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Abstract: Three-dimensional-printed concrete (3DPC), which is also termed as digital fabrication of
concrete, offers potential development towards a sustainable built environment. This novel technique
clearly reveals its development towards construction application with various global achievements,
including structures such as bridges, houses, office buildings, and emergency shelters. However,
despite the enormous efforts of academia and industry in the recent past, the application of the
3DPC method is still challenging, as existing knowledge about its performance is limited. The
construction industry and building sectors have a significant share of the total energy consumed
globally, and building thermal efficiency has become one of the main driving forces within the
industry. Hence, it is important to study the thermal energy performance of the structures developed
using the innovative 3DPC technique. Thermal characterization of walls is fundamental for the
assessment of the energy performance, and thermal insulation plays an important role in performance
enhancements. Therefore, in this study, different wall configurations were examined, and the
conclusions were drawn based on their relative energy performance. The thermal performance of
32 different 3DPC wall configurations with and without cavity insulation were traced using validated
finite element models by measuring the thermal transmittance value (U-value). Our study found that
the considered 3DPC cavity walls had a low energy performance, as the U-values did not satisfy the
standard regulations. Thus, their performance was improved with cavity insulation. The simulation
resulted in a minimum thermal transmittance value of 0.34 W/m2·K. Additionally, a suitable equation
was proposed to find the U-values of 100 mm-thick cavity wall panels with different configurations.
Furthermore, this study highlights the importance of analytical and experimental solutions as an
outline for further research

Keywords: 3D-printed concrete; sustainability; energy performance; U-value; finite element modelling

1. Introduction

The future sustainability of the built environment and the significant potential con-
tribution of energy-efficient buildings have become crucial concerns nowadays. The
construction industry is one of the sectors that requires substantial improvements to reduce
its adverse effects on the environment and climate change [1,2]. This industry has a great
influence on the environment in its energy utilization, as it uses more than 50% of all raw
material globally, releases the largest amount of carbon, and is accountable for 40% of total
energy consumed globally [1,3–6]. Hence, the perception of sustainable development in
the construction industry is gaining attention, with increasing awareness of environmental
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protection laws. A built environment with minimized energy consumption has become the
prime objective these days. In order to achieve this, new development practices, resources,
and approaches are being pursued by current industries and researchers [7]. In addition to
energy efficiency, lightweight material also provides sustainability by means of reducing
material costs and related emissions incurred throughout the production. Hence, there is a
necessity to use some regulations and initiatives to achieve these interests to enhance the
energy efficiency in buildings [8].

1.1. Three-Dimensional-Printed Concrete (3DPC) and Sustainability

Over the past decade, the interest in the pursuit on extrusion-based 3D-printed con-
crete (3DPC) has been increasing exponentially. This innovative technology has been
recognized as a sustainable green construction and environmentally friendly solution, as
it reduces the overall construction waste and costs [9–12]. The integration of 3DPC in the
design and construction of built environments brings many promising advantages, such as
minimal manpower and labor costs, rapid fabrication, reduction of construction wastes,
cost-effectiveness, formwork-free construction, and increased flexibility with precise ar-
chitectural design. In addition to conventional building components, entirely unique and
complex configurations, which are not viable with conventional formwork, can be con-
structed using 3DPC [10,12–15]. In addition, 3DPC provides lesser self-weight structures
with topology optimization, and further reduction of weight and enhanced thermal insu-
lation properties could be achieved by developing mix designs using materials with low
thermal conductivity [16,17]. While 3DPC is regarded as a revolutionizing and innovative
manufacturing technology, the creative conception and application of such a technology
is still underexplored. Moreover, to fully utilize such a new technique, a deeper under-
standing of the process, from the design phase to the postprocessing phase, is required.
However, researchers are focusing more on the structural performance of 3DPC structures,
and numerous research studies are ongoing worldwide [18–22].

1.2. Types of 3DPC Cavity Structures

The 3DPC technique offers design flexibility with the inclusion of air cavities in the
wall panels while satisfying both structural and thermal performance criteria. Different
cavity provisions will also influence the thermal behaviour of the overall structure due
to the concurrent occurrence of conduction, convection, and radiation heat-transfer pro-
cesses [23]. Therefore, the printing parameters should be chosen wisely in order to achieve
sustainable and energy-efficient 3DPC structures. Currently, 3DPC wall panels with dif-
ferent thicknesses and cross-sectional arrangements are used in the industry for better
thermal and acoustic characteristics. Figure 1 shows some of the actual 3DPC wall panels
with different cross-sectional geometries that have been developed to be structurally stable.
Wang et al. [24] developed a systematic approach to explore optimization of the mechanical
capacity of 3DPC cavity structural elements with different internal cross sections. Beam ele-
ments have four different types of interior cavity structures: cellular-shaped, truss structure,
lattice-shaped structure with a square topology, and grid-shaped structure with triangular
topology. Figure 2 shows the wall configurations studied structurally by Wang et al. [24].

1.3. Energy Efficiency of 3D-Printed Concrete Structures

Many design guidelines and performance criteria are available for the thermal perfor-
mance of normal concrete, whereas very few studies have evaluated the thermal energy
behaviour of 3DPC structures to date. The standard approach to determine the energy
performance is the quantification of the thermal transmittance value (U-value), which is
extensively used in Europe [2,23]. The thermal transmittance is a measure of how much
heat will pass through one square metre of a structure when the air temperatures on either
side differ by one degree (W/m2·K). The U-value depends on the thermal conductivity (λ)
of the material and its thickness (d): U = λ/d. Therefore, lower U-values or higher energy
performances signify better levels of thermal insulation.
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The ability to take precise measurements of the appropriate thermal performance is
essential to understand and improve the thermal efficiency of this new 3DPC technology.
The thermal performance of the exterior walls greatly influences the energy consumption
of buildings and consequently their efficiency, as well as their emission of greenhouse
gases [2,29]. In addition, the overall energy performance of a structure depends on external
walls and their insulating value, and represents approximately 25% of the total heat
loss [3]. The thermal performance, thickness, and properties of the materials used in
these wall components play a significant role in regulating the heat loss and gain of the
building [2,23,30]. The introduction of air gaps and filling the cavity using insulation
materials or insulation layers between the structural elements is an effectual technique to
attain the required thermal comfort of a building [31]. In addition, by enhancing the thermal
insulating properties of the external walls, enhancements in construction sustainability can
be also accomplished.

While energy-saving building features have been integrated into the design of 3DPC
elements, there has not been a systematic study on the energy efficiency of 3DPC buildings.
Pessoa et al. [29] conducted a systematic literature review to identify the key innovations
made so far in 3DPC technology and its applicability in the construction industry, with
specific attention being given to the thermal efficiency. Alkhalidi and Hatuqay [31] investi-
gated and developed energy-efficient and low-cost residential 3DPC elements that could be
accomplished through a green and sustainable method. Similarly, He et al. [32] introduced
a 3DPC modular building system with an integrated vertical greenery system called the
3D-printed vertical green wall (3D-VtGW). Moreover, Craveiro et al. [33] experimentally
analyzed the structural and thermal performances of several printable materials, including
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normal concrete, concrete mixed with cork, and concrete mix with expanded clay. Fur-
thermore, Cuevas et al. [16] developed a 3D-printed lightweight concrete mixture with
waste glass as an aggregate with lower density, and achieved a 40% reduction in thermal
conductivity. Al-Ghamdi [7] conducted a detailed experimental study to examine the effects
of different printing parameters to lower the energy consumption and printing period, and
to ensure lightweight construction of acrylonitrile butadiene styrene (ABS) components
through extrusion-based 3D printing. In addition, Marais et al. [30] numerically investigated
the thermal performance of 3DPC structures with macrostructural cavity arrangements
using lightweight foam concrete and high-performance concrete. However, there is still an
obvious lack of investigations of the thermal energy performance of 3DPC structures to
date, and there is a need to examine the thermal performance from a unique perspective.

1.4. Scope of the Current Study

In view of above discussion, the aim of the present study was to analyze the energy
performance of 3DPC wall panels with different configurations and insulation materials.
Complying with currently available geometries of 3DPC walls in the industry and the
cavity arrangements proposed by Wang et al. [24], this study numerically investigated the
energy performance of the innovative 3DPC wall configurations. Suitable heat transfer
numerical models with cavity wall configurations proposed by Alkhalidi and Hatuqay [31]
were developed using Abaqus [34] finite element software. The models were then validated
by comparing the U-value results presented by Alkhalidi and Hatuqay [31]. The study was
then extended with a detailed parametric study of 32 analyses by varying two different
printing parameters, namely wall configurations and insulation material. The numerical
analysis performed on the study revealed that the considered parameters had a significant
influence on the energy efficiency of 3DPC wall panels. Finally, a suitable wall configuration
with cavity insulation was proposed in order to ensure an energy-efficient and sustainable
3DPC wall panel development process. Furthermore, using the numerical analysis, a
simple equation was also derived to determine the U-value of complex cavity geometries
without using FE modelling. This study offers a vision to the future investigation of
energy-efficient, complex 3DPC structures that can be utilized in the construction industry.

2. Development of the Finite Element Model

This section explains the development of the three-dimensional finite element (FE)
model for analysing the energy performance of 3DPC wall panels with different cross-
sectional arrangements. The U-value is the thermal transmittance of the wall configuration.
It has a direct relationship with the element’s thermal performance; if the U-value is low,
it implies that the wall’s thermal performance is better. U-value (U) has an inverse rela-
tionship with thermal resistance (RT) of the element (Equation (1)). The thermal resistance
of the element depends on the internal surface thermal resistance (Rsi), external surface
thermal resistance (Rse), and the element layer resistance (R) (Equation (2)). Further heat
flux and the temperature variation between the external and internal surfaces has a rela-
tionship with the U-value (Equation (3)). Thermal resistance has a co-relationship with the
thermal conductivity (λ) and the thickness of the layer (d) as expressed in Equation (4). If
a wall configuration is available with different layers of materials using Equation (2), the
U-value of the wall configuration could be easily determined. However, instead of layers,
the combination of materials was in complex shapes in the 3DPC wall configurations con-
sidered in this study, and thus a direct equation could not be used. Therefore, a numerical
analysis was utilized in determining the U-values of the analysed wall configurations.

U =
1

RT
(1)

RT = Rsi + R + Rse (2)

Heat Flux = Temperature Difference × (U − Value) (3)
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R =
d
λ

(4)

The examination of overall thermal performance of a structure is known as coupled
analysis, which investigates the combined mechanical–thermal behaviour. Due to the
lack of experimental investigations, non-load-bearing 3DPC wall configurations were con-
sidered in this study, and uncoupled heat-transfer analysis was performed. Hence, the
developed models were incapable of simulating the structural behaviour or the fracture
of the wall. Therefore, three-dimensional heat-transfer analysis was conducted to deter-
mine the 3DPC wall configurations’ thermal transmittance; the steady-state heat transfer
depended on the thermal conductivity of the material. The thermal conductivities of the
concrete mixture used for the 3DPC cavity wall panels and the cavity insulation material,
expanded polylactic acid (E-PLA), were obtained from the study performed by Alkhalidi
and Hatuqay [31]. External and internal temperature boundary conditions were set to 0 ◦C
and 40 ◦C, respectively. The convective surface heat-transfer coefficients were set according
to EN ISO 6946: 25 W·m−2·K−1 and 7.69 W·m−2·K−1 for the external and internal envi-
ronment, respectively. Two surface film condition interactions were defined separately in
the external and internal surfaces to achieve these boundary conditions in the developed
FE model. For the external surface film, a coefficient of 25 W·m−2·K−1 was set with a sink
temperature of 0 ◦C; whereas for the internal surface film, a coefficient of 7.69 W·m−2·K−1

was set with a sink temperature of 40 ◦C. Heat-transfer elements (DC3D8 elements) were
used in meshing the model. Global seeding of 10 mm and edge seeding of 2 mm was
achieved through the thickness as mesh sizes, and steady-state heat-transfer analysis was
conducted. Heat-flux results were obtained as a result of the analysis, and based on the
Equation (3), U-values were calculated, dividing the average heat flux from the temperature
difference (40 ◦C). The cavity of the configurations was modelled as air layers. Air thermal
transmittance was considered as 0.18 m2·K/W, and considering the relationship given in
Equation (4), air thermal conductivity (λc) was calculated based on the thickness of the air
layer. The geometry modelling, applying boundary conditions, applying tie constraints, and
meshing of one of the wall configurations, are shown in Figure 3a–c.
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3. Validation of the Developed FE Model

Validation of the developed simulation was essential to evaluate the accuracy of the
implemented models, the assumed simplifications for the model applications, and the
material characterization. Hence, all developed simulation models were validated against
previously published literature. The U-values results obtained from the finite element
analysis (FEA) using Abaqus were compared with the results presented by Alkhalidi and
Hatuqay [31], who calculated the U-value of the wall configurations with air gap and
cavity filled with expanded polylactic acid (E-PLA). Five different 3DPC wall arrangements
with three different materials were used in this study. Hence, 30 models were validated in
total. Three material mixes were selected with recyclable contents with excellent thermal
properties. The first tested mix was a sulphur concrete mix, the second was a cork concrete,
and the third was composed of powdered silica sand with an organic binder. The thermal
properties of the concrete mixes are presented in Table 1, and the thermophysical properties
of air and E-PLA are given in Table 2. The wall panel arrangements used for the validation
are illustrated in Figure 4.

Table 1. Properties of the concrete mix [31].

Mix Density (kg/m3) Thermal Conductivity
(W/m·K)

Specific Heat
(J/g·K) Emissivity

Mix 1 1254 0.367 0.803 0.558
Mix 2 986 0.338 1.127 0.583
Mix 3 1522 0.2 0.73 0.94

Table 2. Thermophysical properties of the cavity insulation [31].

Cavity
Filling Density (kg/m3) Thermal Conductivity

(W/m·K)
Specific Heat

(J/g·K)
Viscosity
(kg/m·s)

Air cavity Ideal gas 0.0242 1.00643 1.7894 × 10−5

E-PLA 30 0.03 1.483 -
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The comparison of results of three different mixes (Mix 1, Mix 2, and Mix 3) of 3DPC
are shown in Figure 5a–c. The U-value curves of wall configurations presented by Alkhalidi
and Hatuqay [31] showed excellent agreement with the FEA results, hence the Abaqus
simulations were accurate and reliable. Since the U-values results matched, we concluded
that the developed FE models could be utilized for detailed parametric analysis of the
energy performance of 3DPC walls.
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4. Parametric Study

Currently, 3D-printed solid wall panels with different thicknesses are used in industry
for improved thermal and acoustic characteristics. When the increasing wall thickness, en-
ergy, and acoustic performance are enhanced, however, material costs and carbon footprint
are increased. The most crucial problem with wide concrete wall panels is the challenging
nature of handling the panels at the construction site, due to their heavy weight. Comply-
ing with currently available 3DPC wall panels in the industry and the wall configurations
proposed by Wang et al. [24], eight (8) innovative cavity wall configurations were chosen
to observe the effect of thickness of the wall panels, cross-sectional configurations, and
the thermal insulation on the energy performance. Mix 3 from the study by Alkhalidi and
Hatuqay [31] was selected for this parametric study due to its better energy performance
with lower U-values; the properties of this printable concrete are presented in Table 1.
In this study, a heat-transfer analysis was conducted on wall panels with thicknesses of
100 mm and 12 mm layer thickness, and wall thicknesses of 200 mm with 25 mm layer thick-
ness. The nozzle sizes were selected based on the actual constructed structures. The walls
were developed to be 1 m long and 1 m high with different cross-sectional arrangements.
The parametric study included 32 wall specimens of eight different single- and double-row
cross-sectional arrangements, with and without cavity insulation. The details of the para-
metric study are presented in Table 3. The analysed different configurations details are
shown in Table 4. The same wall panels also were analysed with E-PLA cavity insulation.

Table 3. Outline of the parametric study.

Wall Thickness Wall Configuration Insulation Type Number of Models

100 mm
200 mm

C1

Air cavity
E-PLA insulation

4
C2 4
C3 4
C4 4
C5 4
C6 4
C7 4
C8 4

Total 32
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Table 4. Different cross-sectioned 3DPC wall configurations.

Wall
Configuration (1 m Length) 100 mm (12 mm Layer) 200 mm (25 mm Layer)
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5. Results and Discussion 

This section describes the numerical simulation results derived for the considered 

wall configurations for energy performance and the variation of thermal transmittance 

value (U-values). The measured U-values of each wall configuration is given in Table 5. 

The effect of wall thickness and the cross-sectional configurations with the void area are 

discussed extensively herein. 

Table 5. The U-values derived from the FE analysis. 

Wall Configuration 
Cavity Area 

(mm2) 

Concrete Area 

(mm2) 

U-Values 

Cavity Wall 
E-PLA Insulated 

Wall 

C1100 52,519 47,481 2.68 0.87 

C2100 64,144 35,856 3.16 0.65 

C3100 57,174 42,826 2.79 0.64 

C4100 23,923 76,077 1.85 1.42 

C5100 23,923 76,077 1.85 1.42 

C6100 45,568 54,432 1.89 0.96 

C7100 37,736 62,264 2.09 0.68 

C8100 37,736 62,264 2.09 0.69 

C1200 99,330 100,670 1.74 0.45 

C2200 126,225 73,775 1.26 0.50 

C3200 106,855 93,145 1.71 0.49 

C4200 43,477 156,523 1.01 0.73 

C5200 43,477 156,523 1.01 0.72 

C6200 87,500 112,500 2.17 0.34 

C7200 72,721 127,279 1.01 0.49 

C8200 72,721 127,279 1.01 0.50 

5.1. Effect of Wall Thickness with Different Configurations 

Figure 6 shows the variation of U-value for the considered 100 mm and 200 mm thick-

ness wall configurations without cavity insulation. It is clear that the U-value mostly de-

creased with increased wall thickness regardless of the cross-sectional configurations, ex-

cept the double-row lattice configuration (C6200). Moreover, C1, C2, and C3 were devel-

oped with single-row cross-sectional configurations, and the C4–C8 wall panels were de-

veloped with double rows (Table 4). Hence, a significant reduction in the U-value was 

identified for the 100 mm double-row wall panels compared to the single-row panels. 

However, there was a fluctuating trend identified for the 200 mm wall configurations. 

In terms of different cross-sectional configurations, higher intermediate barriers 

caused a reduction in material conductivities; hence, an increased thermal efficiency was 

obtained. In both single- and double-row 100 mm breadth wall panels, the triangular 

shaped panels displayed a higher performance, with lower U-values compared to other 

configurations. However, lattice-shaped wall panels showed a higher reduction in the U-

value of approximately 40% when increasing the midway partitions with an additional 

row. The 200 mm thickness wall panels with triangular and sinusoidal shapes also showed 

a similar percentage of reduction, whereas the lattice-shaped wall panels behaved contra-

rily. The reduction in U-values due to increasing intermediate barriers with an additional 

row is listed in Table 6. However, these values derived for thermal transmittance were 
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5. Results and Discussion

This section describes the numerical simulation results derived for the considered
wall configurations for energy performance and the variation of thermal transmittance
value (U-values). The measured U-values of each wall configuration is given in Table 5.
The effect of wall thickness and the cross-sectional configurations with the void area are
discussed extensively herein.

5.1. Effect of Wall Thickness with Different Configurations

Figure 6 shows the variation of U-value for the considered 100 mm and 200 mm
thickness wall configurations without cavity insulation. It is clear that the U-value mostly
decreased with increased wall thickness regardless of the cross-sectional configurations,
except the double-row lattice configuration (C6200). Moreover, C1, C2, and C3 were
developed with single-row cross-sectional configurations, and the C4–C8 wall panels were
developed with double rows (Table 4). Hence, a significant reduction in the U-value was
identified for the 100 mm double-row wall panels compared to the single-row panels.
However, there was a fluctuating trend identified for the 200 mm wall configurations.

In terms of different cross-sectional configurations, higher intermediate barriers caused
a reduction in material conductivities; hence, an increased thermal efficiency was obtained.
In both single- and double-row 100 mm breadth wall panels, the triangular shaped panels
displayed a higher performance, with lower U-values compared to other configurations.
However, lattice-shaped wall panels showed a higher reduction in the U-value of approxi-
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mately 40% when increasing the midway partitions with an additional row. The 200 mm
thickness wall panels with triangular and sinusoidal shapes also showed a similar percent-
age of reduction, whereas the lattice-shaped wall panels behaved contrarily. The reduction
in U-values due to increasing intermediate barriers with an additional row is listed in
Table 6. However, these values derived for thermal transmittance were considerably higher
than the required standard values. Hence, expanded polylactic acid (E-PLA) was used as
thermal insulation material, and the U-values were assessed again. E-PLA is a lightweight
sustainable material that has similar properties to expanded polystyrene.

Table 5. The U-values derived from the FE analysis.

Wall
Configuration

Cavity Area
(mm2)

Concrete Area
(mm2)

U-Values

Cavity Wall E-PLA Insulated Wall
C1100 52,519 47,481 2.68 0.87
C2100 64,144 35,856 3.16 0.65
C3100 57,174 42,826 2.79 0.64
C4100 23,923 76,077 1.85 1.42
C5100 23,923 76,077 1.85 1.42
C6100 45,568 54,432 1.89 0.96
C7100 37,736 62,264 2.09 0.68
C8100 37,736 62,264 2.09 0.69
C1200 99,330 100,670 1.74 0.45
C2200 126,225 73,775 1.26 0.50
C3200 106,855 93,145 1.71 0.49
C4200 43,477 156,523 1.01 0.73
C5200 43,477 156,523 1.01 0.72
C6200 87,500 112,500 2.17 0.34
C7200 72,721 127,279 1.01 0.49
C8200 72,721 127,279 1.01 0.50
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Table 6. The U-value reduction percentages.

Wall Arrangement
U-Value Reduction Percentage for Double Rows (%)

100 mm Wall 200 mm Wall

Triangular 30.71 42.10
Lattice 40.13 −42.03

Sinusoid 25.02 40.72
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5.2. Effect of Cavity Insulation

Figure 7 illustrates the U-values obtained from the analysis for the selected 100 mm
wall configurations with and without cavity insulation. The incorporation of E-PLA
material as the insulation reduced the U-value, and thus increased the thermal performance
of the wall panels for all the configurations. However, single-row wall configurations
achieved relatively higher reductions in U-value compared to some of the double row wall
configurations which contradicted the results presented by Alkhalidi and Hatuqay [31].
Hence, there was an obvious relationship for U-values with the volume of the cavity and
insulation, which must be examined further.
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Figure 7. The U-value results obtained for 100 mm wall configurations with and without
cavity insulation.

In relation to the cross-sectional arrangements, single-row lattice and sinusoid and
double-row sinusoidal arrangements exhibited a higher energy performance, while those
filled with E-PLA had U-values in the range of 0.64–0.69 W/m2·K. Conversely, triangular-
shaped wall panels showed a relatively lower performance with an increased midway row.
The reductions in U-values due to the incorporation of insulation material is presented
in Table 7. Still, these values of thermal transmittance were noticeably higher than the
required standard values. Hence, the 200 mm thickness wall panels were examined to
further reduce the U-values while increasing the performance.

Figure 8 depicts the U-value results derived for 200 mm wall configurations with and
without E-PLA insulation. The cavity insulation with E-PLA material had significantly
reduced U-values. Moreover, approximately similar U-values were attained for all the wall
configurations irrespective of single- and double-row arrangements. This scenario must be
further investigated with respect to cavity volume.

From Figure 8, it is apparent that the wall with double-row lattice arrangement had a
lower U-value of 0.34 W/m2·K with E-PLA insulation. All three single-row wall configura-
tions and double-row sinusoidal arrangements also showed better energy performance
when filled with E-PLA, with U-values in the range of 0.45–0.50 W/m2·K. Similar to
100 mm wall panels, double-row, triangular-shaped wall panels showed a comparatively
lower performance with increased intermediate barriers. Furthermore, Figure 9 shows the
variation in U-values for all the wall panels studied with and without cavity insulation. An
evident reduction in U-values was observed with cavity insulation for both the 100 mm
and 200 mm thickness wall panels. Moreover, 100 mm wall panels with E-PLA exhibited
lower U-values compared to 200 mm cavity walls, except both double-row triangular



Buildings 2021, 11, 432 12 of 22

cross-sectional wall panels. However, the U-values were nearly identical for single-row
wall configurations and the double-row sine-curved wall panels regardless of the wall
thickness when cavity-insulated. The reduction percentages of the U-values due to the
incorporation of insulation material are presented in Table 7.

Table 7. The U-value reduction percentages (%) with insulation.

Wall Configuration U-Value Reduction
Percentage (%) Wall Configuration U-Value Reduction

Percentage (%)

C1100 67.67 C1200 74.20
C2100 79.59 C2200 60.50
C3100 77.09 C3200 71.38
C4100 23.62 C4200 27.64
C5100 23.61 C5200 28.23
C6100 49.22 C6200 84.29
C7100 67.51 C7200 51.51
C8100 66.88 C8200 50.49
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cavity insulation.

Wall configurations with double-row triangular arrangements did not attain a notice-
able reduction in U-values with the integration of E-PLA insulation. Observed reductions
in U-values were nearly 23% and 28% for 100 mm and 200 mm wall panels, respectively.
However, all the other wall configurations attained a significant improvement in energy
performance with E-PLA insulation. The measured reduction in U-values for the single-row
triangular, lattice, and sinusoid wall arrangements with insulation ranged around 60–70%,
which clearly showed the connectivity with the void area and energy performance with the
integration of insulation material. In addition, the C6200 (double-row lattice arrangement),
which had the highest U-value of 2.17 W/m2·K. among the 200 mm wall panels, achieved a
lower U-value of 0.34 W/m2·K with E-PLA insulation, with higher performance compared
to all the other configurations. Hence, the variation of U-value with the void area was
studied to further understand the behaviour of the considered wall configurations. Since
the thermal conductivity of void air changes with the thickness, only the variation in
U-values with E-PLA insulation was investigated.
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5.3. Variation of U-Values with Cavity Area

As shown in Figure 10, the U-value was relatively decreased with an increased void
area with insulation. A larger amount of insulation directed a reduction in material
conductivities; hence, the best thermal efficiency was achieved. However, with the different
cross-sectional arrangements and variations in thermal transmittance path, fluctuating
behaviour was identified. However, the 200 mm wall panels, such as single-row triangular
(C1200), lattice (C2200), sinusoid (C3200), and double-row lattice (C6200) and sinusoid (C7200,
C18200) showed improved performances with E-PLA insulation. Figures 11 and 12 display
the heat-flux variation along the wall panels for 100 mm and 200 mm, respectively.
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Thermal bridging can be observed through concrete, as shown in the contour plots
in Figures 11 and 12. Thermal conductivity was approximately 10 times higher in con-
crete than in air or E-PLA (Tables 1 and 2), which created a thermal bridge from the
concrete. However, this study did not consider any particular relative humidity condition
in determining the dew point. The study intended to emphasize the effect of different
configurations on the thermal performance (U-value) with air voids and with insulation
material filling. Any interested user can use the study results and, by using standard
relationships, could calculate the dew point with available relative humidity.

6. Proposal of Equation for the Estimation of U-Value of 3DPC Cavity Walls

The theoretical equation to calculate the U-value of a wall panel is given in Equation
(1). This equation can be directly used for rectangular columns having different layers of
materials. However, it cannot be directly used for 3DPC walls, since the walls’ geometry
is complex. The development and analysis of FE modelling was used for determining
the U-value of the complex-shaped 3DPC walls in this study. However, FE modelling
takes time and requires expert knowledge in FE modelling techniques. Therefore, a simple
equation was derived to determine the U-values of the 3DPC cavity walls with complex
geometries. From the above analysis, it was identified that the thermal conductivity of
cavity and concrete and the cross-sectional area of concrete panel and the cavity had a
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clear influence on the thermal energy performance of the 3DPC wall configurations. Hence,
Equation (5) is proposed to calculate the U-values of 100 mm thickness cavity wall panels
with different cross-sectional arrangements with the aforementioned parameters. The
U-values calculated using the proposed equation were compared with FE results, and are
illustrated below in Table 8. The mean and COV values of comparison were calculated,
and were 1.0 and 0.02, respectively. Therefore, the equation gave the best prediction of
FE values for the U-values, and thus the thermal behaviour of 100 mm thickness cavity
wall panels. However, further analysis must be performed to determine a similar kind of
relationship for U-values with these parameters for wall panels with different thicknesses
and cavity insulation.

Table 8. Comparison of U-values.

Wall
Cavity

Area (m2)
Concrete
Area (m2)

Avg Cavity
Thickness

(m)

Avg
Concrete

Thickness
(m)

λc
(W/m2·K)

λs
(W/m2·K) R Value

U Value
Equation

(5)
U Value

FEM Equation/FEM

C1100 52519 47481 0.05 0.05 0.36 0.2 0.39 2.60 2.68 0.97
C2100 64144 35856 0.06 0.04 0.42 0.2 0.33 3.02 3.16 0.96
C3100 57174 42826 0.06 0.04 0.36 0.2 0.38 2.67 2.79 0.96
C4100 23923 76077 0.02 0.08 0.14 0.2 0.55 1.83 1.85 0.99
C5100 23923 76077 0.02 0.08 0.14 0.2 0.55 1.83 1.85 0.99
C6100 45568 54432 0.05 0.05 0.18 0.2 0.53 1.89 1.89 1.00
C7100 37736 62264 0.04 0.06 0.22 0.2 0.48 2.08 2.09 0.99
C8100 37736 62264 0.04 0.06 0.22 0.2 0.48 2.08 2.09 0.99

Mean 1.00
COV 0.02

Note: λc: thermal conductivity of cavity; λs: thermal conductivity of solid; AT; total area of the wall section; Ac: cavity area of the wall
section; Lw: length of the wall section.

U − value =
λcλs

λs

(
Ac
Lw

)
+ λc(AT−AC)

Lw

(5)

7. Conclusions

The 3DPC technology used here is a developing construction method at present, and
its applications are currently being subjected to many research studies. However, not
enough research has been conducted to identify the appropriateness of these innovative
construction technologies, and there is an ongoing controversy as to whether they are an
appropriate replacement for traditional construction techniques. Moreover, there is a clear
absence of investigations on the energy performance of 3DPC wall panels. Hence, this
study investigated the energy performance of 3DPC wall configurations using numerical
simulations. A series of 32 simulations with different 3DPC wall configurations were per-
formed, aiming to determine the U-values. Based on the simulation results, the following
conclusions were drawn:

• U-values of cavity walls generally decreased with increased wall thickness, regardless
of the cross-sectional configurations;

• A significant reduction in the U-value was recognized for 100 mm wall panels with an
additional intermediate row compared to single-row panels;

• Triangular-shaped cavity wall panels of 100 mm thickness displayed the highest
performance, with lower U-values compared to other configurations. Double-row
triangular and sinusoid-shaped 200 mm thickness cavity wall panels showed higher
performance compared to other walls. However, the U-values were noticeably higher
than the standard values. Thus, expanded polylactic acid (E-PLA) was used as thermal
insulation material to enhance the performance;

• The incorporation of E-PLA material as the insulation reduced the U-value, and thus
increased the thermal performance of the wall panels for all the configurations;

• The lowest obtained thermal transmittance value in this study was 0.34 W/m2·K, for
the 200mm thickness wall configuration with a double-row lattice arrangement with
E-PLA insulation (C6200);
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• There was an evident relationship with void area and energy performance of 3DPC
walls with the integration of insulation material;

• An equation was proposed to determine the U-values of 100 mm thickness cavity wall
panels with complex cross-sectional configurations without using FE modelling.

This study is the first step towards enhancing the understanding of the thermal energy
performance of 3DPC walls. However, the influence on fire and structural performance
has not been analysed yet. Hence, further studies on different mixes and cavity-filling
materials could be performed for further optimization.

Author Contributions: Conceptualization: K.P.; performed the numerical simulations and analysis:
I.U. and T.S.; results interpretation: I.U., T.S., and K.P.; writing—original draft preparation: T.S.,
I.U. and P.G.; writing—review and editing: T.S., I.U., P.G., K.P., B.N. and P.S.; visualization: T.S.
and H.R.; supervision: K.P. and B.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research study is funded by Research Development Fund (RDF), Northumbria University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the financial and technical support of
Northumbria University and University of Sri Jayewardenepura.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Di Foggia, G. Energy efficiency measures in buildings for achieving sustainable development goals. Heliyon 2018, 4, e00953.

[CrossRef] [PubMed]
2. Santos, P.; Gonçalves, M.; Martins, C.; Soares, N.; Costa, J.J. Thermal transmittance of lightweight steel framed walls: Experimental

versus numerical and analytical approaches. J. Build. Eng. 2019, 25, 100776. [CrossRef]
3. Lima, L.; Trindade, E.; Alencar, L.; Alencar, M.; Silva, L. Sustainability in the construction industry: A systematic review of the

literature. J. Clean. Prod. 2020, 289, 125730. [CrossRef]
4. Murtagh, N.; Scott, L.; Fan, J. Sustainable and resilient construction: Current status and future challenges. J. Clean. Prod. 2020, 268,

122264. [CrossRef]
5. Yüksek, I.; Karadayi, T.T. Energy-Efficient Building Design in the Context of Building Life Cycle. Energy Effic. Build. 2017, 1–20.

[CrossRef]
6. Lohmann, V.; Santos, P. Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental

and Numerical Assessments. Energies 2020, 13, 2744. [CrossRef]
7. Al-Ghamdi, K.A. Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time

efficient lightweight construction. Int. J. Light. Mater. Manuf. 2019, 2, 338–345. [CrossRef]
8. Jacobs, J. Concrete for Energy-Efficient Buildings, The Benefits of Thermal Mass; European Concrete Platform: Brussels, Belgium;

British Cement Association: Camberley, UK ; British Ready-Mixed Concrete Association: London, UK; British Precast Concrete
Federation: Glenfield, UK; The Cement Admixtures Association: Solihull, UK, 2007.

9. Paul, S.C.; Van Zijl, G.P.; Tan, M.J.; Gibson, I. A review of 3D concrete printing systems and materials properties: Current status
and future research prospects. Rapid Prototyp. J. 2018, 24, 784–798. [CrossRef]

10. Al Rashid, A.; Khan, S.A.; Al-Ghamdi, S.G.; Koç, M. Additive manufacturing: Technology, applications, markets, and opportuni-
ties for the built environment. Autom. Constr. 2020, 118, 103268. [CrossRef]

11. Luhar, S.; Suntharalingam, T.; Navaratnam, S.; Luhar, I.; Thamboo, J.; Poologanathan, K.; Gatheeshgar, P. Sustainable and
Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review. Sustainability 2020, 12, 10485.
[CrossRef]

12. Khan, S.A.; Koç, M.; Al-Ghamdi, S.G. Sustainability assessment, potentials and challenges of 3D printed concrete structures:
A systematic review for built environmental applications. J. Clean. Prod. 2021, 303, 127027. [CrossRef]
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