
Northumbria Research Link

Citation:  Giglio,  Francesco,  Landolfi,  Giulio,  Martina,  Luigi  and  Moro,  Antonio  (2021)
Symmetries and criticality of generalised van der Waals models. Journal of Physics A:
Mathematical and Theoretical, 54 (40). p. 405701. ISSN 1751-8113 

Published by: IOP Publishing

URL:  https://doi.org/10.1088/1751-8121/ac2009  <https://doi.org/10.1088/1751-
8121/ac2009>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/47050/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Symmetries and criticality of generalised van der Waals models

Francesco Giglio 1)∗, Giulio Landolfi 2)†, Luigi Martina 2)‡ and Antonio Moro 3)§
1) School of Mathematics and Statistics, University of Glasgow, Glasgow, UK

2) Dipartimento di Matematica e Fisica “Ennio De Giorgi” Università del Salento
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We consider a family of thermodynamic models such that the energy density can be expressed as
an asymptotic expansion in the scale formal parameter and whose terms are suitable functions of the
volume density. We examine the possibility to construct solutions for the Maxwell thermodynamic
relations relying on their symmetry properties and deduce the critical properties implied in terms
of the the dynamics of coexistence curves in the space of thermodynamic variables.

Keywords: van der Waals type systems, critical points and phase transitions, symmetries of differential
equations.

I. INTRODUCTION

The study of equilibrium and critical phenomena in fluids is a widely addressed research subject. Fluids display
indeed a rich phenomenology and a number of equations of state have been derived to effectively encode complex
microscopic processes occurring as thermodynamical conditions vary. The celebrated van der Waals equation of state(

P +
a

v2

)
(v − b) = kB T (1)

(where v denotes the volume density, P the pressure, T the temperature and kB the Boltzmann constant) has played
a pivotal role in this context, and constitutes a paradigm on which the vast majority of phenomenological models have
been based and findings of theoretically based approaches have been tested, see e.g. [1–5]. Experimental investigations
indicate in fact that a single equation of state cannot account of thermodynamic properties and phase transitions
for all fluid systems, both pure and mixtures, under any conditions, and many empirical modifications of the van
der Waals equations of state (1) have been devised for applications mainly in the context of chemical-engineering
experiments [6–11]. A number of studies have also been carried out with the aim to link phenomenological models to
specific assumptions on the form of the molecular interaction potential, see e.g. [12–20].

From the point of view of statistical mechanics phase transitions occur in the thermodynamic regime, the limit
where both volume and number of particles diverge in such a way that the density stays finite. In this regime
even “well behaved” analytical potentials may lead to the occurrence of singularities in the dependence of physical
observables as functions of thermodynamic variables. The classical macroscopic approach, based on the principles of
thermodynamics, permits a direct description of macroscopic extensive and intensive thermodynamic variables via a
set of differential equations known as Maxwell’s relations. Maxwell’s relations are equivalent to the existence of a
free energy potential and specific assumptions on the functional form of the state functions enable one to derive the
equations of state as solutions of these relations under suitable initial/boundary conditions [21, 22]. In this framework,
fluid phase transitions, for example, can be interpreted as compressive shock waves in the profile of the state functions
as they evolve in the space of thermodynamic variables [21, 23]. Shocks therefore arising as discontinuities in the
profile of the state function correspond to the coexistence lines of two phases, see e.g. [21, 22, 24].

The advantage of the deployment of effective macroscopic models based of the analysis of Maxwell’s relations,
as outlined above, allows for an analytical description of a general class of phenomena by-passing the complications
related to the development and implementation of extensive numerical simulations of underlying statistical mechanical
models. A compelling example of the effectiveness of this approach is provided in [25] where a four parameter family
of generalised van der Waals models results from a suitable class of internal energy virial expansions. In particular,
it is found that the volume density v(x, t; η) satisfies the following nonlinear partial differential equation

∂v

∂t
+

∂

∂x

{
1

c1v − c3kB

[
c2 v

2 + c4 k
2
B − η kB

(
c1
∂v

∂t
+ c2

∂v

∂x

)]}
= 0 (2)
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with x = P/T and t = 1/T , while the cj ’s are structural constants entering the energy expansion. The quantity
η = 1/N , where N is the number of molecules, plays the role of the small parameter in the expasion of the internal
energy. For the particular choice c1 = 0 the model equation (2) (a Maxwell thermodynamic relation, see Section II)
is identified with the well known Bateman-Burgers equation which describes the propagation of nonlinear waves in
regime of small viscosity [26]. One thus expects that as η → 0 a generic (physical) volume density solution changes into
a shock wave at finite t, corresponding to the occurrence of the gas-liquid phase transition [21, 22]. The occurrence
of critical points and their configurations depend on the values of the structural constants cj and specific numerical
values can be chosen to reproduce isothermal curves of various models, e.g. van der Waals, Soave-Redlich-Kwong and
Peng-Robinson phenomenological models [25].

In this paper, we propose a systematic study of the model equation (2), its solutions obtained via the application
of the Lie symmetry approach (see e.g. [27–29]) and their thermodynamic interpretation. The paper is organised
as follows: In Section II we introduce the model underpinned by the equation (2) and highlight its main features
of interest in the realm of gas thermodynamics. In Section III we present the results entailed by the Lie-symmetry
analysis of the equation. In Section IV we discuss the application of results to equations of state and critical points
for fluid systems. Last section is devoted to closing remarks.

II. GENERALISED VAN DER WAALS MODEL

The nonlinear differential equation (2) for the volume density v = v(x, t; η) originates within the framework of
laws of thermodynamics by considering the thermodynamic energy balance equation in the form dψ = εdt + vdx,
where ψ = tµ, where µ is the chemical potential and ε = E/N is the internal energy per particle, being N the total
number of particles in the system. In these variables, the Maxwell relation, locally equivalent to the existence of the
thermodynamic potential ψ, reads as

∂v

∂t
=
∂ε

∂x
. (3)

Following a suggestion in [21], one can consider Maxwell thermodynamical equations within a nonlocal perturbative
scheme where the expansion parameter is the inverse of the number of molecules N . More precisely, it is assumed
that the internal energy density ε admits the asymptotic expansion of the form

ε = ε0(v) + η ε1(v)
∂v

∂x
+ η ε2(v)

∂v

∂t
+O(η2) + h(t) (4)

where η = 1/N and the function h(t) is an arbitrary function of its argument. The derivatives of the volume density
in the internal energy density expansion are introduced based on the observation that a number of perturbative
approaches applied to the 12-6 Lennard-Jones potential [3], as well as more general type of potentials, lead to equations
of state which depend on derivatives of the volume densities such as compressibility and thermal expansion coefficient.

In [25], a class of internal energy virial expansions (4) has been obtained by requiring that the Maxwell thermody-
namical relation (3) is linearisable via the Cole-Hopf transformation

v(x, t; η) = −ηkB
∂ logϕ(x, t; η)

∂x
. (5)

This mathematical constraint provides, based on the form of the expansion (4), a natural C-integrable generalisation
[30] of the van der Waals model [25] which, therefore, admits infinitely many conserved quantities. This constraint
restricts the energy terms in Eq. (4) to the following form

ε0 = −c2v
2 + c4k

2
B

c1v − c3kB
, ε1 =

c2kB
c1v − c3kB

, ε2 =
c1kB

c1v − c3kB
, (6)

thereby implying that the Maxwell equation (3) takes precisely the form (2), or, equivalently, the function ϕ(x, t; η)
satisfies the following linear partial differential equation

η2

(
c1

∂2ϕ

∂x ∂t
+ c2

∂2ϕ

∂x2

)
+ ηc3

∂ϕ

∂t
+ c4ϕ = 0 . (7)

Solutions to the above equation with a suitable physical initial condition identify the partition function of the fluid
characterised by the internal energy (6). Fundamental properties of the associated thermodynamic system have been
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studied in [25]. In particular, the case c1 6= 0, c2 = c3 = 0, c4/c1 = ak−2
B , with a the mean field parameter entering the

van der Waals equation of state, has been investigated in [24]. More specifically, based on microscopic arguments, it has
been proven that the partition function for the standard van der Waals model satisfies a Klein-Gordon type equation,
that is precisely Equation (7) with c2 = c3 = 0 and c4/c1 = ak−2

B . In other words, the model (4)-(6) can devise systems
whose thermodynamics is anchored to that of van der Waals gases, with novel contributions from effective molecular
interactions controlled by the nonvanishing parameters c2 and c3. Hence, although the condition of linearisability of
Maxwell’s relation might seem restrictive, this produces a family of models parametrised by three constants, i.e. the
ratios c2/c1, c3/c1, c4/c1 with c1 6= 0 , see (6). Moreover, additional functional parameters (specifically, the co-volume)
arising form the general solution of the equation (7) or (2) can be fixed via the corresponding initial conditions.

The physical implication of the linearisability request through the nonlinear transformation (5) is twofold. The
C-integrability guarantees the existence and explicit evaluation of a Massieu function/thermodynamic potential when
finite systems are considered (finite N). Besides, the typical critical behaviour of fluid systems is reproduced in the
thermodynamic limit [3]. Indeed, equation (2) represents a viscous conservation law and as such its generic solution is
expected to develop classical shock waves in finite t in the inviscid limit η → 0, corresponding to the thermodynamic
limit N →∞. That is, in the thermodynamic regime isothermal curves can be interpreted as nonlinear wave solutions
to (2) that break in correspondence of the gas-liquid critical point [21, 22]. Beyond the critical point solutions to the
inviscid limit of the equation (2) obtained by setting η = 0 are in fact no longer single-valued. The region where the
solution is multi-valued corresponds to the critical region where multiple phases emerge. Such underlying criticality
is therefore captured by the implicit solution written in the hodograph form

x+ ε′0(v) t = f(v) (8)

that is a solution to the Riemann-Hopf equation

∂v

∂t
− ε′0(v)

∂v

∂x
= 0 , (9)

obtained from the equation (2) with η = 0, where f(v) is an arbitrary function of volume density and primes denote
differentiation with respect to volume, i.e.

ε′0(v) = −c2
c1

+
(c2c

2
3 + c4c

2
1)

c1 (c1v − c3kB)2
k2
B . (10)

Any particular choice of the function f(v) specify the entropic contribution of the ensemble of molecules composing
the fluid by means of the relation f(v) = s′(v), where s(v) stands for the entropy density. Evaluating the hodograph
solution (8) at t = 0 one has x = f(v), where v = f−1(x) can be interpreted as the volume density of the fluid
when temperature and pressure are large but such that the ratio x = P/T is finite. The hodograph function Ψ(v) :=
x + ε′0(v) t − f(v) thus permits to write down the equation of state for the system under investigation as Ψ(v) = 0.
Thermodynamical critical points are associated with the critical sector of the Riemann-Hopf equation (9), defined by
solution to the system of simultaneous equations [31]

Ψ(v) = Ψ′(v) = Ψ′′(v) = 0 . (11)

In this context, the appearance of coexistence curves is understood as the propagation of weak solutions to (9) in the
space of thermodynamic variables [21], the Rankine-Hugoniot shock condition [23] being tantamount to the Maxwell’s
equal areas rule.

The above framework can be applied to the model of interacting molecules described by an equation of state that,
in the high temperature regime, reduces to that of a system of non-interacting hard spheres, i.e. (v− b)x = kB , where
b ∈ R+ is a parameter proportional to the volume occupied by a molecule of fluid [32]. It then follows that for any
value of t the equation of state for the system is given by the hodograph implicit solution Ψ(v) with the particular
choice

fhs(v) :=
kB
v − b

, (12)

and that the system (11) admits the solution given by

xc =
c1
[
(27b2c21 − 54bc1c3kB) c2 + (28c2c

2
3 + c21c4)k2

B

]
8kB(c2c23 + c21c4)(bc1 − c3kB)

, tc =
27c21(bc1 − c3kB)

8kB(c2c23 + c21c4)
, vc = 3b− 2kBc3

c1
. (13)

The known critical point for a van der Waals fluid is obtained by setting c2 = c3 = 0 and c4/c1 = ak−2
B . All structural

constants for the model cj specify the critical points. Domain restrictions arise in the form c3/c1 < b/kB and c2/c1 < 0
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upon demanding that tc > 0 and the partition function be well-behaved [25]. It is also assumed that c2c
2
3 +c21c4 6= 0 as

when c2c
2
3 + c4c

2
1 = 0 the internal energy ε0 depends on volume density linearly and the model does not support phase

transitions. In other words the hodograph equation (8) give a travelling wave solution with constant characteristic
speed, x− c2

c1
t = f(v).

We note that the internal energy density expansion (4) enables one to exploit a formal mathematical analogy
between the theory of nonlinear waves and isothermal curves for fluids. The expansion (6) yields to the Maxwell
thermodinamic equation (2) that is valid for a global description of a class of fluid systems, inside and outside the
critical region. Outside the critical region, the van der Waals equation of state arises at the leading order in the
expansion parameter and for the choice of parameters c2 = c3 = 0 and c4/c1 = ak−2

B . Inside the critical region, the
analysis of solution through shock-wave techniques provides coexistence lines consistently with Maxwell’s equal areas
rule.

III. SYMMETRY GENERATORS OF EQUATION (2)

Symmetry methods are widely applied to examine physical systems. In particular, the adoption of a Lie group-
theoretical framework is a well established way to proceed while dwelling upon differential equations. Our purpose
here is to characterise the symmetry group of the partial differential equation (2), i.e. the whole class of continuous
transformations acting on dependent and independent coordinates that transforms solutions of the equation to other
solutions, and to infer the possible consequences from a thermodynamic perspective. We point out that analysis is
accomplished by assuming that all the parameters cj in Equation (2) are non-vanishing and, in addition, c2c

2
3+c4c

2
1 6= 0.

As discussed at lenght in a number of works and textbooks, among which we mention [27–29], the task of extracting
the symmetry group of a differential equation can be implemented by looking for the admissible symmetry vector
fields of the type

W = g1(x, t, v)
∂

∂x
+ g2(x, t, v)

∂

∂t
+ g3(x, t, v)

∂

∂v
. (14)

Since (2) is a second order equation, to determine the functions gj(x, t, v) that are possibly allowed, the infinitesimal

criterion of invariance of the differential equation (2) pr(2)W[∆]
∣∣
�=0

= 0 must be analysed, being ∆ the l.h.s. of

(2) and pr(2)W the so-called second prolongation of the vector field W (see [27]) for details). Since the approach is
standard and can be made efficient through symbolic mathematical computations, it is sufficient for the purpose of
this paper to report directly the result.

Assuming that none of the coefficients involved in Equation (2) do vanish and c2c
2
3 + c4c

2
1 6= 0 1 it turns out that

the sought symmetry group is generated through the action of the following three vector fields

W1 =
∂

∂x
, W2 =

∂

∂t
+
c2
c1

∂

∂x
, W3 = t

∂

∂t
+

(
2
c2
c1
t− x

)
∂

∂x
+

(
v − kB

c3
c1

)
∂

∂v
. (15)

Each of these operators defines a one-dimensional subgroup of point-transformation, i.e. a group of local transfor-
mations G({x, t, v};λ) whose action on the triplet {x, t, v} returns a new triplet of variables that depend on {x, t, v}
and on a single real parameter. The meaning of operators W1 and W2 is self-evident because they are are associated
with rigid translations in the x and t− c1

c2
x directions. The corresponding one-dimensional subgroups are settled via

G1({x, t, v};λ1) = {x + λ1, t, v} and G2({x, t, v};λ2) = {x + c2
c1
λ2, t + λ2, v}. The explicit one-parameter group of

symmetry transformation implied by the generator W3 is explicitly given as follows:

G3({x, t, v};λ3) =

{
e−

c1
c2
λ3x+ 2 t

c2
c1

sinh

(
c1
c2
λ3

)
, e

c1
c2
λ3t, e

c1
c2
λ3v + kB

c3
c1

(1− e
c1
c2
λ3)

}
. (16)

A 3-parameter group of symmetry thus underlies the differential problem (2), the identity element being recovered
by performing the limit where the real parameters λ1,λ2 and λ3 vanish. It is worth to remark at this stage that

1 When c2c23 + c4c21 = 0 infinite symmetries come into play: in addition to three generators of the type (15), the family of symmetry
generators

W∞ =

�
G1 +

c1

c2
F1(t)

�
@

@t
+

�
F2

�
�
c1

c2
x+ t

�
+ F1(t)

�
@

@x
+
c1

c2

�
v � kB

c3

c1

�
F ′2

�
�
c1

c2
x+ t

�
@

@v

is found, being F1; F2 arbitrary functions of their argument and G1 constant.
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the inherent question concerned with the symmetry transformations outcoming whenever a linear combination of
symmetry generators (15) is considered finds an immediate answer. Indeed, operators of the form W̃ ≡W3 +α1W1 +
α2W2 with α1,2 arbitrary real constants can be actually given a structure of the type W3 upon suitable shifts of
the real independent variables x and t. Of course, the transport of solutions into other solutions through symmetry
operations can be ruled by constructing sequences of transformations as well, each of which referring to a given
symmetry generator. In such a case, one expects that the order in which different transformations are performed in
the sequence matters because while W1 and W2 are commuting vector fields they both do not commute with W3.
However, results coming by permutation of the order of transformations in a given sequence are linked each to the
other by mere shifts of thermodynamical variables x and t. As a consequence, the lesson one ultimately learns from
the analysis of Equation (2) by means of a group-theoretical approach is that if a function v = v0(x, t; η) solves
Equation (2) then also

vλ(x, t; η) = e
c1
c2
λ3 v0(x̃, t̃; η) + (1− e

c1
c2
λ3)

c3kB
c1

, (17)

with

x̃ = Λ1 + e
c1
c2
λ3x− 2 t

c2
c1

sinh

(
c1
c2
λ3

)
, t̃ = e−

c1
c2
λ3t+ Λ2 (18)

does, being (Λ1,Λ2, λ3) a triplet of real deformation parameters. No other local symmetry transformations acting in
the space (x, t, v) can be devised when it is assumed that ηc1c2c3c4 6= 0 along with c2c

2
3 + c4c

2
1 6= 0.

IV. EQUATIONS OF STATE AND DYNAMICS OF CRITICAL POINTS UNDER SYMMETRY
TRANSFORMATIONS

Given a state of the fluid, specified by the variables (x, t, v), the above solutions (17) and (18) parametrised by
Λ1, Λ2 and λ3 describe an orbit of the associate point Lie symmetry group generating a family of equations of state.
The action of a symmetry transformation deforms the equations of state as well as the critical properties of the state
functions. The approach outlined above in Section III allows to construct an infinite family of solutions to the Maxwell
relation given by the equation (2). Hence, a separate analysis is required to select those solutions that satisfy physical
assumptions to possibly capture properties of real fluids.

In the following, we show that in order to ensure that a solution of the group orbit satisfies the required physical
properties it is necessary that the seed solutions v0 possesses those properties, as for instance suitable asymptotic
conditions in the thermodynamical limit. We observe that, regardless of the specific form of the function v0(x, t; η) a
symmetry transformation of the form (17) depending on the group parameters Λ1, Λ2 and λ3 will induce a dependence
of critical points on the same parameters.

Let us denote by (x0
c , t

0
c , v

0
c ) and (xλc , t

λ
c , v

λ
c ) the triplets identifying a critical point for the state functions v0 and

vλ respectively. As the symmetry transformation does not depend on η and, therefore, it is not affected by the
thermodynamic limit η → 0, the new critical volume is determined by the right hand side of (17),

vλc = e
c1
c2
λ3v0

c + (1− e
c1
c2
λ3)

c3kB
c1

,

and the transformed critical pressure and temperature are given by

xλc = e−
c1
c2
λ3(x0

c − Λ1) + 2
c2
c1

sinh

(
c1
c2
λ3

)
(t0c − Λ2) ,

tλc = e
c1
c2
λ3(t0c − Λ2) , (19)

(i.e., Eq. (18) with the replacements x̃→ x0
c , t̃→ t0c , x→ xλc , t→ tλc ). It is worth noting that the symmetry approach

allows to study a family of models and their critical properties via the initial condition on the equation (2).
It is also interesting to study the effect of the group transformation at the level of the partition function and Gibbs

free energy potential. This step is in fact propaedeutic to the determination of the phase-diagrams for the deformed
equations of state vλ. As by definition we have

vλ(x, t; η) = −ηkB
∂

∂x
logϕλ(x, t; η)
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where ϕλ(x, t; η) denotes the solution to Equation (7), the partition function ϕλ(x, t; η) is given, up to a constant
factor, by 2

ϕλ(x, t; η) =

∫ ∞

b�

dv exp

(
− Ωλ
ηkB

)
(20)

where Ωλ plays the role of the Gibbs free energy density of the form

Ωλ = xv + ε0(v) t− sλ(v) . (21)

The deformed entropy density obtained from s0(v) and associated with function v0(x, t) is given by

sλ(v) = s0

(
e−

c1
c2
λ3

[
v − c3

c1
kB(1− e

c1
c2
λ3)

])
+ e−

c1
c2
λ3

(
c2
c1

Λ2 − Λ1

)
v +

(c2c3 v + c1c4kB)

c1(c1v − c3kB)
e
c1
c2
λ3 Λ2kB . (22)

The quantity bλ = e
c1
c2
λ3b+ kB c3

c1
(1− e

c1
c2
λ3) corresponds to the minimum value of the deformed volume density. The

domain restrictions c2
c1
< 0 and c3

c1
< b

kB
on the structural constants cj ’s ensure that bλ is positive, being lower than

the minimum value for the seed solution v0 for positive values of λ3.
The formula (20) represents a smooth map providing a family of deformed partition functions starting from a seed

partition function. The asymptotic evaluation of deformed partition functions (20) is then obtained by the standard
Laplace formula, and implies the equation

Ω′λ = x+ ε′0(v) t− s′λ(v) = 0 , (23)

where Ωλ is given by (21) with the entropic term (22) and Ω′λ = ∂Ω�
∂v . Equation (23) gives the possible equations

of state along the symmetry group orbits, with the function fλ(v) ≡ s′λ(v) assigning the entropic contribution to
the equation of state. Remarkably, the derivative of the potential Ωλ with respect to the volume coincides with the
hodograph function introduced in Section II.

We note that the expressions (19) require that the liquid-to-gas critical point occurs in the physical domain x, t ≥ 0
when the deformation parameters satisfy the following constraints

Λ2 ≤ t0c , Λ1 ≤ x0
c −

c2
c1

(
1− e

2c1
c2
λ3

)
(t0c − Λ2) . (24)

A further physical constraint corresponds to the request that in the limit of zero pressure the infinite volume density
is implied. If the starting entropy s0 shapes an equation of state that meets the above physical specifications, the
function f(v) = s′0(v) goes to zero in the limit v → ∞, the pressure accordingly vanishing as t → 0. Under these
circumstances, by fixing c1Λ1 = c2Λ2 we retrieve the desired asymptotics either for the new equation of state.

Let us consider, for example, the case of the van der Waals equation of state as a seed solution in the limit η → 0 for
which the entropy s0 is given by hard sphere formula shs(v) = kB log(v − b). Hence, the corresponding deformation
of the function fhs(v) = kB(v − b)−1 (Eq. (12)) is given by

fhsλ (v) =
kB

v − bλ
+ e−

c1
c2
λ3

(
c2
c1

Λ2 − Λ1

)
− k2

B(c21c4 + c2c
2
3)

c1(c1v − c3kB)2
e
c1
c2
λ3 Λ2 . (25)

Evaluating the deformed equation of state x+ ε′0(v) t = fhsλ (v) as t→ 0 and v →∞ we have

x∞ = lim
v→∞

fhsλ (v) = e−
c1�3
c2

(
c2
c1

Λ2 − Λ1

)
.

2 If ’0(x; t; �) solves Equation (7) then

’�(x; t; �) = ’0

�
x̃ ; t̃; �

�
exp

�
c3

�c1
(1 � e

− c1
c2
�3 ) x̃+ 2

c2c3

c21�

�
cosh

�
c1

c2
�3

�
� 1

�
t̃

�
;

where ’0

�
x̃ ; t̃; �

�
stands for the partition function of the original model with the arguments x; t replaced by the functions x̃ = x̃(x; t) and

t̃ = t̃(x; t) given in (18). By taking ’0(x; t; �) =
R∞
b dv exp

�
� Ω0
�kB

�
with Ω0 = xv + "0(v)t � s0(v) as in [25], one can write ’�(x; t; �)

in the form (20)-(21).
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(a) (b)

FIG. 1: Examples of dynamics of shock trajectory under symmetry group action. The coexistence line (solid line) originates
from the critical point (solid circle) and crosses the critical region (delimited by the dashed lines). Black: seed solution to
(2) v0 that captures the critical point of the Soave-Redlich-Kwong equation of state for hydrogen gas (b = 4:419 � 10−29 m3,
c2=c1 = �8452 Pa, c3=c1 = �1:356 � 10−6 K Pa−1 and c4=c1 = ak−2

B = 3:582 � 10−4 K2 Pa−1). Red: new solution v� gained for

Λ1 = c2
c1

Λ2 and �(−;+) = (Λ2 = �0:005 K−1; �3 = 300 Pa). Blue: v� when Λ1 = c2
c1

Λ2 and �(+;0) = (Λ2 = 0:005 K−1; �3 = 0).

For the sake of homogeneous schematics, thereinafter legend �(0;0) is used for the v0’s to stress that the case is concerned with
no deformation, Λ1 = Λ2 = �3 = 0.

The condition that the pressure must vanish when the volume diverges implies the constraint c2Λ2 = c1Λ1. In the
limit of infinite pressure the volume density attains its minimum value bλ, for any choice of acceptable parameters.

We now study the phase diagrams associated to the deformed equations of state. Figure 1 shows the coexistence
line corresponding to the shock trajectory and the critical region enclosed by the general fold [33] of the equation,

i.e. the solutions of the system Ψλ(v) = Ψ
0

λ(v) = 0 for the hodograph function Ψλ(v) := x + ε′0(v)t − fhsλ (v). The
chosen numerical values for the structural parameters are such that the seed solution v0 to equation (2) provides the
critical point of the Sove-Redlich-Kwong equation of state. The figure illustrates the effect of the deformation of this
solution induced by the symmetry transformation (17)-(18) as the parameters Λ2 and λ3 vary such that the constraint
c1Λ1 = c2Λ2 is fulfilled in terms of the resulting displacement of the critical points and the coexistence curve in the
plane of thermodynamical variables (x, t). The coexistence curve gives the trajectory of the shock emerging from the
critical point as specified by the asymptotic evaluation of the integral (20) for t > tc. More specifically, for small η
we have

ϕλ(x, t; η) '
∑
k

√
2π η kB

Ω′′λ,k
e
−

Ω�;k
� kB ,

where the sum index k runs over the local minima at fixed pressure and temperature of the Gibbs free energy (21).
Along the coexistence lines we have for all pairs of solutions associated to gas and the liquid phases

Ωλ,j = Ωλ,k.

The effect of deformations on the isothermal curves is illustrated in Figure 2 where we chose four different non-
trivial sets of deformation parameters (Λ1,Λ2, λ3). Figure 2(a) shows that in the limit of infinite temperature t→ 0,
isotherms associated to the equation of state for vλ’s depart from the ones associated to v0 but overall preserve their
qualitative features. As the temperature decreases isothermal curves develop a multivalued behaviour as functions of
x. However, the curves differ quantitatively as each solutions evolves at a different characteristic speed, which explains
the shift in the position of the shock profile. In particular, for fixed symmetry parameters, there is a temperature
interval where the two solutions v0 and vλ exhibit opposed behaviours. Indeed, as illustrated in Figure 2(b), the volume

density vλ associated with the pair (Λ2, λ3) from set λ(+,+) develops a gradient catastrophe at t = t
(+,+)
c , whilst the

seed solution and the solutions corresponding to the choice of parameters λ(+,0), λ(−,+) and λ(−,0) remain single-
valued. For temperatures below the critical value, the multivalued volume density profile vλ with λ(+,+) is replaced
by classical shock. At t = t0c , it is the seed solution v0 that experiences a gradient catastrophe, while, for example,
the solutions vλ constructed with negative Λ2 are single-valued. At sufficiently low temperatures single-valuedness
is lost for all the five solutions (see Fig. 2(c)), and physical isotherms are given by shock waves traveling towards
lower pressures. Remarkably, the location of the shocks fulfils Maxwell’s equal areas rule. An illustrative example
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(a) (b)

(c) (d)

FIG. 2: Dynamics of isothermal curves for the solution v0 (black) that captures the critical point of the Soave-Redlich-
Kwong equation of state for hydrogen gas and new equations of state v� (brown/blue/red/orange) obtained through
nontrivial pairs (Λ2; �3) jointly with the ansatz Λ1 = Λ2c2=c1. The plots refer to the pairs of deformation parame-

ters �(+;+) = (0:005 K−1; 300 Pa) (brown), �(+;0) = (0:005 K−1; 0 Pa) (blue), �(−;+) = (�0:005 K−1; 300 Pa) (red) and

�(−;0) = (�0:005 K−1; 0 Pa) (orange). (a) Isothermal curves at t = 0, corresponding to infinite temperature. (b) Isothermal

curves at t
(+;+)
c � 0:85274 t0c , i.e. at the critical temperature of solution v� obtained with parameters �(+;+). (c) Isothermal

curves at the critical temperature of equation of state v� with the choice �(−;0), t
(−;0)
c � 1:11645 t0c . (d) Physical isothermal

curves all beyond their corresponding critical temperature: solid vertical lines are located in correspondence of the shock posi-
tions and allow to remove the multi-valuedness of the solution by replacing its oscillating middle part (dashed curves) with a
finite jump in the volume density.

of the application of the shock fitting procedure to determine coexistence lines at fixed temperature is explicitly
demonstrated in Figure 2(d). In this respect, it is important to note how solutions vλ differ at low temperature. In
this regime the contribution from the internal energy is dominant over the entropic one. However, evidently different
realisations of the phase transition result from minor differences for the entropic term s′λ(v), which is the initial datum
for the nonlinear differential equation governing the equation of state and establishes the fluid’s behaviour far from
the critical region.

V. CONCLUSIONS

We have studied the Lie-point symmetries generated by infinitesimal operators giving finite group transformations
for a thermodynamic model, recently introduced in [25], based on the differential equation (2) for the volume density.
The model provides the first derivation of a new extension of the van der Waals model as studied in [21] valid in
the critical region and it is proven to be effective in the construction of a new interpolating model compatible with
empirical models, such as the Peng-Robinson and the Soave-Redlich-Kwong. We found that a rather restricted set
of point symmetries generators underlies the differential problem (2) with all four nonvanishing structural constants
cj , and such that c2c

2
3 + c4c

2
1 6= 0 (a necessary condition for the generation of critical points). The class of point

symmetries obtained underpin invariance under translations and scalings, and a linear mixing of the independent
thermodynamical variables x = P/T and t = 1/T . The equation (17) gives a solution depending on three real
parameters providing continuous deformations of solutions to the differential equation (2). Tuning the symmetry
parameters permits to interpolate between existing models for real fluid matching qualitative properties and critical
points. Critical points obtained from deformed equations of state depend on the parameters realising the action of
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the symmetry group and are connected to the critical points of the seed solution v0(x, t) to which (17) is applied, Eqs.
(19). The deformations induced by the action of the symmetry group allow to model significant deviations from the
seed solution in the vicinity of the critical point consistently with the behaviour of the van der Waals model at high
temperature.

The problem of constructing suitable partial differential equations for state functions of thermodynamic systems
and the study of critical properties in terms of critical asympotics of the solutions to these equations is an active
field of research which brought further insights on a variety of classical systems, see e.g. [34–39], and appears to be
promising for the study of complex systems [40, 41]. Studies exploiting the Lie symmetry analysis can be therefore
carried out for other systems of physical interest. Natural developments include the study of composite systems, such
as fluid mixtures [42], and nematic fluids [43].
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