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Abstract 

Systemic Sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin and lung fibrosis. 

The Wnt pathway is clearly elevated in SSc and is pro-fibrotic via activation of canonical Wnt signalling. 

sFRP-1 is a Wnt antagonist that acts as a negative regulator of Wnt signalling. We sought to measure 

the levels of serum sFRP-1 in early diffuse SSc patients compared to healthy controls and if this is 

regulated by microRNA27a-3p. Ten early diffuse SSc patients and healthy controls sera was taken and 

sFRP-1 quantified by ELISA. Skin biopsies were also taken in 5 SSc patients and controls. Fibroblasts 

were quantified for microRNA27-3p expression by Taqman qRT-PCR with an internal microRNA to 

normalise. 3’UTR luciferase assays were performed to confirm direct targets of microRNA27a-3p with 

microRNA overexpression. Fibroblasts were transfected with microRNA27a mimics or scramble 

controls and using ELISA sFRP-1 was quantified. Furthermore, Collagen, Axin-2, TIMP-1 and MMP-1 

were measured. Serum sFRP-1 was significantly reduced in early diffuse SSc patients. We identified 

microRNA27a-3p-3p as regulating sFRP-1 in dermal fibroblasts. We found significantly elevated 

microRNA27a-3p in isolated dermal fibroblasts from SSc patients. We confirmed that sFRP-1 is a direct 

target of microRNA27a-3p through cloning of the 3’UTR into a luciferase vector. ECM genes were also 

upregulated by microRNA27a-3p-3p and the matrix degrading enzyme MMP-1 was supressed. Serum 

sFRP-1 is reduced in diffuse SSc patients and is regulated by microRNA27a-3p and this is a direct 

regulation. Modulation of microRNA27a-3p levels could mediate fibrosis regression. 
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Introduction 

Systemic sclerosis (SSc) is a rare, idiopathic, autoimmune connective tissue disease in which there is 

inflammation and resultant skin fibrosis [1, 2]. Among all of the autoimmune rheumatic disorders this 

has the highest all-cause mortality and is currently lacking treatment that directly modifies the fibrotic 

element [3]. The progressive fibrosis is due to the deposition of collagen type I and other extracellular 

matrix proteins. A critical feature of the disease is the activation of resident skin fibroblasts to 

myofibroblasts that are activated and secrete high levels of extracellular matrix molecules. These 

myofibroblasts are key to fibrosis and their activation, we have shown, is under the control of 

epigenetics [4, 5].  

We previously showed elevated methyl CpG-binding protein 2 (MeCP2), and this mediates repression 

of the Wingless-related integration site (Wnt) inhibitor secreted frizzled Related Protien-1 (sFRP1) in 

SSc [6]. Other groups have demonstrated that sFRP-1 is anti-fibrotic and is repressed in dermal 

fibroblasts by epigenetic mechanisms leading to enhanced production of extracellular matrix (ECM) 

[6, 7]. Methylation within the promoter region of sFRP-1 is associated with repression and enhanced 

Wnt-mediated fibrosis [7] and stabilisation of the Wnt effector β-catenin in dermal fibroblasts leads 

to skin fibrosis [8]. However, whether other epigenetic mechanisms exist that regulate sFRP-1 levels 

is not clear. MicroRNAs are small non-coding RNAs that regulate gene expression and  therefore 

regulate various pathways [9]. They regulate the mRNA of their target genes by binding to the 

3’Untranslated Region (3’UTR) with the microRNAs ‘seed region’ and result in silencing of the gene 

through cleavage or destabilisation of the mRNA leading to suppression. Thus, although microRNAs 

are small they can have a large effect on cell function and are implicated in a variety of rheumatic 

diseases [10]. In the case of SSc multiple microRNAs have been found to be dysregulated and have 

direct effects on both pro-fibrotic and anti-fibrotic pathways [5, 11]. This study aims to determine the 

serum levels of sFRP-1 and if sFRP-1 is regulated epigenetically in early diffuse SSc.  
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Methods 

Ten early diffuse SSc patients with disease duration less than 2 years (from first non-Raynaud’s 

phenomenon symptom) serum was drawn aseptically; all patients gave full informed consent. They all 

fulfilled the 2013 ACR/EULAR criteria for SSc [12] and all gave informed consent and this study was 

ethically approved by Research Ethics committee Sunderland (UK) under approval number 

REC/13/NE/0089 and followed the declaration of Helsinki guidelines. All ten patients were treatment 

naïve and not on any form of immunosuppression and anti-Scl70 antibody positive (Table 1). All SSc 

patients were female mean age 56 years old (SD 5.2). Healthy controls were all female mean age 55 

years old (SD 6) with full written informed consent. Serum was isolated and stored at -80 C until sFRP-

1 was analysed. 

ELISA 

Isolated sera were defrosted upon use and we used a commercial ELISA (Raybiotech, USA) this detects 

human sFRP-1. We followed the manufacturers’ instructions and used recombinant sFRP-1 to 

generate a standard curve. 

For Matrix Metalloprotease-1 (MMP-1) ELISA healthy dermal fibroblasts were seeded in 6-well plates 

and transfected with microRNA27a-3p (75nM) or matched scramble control using HIPerFect (Qiagen) 

and after 48 hours media was collected and MMP-1 was measured using manufactures’ instructions 

(R&D systems, UK). 

Cell culture 

Dermal biopsies were taken from early diffuse patients affected skin on the arm using a 5mm punch 

biopsy and cultured as previously described [13]. Isolated dermal fibroblasts cultured from healthy 

controls were also taken as previously described [13]. All cultures were maintained in Dulbecco’s 

Modified Eagle’s Medium (DMEM) + 10% fetal calf serum (FCS) and penicillin (100 U/ml) and 

streptomycin (100 µg/ml). In some experiments cells were serum starved overnight in DMEM only and 
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then incubated with human recombinant TGF-β1 (5 ng/ml) (R&D systems, UK) or vehicle control (HCL 

0.01% v/v) and cells were harvested after 24 hours and small RNA was isolated. MicroRNA 27a-3p was 

quantified using Taqman specific primers for Hsa-MiR-27a-3p (Applied Biosystems, UK) assay id: 

478384. RNU44 assay id: 001094 was also quantified and the data was normalised to this and 

presented as fold change. All samples were run in quadruple for each individual sample. 

MicroRNA transfection 

Healthy dermal fibroblasts were seeded into a twenty-four well plate and left to adhere overnight. 

Cells were then transfected with microRNA mimic microRNA27a-3p-3p (Applied Biosystems, 

MC10939) or scramble control at 75 nM for 48 hours using HIPerFect transfection reagent (Qiagen, 

UK) according to manufacturer’s instructions. After 48 hours the media was removed and sFRP-1 was 

quantified by ELISA following the manufacturer’s instructions. In some experiments cells were 

transfected with microRNA27a-3p-3p mimic (75 nM) or scramble control and after 4 hours TGF-β1 (5 

ng/ml) was added and after 48 hours the cells were lysed and RNA harvested using TRIzol reagent 

(Invitrogen). 1 µg of RNA was reverse transcribed to cDNA using reverse transcriptase (Invitrogen) 

QPCR was performed for collagen1A1 with primers forward 5′-CAA GAG GAA GGC CAA GTC GAG G-3′, 

reverse 5′- CGT TGT CGC AGA CGC AGA T-3’, Axin‐2, forward 5′‐CGG GAG CCA CAC CCT TC‐3′  and 

reverse 5′‐TGG ACA CCT GCC AGT TTC TTT‐3′ , TIMP-1: forward 5′-GAC GGC CTT CTG CA ATT CC-3′, 

reverse 5′-GTA TAA GGT GGT CTG GTT GAC TTC TG-3′ 18S: forward 5′-GAA TGG CTC ATT AAA TCA GTT 

ATG G-3′, reverse 5′-TAT TAG CTC TAG AAT TAC CAC AGT TAT CC-3’  PPARγ: forward 5’-GAA ATG ACC 

ATG GTT GAC-3’ Reverse 5’-CCG CTA GTA CAA GTC CTT GTA-3’ using SYBR green (Sigma, UK). Data was 

normalised to the housekeeping gene 18S and relative expression quantified using the Delta Delta CT 

method [14]. 

Luciferase reporter assay for targeting the 3’UTR of sFRP1 

The 3’UTR of sFRP-1 that was predicted to bind microRNA27a-3p-3p was identified using Targetscan, 

was amplified up by PCR from human genomic DNA and inserted into the PmirGlo vector using Infusion 
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cloning (Clontech) for the plasmid reporter generation using primers 3’_UTR_SFRP1_F (5’-3’) 

GCTCGCTAGCCTCGAaatgtgaatcgcagctgtgg SFRP1_R(5’-3’)CGACTCTAGACTCGAtgaacacgtacgggaattact. 

HEK293 cells were cultured overnight at 8x104 cells in DMEM + 10% FCS and then microRNA27a-3p-

3p mimic (50 nM) was transfected using Effectene (Qiagen, UK) at 500 ng/ml reporter plasmid and 50 

ng renilla (pRL-SV40 vector; Promega) for transfection efficacy was co-transfected simultaneously. 

Scramble matched control microRNA was added as controls. After 48 hours of transfection, the cells 

were lysed and firefly and Renilla luciferase determined using the dual luciferase reporter (Promega, 

UK) using a microlumat plus luminometer, n= 4 independent cultures. Renilla luciferase was used to 

normalise for transfection efficacy and then the data once normalised was set to percentage change 

compared to plasmid plus scramble microRNA mimic.  

TOPflash assay 

TOPflash plasmids were purchased from Addgene and transfected into HEK293 cells at 500 ng/ml into 

a 12- well plate using FuGENE HD (Promega, UK). For normalisation they were also co-transfected 

simultaneously with pCMV Renilla luciferase at 50 ng/ml. After 4 hours the transfection complexes 

were replaced with microRNA27a-3p mimic (75 nM) or matched scramble controls and all wells then 

received recombinant Wnt3a (100 ng/ml) in 0.5% FCS/DMEM for a further 24 hours after which the 

cells were lysed and dual luciferase report (Promega, UK) was used to determine luminescence. Renilla 

luciferase was used to normalise transfection efficacy and activity was expressed as fold change n= 4 

independent cultures.  

5’aza-2’-deoxycytidine treatment 

SSc fibroblasts were cultured in six-well plates and 1 µM of 5’aza-2-deoxycytidine (Sigma, UK) was 

added or vehicle control (acetic acid) for 72 hours. After which time the cells were lysed and mir-27a-

3p was quantified as above n=4 independent cultures. 

Sircol Asaay 
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SSc dermal fibroblasts were cultured and then transfected with AntimiR27a-3p (80 nM) or matched 

scramble control after 48 hours in culture soluble collagen was measured in the cell supernatant by 

SirCol assay (Bicolour, Northern Ireland) as previously described [15]. Data was normalised and set as 

100% to scramble control transfection from four individual donors. 

Western Blotting 

SSc dermal fibroblasts were cultured in 6 well plates and transfected with AntimiR27a-3p (80 nM) or 

matched scramble control with HiPerfect reagent  (Qiagen) (n=3). After 48 hours cells were harvested 

in RIPA buffer containing protease inhibitors and then total protein quantified using the Bradford 

assay. 20 µg total protein was loaded and subjected to polyacrylamide gel electrophoresis at 120V. 

The protein was then transferred to a nitrocellulose membrane and blocked with 5% (w/v) blocking 

buffer and then probed with a specific collagen 1 antibody (Abcam; ab233639), washed and the 

incubated with secondary HRP linked antibody for 1 hour before being exposed. Membranes were 

stripped and reprobed for β-actin (Abcam; ab8227, UK) as a loading control. 

MTT assay 

SSc dermal fibroblasts were cultured and transfected with Anti-Mir-27a-3p or scramble control (80 

nM). MTT assay was performed using manufactures instructions (Sigma, UK). Triton-X was ran as a 

positive control. 

 

Results 

We sought to measure the levels of sFRP-1 in sera from early diffuse SSc patients. Figure 1A 

demonstrates that there are significantly reduced levels of sFRP-1 in early diffuse SSc patients 

compared to healthy controls 2.2ng/ml HC v 0.71ng/ml SSc (P= 0.001 Mann-Whitney U test n=10).  

Because previous studies have shown that sFRP-1 is controlled by DNA methylation at its promoter 

region, we hypothesised that microRNAs could also be involved in regulating sFRP-1. Using Targetscan 
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software we found that microRNA27a-3p could target sFRP-1 theoretically. Indeed, transfection of 

microRNA27a-3p into normal healthy dermal fibroblasts reduced the levels of sFRP-1 significantly 

compared to scrambled concentration-matched microRNA (figure 1B) (P= 0.028, Mann-Whitney U 

test, n=4). 

Incubation of normal healthy dermal fibroblasts with Transforming growth factor-β1 (TGF-β1) 5 ng/ml, 

used because this is a potent pro-fibrotic cytokine [16], did not significantly alter the levels of 

microRNA27a-3p, indicating that this is not playing a role in modulating the miR-sFRP-1 axis (1.2 fold 

change TGF-β1 treated v vehicle treated control 1.1 fold; n=5 P=>0.05 Mann-Whitney U test). We 

could confirm that the TGF-β1 was functional as the levels of collagen were increased significantly 

after incubation compared to vehicle treated cultures (3 fold increased). 

We next determined the levels of microRNA27a-3p in SSc dermal fibroblasts compared to healthy 

dermal fibroblasts and found significant elevation of microRNA27a-3p expression 3.4 fold compared 

to 1.1 fold for healthy controls (P=<0.011, Mann-Whitney U test, n=5) (figure 1C).  

To assess whether sFRP-1 is a direct target of microRNA27a-3p, as opposed to an indirect target, we 

cloned the 3’UTR of sFRP-1 that is predicted to bind, into the PmirGlo vector, downstream of firefly 

luciferase. We then transfected this vector into HEK293 cells with microRNA27a-3p-3p or scrambled 

control and quantified luciferase activity. Figure 2A demonstrates significant repression of sFRP-1 

luciferase with microRNA27a-3p transfection compared to scramble control at the matched 

concentration.  

Compared to plasmid vector treated with scramble microRNA there was over 52% repression of 

luciferase 3’UTR of sFRP-1 (P=0.026; Mann-Whitney U test n= 4), confirming this is a true direct target. 

Figure 2B shows the microRNA27a-3p binding site in sFRP-1 and the vector plasmid map used in this 

study. 
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Transfection of microRNA27a-3p mimic with TGF-β1 in healthy dermal fibroblasts led to significantly 

increased expression of collagen1A1 and the Wnt target gene Axin-2 (figures 2C and 2D significantly 

different compared to scramble (P=0.029 Collagen1A1) Mann-Whitney U test n=5) but no significant 

change was apparent in TIMP-1 gene expression compared to scramble control microRNA (figure 2E), 

however MMP-1 protein, the primary protease for collagen, was significantly reduced by 

microRNA27a-3p compared to scramble control (P=0.009 students t test n=5) (figure 3A) and the 

antifibrotic nuclear receptor PPARγ was also significantly reduced compared to scramble control at 

the mRNA level (P=0.006 Students t test n=4) (figure 3B) To confirm that the Wnt pathway was 

activated in these cells with microRNA27a-3p expression we used TOPflash reporter assay which is a 

reporter system based on TCF activation (Wnt). Transfection of the reporter into HEK293 cells and 

transfection of microRNA27a-3p-3p increased reporter activity by 2.5 fold compared to scramble 

control microRNA at matched concentration, figure 3C (P=<0.0001 Students t test; n=4). 

Because methylation has been found to be important in fibrosis and the regulation of sFRP-1 we 

wondered if incubating with the pan demethylase 5’aza’C would lead to repression of miR-27-a-3p. It 

was found that incubation of SSc dermal fibroblasts with 5’aza’C had no significant effect on miR 

expression levels (Vehicle 1.025 SD; 0.043 vs 5’aza’C 1.011 SD; 0.034 P=0.7 Mann-Whitney U test n=4). 

Finally using SSc dermal fibroblasts with known reduced sFRP-1 levels we transfected mir27a-3p 

antagonists, that would block interaction with sFRP-1 mRNA, and measured collagen release. Figure 

4A demonstrates that anti-miR-27a-3p reduced collagen release by 33% compared to scramble control 

(100 SD; 0.5 v 67 SD; 4.2 % P= <0.0001 Students t test n=4). We also saw reduction in collagen 1 levels 

by western blotting after miR27a-3p inhibition (figure 3B). To confirm this was not simply due to cell 

death induced by the miR we performed an MTT assay for cell viability that showed no significant 

difference in cell viability across the conditions (figure 4C). 

Discussion 
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Wnt proteins are lipid modified glycoproteins that have critical roles in development and tissue 

homeostasis [17]. It is now appreciated that the Wnt pathway is critical in fibrosis and SSc [18-21]. The 

Wnt inhibitor sFRP-1 blocks Wnt signalling extracellularly and we recently demonstrated that genetic 

reduction of sFRP-1 increased collagen production in isolated skin fibroblasts [6] and mice with a 

genetic deletion of sFRP-1 have enhanced kidney fibrosis [22].  

We sought to determine the serum levels of sFRP-1 in early diffuse SSc and found that they are 

significantly reduced, confirming isolated in vitro studies [7]. Furthermore, we found that 

microRNA27a-3p-3p regulated sFRP-1 levels as overexpression reduced the Wnt inhibitors expression. 

We hypothesised that TGF-β1 would regulate the levels of the microRNA however, this was not found. 

In SSc dermal fibroblasts, we also found elevated microRNA27a-3p levels compared to controls, 

suggesting that microRNA27a-3p reduced sFRP-1 levels epigenetically and leads to enhanced Wnt 

signalling leading to fibrosis (figure 5). This adds to previous work demonstrating methylation of sFRP-

1 leads to its repression in dermal fibroblasts [7]. Importantly we demonstrate that SSc dermal 

fibroblasts when microRNA27a-3p was inhibited reduced collagen release suggesting that epigenetic 

restoration of Wnt antagonist may be a therapeutic option. 

MicroRNAs are small RNAs that regulate gene expression at the post transcriptional level [23]. The 

mechanism through which miRs mediate their effects is through binding of the seed region of the miR 

and specific bases within the 3’UTR of the mRNA that leads to repression [9]. We confirmed that 

microRNA27a-3p can target sFRP-1 directly by cloning the 3’UTR that contains the binding site into a 

luciferase vector and transfecting with microRNA27a-3p or scramble control and could see a 

significant reduction in luciferase activity. Therefore, confirming that this is a bona fide target of the 

microRNA. We found also that microRNA27a-3p-3p overexpression led to upregulation of collagen1A1 

and the known Wnt target gene Axin-2 suggesting enhancement of the Wnt pathway. Although no 

change was seen in the expression of TIMP-1, suggesting Wnt does not regulate this. However, MMP-

1 was significantly reduced after overexpression of microRNA27a-3p. An intricate balance exists 
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between the breakdown (MMPs) and the genesis of matrix. TIMPs are the primary proteins that inhibit 

MMPs and thus a shift in the ratio of TIMP:MMP will favour the deposition of ECM. It is not predicted 

that MMP-1 is a direct target of microRNA27a-3p thus it is likely that the effect is either indirect and 

a consequence of Wnt signalling.  Examination of PPARγ mRNA after miR27a-3p transfection 

demonstrated reduction of this nuclear receptor. PPARγ is an antifibrotic molecule that is reduced in 

fibrotic diseases including SSc [24]. Indeed agonists that stimulate PPARγ are anti-fibrotic [25]. It is 

unknown if miR27a-3p directly or indirectly targets PPARγ in these cells. We could confirm also direct 

activation of the Wnt signalling pathway using the TOPflash assay which is widely used assay which 

uses 3 copies of the TCF binding sites. 

MicroRNA27a-3p has been demonstrated to be upregulated in experimental diabetic kidney fibrosis 

mediated by high glucose [26] and is often upregulated in carcinomas [27]. Indeed, it was shown that 

antagomiR that inhibits microRNA27a-3p in vivo led to both reduced microRNA27a-3p expression and 

reduced fibrosis associated with less collagen and fibronectin levels in diabetic nephropathy mice [26]. 

Hepatic stellate cells are the cells in the liver responsible for the production of ECM leading to liver 

fibrosis when activated. These cells are akin to activated skin myofibroblasts in SSc. It was shown that 

microRNA27a-3p-3p is upregulated in these cells by leptin and promote the expression of both 

collagen and alpha-smooth muscle actin via down regulation of Liver X receptor-α [28]. Indeed, liver 

X receptor-α activation by a specific agonist reduced the bleomycin-induced fibrosis in the bleomycin 

animal model [29]. It is possible that this receptor is also targeted in SSc by microRNA27a-3p-3p as 

microRNAs have multiple targets, although we did not explore this within this study. Blockade of TGF-

β signalling in hepatic stellate cells reduced miR27a levels [30], but in our hands TGF-β1 stimulation 

did not alter the microRNAs expression. We also demonstrated that pan demethylation did not alter 

the expression of microRNA27a-3p, indicating that this is not a methylation-sensitive miR. 

What regulates microRNA27a-3p and leads to its reduction in SSc is not known, although we found no 

reduction with TGF-β1, a known potent pro-fibrotic molecule [2]. It is possible other cytokines and 
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chemokines are regulating this microRNA, which then leads to enhanced fibrosis. Indeed, epithelial 

cells can produce cytokines in SSc that result in myofibroblast activation possibly mediated through 

microRNAs [31]. Importantly we showed that modulation of microRNA27a-3p levels through inhibition 

reduced collagen in diseased SSc cells, both secreted and endogenous, and that this was not 

associated with cell toxicity. Given the importance of Wnt signalling in SSc the identification of 

epigenetic regulators of this pathway is of primary importance. 

Conclusions 

To our knowledge this is the first study to identify reduced serum levels of sFRP-1 in early diffuse SSc 

and that this is regulated by microRNA27a-3p.  We identify microRNA27a-3p as an anti-fibrotic 

microRNA and targeting this may be useful as a therapeutic in diffuse SSc. Further replication studies 

should be undertaken to determine sFRP-1s utility as a possible biomarker. 
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 Figure legends 

Figure 1 Serum sFRP1 is reduced in SSc.  (A) Serum levels of sFRP1 were measured by ELISA 

(RayBiotech) in diffuse SSc patients or healthy controls (n =10). *Significantly different from HC; Mann-

Whitney U test. 1B). Healthy dermal fibroblasts were cultured in vitro and transfected with 75nM of 

microRNA27a-3p or matched scramble for 48 hours after which the supernatant was collected and 

sFRP-1 measured by specific ELISA (*significant difference P=0.028 Mann-Whitney U test n=4). 1C). 

SSc and healthy control fibroblasts were measured for microRNA27a-3p by Taqman PCR and 

normalised to RNU44 and data shown as fold change over healthy control (*significant difference 

P=0.011; Mann-Whitney U test; n=5) Data is the mean and SD. 

Figure 2 sFRP-1 is a direct target of microRNA27a-3p-3p and regulates Wnt pathway (A) Luciferase 

activity was detected after transfection of a luciferase vector containing the binding site for 

microRNA27a-3p-3p in the 3’UTR of sFRP-1 and microRNA27a-3p mimic (50 nM) or matched scramble 

controls in HEK293 cells. Data is relative luciferase normalised to Renilla luciferase and compared to 

scramble microRNA. Data is the mean and SD from 4 independent experiments *significantly different 

to control (P=0.026 Mann-Whitney U test; n=4). (B) sFRP-1 ‘UTR binding site is shown at the top and 
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the microRNA27a-3p-3p seed region at the bottom, directly below is where this was cloned into the 

luciferase vector and its plasmid map. Bases in bold face are the key binding sites.  (C) Collagen1 levels 

were quantified by qPCR after microRNA27a-3p transfection or scramble control in the presence of 5 

ng/ml TGF-β1. Data is the mean and SD *significantly different compared to scramble (P=0.029 Mann-

Whitney U test; n=5). (D) Axin-2 expression was quantified by qPCR after microRNA27a-3p 

transfection or scramble control. Data is the mean and SD* significantly different compared to 

scramble (P=0.024 Mann-Whitney U test; n=5). (E) TIMP-1 expression was quantified by qPCR after 

microRNA27a-3p transfection or scramble control. Data is the mean and SD. No significant difference 

was observed between groups (Mann-Whitney U test; n=5).  

Figure 3 MMP-1 is reduced after miR-27a-3p. (A) MMP-1 was quantified by ELISA after transfection 

of dermal fibroblasts with microRNA27a-3p or scramble control. Data is the mean and SD *significantly 

different to control (P=0.009 Students t test, n=5) (B) PPARγ is reduced after miR27a-3p is increased. 

PPARγ was quantified after miR27a-3p transfection or scramble control. Data is the mean and SD. 

Gene expression is normalised to 18S as the housekeeping gene and shown as fold change. 

*significantly different compared to scramble (Students t test P=0.006 n=4) (C) HEK293 cells were 

transfected with TOPflash and then incubated with scramble mimics or microRNA27a-3p mimics plus 

Wnt3a (100 ng/ml). After 24 hours Wnt activity was measured by luciferase and normalised to Renilla 

to normalise for transfection efficacy. Data is the mean and SD *= significant difference compared to 

scramble (P=<0.001 students t test; n=4).  

Figure 4 Anti-miR-27a-3p treatment reduced collagen in SSc fibroblasts. (A) SSc dermal fibroblasts 

were cultured and transfected with antagomiR27a-3p or scramble (80 nM) controls and after 48 hours 

the media was removed and collagen quantified by Sircol assay. Data is the percentage of scramble 

control after 48 hours transfection and is the mean and SD *Significant difference versus scramble 

control, (P= <0.0001; students t test n=4). (B) Representative western blot of collagen1 after scramble 

control microRNA or antagomiR27a-3p after 48 hours. β-actin is the loading control. Scr= Scramble, 
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Anti-miR= AntagomiR27a-3p. (C) SSc dermal fibroblasts were transfected with antagomiR27a-3p or 

scramble controls and after 48 hours MTT assay was performed. No significant difference between 

groups was observed P=>0.05; students t test, n=4).  

Figure 5 Putative pathway in SSc. In SSc there are lower levels of sFRP-1 as opposed to the healthy 

situation, mediated by microRNA27a-3p repression. This leads to attenuated inhibition of Wnt via the 

Frz receptor that ultimately leads to activation of the myofibroblast and fibrosis. Dark lines indicate 

more inhibition. Frz; Frizzled receptor, Wnt; Wingless-related integration site, SSc: systemic sclerosis.  

 

 

 

 

 

Table 1 Patient demographics 

Patient 
id 

Gender Autoantibody Ethnicity 

1 F Scl-701 Caucasian 

2 F Scl-70 Caucasian 

3 F Scl-70 Caucasian 

4 F Scl-70 Caucasian 

5 F Scl-70 Caucasian 

6 F Scl-70 Caucasian 

7 F Scl-70 Caucasian 

8 F Scl-70 Caucasian 

9 F Scl-70 Caucasian 

10 F Scl-70 Caucasian 

 

                                                           
1 Scl70; Anti-topisomerase-1 antibody 
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