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1. Introduction
Debris-covered glaciers are widespread in all mountain ranges around the globe (Herreid & Pellicciot-
ti, 2020b; Scherler et al., 2018) and especially in High Mountain Asia (HMA), where half of the glaciers 
larger than 2 km2 have more than 5% of their total area covered by a layer of rock debris (Herreid & Pellic-
ciotti, 2020b) varying in thickness from centimeter to meter scale. These glaciers are often characterized by 
undulating, hummocky topography (Bartlett et al., 2020) and their surface is punctuated by supraglacial 
ponds, streams, and ice cliffs. Ice cliffs have been observed in all the main mountain ranges of the planet 
(Anderson et al., 2021; Benn et al., 2001; Chinn & Dillon, 1987; Herreid & Pellicciotti, 2018; Inoue & Yoshi-
da, 1980; Johnson, 1992; Mölg et al., 2019; Moore, 2018; Ogilvie, 1904; Reid & Brock, 2014; Röhl, 2006; 
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four debris-covered glaciers in High Mountain Asia for every late ablation season from 2009 to 2019 
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feature scale to train a stochastic birth-death model to represent the cliff population dynamics. Our results 
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Plain Language Summary A large portion of High Mountain Asia's glaciers is covered 
by a layer of rock debris that reduces their melt. This melt reduction is compensated to some extent by 
the presence of ice cliffs that cover up to 12% of these glaciers and melt several times faster than the 
surrounding debris-covered ice. This enhanced contribution to melt needs to be taken into account in 
glacier melt models as it has implication for downstream water resources. However, due to the difficulty 
to map ice cliffs from satellite images, we have little knowledge about their actual distribution and most 
importantly, on how quickly their population and therefore relative area changes in time at the scale of 
one glacier, let alone what drives this variability. Here, we systematically mapped ice cliffs on a yearly 
basis over a period of 10 years for four Asian glaciers to disentangle these questions. We found that the 
cliff area of a glacier could commonly change by 20% in 1 year, and in some cases up to 80%. We also 
found that a number of climatic and glaciological variables influenced to some extent this variability but 
none stood out clearly due to the complexity of the debris-covered glacier system.
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Sakai et al., 1998; Shahgedanova et al., 2005) and have been observed to account for 1%–12% of the total 
debris-covered area (Anderson et al., 2021; Brun et al., 2018; Kneib et al., 2020; Reid & Brock, 2014; Sakai 
et al., 1998). They consist of steep, bare, or very thinly debris-covered ice faces within the debris-covered 
part of the glacier and are often associated with supraglacial streams or ponds (Mölg et al., 2019; Steiner 
et al., 2019). Cliffs appear when the surface slope is too steep for the debris to remain on it (Moore, 2018). 
Therefore, ice cliff formation has been suggested to be triggered by several possible mechanisms, including 
the collapse of englacial conduits (Benn et al., 2012; Immerzeel et al., 2014; Reid & Brock, 2014; Sakai & 
Takeuchi, 2000; Watson, Quincey, Carrivick & Smith, 2017; Watson, Quincey, Smith, et al., 2017; Westoby 
et al., 2020); slope oversteepening, for example from differential melt under the debris (Sakai et al., 1998; 
Sharp, 1949; Westoby et al., 2020); crevasse opening (Reid & Brock, 2014); undercutting by supraglacial 
ponds or streams (Moore, 2018; Nicholson et al., 2018); and melt enhancement at pond margins (Miles, 
Steiner, et al., 2017; Miles, Willis, et al., 2017; Röhl, 2006, 2008; Sakai & Takeuchi, 2000) that may sometimes 
lead to accelerated steepening from calving (Benn et al., 2012; Immerzeel et al., 2014; Röhl, 2006, 2008).

Contrary to the surrounding debris-covered ice, ice cliffs are directly exposed to incoming radiation and 
therefore act as melt “hotspots” (Buri, Miles, et al., 2016; Juen et al., 2014; Sakai et al., 1998). In spite of the 
small area they occupy, ice cliffs and ponds are responsible for a significant contribution to glacier abla-
tion, and ice cliff melt is estimated to be 3 to 8 times higher than debris-covered ice melt (Brun et al., 2018; 
Buri et al., 2021; Immerzeel et al., 2014; King et al., 2020; Mölg et al., 2019; Pellicciotti et al., 2015; Reid 
& Brock, 2014; Sakai et al., 1998; Thompson et al., 2016). By promoting the backwasting of steep slopes 
due to enhanced ablation, ice cliffs and ponds influence the morphology of debris-covered glaciers (Mölg 
et al., 2020; Watson, Quincey, Carrivick & Smith, 2017) and play a role in their long-term evolution by in-
creasing their sensitivity to warming (Ferguson & Vieli, 2021). This could, at least partially, explain regional 
observations of enhanced mass loss of debris-covered glaciers (Gardelle et al., 2013; Kääb et al., 2012; Ra-
gettli et al., 2016), in spite of the overall melt-reducing effect of debris cover (Ostrem, 1959). Despite their 
important role in controlling the long-term evolution of debris-covered glaciers, cliffs and ponds are seldom 
represented in glacier melt models or glacio-hydrological models. The few models that have tried to account 
for ice cliffs and ponds use a fixed or linearly derived melt enhancement factor (Hagg et al., 2018; Kraaijen-
brink et al., 2017), or arbitrarily reduce the debris thickness (Ferguson & Vieli, 2021; Ragettli et al., 2015). 
In these models, a fixed cliff area is usually set, which is either the same as the pond area (Kraaijenbrink 
et al., 2017) or correlated to it (Ragettli et al., 2015). To our knowledge, only two models used cliff outlines 
manually derived from high-resolution satellite imagery (Buri et al., 2021; Hagg et al., 2018) and only one 
study modeled the energy balance of each individual cliff at the glacier scale to quantify their contribution 
to melt (Buri et al., 2021). This poor representation comes from the difficulty of mapping ice cliffs from 
remote sensing imagery (Herreid & Pellicciotti, 2018; Kneib et al., 2020), resulting in a very limited knowl-
edge about their distribution, especially over time, as well as their birth and decay mechanisms. While 
most of the work on ice cliffs has focused on a detailed analysis of a few of these features for an individual 
site at a single point in time (Anderson et al., 2021; Brun et al., 2016; Buri, Pellicciotti, et al., 2016; Reid & 
Brock, 2014; Sakai et al., 2002; Steiner et al., 2015; Watson, Quincey, Smith, et al., 2017; Westoby et al., 2020), 
two studies have looked at ice cliff distribution and evolution over several years for the multiple glaciers of 
a large catchment (Steiner et al., 2019; Watson, Quincey, Carrivick & Smith, 2017). These two studies offer 
major advances in understanding cliff dynamics at the glacier scale, showing that there is a high interannu-
al variability in the cliff population. However, they largely ignored the controls or underlying processes of 
this variability. In both cases, the data used were irregularly spaced in time and still relatively sparse, with 
at most one image every second year.

As a result, our understanding of the life cycle of ice cliffs, its drivers and its implications for the dynamics 
of the cliff population of a whole glacier is limited. Ponds and cliffs are often found close to one another, 
and it has been hypothesized that ponds contribute to the sustainability of cliffs due to their marginal melt 
effects, although cliffs can also survive for years without being connected to a pond (Brun et al., 2016; Miles 
et al., 2016; Steiner et al., 2019; Watson, Quincey, Carrivick, & Smith, 2017). Conversely, streams and cliffs 
may be associated, and it has been suggested that streams meandering across the debris-covered surface 
can lead to significant melt (Gulley et al., 2009) and to the formation of supraglacial valleys, or cryo-valleys, 
on the sides of which ice cliffs can form (Mölg et al., 2020; Watson et al., 2016). The development of such 
valleys has only been studied at one site and the length of time over which they evolve is not clear (Mölg 
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et al., 2020). Beyond the supraglacial hydrology, incoming shortwave radiation is the main contributor to 
the melt of ice cliffs and therefore influences their preferential orientation and survival (Buri & Pellic-
ciotti, 2018). In addition, climatic variability is expected to have an influence on ice cliffs by influencing 
glacier melt and thus the presence, volume, or discharge of streams and ponds, but also by promoting ice 
cliff melt and backwasting (Buri, Miles, et al., 2016; Buri, Pellicciotti, et al., 2016; Reid & Brock, 2014; Sakai 
et al., 1998; Steiner et al., 2015). Surface meltwater and precipitation also determine the debris water con-
tent and therefore the debris layers' stability, which has implications for the formation and growth of the 
cliffs (Moore, 2018). Finally, crevasse opening has been pointed out as one of the possible events triggering 
the formation of a cliff (Reid & Brock, 2014), which would imply that glacier flow also influences cliff dy-
namics. However, it is difficult to assess the importance of these individual drivers and their contributions 
to the cliff dynamics at the glacier scale.

The aim of this study is therefore to understand and model the interannual ice cliff dynamics and how they 
influence the variability of the cliff population at the glacier scale. Specifically, we aim to (a) quantify the 
interannual variability of ice cliffs on a feature-by-feature and population basis; (b) attribute the observed 
interannual changes to individual types of cliff change; (c) characterize the stochastic behavior of cliff pop-
ulations at the glacier scale and develop a model that represents it; and (d) assess the influence of external 
drivers on the interannual cliff variability.

2. Sites and Data
2.1. Site Description

To study the interannual variability of ice cliffs and its drivers at the glacier scale, we selected sites in differ-
ent climatic settings and with different glacier characteristics (velocity, mass balance) but similar size and 
debris cover stage. Additionally, there needed to be a continuous and relatively long time series of satellite 
images to map ice cliffs over large portions of the glacier. Upon inspection of the Planet Labs RapidEye, we 
therefore identified four sites with sufficient suitable data.

We derived the long-term evolution of ice cliffs for four debris-covered glaciers located in the Karakoram 
(Urdok Glacier, Pakistan), Garhwal Himalaya (Satopanth and Bhagirath Kharak Glaciers, India), and Nepal 
Himalaya (Langtang Glacier) (Figure 1). The glaciers' ablation areas were between 66% and 72% debris-cov-
ered, which corresponds to an advanced stage of debris-cover (Herreid & Pellicciotti, 2020b; Table 1). For 
Satopanth the debris is very thick (>1 m) across much of the debris-covered area (Shah et al., 2019), and 
this is also thought to be the case on Langtang based on field observations from 2019. To our knowledge, no 
debris thickness measurements are available for Urdok or Bhagirath Kharak. Previous studies have shown 
that for Satopanth, Bhagirath Kharak, and Langtang, ponds accounted for 0.6%–2% of the debris-covered 
area and cliffs between 3.3% and 9.2% (Kneib et al., 2020; Miles, Willis, et al., 2017; Steiner et al., 2019; Ta-
ble 1). On Langtang Glacier, it has been observed that cliffs and ponds tend to have a smaller relative area, 
defined as the ratio between the cliffs or ponds planimetric area and the area of the glacier over which they 
were mapped, in the dry post-monsoon than during the wet monsoon season (Miles, Willis, et al., 2017; 
Steiner et al., 2019). This is consistent with observations made at other HMA glaciers (Watson et al., 2016).

These four glaciers exhibit long debris-covered tongues (Table 1) and the terminus positions of Satopanth, 
Bhagirath Kharak and Langtang have not changed considerably in the past several decades (Nainwal 
et al.,  2016; Wijngaard et al.,  2019). These three glaciers show however negative mass balances of −0.5 
to −0.3 (±0.4) m w.e.yr−1 (Table 1), have relatively low average velocities along the centerline of their de-
bris-covered area (Table  1), and their mass imbalance therefore translates into stagnating tongues with 
significant downwasting (Anderson & Anderson, 2016; Ferguson & Vieli, 2021; Rowan et al., 2015). Urdok 
stands out from these three with its smaller negative mass balance (Table 1), its relatively high velocities 
(23.0 m.yr−1 for 2009–2018 on average) and evidence of a previous surge in the 1990s (Bhambri et al., 2017). 
Urdok is therefore much more dynamic and in a healthier state than the three other glaciers, despite dis-
playing an extensive debris-covered area.
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Figure 1. Maps of the four study glaciers and their general location in HMA. Background image is the 2015 RapidEye scene for each site (color composite of 
bands 4, 2, and 1). The blue outlines correspond to the area of the glacier where the cliffs were mapped (area of interest [AOI]) and the pink colors correspond 
to the cliff density maps, where transparent color stands for no occurrence of cliffs while 1 corresponds to the presence of cliffs in all the images of the time 
series (2009–2019 for Urdok and Langtang, 2010–2019 for Satopanth and Bhagirath Kharak). The insets in (a), (b), and (c) show the AOIs (blue), debris-covered 
areas from Herreid and Pellicciotti (2020b) (purple), and RGI 6.0 glacier outlines (black) of each site.

Glacier References Urdok Satopanth
Bhagirath 

Kharak Langtang

Length (km) RGI Consortium (2017) 27 15 20 19

Debris cover (% total glacier area) Herreid and Pellicciotti (2020b) 22 60 41 49

Stage (debris-covered portion of ablation area) Herreid and Pellicciotti (2020b) 0.66 0.68 0.72 0.71

Evidence/records of surging (years) Bhambri et al. (2017) Yes (1993–1997) No No No

Mean 2009–2018 velocity along centerline in the debris-covered 
part (m.yr−1)

Gardner et al. (2018) 23.0 14.7 14.7 4.1

Previously reported cliff density (%) Steiner et al. (2019) NA NA NA 3.4 (±0.9)

Kneib et al. (2020) NA 9.2 9.2 3.3

Previously reported pond density (%) Miles, Willis, et al. (2017) NA NA NA 0.6–2

Kneib et al. (2020) NA 0.7 0.7 1.7

Glacier mass balance (m w.e.yr−1) Brun et al. (2017b) −0.1 (±0.3) −0.5 (±0.3) −0.3 (±0.3) −0.5 
(±0.3)

Note. Glacier mass balance was obtained by integrating elevation difference data from Brun et al. (2017b) over the entirety of the glaciers and using a value of 
850 ± 60 kg.m−3 for ice density (Brun et al., 2017b; Huss, 2013).

Table 1 
Glacier Characteristics
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2.2. Remote Sensing Data

We derived time series of ice cliffs and ponds at our four sites from RapidEye satellite images taken at 
a yearly interval from 2009 to 2019 (Table S1). The RapidEye images acquired from Planet Labs (Planet 
Team, 2017) are already atmospherically corrected. They have five spectral bands in the visible and near-in-
frared, with a spatial resolution of 5 m. We selected images that were all taken during the post-monsoon 
period (end of August to December; Table S1), when stable and dry conditions maximize the chances of 
acquiring cloud-free images. No RapidEye images were found in 2009 or 2019 for Satopanth and Bhagirath 
Kharak or in 2019 for Urdok. For the missing 2019 images, we used PlanetScope images instead (Planet 
Team, 2017), resampled from 3 to 5 m spatial resolution using a nearest-neighbor interpolation. Images 
were selected at a yearly interval in order to ensure similar atmospheric conditions and remove the influ-
ence of the seasonal variations of cliffs and ponds (Miles, Willis, et al., 2017; Steiner et al., 2019; Watson 
et al., 2016). Therefore, we assumed that our observations would be the results of continuous changes from 
1 year to the next. Images with snow and shadows from the surrounding topography were avoided as much 
as possible, but this was not always feasible and we could therefore not delineate ponds and cliffs across 
the whole debris-covered area but had to limit the delineation to an area of interest (AOI) for each glacier, 
defined as the area where the mapping was possible over the full-time series (Figure 1). Furthermore, we 
did not apply the mapping over avalanche cones, including, for Langtang Glacier, those originating from the 
large avalanches triggered after the 2015 Gorkha earthquake in Nepal (Kargel et al., 2016). The final AOIs 
correspond to 43%, 23%, 40%, and 63% of the total debris-covered areas (from Herreid & Pellicciotti, 2020b) 
of Urdok, Satopanth, Bhagirath Kharak, and Langtang, respectively (Figure 1).

2.3. Glacier Velocity and Climate Data

To look at the controls of cliff dynamics we accessed the annual velocities for the years 2009–2018 from 
the NASA MEaSUREs—ITS_LIVE project (Dehecq et al., 2019; Gardner et al., 2018), resampled from 240 
to 120 m resolution using the cubic spline interpolation method. For the debris-covered part of our study 
glaciers, the reported uncertainty maps from ITS_LIVE displayed very low values (<1 m.yr−1) and were thus 
considered negligible in everything that follows.

We used monthly air temperature and precipitation reanalysis data from the ERA5-LAND product (Muñoz 
Sabater, 2019), available in a 0.1° × 0.1° grid. These time series covered our full study period. For each of 
the study glaciers, we used the ERA5-Land data from the grid cell covering the center of the debris-covered 
area.

3. Methods
3.1. Image Pre-Processing

RapidEye images have an expected positional accuracy of less than 10 m according to the product specifi-
cations (Planet Team, 2017). Additionally, for each site, the orthoimages were all co-registered to the initial 
2009 image (2010 for Satopanth and Bhagirath Kharak) using the ImGRAFT normalized cross-correlation 
algorithm (Messerli & Grinsted,  2015) applied to near-glacier stable terrain, to ensure the best possible 
relative positioning.

3.2. Mapping

Ice cliffs were mapped manually by one operator in all multi-spectral images. The mapping was conducted 
independently for each image. We used shape and color information, as well as local changes in surface mo-
tion between two consecutive images as indicators of cliff location (Figure S1). Three automated mapping 
methods, the Adaptive Binary Threshold, Spectral Curvature, and Linear Spectral Unmixing with scale (An-
derson et al., 2021; Kneib et al., 2020), were tested to map the cliffs but the results were not conclusive due 
to the varying illumination conditions and variable off-nadir viewing angles resulting in increased shad-
ing for some of the scenes compared to the Pléiades and Sentinel-2 sensors for which the methods above 
were developed (Kneib et al., 2020; Watson et al., 2018). The ponds were mapped using a fixed Normalized 
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Difference Water Index (NDWI) threshold of 0.1 (Huggel et al., 2002; Kneib et al., 2020; McFeeters, 1996; 
Watson et al., 2018), and the outlines were improved manually for ice-covered ponds, which were always 
a minority.

The data used for the delineation of cliffs are of varying illumination and shading, which can lead to diffi-
culties in identifying features (Kneib et al., 2020; Steiner et al., 2019). We estimated the uncertainty in the 
cliff and pond relative area obtained from our delineation by comparing our outlines with the consensus 
outlines produced by three independent operators for six domains of similar sizes ranging between 0.3 and 
0.9 km2 (two domains on Urdok and Langtang, one on Satopanth and one on Bhagirath Kharak) for the 
2011 and 2016 images (Figure S2). For each pixel of the original image, we determined the fraction that 
was covered by cliff and pond areas as outlined by the three independent operators. We summed the three 
resulting fraction maps and defined the consensus outlines as the pixels with final values higher than 1.5. 
The final uncertainties for the cliff mapping were then taken as the mean of the absolute residual values, 
which were equal to 28% and 41% for the number of cliffs and ponds, respectively, and to 33% and 37% for 
their respective relative area (Figure S2).

As we are interested in the ice cliff variability, the precision is more important here than the accuracy, mean-
ing that it is more critical to map individual cliff change in time right, rather than counting accurately all the 
cliffs and ponds in the images. Indeed, we needed to make sure that the observed trends were meaningful. 
For this, we compared the cliffs and ponds number and relative area obtained by the four independent 
operators (Operator 4 having mapped the cliffs and ponds in all images) to make sure that there was a good 
agreement in the resulting changes (Figure S3). The changes derived by Operator 4 from 2011 to 2016 in 
the validation domains agreed with the ones derived by at least two other operators in 10 cases out of 12 
(Figure S3).

3.3. Tracking of Cliffs

Once all the cliffs had been outlined in the images, we automatically tracked the evolution of each indi-
vidual cliff from one image to the next, using a new algorithm developed ad hoc to directly compare the 
characteristics of the cliffs in consecutive images (Figure 2). For two consecutive images, image 1 and image 
2, we accounted for glacier surface velocity using the annual ITS_LIVE data (Dehecq et al., 2019; Gardner 
et al., 2018) to shift the position of the cliffs in image 1 to compensate for glacier motion (Figure 2a). We 
then compared the cliff outlines of image 2 with the shifted cliff outlines of image 1. If the distance between 
the cliffs was less than 20 m in a year (Figure 2b) and the aspect difference less than 30° in a year, modu-
lus(180°) (Figure 2d), we considered the cliffs to be the same, with 1-year difference. The 20 m.yr−1 thresh-
old is conservative relative to observed cliff backwasting rates that are usually less than 15 m.yr−1 (Brun 
et al., 2016, 2018; Buri, Miles, et al., 2016; Han et al., 2010; Mölg et al., 2019; Reid & Brock, 2014; Steiner 
et al., 2015; Watson, Quincey, Carrivick & Smith, 2017) and therefore also accounts for co-registration and 
surface velocity uncertainties. We did not have any Digital Elevation Model (DEM) for the RapidEye images, 
so the cliff aspect was estimated by fitting a circle to the cliffs' vertices using a quasi-Newton optimization 
method (Umbach & Jones,  2000; Figure  2c). We approximated the aspect of each pixel as the direction 
of the vector starting at the center of the pixel and finishing at the center of the circle. We calculated the 
aspect of the cliff as the circular mean aspect of its pixels (Figure 2c). Therefore, for the aspect difference, 
it was necessary to take modulus(180°) to account for straight cliffs that can see their mean aspect change 
by ±180° from 1 year to the next. For cliffs with a standard deviation of the aspect greater than 45°, we only 
compared the aspect of the pixels less than 20 m away to identify nearby circular cliffs as independent from 
one another. These tracking parameters (Table S2) were calibrated against manual tracking of cliffs between 
the 2009 and 2010 Langtang scenes and validated for a randomly selected year at each of the three other 
sites. With these parameters, the automated and manual tracking agreed for 96.4% of the cliffs in the initial 
image for Langtang, and 90.2%, 91.7%, and 90.0% for Urdok, Satopanth, and Bhagirath Kharak, respectively.

Based on the tracking results, we could determine the evolution of each cliff in time, but also the number 
of cliffs that appeared (birth events) or disappeared (death events) every year. We also quantified the split 
events, when one cliff splits into two cliffs or more (Figure 2e), and merge events, when two or more cliffs 
merge into one (Figure 2f). Cliffs were also observed to split and merge at the same time, resulting in a mix 
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event. The most common event on the other hand was a cliff remaining a single cliff but changing shape 
and/or size, which we describe here as a persist event (Figures 2e and 2f).

4. Observational Evidence of Cliff Dynamics
4.1. General Dynamics of Cliffs and Ponds

The cliff relative area and the cliff number change considerably from one year to the next (Figure 3). These 
two variables are mostly uncorrelated, except for Langtang and to some extent for Satopanth. The number 
of ice cliffs remains centered around 328 for Urdok (Figure 3a) and 116 for Satopanth (Figure 3b), while it 
shows a small decrease for Bhagirath Kharak from an average of 106 to 84 cliffs between the first and second 
half of the study period (Figure 3c) and a small increase for Langtang, from 177 to 221 (Figure 3d). Although 
the number of cliffs remains relatively constant, Urdok experiences a large increase in cliff relative area be-
tween the years 2012 and 2015 from 3.2% to 14.0%. The cliff relative area on Urdok is also generally higher 
than the cliff relative area of the other three glaciers. The cliff relative area changes every year on Satopanth, 
Bhagirath Kharak, and Langtang centering around 3.6%, 3.9%, and 3.0%, respectively, with a slight decrease 
for Satopanth from 3.9% to 3.3% and a slight increase for Langtang from 2.7% to 3.2% on average between 
the first and second half of the study period.

For all four glaciers, the cliff relative area is higher than the pond area by a factor ranging between 2.4 for 
Langtang and 7.3 for Bhagirath Kharak over the whole time series. For each glacier, the pond relative area 
and number appear to be uncorrelated with the cliff area and number, except for Satopanth where both 
pond and cliff relative area exhibit a decreasing trend. The pond relative area is much higher for Urdok (av-
erage value of 3.2%) than for the other glaciers, for which the average pond relative area is between 0.6% and 
1.3%. The pond relative area on Urdok also has very strong variations and can more than double in a single 
year (Figure 3e). The number of ponds is not correlated with the pond relative area except for Bhagirath 

Figure 2. Tracking methodology. In orange are the cliff outlines in year 1 and in blue the cliff outlines in year 2. Panels (a)–(d) represent the different steps of 
the tracking with idealized outlines. (a) Correction for glacier velocity. (b) Distance check. (c) Aspect retrieval from fitted circles. (d) Mean aspect comparison. 
Panels (e) and (f) represent real cliff outlines from 2015 (orange) and 2016 (blue) on Langtang. (e) Split and persist events. (f) Merge, birth, and persist events. 
Background image in panels (e) and (f) is the RapidEye 2015 scene (color composite of bands 4, 2, and 1). The green arrows represent the glacier flow direction.
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Kharak. The number of ponds also remains relatively constant over time, except for Urdok, where there are 
also strong variations at the beginning of the study period.

4.2. Contributions to the Cliff Dynamics

The tracking of the individual cliffs allowed us to count the birth, death, split, merge, and persist events over 
time (Figures 4 and S4). By taking into account the cliff area before and after each event, we also derived 
the net and total area change related to each event for the whole cliff population (Figures 4 and S4). This 
enabled us to directly derive the contributions of different events to the changes in cliff number and area.

For all four glaciers, the change in cliff number is centered around zero and the standard deviation varies 
between 10% and 20% of the total cliff number. For the four glaciers, the change in number is driven by 
the birth and death events. Split and merge events contribute respectively positively and negatively to the 
change in number, mix events can cause changes in both directions (Figure 4a), and persist events do not 
contribute to the change in number but can contribute to the change in area. Split, merge, and mix events 
only contribute to less than 10% of the change in number, except from 2014 to 2016 for Urdok where they 
contribute up to 40% of the change. In most cases, except for some years in Urdok and Bhagirath Kharak, an 
increase in cliff number is followed by an increase in death events. This is consistent with what we observe 
when comparing the number of death events and the total cliff number one year before (Figure S5), which 
shows that death events tend to compensate for a higher-than-average number of cliffs.

Changes in cliff area are mostly positive for Urdok, and negative for Satopanth, thus highlighting an in-
crease and a decrease in cliff area, respectively. These changes are centered around zero for Bhagirath Karak 
and Langtang (Figure 4). Their standard deviation varies from 7% of the cliff relative area for Satopanth to 
45% for Urdok. For all glaciers, there is a significant contribution of birth and death events to changes in 
cliff relative area, and peaks in cliff relative area change usually correspond to peaks in birth events and/
or lower death rates (Figure 4). These peaks in the contribution of birth events to cliff area are amplified 
by the contribution of split, merge, mix, and persist events, which usually contribute in the same direction, 
either positively or negatively (Figure 4). Of all these events, the persist events are usually predominant, 
even in terms of net contribution, but the mix or split events can also contribute considerably in some years, 
especially at Urdok and Satopanth.

Figure 3. Time series of cliffs and ponds number and relative area. The y-axis scales are different for Urdok and the three other glaciers. The shaded areas 
correspond to the uncertainty range calculated in the methods. The numbers in the upper right-hand corner of the plots are the Pearson's correlation 
coefficients between the relative area and number time series.
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4.3. Cliff Size and Pond Influence

For the four study sites, we find that the cliff size follows a lognormal distribution (Figure S6). This log-
normal distribution spans 2 orders of magnitude, from 100 m2, which corresponds to four RapidEye pixels 
and can therefore be considered as the cliff detectability threshold, to ∼10,000 m2 (400 pixels), and even to 
more than 20,000 m2 (800 pixels) for some cliffs in Urdok (Figure S6). The size of new cliffs or dying cliffs 
also follows a lognormal distribution with a similar standard deviation to the persisting cliffs, but they are 
generally smaller, with the mean of the lognormal distribution around 400–500 m2 for Urdok and Langtang, 
200–300 m2 for Satopanth and Bhagirath Kharak, while it is between 500 and 800 m2 for the persisting cliffs 
(Figure S6). As a result, the cliffs that are about to die, or that are less than 1-year old, tend to be smaller 
than other cliffs.

The size of splitting, merging, and mixing cliffs also follows a lognormal distribution (Figure S7). The size 
distribution of merging cliffs is very similar to that of the persisting cliffs, which means that any cliff can be 
involved in a merge event, while the cliffs resulting from a merge event are larger than the norm. This is the 
contrary for split events, in which the cliffs that split are generally larger than normal but the cliffs resulting 
from split events follow the same size distribution as the total population (Figure S7). For the mix events, 
the size distribution of cliffs before and after is more or less the same and similar to that of the total cliff 
population with some variations due to the small number of events relative to the persist events.

Figure 4. Net contribution of different events to the general evolution of ice cliffs. The left panels show the change in cliff number and the right panels show 
the change in cliff area. For comparison, the mean cliff number (area) is 328 (6.8 × 105 m2), 116 (1.5 × 105 m2), 95 (1.2 × 105 m2) and 201 (3.3 × 105 m2) for 
Urdok, Satopanth, Bhagirath Kharak, and Langtang, respectively. Note that the color envelopes are not overlapping but stacked on top of one another.
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For split, merge, mix and persist events, the relationship between the sum of cliff sizes before (Si) and after 
the event (Sf), is given by the area ratio α:

  .f

i

S
S (1)

Our results show a large spread of α, which usually follows a lognormal distribution centered around 1, 
and range from 0.1 to 10 for the most extreme area changes (Figure S8). For persist events, this area ratio is 
dependent on the cliff initial size, with a tendency for smaller cliffs to increase in size while the larger cliffs 
tend to decrease in size (Figure S8). Such a trend is difficult to observe for other events, which occur less 
often than persist events.

Ultimately, the presence of ponds also has an influence on the birth and death events. For Urdok, Sato-
panth, and Bhagirath Kharak, 10%–35% of all the cliffs have an attached pond, and for Langtang, this value 
varies between ∼30% and ∼50% (Figure S9). At all sites, the proportion of new or dying cliffs with an at-
tached pond (less than 10 m away) is consistently lower than for the whole population, and can be as low 
as 10%–12% for Langtang and Urdok, 0%–2% for Satopanth and Bhagirath Kharak (Figure S9). Urdok is the 
site where the difference is less visible.

5. Stochastic Modeling of Cliff Dynamics
Based on our observations from the tracking of ice cliffs we implemented a stochastic birth-death model 
to represent the cliff population dynamics and the interannual changes in cliff number and area for each 
glacier. We implemented two models, one that is purely stochastic and all events occur at random, for which 
we considered the cliff populations to be closed systems with no influence from external drivers, and the 
second where we included the influence of air temperature, precipitation, pond area, and surface velocity 
on the birth and death rates and area ratios of persist events. In this second model, we kept the mix, split 
and merge events as stochastic events since they represent a minority of events and the influence of the 
external drivers was unclear.

5.1. Stochastic Birth-Death Model

The purpose of a purely stochastic model is to describe the natural internal variability of a system given by 
randomly occurring events in time. A birth-death model is a basic type of model commonly used in ecology 
or epidemiology to study the demography of a population and to provide information on the probability 
distributions of the number and characteristics of individuals (Bailey, 1968; Kendall, 1948). Such models 
have also been used in the simulation of the birth and death of rainfall cells (e.g., Paschalis et al., 2013). 
Birth-death models characterize the evolution of a population following the underlying equation:

     ,dP B t D t
dt (2)

where P(t) is the number of individuals (cliffs) in a given year, B(t) and D(t) are the birth and death rate in 
cliffs/year, respectively. In the case of ice cliffs, we include merge, split, and mix events, and the governing 
equation for the stochastic cliff population dynamics becomes:

              ,dP B t D t S t M t Mi t
dt (3)

where S(t), M(t), and Mi(t) are the split, merge, and mix rates in cliffs/year, respectively. Mi(t) can be positive 
or negative while the other terms are all positive. All the terms are described by their probability density 
functions (mean and variance) estimated from data. There is a linear dependency between the death rate 
and the population size (Figure S5):

        ,D t dt aP t b (4)

where a and b are estimated from the death rates related to the total population and ξ is a stochastic noise 
term (Supporting Information S1).

Equation 3 is solved in a time-stepping manner with dt = 1 year, by drawing the terms B, S, M, Mi, and ξ 
from their respective distributions, starting at time zero with a given initial cliff population. Each individual 
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cliff in the population is assigned to undergo a death, mix, merge, split or persist event based on the proba-
bility of individual events in every year, its size and the size distribution of dying, mixing, merging, splitting, 
and persisting cliffs (Supporting Information S1, Model Description: 3. Cliff selection). The cliffs are tracked 
individually in the model and their size is updated at each time step based on the area ratio distribution 
of the merge, split, mix, or persist event that they undergo. New cliffs are attributed an initial size which 
is drawn randomly from the size distribution of new cliffs, and dying cliffs are removed from the cliff pop-
ulation. The implementation of the model is described in detail in the Supporting Information S1 (Model 
Description; Figure S10 and Tables S3 and S4).

Since the processes controlling the size changes of the cliffs are also stochastic for each event, the cliff area 
A(t) can be written following a similar equation as Equation 3:

                 ,A A A A A A
dA B t D t S t M t Mi t Pe t
dt (5)

where BA, DA, SA, MA, MiA, and PeA are the changes in size from the birth, death, split, merge, mix, and persist 
events which can be positive or negative, except for BA and DA which are always positive.

Note that if we combine Equations 3 and 4 in a steady-state case ( ( ) ( )dP dt dA dt/ and / 0 0  ), the mean 
changes from the different events compensate each other and force the mean population E P to a given value 
that is independent of the initial conditions:

       0.B a P b S M Mi (6)

Similarly for the cliff relative area (Equation 5).

In this first version of the model, the probability distributions of the different terms of Equations 3 and 5 are 
fixed in time and in this case P(t) will converge in time to its steady-state value E P . However, these probabil-
ity distributions can also be time-dependent with individual annual rates as a function of external driving 
forces.

5.2. Influence of External Drivers

In the second version of the model, we take into account external drivers and their influence on the cliff 
population dynamics. These external drivers are the monthly air temperature and precipitation from ERA5-
Land (Muñoz Sabater,  2019) averaged over the summer months (June–September), the average annual 
glacier velocity and change in velocity over the centerline of the debris-covered part and the AOI from the 
ITS_LIVE velocity data (Dehecq et al., 2019), and the total pond area and change in pond area (Tables S5–
S8). We relate cliff population dynamics and external drivers using a stepwise multivariate regression for 
the birth rate, relative death rate (defined as the ratio of death events and the total number of cliffs at the 
previous time step), and the parameters of the size-dependent mean area ratio of persist events (Support-
ing Information S1, Stochastic model description, Tables S5–S8). For each of these regressions, we use a 
linear model with an intercept and a linear term for each predictor. The predictors are added using step-
wise regression if adding them increases the adjusted correlation coefficient adj-R2 value by more than 0.1, 
which guarantees that the new terms improve the model more than they would be expected by chance 
(Miles, 2014). This multivariate regression is applied to the whole time series from 2009 (2010 for Satopanth 
and Bhagirath Kharak) to 2018, since we only had velocity data until that year. We then account for the 
external drivers in the model by rewriting the birth rate, relative death, and area ratio parameters at each 
time step Paramj(t) as a function of the eight external drivers Di using the coefficients ai,j and RMSE from 
the multivariate regression:

      8
0, , ,1Param ,j j i j i j i jit a a D t (7)

where   jE t  is a stochastic term drawn at each time step from a discrete normal distribution of mean zero 
and standard deviation equal to the RMSE of the multivariate regression.  ,i jE  is equal to zero or one depend-
ing on the inclusion or exclusion of the external driver in the multivariate regression (Tables S5–S8).
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5.3. Modeling Results

We apply the stochastic birth-death model (without external drivers, Section 5.1) to the cliff population of 
the four sites for the duration of the observation time series (Figure 5). The model parameters are estimated 
from the entire study period, and we run the model 200 times for the period 2009–2019 starting from ob-
served initial conditions in 2009 to quantify the probability distribution of cliff number and area over time. 
The model converges rapidly and there are no significant changes in mean or standard deviation after more 
than 200 simulations (Figure S11). The mean cliff number and area both converge to steady states within 
the first 10 years of the simulations (Figure 5), and the standard deviation range and maximum spread are 
also stable in time after this point (Figure S12). The results obtained by calculating the parameters over the 
full-time series are similar to those obtained when calculating the parameters over the first 5 years, even 
though the fit is less good, especially for the last years at Satopanth and Bhagirath Kharak (Figure S13), and 
are independent of the initial conditions (Figure S14). All the observations are within the modeled range 

Figure 5. Outputs from the stochastic model for the number of cliffs and their relative area. The model was run 200 
times from 2009 (2010 for Satopanth and Bhagirath Kharak) to 2019. Parameters were estimated over the full-time 
series. The red dots correspond to the observations from the mapping. The dark blue line corresponds to the average 
values of the 200 simulation runs. The mid-blue area represents the standard deviation of the runs and the light blue 
area the maximum and minimum values.
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of values except for year 2012 for the cliff relative area in Urdok (Figure 5). This variability range is charac-
terized by a standard deviation that is between 12% and 20% of the mean value after 10 years for both cliff 
relative area and number. This means that the observed variability in cliff properties (number and area) in 
time can be explained by a model in which cliff-forming and destruction processes are completely random.

The stepwise multivariate regression applied to the four glaciers shows that the most significant drivers for 
the birth rates are the total pond area and the change in pond area (Table S5). They are the first predictors 
selected in the stepwise multivariate regression for Urdok, Satopanth, and Bhagirath Kharak. For Langtang, 
the air temperature is more significant but the multivariate regression at this site is not statistically signifi-
cant according to its high P-value (Table S5). Similarly, the glacier velocity and velocity change in the AOI 
or across the whole debris-covered area are the most significant drivers for the relative death rate and area 
ratio for the sites where the multivariate regression is statistically significant (Tables S6–S8). All the tested 
drivers contribute significantly to a few model parameters at different sites except for precipitation that has 
no significant contribution (Tables S5–S8).

When applying the model accounting for external drivers, we find that the mean cliff number and relative 
area do not converge but rather follow similar annual variations to the observations (Figure 6). The vari-
ability range is smaller than for the purely stochastic model but all the observations fall within the model 
minimum and maximum values and most of them are within the standard deviation bounds. For Urdok, 
however, the abrupt increase in cliff relative area between 2012 and 2015 is still not captured well while the 
cliff relative area is underestimated on average for Bhagirath Kharak (Figures 6b and 6f). This means that 
external driving variables in the stochastic model are able to reduce uncertainties, better match interannual 
variability in observations, and in some cases identify situations where the random model fails.

6. Discussion
6.1. Mapping and Tracking Limitations

For the cliff mapping, we used RapidEye data from Planet Labs (Planet Team, 2017) because of their high 
spatial resolution (5 m) and relatively long time series (more than a decade of images freely available with 
an academic license). These are however georectified images without a contemporaneous DEM, so no map-
ping approach based on slope (Herreid & Pellicciotti, 2018; Reid & Brock, 2014) could be used in a multi-
temporal sense. We tested different multispectral approaches, namely the adaptive brightness threshold, the 
spectral curvature, and linear spectral unmixing with scale (Anderson et al., 2021; Kneib et al., 2020), but 
the results were not satisfying and consistent enough for this sensor, due to the varying illumination con-
ditions and increased shading for some of the scenes compared to the Pléiades and Sentinel-2 sensors for 
which the methods above were developed (Kneib et al., 2020; Watson et al., 2018). Despite the important ef-
fort required and the possible operator bias (Herreid & Pellicciotti, 2018), we thus favored the use of manual 
delineation of cliffs for this study. For ponds, we used an NDWI threshold since this approach had already 
been validated for pond mapping with RapidEye data (Watson et al., 2018). Some manual improvement 
was still necessary for ice-covered ponds but the time investment was minimal compared to the manual 
delineation of all the cliffs. In the future, the use of an automated approach for cliffs using high-resolution 
sensors with a high overpass rate to minimize shading such as PlanetScope will likely enable the study of 
longer time series and on a seasonal time scale.

The main uncertainties from the cliff mapping come from the operator bias (Figure S2) and the change 
in illumination and shadowing from image to image, especially because we did not have access to any 
high-resolution slope data, which can help discriminate some cliffs (Herreid & Pellicciotti, 2018; Steiner 
et al., 2019). For the same reason, we could not calculate the cliff slope and aspect and only used ice cliff 
planimetric area to calculate the cliff relative area. The manual mapping was greatly improved by compar-
ing sequential images. Disruptions in glacier surface motion were thus anticipated to be caused by back-
wasting cliffs or draining or filling ponds, which helped to constrain the mapping. Accounting for these 
disruptions in glacier surface motion was performed manually in this study but is a promising method to 
map cliffs and derive their backwasting rates in an automated way (Altena & Kääb, 2020). Furthermore, 
comparing the outlines with those derived by independent operators for six different domains across six dif-
ferent images enabled us to constrain the uncertainties from the mapping (Figure S2). Ultimately, reducing 
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the uncertainties from the mapping requires automated approaches and higher resolution images (Kneib 
et al., 2020; Salerno et al., 2012). Cliffs and ponds can be mapped at resolutions coarser than 5 m but this 
results in higher uncertainties and increases the detectability threshold to only map the larger features 
(Herreid & Pellicciotti, 2018; Kneib et al., 2020; Miles, Steiner, et al., 2017; Watson et al., 2018). This is espe-
cially true for ice cliffs, which have a more elongated shape and can be very steep, thus in general, the finer 
the spatial resolution, the better (Brun et al., 2018; Immerzeel et al., 2014; Kraaijenbrink, Shea, et al., 2016).

The tracking disagreements between the manually and automatically tracked cliffs were 10% at most and 
occurred mostly for cases of small cliffs, for which the aspect was difficult to determine, or cliffs with a 
sharp aspect discontinuity (e.g., Figure 2f). In such cases, it was difficult to tell which of the manual or 
automated tracking was correct, and since there were less than 10% of disagreements, we considered the 
uncertainties from the tracking to be negligible compared to the mapping uncertainties. Having an accurate 
DEM for each image would have reduced the tracking error considerably by eliminating the cases described 

Figure 6. Outputs from the stochastic model with external drivers for the number of cliffs and their relative area. The 
model was run 200 times from 2009 (2010 for Satopanth and Bhagirath Kharak) to 2019. Parameters were estimated 
over the full-time series. The red dots correspond to the observations from the mapping. The dark blue line corresponds 
to the average values of the 200 simulation runs. The mid-blue area represents the standard deviation of the runs and 
the light blue area the maximum and minimum values. The y-axis scales are the same as in Figure 5.
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above (Steiner et al., 2019). Furthermore, the mean aspect of cliffs can change considerably from one year to 
the next, so we do not recommend the application of this tracking algorithm for intervals longer than a year.

For this study, which focused on the cliff number and relative area variability, the precision and consistency 
of the mapping were actually more important than the accuracy of the outlines. The agreement between 
the four independent operators in the trends of cliff area and the number that they derived independently 
between 2011 and 2016 for six validation domains (Figure S3) shows that while there were disagreements in 
the actual values, the trends were mostly similar. Therefore, we would expect that if another operator were 
trying to reproduce the same experiment, the absolute numbers may disagree with the ones from this study, 
but the variability and general patterns and therefore the results would be the same.

We also note that the AOIs of the four studied glaciers did not cover the full extent of the debris-covered ar-
eas due to snow, shadows, and avalanching (Figure 1), and were mostly limited to the lower portions of the 
glaciers, where we expect thicker debris and more stagnant ice (Anderson & Anderson, 2018). This could 
potentially bias these observations toward particular cliff-types influenced more by ponds than supraglacial 
streams, and less by ice dynamics. Similarly, the differences in relative coverage of the AOIs on the different 
glaciers could influence some of the relative changes observed, which needs to be taken into account in the 
interpretation of the results.

6.2. Life Cycle of Ice Cliffs

The systematic mapping of ice cliffs and ponds at annual intervals in the post-monsoon season and for the 
same AOI highlights the high variability of these features from one year to the next (Figure 3). This has im-
plications for the melt of debris-covered glaciers, while from a process understanding standpoint it informs 
about the rates of changes of the glacier surface. This interannual variability had been investigated before 
(Steiner et al., 2019; Watson et al., 2016; Watson, Quincey, Smith, et al., 2017; Miles, Willis, et al., 2017) but 
never in such a consistent way. Our results show that the cliff relative area can change regularly by typically 
20% from one year to the next, and the pond relative area by more than 40%. In this regard, Urdok is a spe-
cial site that exhibits even larger variations (up to 100% changes in cliff relative area and 300% changes in 
pond relative area). As cliffs and ponds are major contributors to the mass balance of debris-covered glaciers 
and enhance melt by a factor of 3–8 relative to the surrounding debris-covered ice (Brun et al., 2018; Buri 
et al., 2021; Immerzeel et al., 2014; Juen et al., 2014; King et al., 2020; Miles et al., 2018; Mölg et al., 2019; 
Reid & Brock, 2014; Thompson et al., 2016), these results highlight the need to take into account the varia-
bility of these features in glacier melt models.

Interannual ice cliff variability is extreme at the feature scale, with typically 15%–30%, and in some years 
up to 50%, of new cliffs forming every year (Figure 4). The dynamics vary from cliff to cliff, with some cliffs 
observed in only a single year (usually the smallest ones), and others persisting for the whole study period. 
The evolution of a cliff is partly constrained by the presence or absence of a pond (Figure S8). The fact that 
at all sites the proportion of pond-associated cliffs is greater for persisting cliffs than for dying or new cliffs 
implies that association with a pond is indeed a key factor promoting cliff longevity (Brun et al., 2016; Buri, 
Miles, et al., 2016; Miles et al., 2016; Watson, Quincey, Carrivick & Smith, 2017). Ponds encourage cliff 
persistence, and pond drainage can be a precursor to cliff death. Fluctuations in the ponded area have a 
significant influence on the birth rate of the Urdok and Satopanth cliffs and the relative death rates of the 
Urdok cliffs (Tables S5–S6). The negative relationship between the cliff birth rate and pond area for Urdok 
and Bhagirath Kharak (Table S5) could indicate that draining ponds wash away the debris, leading to cliff 
birth. However, despite this control for individual cliffs, there is no clear relationship between cliff and pond 
relative area at the scale of an individual glacier (Figure 3) because the ponds only affect less than 50% of 
the cliff population (Figure S9). Therefore, at the glacier scale, the pond influence is muted by other factors 
and their contribution to cliff persistence is not always significant. Cliffs and ponds also evolve on different 
time scales, with ponds having much stronger seasonal variations than cliffs (Miles, Willis, et al., 2017).

The size of the cliff also plays a role in its evolution. We found that cliffs tend to follow a lognormal dis-
tribution with regards to their size, which is consistent with what has been found on Khumbu Glacier 
(Watson, Quincey, Carrivick & Smith, 2017). Some studies using semi-automated mapping found that the 
number of cliffs or ponds on a glacier increases exponentially as size decreases (Kneib et al., 2020; Miles, 
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Willis, et al., 2017), which could mean that there is an observational bias for mapping only the large fea-
tures relative to the sensor resolution (Salerno et al., 2012), but this would need to be confirmed by very 
high-resolution mapping from field observations and UAV flights. New cliffs and dying cliffs are in general 
smaller than the other cliffs, even if there are exceptions. Interestingly, we also found that the area ratio of 
persist events decreases with the initial cliff size (Figure S7). However, these observations are likely biased 
by the fact that we cannot detect ice cliffs smaller than a few pixels (<100–200 m2), which means that what 
we count here as birth or death events may just be persist events, but involving features that have passed 
beyond the satellite images' limit of detectability. The area ratio of persist events is centered around 1 but 
there are cases where the cliff size is multiplied or reduced by a factor up to 10, which can happen when the 
cliff expands laterally on the nearby slopes. This expansion or reduction probably depends on the stability 
of the debris on an ice slope, which is linked to the slope angle but also to the debris water content and the 
presence of a pond or stream at the base of the slope (Moore, 2018).

Merge, split or mix events also contribute to the interannual variability of the cliff population, especially for 
the change in cliff relative area. Their contribution to cliff area change follows the same general pattern as 
the contribution of persist events (Figure 4), which means that while these events are mostly stochastic and, 
for merge and mix events, dependent on the local cliff concentration, at the glacier scale their contribution 
to the cliff area change has the same drivers as the persist events.

All these events contribute to increasing the interannual variability of the cliff population, except for death 
events, which to some extent compensate for strong variations in cliff number and as a result, relative area. 
Indeed, at all sites, an increase in the number of cliffs usually results in an increase in the number of death 
events the year after. Such feedback is the basis of most birth-death models in a closed system with limited 
resources (Bailey, 1968; Kendall, 1948).

6.3. Controls on Ice Cliff Variability

Determining the controls of the variability of the cliff population is important to understand the observed 
patterns and relate this to processes happening at the glacier surface, but also in a broader sense to under-
stand whether these variations are purely stochastic or on the contrary are representative of a particular gla-
cier state or evolution. The stochastic model runs provide new insights into the natural internal variability 
of the cliff population at the glacier scale based on the observed variability of the system. This gives a first 
approximation of the system bounds in the long term, assuming that the glacier surface does not undergo 
major changes. Our stochastic model outputs a distribution of cliffs that depends on the initial conditions 
for the first few years but rapidly converges to a steady state that depends on the parameters of the different 
events and that has an internal variability that is proportional to its mean value. We estimated the parame-
ters over a period of 10 (Figure 5) and 5 years (Figure S13) and obtained similar results despite a less good fit 
in the second half of the time series when the parameters were estimated over the first 5 years, which shows 
that the variability of the cliff populations only changed marginally over our observation period. Assuming 
that the general climatic and glaciological conditions encountered persist, the results of the model inform 
us on the long-term variability of the cliff populations of these four glaciers (Figure S12).

The stochastic assumption enables us to calculate the internal variability of the system but does not tell us if 
this variability can be influenced by external drivers. Adding the influence of external drivers in the model 
reduces the variability and improves the fit with the observations, which shows that these external drivers 
do have an influence on the variability of the system. The results from the multivariate regression help ex-
plain some of the observed variability and link it with climate, glacier velocity, or pond evolution. None of 
the tested variables stands out as a principal driver and all contribute to some extent to the observed chang-
es. They are, however, all related to the melt at the surface of the glacier, since climate variables influence 
melt and this melt will increase the amount of water circulating at the surface of the glacier via ponds and 
streams, while enhancing basal sliding and therefore glacier velocity (Kraaijenbrink, Meijer, et al., 2016; 
Yang et al., 2020).

Urdok is an interesting study site as its cliff population undergoes extreme variations, and shows a major 
increase in cliff relative area between years 2012 and 2015 that the internal variability fails to explain. This 
change results from an increase in cliff size from merge, mix and persist events (Figure 4) and coincides 
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with a strong increase in the average velocity of the debris-covered area (Figure 7) that could be indicative of 
a surge event. The fact that this increase in cliff relative area is driven by merge and mix events is a sign that 
there is a large reorganization of the cliffs at the scale of the glacier, while at the same time they increase 
in size. The comparison of cliff outlines between 2012 and 2015 shows that the cliffs expand laterally in the 
direction of their principal axis along sinuous paths across the glacier surface (Figures 7d–7g). This can 
be interpreted as the rapid development of large “cryo-valleys” at the surface of the glacier, as these cliffs 
develop and expand on either side of supraglacial streams, thus reshaping the surface of the glacier within 
the span of a few years. Similar mechanisms have been described on Zmutt Glacier (Mölg et al., 2020) but 
over the course of several decades and without the occurrence of a glacier surge. Rather, the development 
of cryo-valleys at Zmutt seems to have occurred as the glacier stagnated, leading to persistent configura-
tions of the glacier's drainage network (Mölg et al., 2020), whereas in the case of Urdok, the cryo-valley 
development coincides with an up-glacier (but not local) increase in velocity, suggesting reorganization 
of drainage networks driving water to the glacier's surface above the study area, which is supported by the 
erratic interannual fluctuations of pond area observations during this period (Figure 3). Understanding the 
mechanism of Urdok Glacier's increase in velocity is outside the scope of the present study and an oppor-
tunity for further investigation, but the example shows clearly that cliff and pond populations can undergo 
considerable changes due to external drivers.

Our stochastic model lets us quantify the possible range of the number and relative area of ice cliffs and our 
observations fall within the model bounds in all cases except for Urdok. There, the glacier is undergoing 

Figure 7. Development of cryo-valleys between 2012 and 2015 on Urdok Glacier. (a) Cliff relative area and average surface velocity along the centerline of the 
debris-covered area over time. (b) and (c) Cliff and pond density maps of the lower portion of Urdok, where 0 corresponds to no cliff or pond occurrence over 
the whole time series and 1 corresponds to the occurrence of cliffs or ponds in all images. Background image is the 2015 RapidEye scene (color composite of 
bands 5, 4, and 2). (d)–(g) Maps of cliffs (pink) and ponds (blue) on the same portion of Urdok for the 2012 to 2015 RapidEye images. Background images are 
the corresponding RapidEye scenes (color composite of bands 5, 4, and 2).
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a major change which results in the complete rearrangement of the cliffs at its surface. We interpret the 
variability bounds given by the model as a physical constraint on the system. These bounds define the cliff 
carrying capacity of a glacier. Indeed, the number and relative area of cliffs are constrained by the availa-
bility of steep slopes, which are in turn constrained by the number of hummocks and cryo-valleys (Bartlett 
et al., 2020; King et al., 2020; Mölg et al., 2020). The size of the hummocks is constrained by the glacier size 
(Bartlett et al., 2020), which gives an upper bound to the cliff relative area. However, the development of 
cryo-valleys enables cliffs to arrange themselves in a very different and denser way than on a purely hum-
mocky surface, and this transition is clearly visible in the case of Urdok (Figure 7). The exact reasons for 
this transition are unclear but are probably linked to the surge event highlighted by the change in velocity 
of the debris-covered area, which impacts the glacier hydrological system (Chudley & Willis, 2019; Gulley 
et al., 2009; Miles, Willis, et al., 2017; Quincey et al., 2015). Indeed, the data for Urdok suggests that a surge 
front migrated through the upper part of the glacier (above the AOI) with little impact on the velocity or 
strain rates in the AOI but resulted in the routing of more water at the surface of the AOI, thus leading to 
the development of cryo-valleys. Therefore, the ice cliff population is expected to evolve within the bounds 
given by the stochastic model parameters, but this steady state can be modified by intense changes in sur-
face topography resulting from major glaciological or climatic changes. As a result, we expect that the state 
and distribution of ice cliffs on a glacier could inform us to some extent about its dynamic state and climatic 
drivers.

The fact that none of the tested variables stands out as a main driver of the cliff variability highlights the 
complexity underlying ice cliff evolution, due to a number of competing and interlinked processes happen-
ing at the glacier surface (Figure 8). Indeed, changes in glacier velocity or climate may translate differently 
at the local scale depending on the local hydrology, debris thickness, and topography. At this local slope 
scale, the cliff area change, including formation or decay, is ruled by debris mobilization, which depends on 
local slope characteristics (Moore, 2018). These include the slope angle, the debris water content along with 
the state of the base of the slope and the possibility for sliding debris to be removed (Moore, 2018), but also 
on the surrounding topography which may constrain the cliff 's lateral expansion. A number of processes 
that are interdependent and difficult to quantify at larger scales may modify these slope characteristics. For 
example, the development of a supraglacial stream or pond from sub-debris melt and in-debris flow routing 
(Fyffe et al., 2019; Miles, Steiner, et al., 2017; Westoby et al., 2020) has the combined effect of increasing the 
melt at the base of the slope and removing the debris sliding down it (Benn et al., 2001; Miles et al., 2016; 
Moore, 2018). The development of supraglacial streams is therefore beneficial to an increase in cliff relative 
area along cryo-valleys (Mölg et al., 2019) as long as the incision rate does not exceed the sub-debris melt 
rate (e.g., Reid & Brock, 2010), which would lead the stream to form an englacial conduit via a cut-and-
closure mechanism (Gulley et al., 2009; Jarosch & Gudmundsson, 2012). Such a stream could however be 
interrupted by the opening of a crevasse, which depends on the glacier strain rates, while at the same time 
such crevasses could initiate ice cliff formation via an increase of the slope angle and the removal of debris 
(Reid & Brock, 2014). Crevasses may also affect flow routing and therefore the draining or filling of ponds 
(Miles, Willis, et al., 2017; Watson et al., 2016), with consequences on melt or slope availability for cliffs 
(Miles et al., 2016). These processes are all influenced by external variables such as climate and glacier dy-
namics, but also depend on the local topography (Figure 8). When looking at the cliff population of a glacier 
in the long term, the stochastic approach ignores these processes that are conceptually understood or at 
least hypothesized, but difficult to measure. However, in some cases like for Urdok Glacier, they may trigger 
major changes in the cliff relative area, which calls for a need to quantify these processes more accurately 
to better understand the drivers of cliff evolution.

6.4. Outlooks

The significant variability of ice cliffs that we observed shows that cliff population dynamics need to be tak-
en into account for distributed glacier melt models operating at multi-year timescales. Indeed, for example 
on Langtang, an increase in cliff relative area of 20% could translate into 4% of additional volume loss of the 
debris-covered area (Buri et al., 2021). The stochastic cliff birth-death models are computationally efficient 
tools to represent this variability and an interesting next step would be to analyze backwasting rates in com-
bination with the different events we described here. This would likely require high-resolution DEMs for 
the cliff time series or at least solid assumptions for cliff slope. For this purpose, and despite available cliff 
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energy-balance models (Buri, Miles, et al., 2016; Juen et al., 2014), a better understanding of the relationship 
between the different steps of the cliff life cycle, debris redistribution, and action of supraglacial streams 
and ponds, especially during the melt season, would be very valuable. It has been suggested that cliffs could 
increase in size during the monsoon season (Steiner et al., 2019) due to debris mobilization from precipita-
tion and melt, but such a seasonality has not been clearly observed; a more detailed analysis of what hap-
pens to cliffs sub-seasonally, and especially during the monsoon, and the implications for cliff-associated 
melt would thus be highly relevant. A better understanding of these processes would also help improve 
the stochastic model that is, at present, highly empirical and glacier-specific. Quantifying various surface 
processes, understanding their spatial and temporal scales, and linking them with climatic variables and 
glacier dynamics will likely enable a more robust representation of ice cliff variability.

This study also shows that there can be very different ice cliff population dynamics for different glaciers, 
which depend at least partially on the mechanisms that drive cliff birth and organization. However, this 
variability is difficult to constrain due to the lack of large-scale observations of ice cliffs. The emergence of 
semi-automated approaches to map these features from remote sensing data (Anderson et al., 2021; Her-
reid & Pellicciotti, 2018; Kneib et al., 2020) should enable this large-scale mapping and as a result a better 
understanding of cliffs' broad spatial variability. Finally, the cliff tracking approach and data set along with 
the model developed here offer an opportunity to further investigate the causes of individual and bulk cliff 
behavior and thus better understand the local drivers of cliff birth and death and the possible influence of 
the local topography, surface hydrology, geomorphology or glacier motion.

Figure 8. (a) Processes influencing ice cliff area change from the local slope to the glacier scale. The glacier surface processes are all attributed to a different 
color. (b and c) Evolution of a cliff-pond system on Langtang Glacier and a cryo-valley cliff on Urdok Glacier from 2009 to 2019. The pink outlines correspond 
to the different states of the cliffs that first appeared in the images in 2011 for Langtang and 2009 for Urdok. The associated ponds are represented in blue. The 
colored dots at the base of each map represent the most likely glacier surface processes at play at this location in the previous two years.
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7. Conclusions
In this study, we combined systematic mapping of ice cliffs at yearly intervals with a method to track indi-
vidual cliffs to quantify and characterize the cliff population variability of four HMA glaciers. Our results 
show that the cliff relative area can commonly change by 20% and up to 80% from one year to the next at 
the surface of a glacier. Due to the melt enhancement effect of the cliffs, this variability will have large 
implications for the melt of debris-covered glaciers and should therefore be accounted for in glacier and 
glacio-hydrological models, at least in a stochastic way in a first step to include this additional uncertainty 
from natural cliff variability in the melt rates.

This interannual variability is driven by a combination of contributions from different events occurring at 
the cliff scale and that rule the cliff life cycle. Birth and death events dominate the variability in the number 
of ice cliffs. Death events constrain the number of ice cliffs, thus defining the cliff carrying capacity of a 
glacier while birth events are stochastic, with some dependence on the pond interannual variability. These 
ponds promote cliff persistence but affect less than 50% of the population and thus are not the main driver 
of the cliff population's interannual variability. The changes in cliff relative area are also driven by the net 
contributions of persist events in addition to net contributions from split, merge, or mix events that vary 
consistently.

These events can be represented in a stochastic birth-death model to constrain the long-term natural var-
iability of the number and area of cliffs. Some of the changes are however not entirely stochastic and our 
results show that they can be influenced by climate, supraglacial ponds and/or surface velocity, in spite of 
the complexity of all the interdependent processes occurring at the glacier surface. As a result, major cli-
matic or glaciological changes, such as we have seen in the case of a surge, may lead to a reorganization of 
ice cliffs at the glacier surface and a change in the natural variability of the system.

Data Availability Statement
All the cliff and pond outlines generated for this study are available on Zenodo (https://doi.org/10.5281/
zenodo.4632840) along with the different codes used, including the ones used for the tracking and the mod-
eling (Kneib et al., 2021). Other data sets used for this research are elevation changes (Brun et al., 2017a), 
surface velocity data from ITS_LIVE (Dehecq et al., 2019; Gardner et al., 2018), climate data from ERA5-
Land (Muñoz Sabater, 2019), and debris-covered glacier outlines (Herreid & Pellicciotti, 2020a).
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