fault estimator, the fol-

lowing procedure is noted:

i Select the matrix A so that pair of (C; A) is observable.

ii Construct the augmented system in the form of (4.1.11).

iii Solve the LMI (4.1.14) to achieve the matricesP and Q in order to have

L = P � 1Q.

iv Consider a three-layer back propagation neural network with initial random

weights.

v Update the weight matricesW and V using (4.1.22).
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vi Obtain the augmented state ofX̂ and compare it to the real value ofX .

The owchart of the algorithm is depicted in Figure 4.2. In this owchart, Ts is

the initial time of simulation and TF inal is the end of it.

MIMO Sys (4)
Initialize NN 

weights, W & V

Output of NN 
(10)

Design Robust Gain 
via Theorem 1

Estimate the 
States via Fig. 2

Build Augmented 
Sys (15)

Assume Matrix 
A (5)

Update W & V 
via Theorem 2

Start

Calculate the 
Errors

Ts = 0 Ts < TFinal

End
N

Y

Figure 4.2: Flowchart of the Combined Algorithm.

4.1.1 Actuator Fault Estimation for 4.8 MW Wind Tur-

bine Benchmark

In this part, the proposed robust fault estimation based on ANN is simulated for

the wind turbine model, which was introduced in section 2.1.

B1. Luenberger NN observer for WT

Before validating the proposed algorithm in wind turbine benchmark, we test the

system by an approach based on Luenberger observer and ANN without consider-

ing fault estimation capability [28]. For having such observer, the model of (4.1.32)

is considered. Detailed information on the steps of designing neural network Lu-

enberger observer can be found in [28].

_x(t) = Ax + g(x; u);

y(t) = Cx(t);
(4.1.32)
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However, as the scenario here is faulty system, the input actuator faults are con-

sidered to be 20% e�ectiveness loss on� g;r occurred in t = 2500s � 3500s and

20% e�ectiveness loss on� r occurred in t = 3000s � 4000s. No disturbances are

considered for this problem. The expectation is that two faulty states of� g and

� are estimated accurately. The results of this observer can be seen in Figs. 4.3,

and 4.4 from which we can see the system states cannot be estimated well. As a

result, the algorithm in [28] can track the healthy system states rather than faulty

system states, without the capability to track the faulty signals.

Figure 4.3: Pitch angle signal and its estimation using Luenbeger observer.

Figure 4.4: Generator torque signal and its estimation using Luenbeger observer.

B2. NN fault estimator for WT
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First step to validate robust neural network fault estimator is to obtain the robust

LMI gain in theorem 4.1. In order to get this gain,A is assumed as:

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 20 3 4 2 3 0

5 � 30 4 3 6 1

10 2 � 20 3 4 5

3 17 2 � 21 11 9

9 12 2 0 � 25 4

6 20 8 1 0 � 35

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

The important criteria in choosing A is that it should be Hurwitz and the pair of

(C; A) is observable. B f is chosen equal toB in equation (2.1.11) to fully cover

the actuators of the system. As it is explained in previous chapter, putting large

negative values in the main diagonal of the matrix would be very helpful to �nd

the suitable Hurwitz matrix. Therefore, �A in (4.1.4) can be written as:

�A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 20 3 4 2 3 0 0 0

5 � 30 4 3 6 1 0 0

10 2 � 20 3 4 5 0 0

3 17 2 � 21 11 9 0 ! n

9 12 2 0 � 25 4 0 0

6 20 8 1 0 � 35 � gc 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;
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By consideringBd = [1 1 1 1 1 1]T , one can write:

�Bd =

2

6
6
6
6
6
6
6
6
6
6
6
4

1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
5

T

;

Now, by considering = 0:1, LMI of (4.1.14) can be obtained through LMI solver

in MATLAB. Then, L can be achieved via theorem 4.1 and be shown as:

L = 103 �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

51:91 � 0:67 � 0:67 � 0:67

� 2:51 43:75 � 0:37 � 0:36

370:24 397:04 367:59 456:04

137:05 163:01 118:87 133:62

� 2:52 � 0:38 43:75 � 0:39

� 2:54 � 0:40 � 0:41 43:70

304:20 318:73 318:71 573:21

� 0:02 � 0:02 � 0:02 � 0:02

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

As in Luenberger observer problem, the input actuator faults are 20% reduction

on � g;r occurred in t = 2500s � 3500s and 20% reduction on� r occurred in t =

3000s � 4000s.

For the next step, ANN should be set with updating rule of (4.1.22). The ANN

training data comes from the benchmark introduced in section IV-Part A. The

input of model, which is u = [ � g;r � r ]T goes directly to ANN model. However,

only the error vector of the output of the system is applied to ANN for learning

process. By choosing 20 neurons in hidden layers,� 1 = 500 and � 2 = 500, the
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results in Figures 4.5, 4.6, 4.7, and 4.8 can be compared. It is worth to mention that

choosing the correct value for� 1 and � 2 can be very challenging. It is recommended

to start with small values.

In these four plots, four measurable states of wind turbine model, e.g.! r , ! g, � and

� g are depicted (the red solid line) in comparison to the related output of robust

neural network state estimator (the blue dash line). As it can be clearly seen, the

estimations getting from the robust ANN algorithm can follow the outputs of the

main system accurately. The estimation errors converge to zero in all outputs.

In addition, in Figures 4.9 and 4.10, the two unmeasured states, e.g.� � , and _� , are

exhibited. The comparison of the red solid line (which is the output of the system)

and the blue dash line (which is the estimation) can explain the e�ectiveness of

the robust neural network algorithm in estimating the unmeasured states.

Now, by considering faults as described earlier on two inputs of the main system,

� g;r , and � r , the inuence of fault on � r can not be easily seen in the state� (Figure

4.7). The healthy signal, which is green dash line is not so di�erent with the red

solid line, which is faulty signal. However, by comparing the healthy signal and

faulty one in Figure 4.8, the e�ect of fault on � g;r is completely recognizable on

the state � g. By the way, without considering that it is recognizable in the output

or not, the robust neural network algorithm can precisely estimate the occurred

faults. The results are also well-illustrated in Figures 4.11 and 4.12.

Moreover, one can see the RMS value of the estimation errors (RMSE) and nor-

malized estimation error (NRMSE) in Table 4.1, which is calculated based on

(4.1.33) and (4.1.34).

RMSE =

s
1

Tf � Ts

Z Ts

Tf

(x i � x̂ i )2; (4.1.33)
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in which, Ts is the start time, Tf is the �nal time, x i is the i th parameter, andx̂ i is

the estimation of thei th parameter. In addition, the normalized RMSE (NRMSE)

can be intoduced as belows:

NRMSE =
RMSE

max(x i ) � min (x i )
; (4.1.34)

in which, max(x i ) is the maximum of x i and min (x i ) is the minimum of x i . As

one can see in Table 4.1, the RMSE and NRMSE for each states and faults are

very small, relatively.

Figure 4.5: Rotor speed signal and its estimation.

B3. Some discussions on the proposed algorithm

It is well illustrated in the literature that neural networks are powerful in esti-

mating complex nonlinear models. However, there are some di�culties related

to the simulation. The very challenging point is that due to the big value of

the signals, large matrices, and computational cost, the training process is quite
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Figure 4.6: Generator speed signal and its estimation.

Figure 4.7: Pitch angle signal and its estimation.
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Figure 4.8: Generator torque signal and its estimation.

Figure 4.9: Torsion angle signal and its estimation.
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Figure 4.10: Pitch angular velocity signal and its estimation.

Figure 4.11: 20% Faults on reference of generator torque actuator and its estimation.

time-consuming. The other important issue is the solver steps in Matlab. By

increasing the step size of the solver, one can get faster training results. However,
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Figure 4.12: 20% Faults on reference of pitch angle actuator and its estimation.

Table 4.1: RMSE value of each states and faults.

States Range RMSE NRMSE (%)

! r 0 : 1.82rad=s 0.0176 0.98

! g 0 : 180rad=s 1.1782 0.65

� -3.85 : 30.50rad 0.1982 0.57

� g 0 : 32600Nm 1.71 0.0052

� � 0 : 0.0017 0.000041 2.14

_� -183.7 : 132.5rad=s 1.4 0.44

Faults on � g;r -6526 : 0Nm 42.87 0.65

Faults on � r -10.60 : 0.2Nm 0.067 0.62

it inuences directly on the accuracy of the estimation performance. Having a

trade-o� between these items, an acceptable accuracy with satisfactory speed can
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be achieved.

4.2 Neuro-Robust Sensor Fault Estimation

Consider a nonlinear system, represented by the following equations:

_x(t) = f (x(t); u(t)) + Bdd(t);

y(t) = Cx(t) + D f f s + Dsds;
(4.2.1)

where x 2 Rn is the state vector of the system,u 2 Rm is the input signal,

y 2 Rp is the output and f (x(t); u(t)) 2 Rn is an unknown nonlinear function.

f s(t) 2 Rp is the sensor fault andD f is the related fault matrix. d(t) is assumed as

a continuously di�erentiable and bounded environmental disturbance signal and

Bd is the distribution matrix. ds(t) is sensor noise andDs in the related matrix.

For achieving a robust stable fault estimation, two assumptions are made: �rst,

the nonlinear system is observable. Second, the states of the system should be

bounded inL1 [79].

By having the term � Ax , (4.2.1) can be written as:

_x(t) = Ax(t) + g(x(t); u(t)) + Bdd(t);

y(t) = Cx(t) + D f f s + Dsds;
(4.2.2)

whereg(x(t); u(t)) = f (x(t); u(t)) � Ax (t). The optional Hurwitz matrix A should

be selected in the way that yields to the observability of the pair of (C; A).

As it was well-explained in (4.1.3), since the dynamics of the fault is not known,

here, a general form is considered without special conditions [79]:

_f s = _f s � f s + f s: (4.2.3)
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Here, it is assumed thatf s and _f s are continuously di�erentiable and bounded.

By considering the augmentation of (4.2.3) and (4.2.2), the model can be revised

as follows:

_X (t) = �AX (t) + G + �Bd
�d;

y = �CX (t) + Dsds;
(4.2.4)

where,X (t) = [ x(t) f s]T , �d = [ d _f s f s]T , G = [ g(x(t); u) 0]T , �A =

2

6
4

A 0

0 � I

3

7
5,

�Bd =

2

6
4

Bd 0 0

0 I I

3

7
5, and �C = [ C D f ]. Again, similarly to the previous section,

also in this method, the aim is to design an estimator to minimizeeX (t) in (4.2.5):

eX (t) = X (t) � X̂ (t); (4.2.5)

whereX̂ is the vector of estimated states andeX is the vector of estimation errors.

Figure 4.13: The model of the observer based on ANN.

As it can be seen in Fig. 4.13, the block NNO is aNeural Network Observer

and it should be formulated to estimate the nonlinear term of (4.2.4),G, and

the block L is a robust observer (designed in Theorem 4.3). Its main task is to

eliminate the e�ects of the disturbance and unmodeled dynamics. In addition, ^y

is the estimation of the output vector andM (s) can be obtained as (sI � �A)� 1.
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The upper part of the diagram is the main system of (4.2.1), while the estimation

system is illustrated in the lower part.

The observer model can be described as:

_̂X (t) = �AX̂ (t) + Ĝ + L(y � �CX̂ (t)) ;

ŷ(t) = �CX̂ (t);
(4.2.6)

where L 2 R(n+ p)� p. As it is explained before,Ĝ is the output of NNO and can

be calculated as follows:

Ĝ = Ŵ � (V̂ �̂X (t)) ; (4.2.7)

where, �̂X (t) = [ X̂ (t) u]T is the input of the observer.

The following observer equation can be written by replacing (4.2.7) into (4.2.6):

_̂X (t) = ( �A � L �C)X̂ (t) + Ŵ � (V̂ �̂X (t)) + L �CX (t) + LD sds;

ŷ(t) = �CX̂ (t);
(4.2.8)

By using the error vector in (4.2.5), the dynamics of the output error can be

obtained as:

_eX (t) = _X (t) � _̂X (t)

= �AX (t) � �AX̂ (t) + G � Ŵ � (V̂ �̂X (t))

� L( �CX (t) � �CX̂ (t)) + �Bd
�d � LD sds:

(4.2.9)

By replacing eG = G � Ŵ � (V̂ �̂X (t)), equation (4.2.9) can be calculated as below:

_eX (t) = eA eX (t) + eG + �Bd
�d � LD sds; (4.2.10)
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in which ~A = �A � L �C. (4.2.10) can be rewritten as:

_eX (t) = eA eX (t) + eDds + eB eF ; (4.2.11)

in which eF = [ eG �d]T , eD = � LD s, and eB = [ I �Bd]. Moreover, output error can

be derived as:

ey = y � ŷ

= �C eX + Dsds:
(4.2.12)

In this system, state vector is eX (t) and the exogenous input iseF and ds. By

obtaining (4.2.11), Lemma 1 in section 4.1 should be considered.

Based on [102], the robust performance index can be written as below:

J11 = jj eX (t)jjT f �  2
1 jj eF jjT f �  2

2 jjdsjjT f < 0: (4.2.13)

Moreover, the associatedHamiltonian function can be de�ned as follows:

J12 =
Z T f

0
(
dV( eX (t))

dt
+ eyT (t)ey(t)

�  2
1

eF T eF +  2
2dT

s ds) dt

(4.2.14)

Theorem 4.3. The robust observer (4.2.8) can be achieved for the model of

(4.2.4), so that: (i) the estimation error dynamics of (4.2.11) is prove to have

ISS; (ii) the estimation error satis�es the robust performance index (4.2.13), if

there are a positive de�nite matrixP and a matrix Q so that

2

6
6
6
6
4

� � QDs + �CT Ds P eB

� D T
s QT + D T

s
�C DT

s Ds �  2
2I 0

eB T P 0 �  2
1I

3

7
7
7
7
5

< 0 (4.2.15)
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in which � = P �A + �AT P � Q �C � �CT QT + �CT �C. Then, the observer gain can be

obtained asL = P � 1Q.

Proof : Theorem 4.3 can be proved in two sections: (i) ISS, and (ii) robust perfor-

mance index.

(i) The ISS . For any eX 1(t), eX 2(t), eF1, eF2, ds1, and ds2 we can get:

jh( eX 1(t); eF1; ds1) � h( eX 2(t); eF2; ds1)j

= j eA( eX 1 � eX 2) + ~B( eF1 � eF2) + eD(ds1 � ds2)j

� � j eX 1(t) � eX 2(t)j + � j eF1 � eF2j + � jds1 � ds2j;

(4.2.16)

in which, � = jj ~Ajj , � = jj ~B1jj , and � = jj eDjj . Consequently,h( eX (t); eF ; ds) is

globally Lipschitz in ( eX (t); eF ; ds). Therefore, h( eX (t); eF ; ds) can be con�rmed as

continuously di�erentiable function.

Considering the matrix eA being Hurwitz, the unforced system _eX (t) = eA eX (t) =

h( eX (t); 0; 0) is globally exponentially stable at the origin. As a result, by means of

Lemma 1, it is well-founded that the estimation error dynamics_eX (t) = h( eX (t); eF ; ds)

is input-to-state stable.

(ii) Robust performance index . The Lyapunov candidate ofV( eX ) is taken as

below:

V( eX (t)) = eX (t)T P eX (t); (4.2.17)

in which P is positive de�nite symmetric matrix. Derivative of (4.2.17) can be

written as:

_V( eX (t)) = eX (t)T P _eX (t) + _eX (t)T P eX (t)

= eX (t)T P( eA eX (t) + eDds + eB eF )

+ ( eA eX (t) + eDds + eB eF )T P eX (t):

(4.2.18)
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By substituting (4.2.18) into (4.2.14), J12 can be derived as:

J12 =
Z T f

0
( eX (t)T P( eA eX (t) + eDds + eB eF )

+ ( eA eX (t) + eDds + eB eF )T P eX (t)

+ eyT (t)ey(t) �  2
1

eF T eF +  2
2dT

s ds) dt

(4.2.19)

Considering the vector ofZ = [ eX (t) ds
~F ]T and refering toSchur Complement,

(4.2.19) can be obtained as:

J12 =
Z T f

0
Z T RZ dt; (4.2.20)

in which,

R =

2

6
6
6
6
4

P eA + eAT P + �CT �C P eD + �CT Ds P eB

eD T P + D T
s

�C DT
s Ds �  2I 0

eB T P 0 �  2I

3

7
7
7
7
5

(4.2.21)

Therefore, for achievingJ12 < 0, R should be negative de�nite. By replacing

eA = �A � L �C, and eD = � LD s, R < 0 is lead to (4.2.15), whereQ = PL. It is

worth to mentioned that V( ~X (t)) � 0, and from (4.2.14) andJ12 < 0, (4.2.13)

can be maintained. Hence, the robust gain ofL = P � 1Q can be obtained)

The next step to obtain a neural network robust observer is proposing an updating

rule for weight matrices,Ŵ and V̂ , by utilizing the output error ey.

Theorem 4.4. Considering the nonlinear system of (4.2.1) and the observer model

of Figure 4.13 with observer model of (4.2.8). If the weights of the network are
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updated as:

_̂W = � � 1(eyT C ~A � 1)T (� (V̂ �̂X ))T � � 1jj eyjjŴ ;

_̂V = � � 2(eyT C ~A � 1Ŵ(I � �( V̂ �̂X ))) T �̂X T

� � 2jj eyjj V̂ ;

(4.2.22)

where �( V̂ �̂x) = diag
n

� 2
i (V̂i

�̂X )
o

, i = 1; 2; :::; m, � 1 and � 2 are positive learn-

ing rate and � 1 and � 2 should have positive values. Then, It can be proved that

eX; ~W; eV ;ey 2 L1 , which are the estimation error, the weights error, and the output

error, respectively, are all bounded.

Proof : The proof of this theorem is thoroughly explained in [79])

Procedure 1. For obtaining the aim of this algorithm, the procedure is completely

similar to the one in actuator fault estimation in section 4.1, which was explained

earlier in this chapter.

4.2.1 Simulation and Results

In this part, the proposed robust neural network sensor fault estimation is simu-

lated in the wind turbine benchmark.

Based on the approach explained in Theorem 4.3, the �rst step to design an

observer is to calculate LMI gain. To calculateL, A can be considered as a
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Hurwitz matrix:

A = 1000 �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 40 3 4 2 3 1

5 � 30 4 3 6 1

10 2 � 20 3 4 5

3 10 2� 21 3 1

9 12 2 0 � 25 4

6 9 8 1 0 � 35

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Again, as explained before, obtainingA can be very challenging and it a�ects the

stability of the system. It is recommended to put large negative poles on the main

diagonal of it. Bd is as [1 1 1 1 1 1 1]T to consider the environmental

disturbances a�ect all of the states equally. So,�Bd and then eB can be consequently

calculated. D f and Ds are considered asI 4� 4 to evaluate faults on all four sensors.

Now, by applying the above variables into Theorem 1, L can be computed as:

L = 1000 �

2

6
6
6
6
6
6
6
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6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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1276 1196 534 1472

� 324 595 � 113 444

194 745 359 731

� 7574 � 3300 � 698 � 2603

� 1441 � 683 � 1253 � 521

1186 1003 239 2179

� 2710 � 1417 � 7377 � 1280

2483 2413 1601 2109

1154 3939 � 38 2774

5521 4255 2847 4040
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Two di�erent scenarios are applied to this benchmark. The �rst one, which is

shown in Table 4.2, considered the 20% reduction on the performance in each

sensor, in di�erent timing. The results of this scenario are illustrated in Figs.
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4.14-4.17.

Table 4.2: Sensor faults for the �rst scenario.

Fault Timing
! r 1500� t � 2000
! g 3000� t � 3200
� 2500� t � 2700
� g 3000� t � 4000

As it can be seen in Figs. 4.14-4.17, that the four outputs of the system are

a�ected by sensor faults, described in Table 4.2. In part (a) of each �gure, one of

the outputs of the system is illustrated and it can be easily seen that the observer

can estimate the states accurately. In addition, in part (b) of each diagram, the

occurred faults are plotted and it can be also noted that the observer estimates

the related fault precisely, even tough it is relatively large.

The simulation is also repeated with di�erent percentages of faults with di�erent

timing. The details of each sensor fault are shown in Table 4.3. The results of this

scenario are illustrated in Figs. 4.18-4.21

Even though the faults are more complicated and there are more than one fault

at a time, it is obvious that the observer converges to the outputs and the faults.

Therefore, the goal of the approach, which is estimating the occurred faults is

achieved.

Table 4.3: Sensor Faults for the Second Scenario

Fault Timing Percent
! r 1200� t � 2500 -30%
! g 2300� t � 3500 -10%
� 3500� t � 4000 -15%
� g 3000� t � 3800 -25%
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4.3 Summary and Conclusions

In this chapter, a novel robust fault estimation approach has been proposed based

on arti�cial neural networks. The �rst di�culty to confront is the unmeasurable

states in MIMO systems such as wind turbines. To cope with this problem, the

dynamical model is decoupled into a linear and a nonlinear block. For the non-

linear one, a fully connected ANN is developed to identify the nonlinearities. For

relaxing the conditions on fault modelling, a model is proposed, and a robust LMI

is studied to deal with unmodeled faults and disturbances using input-to-state

stability lemma. Two di�erent scenarios, including occurred faults on actuators

and the other one on sensors, were investigated.

The approach is validated on the wind turbine benchmark. A case study is inves-

tigated for 20% loss of performance on each actuator. The results demonstrate

the e�ectiveness of the proposed algorithm in the �rst part. The faults are esti-

mated successfully and the outputs of the observer converge to the real output,

simultaneously.

For the part related to the sensor faults, two di�erent case studies were investigated

for each sensor. The results validated the e�ectiveness of the studied method. The

sensor faults were estimated accurately and the observer's outputs converge to the

model output, synchronously.
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(a) Rotor speed and its estimation.

(b) Fault on rotor speed and its estimation.

Figure 4.14: Comparison of occurred fault on! r sensor in the �rst scenario.
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(a) Generator speed and its estimation.

(b) Fault on generator speed and its estimation.

Figure 4.15: Comparison of occurred fault on! g sensor in the �rst scenario.
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(a) Pitch angle and its estimation.

(b) Fault on pitch angle and its estimation.

Figure 4.16: Comparison of occurred fault on� sensor in the �rst scenario.
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(a) Generator torque and its estimation.

(b) Fault on generator torque and its estimation.

Figure 4.17: Comparison of occurred fault on� g sensor in the �rst scenario.
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(a) Rotor speed and its estimation.

(b) Fault on rotor speed and its estimation.

Figure 4.18: Comparison of occurred fault on! r sensor in the second scenario.
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(a) Generator speed and its estimation.

(b) Fault on generator speed and its estimation.

Figure 4.19: Comparison of occurred fault on! g sensor in the second scenario.
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(a) Pitch angle and its estimation.

(b) Fault on pitch angle and its estimation.

Figure 4.20: Comparison of occurred fault on� sensor in the second scenario.
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(a) Generator torque and its estimation.

(b) Fault on generator torque and its estimation.

Figure 4.21: Comparison of occurred fault on� g sensor in the second scenario.





Chapter 5

Time-series Deep Learning Fault

Detection

In this chapter, the goal is to achieve an approach to diagnose even small anomalies

in the output of the wind turbine system. To reach this goal, CNN structures are

developed and trained based on the data from the benchmark, which contains

sensor noises and actuator faults on generator torque and pitch angle. Three

di�erent scenarios are considered for this purpose. The �rst one includes fault

detection based on just one actuator, and in the second one, the approach is

developed for both actuators of the wind turbine system. In the last scenario, the

faults on four sensors of the wind turbine are considered. In each scenario, various

CNN structures are compared based on the accuracy criteria. Besides, some vital

actions that are needed before CNN training is studied through this chapter.

5.1 Introduction to Deep Learning

As it has been discussed in section 2.3, the applications of machine learning and

speci�cally deep learning are rapidly increasing due to their powerful ability to

83
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predict and categorise di�erent data structures. The start of developing math-

ematical theory of these techniques has been backed to 1949, when Donald O.

Hebb published his algorithm, named Hebbian Learning [104]; however, due to

the lack of suitable technology, the implementation of them for real data has been

quite recent. Today, AlexNet [105] and GoogleNet [106], as the two most pow-

erful deep learning architecture, can handle more than 15 million image data for

di�erent applications of face recognition to model compression. In convolutional

neural networks, as a class of deep learning �elds, as fully explained in 2.3.3.1,

three main layers are connected in series, convolutional layer, pooling layer, and

fully connected neural networks. The details can be found in Figure 2.7.

5.2 Preprocess the Input Data

The �rst step in any deep learning problem is to understand what type of data

you are working with. In a typical CNN, the input data is 2-D images. However,

in this scenario, the data is time-series. One way to deal with this problem is to

convert the raw data into 2-D images [88]. As it is clear in Figure 5.1, the time

domain signal is queued into 2-D images row by row. As one can see in Figure

5.1, the time-series signal samples store in each pixel of the 2-D image and build

a n � n matrix, in which n =
p

M . M is the number of samples in each record.

It is worth mentioning that the input images used in CNN normally have three

colour channels as Red-Green-Blue (RGB). Here, for the simplicity, it is assumed

that the time domain signal is converted to just one channel image; so, it is

supposed to be greyscale. Therefore, at the end of this stage, each record is

converted to n � n � 1, in which 1 is the quantity of the channels. In addition,

the greyscale images are essentially 8 bits, so the output images have less visibility

and accuracy than the input data. This issue causes no problem for this scenario,
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Figure 5.1: Ful�lling an image of n � n matrix with a time-series signal.

since the desired accuracy of 1% is satis�ed. Another important thing is that CNN

is usually used to extract information from images by considering the relationship

of adjacent pixels. In this method, adjacent pixels may not have any reasonable

relation. However, it is vital that in every record, the relation between two pixels

is the same, except for the faulty one.

5.3 Scenario 1: One Actuator Fault

In this section, the �rst scenario, which includes one actuator fault, is studied

based on the time-series data to image conversion in the previous section.

After �nishing the previous conversion stage, a CNN structure should be trained

to classify the processed input data. There are a lot of CNN structures in the

literature, which are highly used for deep learning in image processing. Among

these networks, some of them are quite famous and popular, such as AlexNet [105],

and GoogLeNet [106]. In this section, two CNN structures are proposed to solve
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the problem of the classi�cation of time-series signals. A comparison will be given

in order to evaluate their performances.

5.3.1 CNN with One convolutional Layer

The schematic of the proposed structure can be found in Figure 5.2. As it is

obvious in this �gure, the input processed data is applied to a convolutional layer

with the 20 kernels of 5� 5. The quantity and size of the kernels can be varying.

The output of this layer is conveyed through a ReLu activation function. A max

pooling consists of pools of 3� 3 is applied to extract the most reliable features.

The next layer is an FCNN and then a softmax function, in order to classify the

data as accurate as possible. For further information on the concepts and functions

of ReLU, FCNN, Softmax, max pooling, and kernel, one can see 2.3.3.1.

Figure 5.2: The schematic of proposed CNN with one convolutional layer.

5.3.2 CNN with Two convolutional Layer

This structure is similar to the previous one, with the di�erence of having another

convolutional layer at the beginning. The reason for adding this layer is that it

increases the nonlinearity of the network and helps to increase the chance of clas-

si�cation of nonlinear systems especially in noisy conditions [15]. The sequences

of this structure can be seen in Figure 5.3.
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Figure 5.3: The schematic of proposed CNN with two convolutional layers.

5.3.3 Simulation

In this section, the proposed structures in Figures 5.3.1, and 5.3.2, are simulated

with the data from a wind turbine benchmark, introduced in section 2.1. The

internal model of the system is not important in this case, as the approach is fully

data-driven. The only essential information about the benchmark is that one of

its outputs is generator torque (� g). To become more similar to a real condition,

it is assumed that there is a noisy sensor for gathering the data of� g with the

variance of 0:3% and the mean value of 0. It is noted that the noisy data makes

the classi�cation harder for complex signals.

In addition, it is considered to have a 2 to 5% actuator e�ectiveness loss on gener-

ator torque reference. The low percentage of fault is assumed, since it is important

to show that the algorithm can handle even small amounts of faults. This very

low amount of fault along with sensor noise can cause even harder classi�cation.

In this condition, a dataset consists of 4000 records of� g are saved in the times-

series signal format. The sampling time is 1 second and each record contains 4900

samples. In these records, 2000 records are faulty and the rest, which are 2000, are

healthy. From each category, 80% is being separated randomly for the training

dataset and 20% goes to the testing dataset. As it is obvious, the records for

training and testing are completely di�erent.

The next step is to preprocess the data as discussed in section 5.2. Each time-

series signal is converted to a 2-D image. A random record from each category is
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shown in Figure 5.4. As it is visible that the di�erence between the faulty and

healthy records are not distinguishable, neither in the time domain nor in the 2-D

image. So, it is important to develop an approach to classify them.

Figure 5.4: The conversion of raw data to 2-D gray scale image.

Now, that the data is prepared, two CNN structures with a di�erent number

of kernels are trained. One important point is that the CNN is categorised in

supervised learning. Therefore, the desired output should be prepared. Here based

on 80 % of records, applied for the training stage, an output vector is created. Its

cells are 0 and 1, for faulty input and healthy one, respectively.

The classi�cation results for a test dataset of 800 records (20% of the records)

are depicted in Figure 5.5. From 800 records, 400 of them are healthy and 400

belong to the faulty class. In this �gure, CNN1-20 is the CNN structure with

one convolutional layer and 20 kernels. CNN1-30 is the same structure, but with

30 kernels. CNN2-20 is the CNN structure with two convolutional layers and 20



Chapter 5. Time-series Deep Learning Fault Detection 89

kernels. At last, CNN2-45 is the same two-layer structure with 45 kernels. The

FD and HD are the desired output for faulty and healthy records and theFR and

HR are the result from the network as faulty and healthy. For example in the

CNN2-20 can estimate just 392 out of 400 faulty records correctly. It classi�es

the other 8 records, as healthy which is incorrect. In addition, the results show

that the classi�cation in the CNN structure with two convolutional layers and 45

kernels are the most accurate one.

Figure 5.5: Classi�cation of testing dataset of Scenario 1.

In Table 5.1, the accuracy of the considered CNN structures is compared. As one

can see, CNN2 does show great improvement from CNN1. It means that adding

one layer of convolution to the network can de�nitely increase the performance of

the network in classi�cation. The other important observation is that increasing

the number of kernels, can e�ectively improve the accuracy of the network. In other

words, each kernel represents one feature extractor. Therefore, it is completely

logical to see increasing of features can lead to an increase in the accuracy.
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Table 5.1: Comparison results between di�erent
CNN structures in Scenario 1.

Methods Accuracy (%)

CNN1-20 47.12

CNN1-30 63.25

CNN2-20 88.87

CNN2-45 98.37

The other important factor is the computational time for each structure. It is

plausible that CNN1 has lower computational costs than CNN2, due to one lesser

convolutional layer. However, another factor is the quantity of the kernels. The

more kernels involved in a layer of a network, the more time it spends to converge.

In this problem, the time spending in CNN2-45 is about 4 times that required for

the CNN1-30.

5.4 Scenario 2: Two Actuator Faults

In this section, the approach of CNN fault detection is developed into two actuator

faults. For achieving this goal, �rst, we convert our time-series data into greyscale

images as introduced in section 5.2 and then, apply the dataset to the previous

structure CNN2-45. We also introduce another CNN structure, CNN3-32, to train

with the dataset and compare the results.

5.4.1 Converting Two Signals into One Image

The healthy forms of the two actuators of the wind turbine benchmark are shown

in Figure 5.6. As can be seen that, the natures of the two signals are completely
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di�erent. Working with a signal like pitch angle, which variates harshly makes the

classi�cation much more di�cult.

(a) Healthy Pitch Angle Signal. (b) Healthy Generator Torque Signal.

Figure 5.6: Healthy form of the two actuators' signals.

Based on the idea of converting time-series sequences into images in section 5.2, we

can convert each pair of actuators' signals into one image. The process underlying

can be illustrated as Figure 5.7. Consequently, the image related to the healthy

signals of Figure 5.6 can be illustrated in Figure 5.8.

Figure 5.7: The process of converting a pair of signals into one image.
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Figure 5.8: The converted image of a pair of healthy actuators' signals.

5.4.2 CNN Structure

This structure of CNN3-32 is similar to the ones, introduced in section 5.3, with

the di�erence of having three convolutional layers. The reason for adding another

layer is that, by adding a signal, which has high-frequency variation such as pitch

angle, it is better to increase the nonlinearity of the model in order to cope with

this problem. The sequences of this structure can be seen in Fig. 5.9.

Figure 5.9: The schematic of proposed CNN with three convolutional layers.

As one can see from the above �gure, another convolutional layer is added to the

structure. The other layer, which is new in this �gure, is Dropout. In the Dropout

layer, some of the neurons aredroped out, since they are very similar to the other

ones. This layer is a simple solution to prevent CNN from over�tting [15].

5.4.3 Simulation

In this section, the proposed structures in sections 5.9, and 5.3.2, are trained and

simulated with a dataset consists of 4000 records of two actuator signals,� g and
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� . In addition, it is considered to have a Gaussian noise with a variance of 0:3%

and the mean value of 0 on each signal.

The faults considered on each actuator signal are 2 to 5% of e�ectiveness loss. The

sampling time is 1 second and each record contains 5000 samples. In this scenario,

it is considered to have four classes. The �rst one is when both of the signals

are healthy (H). The second one is when the generator torque is faulty (F1). The

third class is when the pitch angle contains a faulty interval (F3). The last class

is when both of the signals are faulty (F3). It is noted that, in this scenario, in

some of the records, generator torque fault and pitch angle fault happen at the

same intervals. Each of the classes contains 1000 records. From each category,

80% is being separated randomly for the training dataset and 20% goes to the

testing dataset. Again, similar to the previous scenario, the records for training

and testing are completely di�erent.

After converting each record to an image, as depicted in Figure 5.8, two CNN

structures of CNN2-45 and CNN3-32 are trained by the prepared dataset. The

results of 800 records (20% of the records), which belong to the testing part is

brought in Figure 5.10. The accuracy of each structure is also compared in Table

5.2

Table 5.2: Comparison results between di�erent
CNN structures in Scenario 2.

Methods Accuracy (%)

CNN2-45 88.25

CNN3-32 98.87

As it is obvious in Table 5.2, the accuracy of the CNN3-32 is much better than the

previous structure. It is noted that although CNN2-45 has a great performance in
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Figure 5.10: Classi�cation of testing dataset of Scenario 2.

scenario 1, its performance degrades when having a signal with a high-frequency

variation. It is also worth to mention that a more complicated structure and using

the Dropout layer can increase the accuracy.

5.5 Scenario 3: Four Sensor Faults

Following the previous sections, in this section, the CNN fault detection method

is further developed into four sensor faults. The procedure for achieving this

goal, is similar to the other two scenarios with little adjustments. All three CNN

structures, introduced before, are tested in this scenario. In addition, a new and

more complicated structure is also trained for this dataset, to be able to deal with

more complex dataset. The results of them are compared at the end of this section.

5.5.1 Converting Four Signals into One Image

The healthy signals of the four sensors of the wind turbine benchmark can be seen

in Fig. 5.11.
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(a) Healthy Rotor Speed Signal. (b) Healthy Generator Speed Signal.

(c) Healthy Pitch Angle Signal. (d) Healthy Generator Torque Signal.

Figure 5.11: Healthy form of the four sensors' signals.

As introduced in section 5.2, we converted all of the output data into greyscale

images. The format of converting can be seen in Fig. 5.12. The greyscale result

for a sample healthy record is presented in Fig. 5.13.

Figure 5.12: The process of converting four signals into one image.
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Figure 5.13: The converted image of four healthy sensors' signals.

5.5.2 CNN Structure

Based on the structure of CNN3-32, CNN4-128 structure is introduced by adding

a fourth layer of convolution and increasing the number of kernels in the �rst

layer. As it is mentioned earlier, increasing the nonlinearity of the model, helps

the accuracy of training for a dataset with high-frequency variation. The sequences

of CNN4-128 can be seen in Fig. 5.9.

Figure 5.14: The schematic of proposed CNN with four convolutional layers.

As can be seen in this �gure, another convolutional layer is added to the structure.

Increasing the number of kernels can also help coping with the problem of high-

frequency variation of the dataset.

5.5.3 Simulation

In this section, all of the former proposed structures along with the CNN4-128

are trained and simulated with a dataset consists of 5000 records of four sensor

signals,! r , ! g, � , and � g. Moreover, to have a more real data, it is considered to
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have a Gaussian noise with a variance of 0:3% and the mean value of 0 on each

signal.

As the same as previous scenarios, the faults considered on each sensor signal

are 2 to 5% of e�ectiveness loss. The sampling time is 1 second and each record

contains 4900 samples. For this scenario, it is considered to have �ve classes. The

�rst one is when all four signals are healthy (H). The second one is when the

rotor speed (! r ) is faulty (F1). The third class is when the generator speed (! g)

is faulty (F2). The fourth class contains the fault on pitch angle (� ) (F3). And,

the last class is when there is a fault on generator torque (� g) (F4). It is noted

that, in this scenario, it is assumed that there are no simultaneous faults on two

or more sensors. Each of the classes contains 1000 records. From each category,

80% is being separated randomly for the training dataset and 20% goes to the

testing dataset. Again, similar to the previous scenarios, the records for training

and testing are completely di�erent.

After converting each record to an image, as depicted in Fig. 5.13, three CNN

structures of CNN2-45, CNN3-32, and CNN4-128 are trained by the prepared

dataset. The results of 1000 records (20% of the records), which belong to the

testing part is brought in Fig. 5.15. The accuracy of each structure is also com-

pared in Table 5.3

Table 5.3: Comparison results between di�erent
CNN structures in Scenario 3.

Methods Accuracy (%)

CNN2-45 71.4

CNN3-32 91.1

CNN4-128 96.2
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Figure 5.15: Classi�cation of testing dataset of Scenario 3.

As illustrated in Table 5.3, the accuracy of the CNN4-128 is much higher than

the previous structures. It is noted that by complicating the input images, the

necessity of complex structures is increasing. This means, more convolutional

layers, more kernels, and also Dropout layers, are all helpful to reach the higher

accuracy in fault detection. Another point here, is having a very perturbed signal

as � makes the prediction very hard. So at the end, reaching higher accuracy, like

97% is very challenging. This problem is clearly distinguishable in �g. 5.14, where

in the main diagonal of CNN4-128, the minimum value is related to predicting the

category of� .
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5.6 Summary and Conclusions

In this chapter, four CNN-based structures have been proposed in order to have a

deep learning fault detection. The novel contribution in this chapter, is proposing a

data-to-image conversion stage and proposing the suitable deep learning structure

to handle this problem. For that, the �rst problem was that working with a

time-series signal was so tricky. Therefore, a preprocessing stage was discussed

to prepare the raw data into 2-D greyscale images. Then, two di�erent scenarios

were investigated. In the �rst scenario, two CNN structures were proposed and

trained with a dataset in order to classify the faulty and healthy signals. As the

data contains sensor noises, it was obvious that classi�cation would become more

di�cult. However, the simulations showed that adding a convolutional layer to

the model can increase the accuracy of the validation. It was also concluded,

by increasing the number of kernels in each structure, the accuracy increased

and reached to 98.37% with 45 kernels, while the computational costs are also

increased.

In the second scenario, the proposed approach was developed to cope with two

faulty signals, which might have faults in the same intervals. The simulation vali-

dated the e�ectiveness of adding another convolutional layer and also a Dropout

layer by having 98.87% accuracy in a dataset of 4000 records.

In the last scenario, a CNN structure was studied to have a fault detection method

for four sensor signals. As the simulation accurately showed, adding a layer of

convolution had e�ects on increasing the accuracy to 96.2% in 5000 records.





Chapter 6

Conclusions and Future Works

6.1 Summary and Conclusions

In this thesis, the main focus is on developing fault diagnosis techniques based on

Neural Networks and deep learning approaches. It is worth mentioning that to

achieve this goal, several mathematical and computational methods are investi-

gated. For instance, BPNN, Luenberger observer, residual calculation, augmented

system, robust optimization, LMI, ISS, Lyapunov function, deep learning, and

CNN. In the following, the main contributions of this thesis are discussed:

� Grey-box model identi�cation and fault detection using arti�cial neural net-

works.

Based on the fact that building a very accurate model of many industrial

systems is challenging, it is bene�cial to design an identi�cation observer.

In Chapter 3, an ANN based identi�cation method along with Luenberger

observer has been proposed to deal with the nonlinearity and unmeasura-

bility of a wind turbine system. A residual fault detection has been applied
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based on this approach. The results of the applied case study, including 2%

actuator fault, has shown the accuracy of the proposed algorithm.

� Robust neural network fault estimation approach for nonlinear dynamic sys-

tems.

The other issues in a typical wind turbine are tackling with environmental

disturbances and sensor noises along with unexpected errors in actuators

and sensors. In Chapter 4, two novel robust neural network fault estima-

tion methods have been proposed to deal with these problems. In these

approaches, by applying the idea of BPNN to robust optimization criteria,

di�erent scenarios of faults in actuators and sensors have been studied. A

very critical point in designing the mentioned fault estimation methods is

their stability. To cover this point, a Lyapunov function has been proposed,

and by applying input-to-state stability criteria, the stability of the system

has been proved. Two di�erent scenarios have been discussed, one related

to actuator faults and the other related to sensor faults. Applied fault es-

timation methods on both scenarios has validated the e�ectiveness of the

approaches.

� Time-series deep learning fault detection.

Deep learning techniques can help to deal with a large amount of data in

industrial systems with a lot of di�ernt applications. To bene�t from this

potential, scenarios of having faults on one or both of the actuators or one of

the sensors in the wind turbine benchmark have been studied. A novel CNN

based fault classi�cation method has been proposed, and the pre-processing

analysis has been carried out. The method has been applied to the afore-

mentioned scenarios with di�erent structures of CNN. The accuracy of the

proposed method can be up to 98.87% in the available dataset.
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6.2 Future Works

Based on this PhD thesis, it is suggested to carry out the following research topics:

� Robust neural network fault prognosis for nonlinear dynamics.

Based on the fact that ANN and CNN have the potential of predicting the

nonlinear models, it would be encouraging to develop prognostics algorithms

for wind turbine systems by using these techniques.

� Time-series deep learning fault detection for physical environmental prob-

lems.

Some physical environmental problems, such as temperature, humidity and

vibrations, can inuence both of actuators' performances. Fault classi�cation

can help �nd the cause of performance reduction, which can be very helpful

in maintenance.

� Time-series deep learning fault detection for sensor losses.

Due to the fact that sensors are crucial components in a stable control design,

it is essential to make sure that they are working correctly. Therefore, a fault

detection method to investigate the losses of the sensors seems quite useful.

� Time-series deep learning fault estimation for data losses.

Based on the previously mentioned work, a fault estimation can be proposed

based on deep learning techniques to have a regression for future output of

each sensor in the occurrence of sensor losses. This idea helps to assure the

control system works properly even though the sensors are faulty for a short

period of time.





Appendix A

Simulation of Wind Turbine

Benchmark in Matlab

The simulation of the wind turbine benchmark in this thesis have been done in

Matlab. Di�erent blocks of it can be seen in Figures A.1, A.2, A.3, A.4, and A.5.

In all of these �gures, the magenta terminals are the signals related to the states

of the system, the cyan ones are the output of controller, and the green ones are

the measured signals. In theory, the measured signals are the same as the states of

the system. However, to make the simulation more compatible to the real world,

sensor noises are added to the outputs of the system and the measured signals are

provided.
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Figure A.1: Blade & Pitch System with Actuator Fault Blocks.

Figure A.2: Drive Train.

Figure A.3: Generator System with Actuator Fault Blocks.
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Figure A.4: Controller.

Figure A.5: Sensors with Fault Blocks.
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