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Abstract:  Wave dynamics on curved surfaces has attracted growing attention due to its close 
resemblance to the warped space time governed by general relativity. It also opens up 
opportunities for designing functional optical devices such as geodesic lenses. In this work we 
study the wave dynamics on the surface of a torus, a shape of considerable interest due to its 
nontrivial topology. Governed by the conservation of angular momentum, light propagates on 
the torus in two different types of modes: one is able to twist around and sweep through the 
whole surface of the torus; the other is confined within a certain angular range along the torus 
latitude direction. The confined mode exhibits an interesting self focusing or imaging 
behavior, which, similar to a geometric lens, shows no dependence of wavelength and thus 
suffers no chromatic aberration. By changing the geometric parameters of the torus, both the 
focusing point and the focusing distance can be controlled. Our work provides a new 
approach to manipulation of light propagation on a curved surface under the conservation of 
angular momentum. 
©2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (240.0240) Optics at surfaces; (240.6648) Surface dynamics; (110.0110) Imaging systems. 
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1. Introduction 

After Einstein described the gravitation with his general theory of relativity in 1915 [1], light 
propagation in curved space-time, which subverts common sense, attracts numerous research 
interests in both optics and astronomy physics [2–5]. In a curved space, the concept of 
straight line is generalized to be geodesic which corresponds to the shortest route between 
two points in a non-Euclidean geometry. By virtue of the absence of acceleration, geodesic 
curve accounts for the trajectory of free particle movement in curved space, which can be 
determined by the geodesic equation. From a physical point of view, this can be better 
interpreted as the conservation of momentum under the Clairaut parametrizations. 

Interesting phenomena arising from curved space time have triggered the search for 
analogs of general relativity in many research fields [6–9]. For electromagnetic waves, 
inhomogeneous refractive index distribution mimics the effect of space-time curvature or 
gravitational potential. Recently novel concepts such as optical analog of black hole and 
celestial phenomena have been proposed and studied [10–14]. An alternative way for 
achieving curved space for light is by restricting the wave propagation onto a curved surface 
[15,16]. In all these cases, the wave is guided by the geodesic unless there is presence of 
acceleration that leads to non-geodesic route [17]. 

Here we study the light propagation on the surface of a torus, which is a two-dimensional 
curved closed manifold, whose topology, as described by the Gauss-Bonnet theorem, is a 
topological invariant given by the integral of Gaussian curvature. Based on the non-Euclidean 
geometry [18], geodesic curve as isometric invariant exists on the intrinsic surface of a torus, 
which can be explained by the conservation of the angular momentum of light around the 
direction of toroidal latitude circle as implied by the Noether’s theorem. Compared to the 
previous work for a specialized problem on the influence of curvature on Gaussian beam 
propagating along the outer equator of torus [15], we here investigated the general case on the 
wave that originates from any point on the toroidal surface and propagates along any direction 
with a calculation method based on the conservation of the angular momentum. According to 
the propagation dynamics, waves on torus are classified into two categories: one that twists 
around the torus and sweeps across the whole surface area; the other one that is confined 
within certain latitude range of the torus, exhibits an interesting self-focusing or imaging 
behavior. The focusing point appears as an angular node around the torus, with the angular 
focusing length controlled by the geometric parameters of the torus and the latitude position 
of the light source. 

2. Theory and simulations 

Considering a point source S located on the toroidal surface as shown in Fig. 1(a), suppose 
that surface waves can be excited, for instance, within a thin film working as a waveguide 
coated on a toroidal perfect electric conductor, and will propagate on the toroidal surface 
towards all directions. The orbit angular momentum of the generated surface wave about the 
z-axis is conserved due to the rotation symmetry around the z-axis, which is given by: 

 0 ˆsin ,s sR K�=L z  (1) 

where K0 is the wave vector of the surface wave, Rs is the radius projection of source on the 
plane perpendicular to the z axis and 0� �.s� 2�Œ denotes the direction of wave propagation as 
shown in Fig. 1(a). As a result of the conservation of L, the wave reaches a minimum radius 
Rc for a certain propagation direction which can be estimated as Rc = Rssin �.s, where the 
sinusoidal value reaches the maximum. For a torus with outer and inner equator radii of R1 
and R2 respectively, if Rc< R2 the wave experiences no reflection and consequently can twist 
around the torus freely; on the other hand, if Rc> R2, the wave is confined within the critical 
position of Rc = R2 in a similar way as a total internal reflection process inside a graded index 
medium. By utilizing the transformation optics method as described in the Appendix, we 
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calculate the effective constitution parameters for Maxwell equations of the 2D torus in 
Euclidean space, and further confirm the two kinds of wave behaviors with wave simulation 
as shown in Figs. 1(b) and 1(c). For a point source on a torus with fixed geometry, the 
radiated surface waves propagate towards all possible directions, among which those with 
small value of �.s<sinŠ1(R2/Rs) travel freely sweeping across the whole latitude range, while 
the others with larger peripheral angular momentum is bent back and restrained into 
trajectories within a limited latitude range on the torus. Interestingly, for the confined waves, 
they tend to be focused after travelling a certain distance as shown in Fig. 2(a), which 
presents the idea of surface wave focusing or imaging on the torus. 

 

Fig. 1. (a) Schematic of torus coordinates with usual parametrization. The energy density of (b) 
reflected wave on a 2D torus. (c) free wave on 2D torus. (d) reflected wave on 3D space torus. 
(e) free wave on 3D space torus. The geometric parameters used in calculating the effective 
permittivity and permeability are R1 = 3 m and R2 = 3/2 m, the corresponding frequency is 
10GHz. 

When placing a point source on the outer equator of torus, as shown in Fig. 2(a), the 
propagation directions of paraxial waves are indicated as �. ± = �Œ/2 ± �//2, where �//2 is the 
angular deviation from the outer equator circle. The wave trajectory can be traced on the torus 
by the angular momentum conservation as per Eq. (1), showing that they meet each other 
after passing a longitudinal angle of �3f as described in Fig. 2(a). We define �3f as the angular 
focusing length, whose relationship with wave propagation direction �. is shown in Fig. 2(b). 
One can see that �3f is nearly constant for a certain range of �. around �. = �Œ/2, 3�Œ/2. In contrast, 
when �/ takes a larger value, the angular focusing length �3f suffers from strong divergence, 
indicating that the waves with a large initial �/ contribute very little to the focusing or imaging. 
As for the waves with initial directions �. outside of the confined range, they twist around the 
torus and tend to diverge evenly over the surface. 

We further consider the influence of geometric parameters on the imaging behavior. 
Under the paraxial approximation of the outer equator, we can calculate the relationship 
between the angular focusing length and the geometric parameters of torus to be 

 2

1

1
,

2 2f

R

R
� �= Š  (2) 

where R1 and R2 as indicated in Fig. 2(a) are related to the equator radii shown in Fig. 1 as R0 
= (R1 + R2)/2 and r0 = (R1-R2)/2. Since the equation does not show any frequency dependence, 
one expects that the angular focusing length �3f is only determined by the geometry of the 
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torus, and thus the imaging process suffers no chromatic aberration which is a unique 
advantage of the geodesic systems. Figure 2(c) shows the dependence of the angular focusing 
length �3f over the value of R2/R1. By choosing three different points on the �3f vs R2/R1 curve, 
the corresponding �3f-�. dependence are calculated and plotted with different colors in Fig. 
2(b). The �3f-�. curves strongly depend on the geometry. For a smaller value of R2/R1, a 
boarder flat region around �. = �Œ/2 and 3�Œ/2 is achieved, implying that a broader range of 
waves can converge to the focusing point and hence a better imaging performance. In Figs. 
2(d)-2(f), we employ the ray tracing method by neglecting the wave diffraction for calculating 
the field distribution, with the geometry parameters indicated in Fig. 2(c). The results confirm 
the different angular focusing lengths as 2�Œ/3, �Œ/2 and �Œ/3 for different parameters of torus, 
respectively. Moreover, when R2/R1� -1, the torus approaches a sphere and the image exactly 
appears at the opposite point of the source on the sphere, which gives the largest focusing 
length �3f = �Œ when the source is located on the outer equator. When R2/R1� 1, most of waves 
diverge as expected, while the bounded waves get bent back quickly due to the extremely 
large curvature of torus along the meridian direction, leading to a diminishing focusing 
length. 

 

Fig. 2. (a) Schematic of light paraxial propagation around the outer radius. (b) The angular 
focusing length �3f dependence on initial propagation angle �.s with different geometric 
parameters of torus. (c) Geometric parameters versus focusing length �3f, where general points 
on curve will not guarantee integer number of focusing points within a single circle, several 
special points are marked and should correspond to closed geodesics. (d-f) Field distributions 
on torus with geometric parameters R2 / R1 = 1/9, 1/2 and 7/9, respectively. The wavelength is 
set as �� = �Œ R1/10 in the calculation. 

We now focus on the closed light trajectories or geodesic curves on the torus, which 
correspond to the resonance of a propagation mode. For the confined rays, the angular 
focusing length in Eq. (2) can be used to determine the maximum number of bouncing for a 
closed geodesic curve within a single round trip along the torus meridian direction. From the 

equation we can see that the geodesic is closed when ( )2 12 2 1 R RŠ  takes integer values. 

In the cases of R2/R1 = 1/9, 1/2 and 7/9 shown in Figs. 2(d)-2(f), the number of focusing 
nodes are integers of 3, 4 and 6, corresponding to the focusing lengths �3f = 2�Œ/3, �Œ/2 and �Œ/3, 
respectively. We verify the focusing nodes on the 2D torus by using wave simulation method 
as shown in Fig. 3. We can see that these focus nodes resulting from the closed light 
trajectory remain highly robust. 

                                                                                                   Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 17823  



 

Fig. 3. Different number of focusing nodes for geometry parameters of R2/R1 = 1/9, 1/2 and 7/9 
for (a-c) respectively, the field patterns are calculated with Comsol Multiphysics after using 
transformation optics method stated in the Appendix, the geometric parameters used in 
calculating the effective permittivity and permeability are R2 = 1/3, 3/2, 7/3 m and R1 = 3 m, 
the corresponding frequency is 10GHz. 

Next, we study the wave propagation with a point source positioned slightly away from 
the outer equator. Again, we calculate the light trajectory by using the ray tracing method 
with a geometric parameter of R2/R1 = 1/2. As shown in Fig. 4(a), the neighboring images of 
the source are shifted away from the equator along opposite directions. A number of cases are 
studied with point source located at ��s = 0, �Œ/4, �Œ/2 and 3�Œ/4, as shown in Figs. 4(c)-4(f), 
respectively. From the field distributions, one can see that the images become blurred when 
the source is shifted away from the outer equator. This can be understood with the assistance 
of Fig. 4(b), where the �3f-�. curves are plotted. As can be seen, when the source is shifted 
away from the outer equator, the angular range within which the beams are confined becomes 
narrower. This means that a larger proportion of light will contribute to the background field 
distribution and the focus becomes boarder, which together lead to the blurring of the image. 
Meanwhile, it is worth noting that, when the position of the point source is changed, the 
angular focusing length is shifted, indicating that the focusing length can also be controlled 
by the location of point source in addition to the geometric parameters of torus, nevertheless 
at the expense of the imaging quality. An extreme case is when the point source is located on 
the inner equator, and all waves are free to travel on the torus and no focusing point can be 
found. 

 



 

Fig. 4. (a) Schematic of light trajectory with an abaxial point source. (b) The �3f-�. relation for 
the point source located at different position. (c-f) Field distributions with different position of 
point source. The wavelength is set as �� = �Œ R1/10 in the calculation. 

3. Conclusion 

In conclusion, we have studied the wave propagation on the surface of a torus, which is a 
vivid example of light behavior on curved surface of manifolds with interesting topologies. 
On the torus surface, the angular momentum conservation law governs the behavior of wave 
propagation. Depending on the angle formed between the light ray and the outer equator, it 
can either twist around the torus or get bent back and stay confined to the outer brim of the 
torus. Focusing or imaging phenomenon with no chromatic aberration can be observed for 
paraxial beams. The angular focusing length can be controlled by either changing the 
geometry parameters of torus or choosing different source locations. Wave propagation on a 
torus surface opens doors to novel wave dynamic phenomena on the surface topological 
objects. Compared to conventional photonic structures are fabricated in planar settings, the 



evolution of light can be controlled through the space curvature of the homogenous medium 
instead of the spatial variation of refractive index, providing a new 3D platform in integrated 
photonic circuits with Si or III-V semiconductors. 

Appendix 

1. Transformation optics method for effective constitution parameters. 

For a torus with parametrization as 
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We consider a fixed shape ratio between two radii parameters as 0 0r a R= 	 , Then we 
can calculate the metric tensor to be [16,18]: 
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with the metric tensor components written as, 
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For a general space with no source, the Maxwell equations can be written as [14], 
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where g is the determinant of matrixMg , according to the equivalence of Maxwell 
equations in empty curved space and in Euclidean space with medium, the geometric 
parameters can be transformed as the effective constitution parameters for 2D torus 
in Euclidean space, can be calculated as 



 T
Mgg� µ= = ±   

and superscript stands for transpose. 

2. Derivation of the angular focusing length equation 

For the toroidal surface, we have the following relationships [18] 
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Then we can have 
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Consider the orbital angular momentum at the source position, 

 0sins s sL R k�=  (5) 

And at arbitrary position along the light trajectory, 

 0sinL R k�=  (6) 

Due to the conversion of orbit angular momentum, combine [5] and [6], we can get 
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At the same time, from the parametrization we have 

 0 0 cosR R r �= +  (8) 

Taking the derivative of both equations gives: 
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And following gives: 
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Also from [7,8] we can have 
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Substitute [7,10,11] into [4] to give 
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Then we can get the angular focusing length by taking the paraxial limitation of the 
integral, 
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3. Verification of non-achromatic feature 

We take the transformation method to get the permittivity and permeability tensor 
and put them into wave simulation with commercial software COMSOL 
Multiphysics, and the simulation result are shown in Fig. 5. 



 

Fig. 5. Wave propagation in the 2D torus for different frequencies: 3 - 6 GHz for (a) - (d) 
respectively. The geometric parameters used in calculating the effective permittivity and 
permeability are R1 = 3 m and R2 = 3/2 m. 
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