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Abstract 

Wave-induced scour depth below pipelines is a physically complex phenomenon, whose reliable 

prediction may be challenging for pipeline designers. This study shows the application of Adaptive 

Neuro-Fuzzy Inference System (ANFIS) incorporated with Particle Swarm Optimization 

(𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂), Ant Colony (𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂), Differential Evolution (𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸) and 

Genetic Algorithm (𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴 ) and assesses the scour depth prediction performance and 

associated uncertainty in different scour conditions including live-bed and clear-water. To this end, 

the non-dimensional parameters Shields number (𝜃), Keulegan–Carpenter number (𝐾𝐶) and 

embedded depth to diameter of pipe ratio (𝑒/𝐷) are considered as prediction variables. Results 

indicate that the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 model (𝑅𝑙𝑖𝑣𝑒−𝑏𝑒𝑑
2 = 0.832 and 𝑅𝑐𝑙𝑒𝑎𝑟−𝑤𝑎𝑡𝑒𝑟

2 = 0.984) is the most 

accurate predictive model in both scour conditions when all three mentioned non-dimensional 

input parameters are included. Besides, the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 model also shows a better prediction 

performance than recently developed models. Based on the uncertainty analysis results, the 

prediction of scour depth is characterized by larger uncertainty in the clear-water condition, 

associated with both model structure and input variable combination, than in live-bed condition. 

Furthermore, the uncertainty in scour depth prediction for both live-bed and clear-water conditions 

is due more to the input variable combination (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑎𝑣𝑒 = 4.3) than it is due to the model 

structure (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑎𝑣𝑒 = 2.2). 

Keywords: Pipeline, Wave-Induced Scour, Prediction, Adaptive Neuro Fuzzy Inference System, 

Optimization Methods, Uncertainty Analysis. 

 

 



3 
 

1. Introduction 

Submarine pipelines are commonly utilized to carry gas and oil in offshore areas and usually lie 

on erodible seafloors. Wave action may wash out sediment around a pipeline due to a localized 

increase of bed shear stress, with consequent development of a scour hole that may undermine the 

stability of the pipeline and eventually lead to its collapse. In fact, the pipeline may become 

suspended in seawater as the scour develops, making its structure not able to withstand static and 

dynamic forces. Pipeline failure not only represents an economic loss but may also cause 

significant environmental consequences. Thus, consideration of the scour phenomenon beneath 

offshore pipelines is key during pipeline design (Fredsøe et al. 1988; Yasa and Etemad-Shahidi 

2014). 

Most of the available predictive scour depth formulas in this context are based on laboratory 

experiments (Lucassen 1984; Sumer and Fredsøe 1990; Çevik and Yüksel 1999). Such regression-

based equations are of straightforward use, and they are commonly adopted to estimate scouring 

depth around pipelines and, generally, any river or marine structures; however, possible scale 

effects may lead to considerable inaccuracy in predicting scour for large-scale structures in the 

field (Tafarojnoruz 2012; Tafarojnoruz and Gaudio 2012). To overcome this limitation, numerical 

models may be developed for local erosion simulation (Zhao and Fernando 2007; Zhao et al. 2018); 

such studies, however, are still limited in number and are generally dependent on validation against 

laboratory observations. Furthermore, simulating scour phenomena with a numerical model is 

computationally burdensome: resolving a three-dimensional scour hole up to the point it reaches 

equilibrium may take weeks to months of machine time, which is often impractical for any 

project’s purposes. 
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Soft Computing (SC) techniques have been increasingly adopted to analyze and predict various 

hydraulic phenomena. For instance, the use of Group Method of Data Handling (GMDH), applied 

to the prediction of the longitudinal dispersion coefficient in rivers, offered more accurate 

estimations compared with the available empirical equations (Najafzadeh and Tafarojnoruz 2016); 

a study on the calculation of riprap stone size for protection of a steep slope revealed that 

Evolutionary Polynomial Regression (EPR) is a robust alternative to the empirical mathematical 

formulations (Najafzadeh et al. 2018); numerous studies demonstrated the capability of Artificial 

Intelligence (AI) techniques in predicting local scour depth around hydraulic structures 

(Najafzadeh et al. 2017; Ebtehaj et al. 2018; Najafzadeh and Kargar 2019). 

Scour development adjacent to submarine pipelines is generally caused by the shear stress on the 

seabed associated with waves, currents, or a combination of both. Previous investigations have 

used AI techniques to predict current-induced, and wave-induced scour depth. For current-induced 

scouring, the earliest studies focused on Artificial Neural Networks (ANNs)-based and Genetic 

Programming (GP)-based scour depth prediction around pipelines crossing rivers, producing an 

acceptable prediction performance (Azamathulla and Ghani 2010; Azamathulla and Zakaria 2011). 

(Zanganeh et al. 2011) adopted an optimization-based methodology (i.e., PSO algorithm) to 

mitigate the shortcomings of an Adaptive Neuro Fuzzy Inference System (ANFIS) model for 

current-induced scour prediction. (Yasa and Etemad-Shahidi 2014) derived scour prediction 

formulations for live-bed and clear-water-scour conditions by combining the Model Tree (MT) 

and regression model.  

Utilizing some of the AI methods may lead to derive new prediction equations. These equations 

may generally have a more complicated mathematical structure than those resulting from the 

conventional regression-based approaches, but at the same time may offer more accurate 
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predictions. For instance, (Najafzadeh and Sarkamaryan 2018) proposed Gene-Expression 

Programming (GEP), EPR and MT algorithms to extract mathematical formulations for estimating 

current-induced scour depth below pipelines. Recent studies showed the capabilities of 

Multivariate Adaptive Regression Splines and Support Vector Machine techniques in predicting 

scour depth under pipelines in rivers (Haghiabi 2017, 2019; Parsaie et al. 2019).  

For wave-induced scour, the prediction performance of an ANN approach, one of the most 

common AI models, was assessed in comparison with regression-based formulations 

(Kazeminezhad et al. 2010). Although this study reported accurate predictions using the ANN 

approach, its application is not easy to carry out by engineers. To overcome this limitation, a Model 

Tree (MT) was later developed to derive more easily usable predictive equations (Etemad-Shahidi 

et al. 2011). These studies, as well as other application of different AI approaches, e.g. GMDH 

(Najafzadeh et al. 2014a, b), demonstrate the feasibility of SC models to estimate the scour depth 

caused by waves or currents around submarine pipelines. In particular, the combination of two AI 

techniques has shown to enhance prediction performance: for instance, a GMDH network 

programmed using a GEP technique provided excellent prediction results for scouring under 

pipelines (Najafzadeh and Saberi-Movahed 2018). 

A common AI approach, ANFIS, combines ANN and Fuzzy Inference System (FIS) and is widely 

used to estimate scouring depth around hydraulic structures. Because of the flexibility provided by 

ANNs, ANFIS models can get trained following a complex mathematical mapping between inputs 

and outputs within a nonlinear framework. Moreover, the ‘IF and THEN’ rules, embedded in FIS, 

allow for forecasting the behavior of uncertain systems. In recent years, ANFIS models have been 

applied to estimate the scouring depth at bridge piers and abutments (Akib et al. 2014; Choi et al. 

2017; Moradi et al. 2018), culvert outlets (Azamathulla and Ghani 2011) and long contractions 
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along straight canals (Najafzadeh et al. 2016). It can be therefore expected that the ANFIS 

technique can satisfactorily be used for prediction of scour around pipelines as well. 

Recently, the nature-inspired algorithms, i.e., Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Differential Evolution (DE), and Genetic Algorithm (GA) have been 

introduced for optimization purposes in various engineering problems. Specifically to water 

resources engineering, for instance, ACO algorithm has been used to analyze optimal groundwater 

long-term strategies (Li and Chan Hilton 2005, 2007); PSO algorithm has been adopted to optimize 

water distribution networks (Surco et al. 2018), rainfall-runoff forecasting models (Motahari and 

Mazandaranizadeh 2017) and scour depth estimations (Zanganeh et al. 2011; Najafzadeh 2015). 

The progression of AI modeling in the field of hydraulic engineering indicates the limitations of 

the existed AI models and the enthusiasm for solving those limitations. The primary contribution 

of the present study is to address the internal tuning parameters that are associated with the ANFIS 

model. This has been scientifically evidenced over the recent literature, and thus the main 

motivation of the methodological phase is taken place.  

The goal of this study is to enhance the capability of the ANFIS technique to estimate scouring 

depth under submarine pipelines by combining it with the aforementioned nature-inspired 

optimization algorithms. The prediction accuracy of the proposed methodology is then quantified 

and compared with the most recent formulations obtained with stochastic approaches for wave-

induced pipeline scour depth (Etemad-Shahidi et al. 2011; Sharafati et al. 2018) using indices of 

prediction performance. 

2. Governing variables and scour depth prediction formulations 
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Pipeline failure may occur because of various reasons. Inadequate cover or a low specific gravity 

of the pipeline may both result in pipeline deterioration and eventual failure; therefore, they must 

be considered when designing and laying a pipeline. The focus of this investigation is bed scour, 

which is another possible cause of pipeline failure. The scouring process around any marine or 

river structure is a complex phenomenon, and various physical factors affect its development. 

Several governing variables regarding water, pipeline and seabed interaction are typically 

considered when predicting scour depth. Previous studies (Sumer and Fredsøe 1990; 

Kazeminezhad et al. 2010; Najafzadeh et al. 2014a) showed that the variables affecting the wave-

induced scour under a pipeline are mainly related to the fluid (herein water), flow regime, seabed 

sediment and pipeline properties. In general, the maximum equilibrium scour depth at a submarine 

pipeline, 𝑆, may be expressed with the following unknown functional relationship, 𝑓1: 

𝑆 =  𝑓1(𝜌, 𝜌𝑠 , 𝑔, 𝐷, 𝑑50, 𝑈𝑚, 𝑢∗𝑤, 𝑇, 𝑒, 𝐻, 𝜇) (1) 

where 𝜌 and 𝜌𝑠 are water and sediment mass densities, 𝑔 is the acceleration of gravity, 𝐷 is the 

pipe diameter, 𝑑50 is the median diameter of the sediment particles; 𝑈𝑚, 𝑢∗𝑤 and 𝑇 are, 

respectively, the maximum magnitude of the undisturbed orbital fluid velocity at the bed, wave 

friction velocity and wave period, respectively; 𝑒, 𝐻 and 𝜇 denote the gap between the pipeline 

and the initial bed, wave height and dynamic viscosity of water, respectively. Among the 

parameters within the above equation, 𝑈𝑚 and 𝑇 represent the wave characteristics for any wave-

induced scour condition around a pipeline.  

Through dimensional analysis, the above relationship can be rewritten in terms of dimensionless 

parameters. For the case of a pipeline with a smooth outer surface (Najafzadeh et al. 2014a): 

𝑆/𝐷 =  𝑓2(𝑅, 𝑅𝑑 , 𝑒/𝐷, 𝜃, 𝐾𝐶) (2) 
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where 𝑓2 is an unknown function, 𝑅 and 𝑅𝑑 represent Reynolds number and sediment grain 

Reynolds number, respectively, which are expressed as 

𝑅 =  
𝜌𝑈𝑚𝐷

𝜇
 (3) 

𝑅𝑑 = 
𝜌𝑢∗𝑤𝑑50

𝜇
 (4) 

and the Shields number, 𝜃, and the Keulegan–Carpenter number, 𝐾𝐶, are expressed as 

𝜃 =  
 𝑢∗𝑤

2

(
𝜌𝑠

𝜌 − 1)𝑔𝑑50

 (5) 

𝐾𝐶 =
𝑈𝑚𝑇

𝐷
 (6) 

Both 𝐾𝐶 and 𝑅 depend on the flow field close to the pipeline, whereas 𝑅𝑑 and 𝜃 also take into 

account the seabed characteristics. Because of the relationship of the Reynolds number parameters, 

i.e. 𝑅  and 𝑅𝑑, with the dimensionless variables 𝜃  and 𝐾𝐶  and the typical existence of turbulent 

flow field conditions around pipelines, the Reynolds number parameters can be neglected and Eq. 

(2) is simplified as in the following functional relationship with unknown function 𝑓3 

(Kazeminezhad et al. 2010; Etemad-Shahidi et al. 2011; Najafzadeh et al. 2014a; Sharafati et al. 

2018): 

𝑆/𝐷 =  𝑓3(𝑒/𝐷, 𝜃, 𝐾𝐶) (7) 

Among the dimensionless parameters in the above equation, the magnitude of 𝐾𝐶 plays a critical 

role in the resulting maximum scour depth (Lucassen 1984; Sumer and Fredsøe 1990). The 

influence is so notable that (Çevik and Yüksel 1999) proposed a simple scour depth prediction 

equation based on  𝐾𝐶 as the only effective parameter on 𝑆/𝐷, where no gap exists between the 

pipeline and the bed: 
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𝑆

𝐷
= 0.11𝐾𝐶0.45 (8) 

Although for the estimation of maximum scour depth beneath a pipeline placed above the seabed 

level other researchers (Sumer and Fredsøe 2002; Mousavi et al. 2009) derived predictive formulas 

neglecting 𝜃, a more accurate scour depth estimation is obtained if all the dimensionless 

parameters in Eq. (7) are included. To this end, based on a MT approach, (Etemad-Shahidi et al. 

2011) derived a set of mathematical formulations to predict the scouring depth by considering all 

the parameters in Eq. (7).  

Recently, Sharafati et al. (2018) revised the coefficients and exponents of Etemad-Shahidi et al. 

(2011)’s formulations, assuming that the uncertainty associated with the dataset they utilized is the 

primary source of the variability of the parameters. The uncertainty analysis was performed using 

two stochastic approaches: Generalized Likelihood Uncertainty Estimation (GLUE) and 

Sequential Uncertainty Fitting (SUFI). Based on the GLUE method, which provided more accurate 

results than SUFI, Sharafati et al. (2018) proposed the following formulae for clear-water (Eq. 9) 

and live-bed scour conditions (Eq. 10): 

𝑆

𝐷
= 4.17 𝐾𝐶0.72𝜃1.55 exp(−3.9 𝑒 𝐷⁄ )   𝑓𝑜𝑟  𝜃 ≤ 0.064 (9) 

𝑆

𝐷
= {

0.149𝐾𝐶0.42𝜃0.08 exp(−0.472 𝑒 𝐷⁄ )    𝑓𝑜𝑟   𝜃 > 0.064  𝑎𝑛𝑑  𝑒 𝐷⁄ ≤ 0.145

0.073𝐾𝐶0.45𝜃0.17 exp(−0.094 𝑒 𝐷⁄ )    𝑓𝑜𝑟   𝜃 > 0.064  𝑎𝑛𝑑  𝑒 𝐷⁄ > 0.145
 (10) 

Equations (9) and (10) are the latest and most comprehensive equations for estimation of wave-

induced ultimate scour depth beneath pipelines. In the present investigation, predictions obtained 

with the new proposed methodology are compared with the results of these equations, as well as 

the equations by Etemad-Shahidi et al. (2011). The prediction improvement provided by the new 
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model is discussed, and the uncertainty due to the input parameters and the model structure is 

assessed in detail. 

3. Proposed hybrid artificial intelligence models 

The recent years have seen a noticeable advancement of SC approaches (Sharafati et al. 2019). 

Such methods are suitable for solving complex problems characterized by a high level of non-

linearity and non-stationarity (Yaseen et al. 2015). Hybridized AI-global optimization models have 

recently gained popularity (Ghorbani et al. 2017). Among them, the performance of nature bio-

inspired models has been the best owing to the AI models-associated hyper-parameters (Maier et 

al. 2014).  

This study hybridized four nature bio-inspired algorithms, namely PSO, ACO, DE and GA, with 

an ANFIS model for wave-induced maximum scour depth prediction at pipelines. Figure 1 outlines 

the developed models in the form of flowcharts. 

[Fig 1] 

3.1.ANFIS model 

ANFIS models are very well-established AI models based on fuzzy logic (Jang 1996) and their 

popularity is because they allow input variables (attributes) to execute numerical approximation 

of the internal mechanism relationships of a physical phenomenon (Yaseen et al. 2017). In essence, 

ANFIS models boost the learning capability of a classic ANN, which develops rules to map a set 

of inputs to an output value based on a set of fuzzy rules presented by Zadeh (1965). The fuzzy 

logic component is exceptionally beneficial as it aids in optimal solution generation (in terms of 

prediction performance) from imprecise/noisy input attributes.  
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The fuzzy logic approach is based on allowing each element of a dataset to fall in a particular class 

(set) partially, and its membership degree is described by a membership function. Achieving an 

accurate learning process based on knowledge and appropriate related experience requires optimal 

selection of the shape of the membership functions, knowledge and fuzzy rules (Kisi and Yaseen 

2019).  

The general five-layer structure of an ANFIS model is illustrated in Figure 2, describing the case 

of two input parameters and an output variable. The ANFIS rules are expressed through the 

following ‘if’ and ‘then’ functions: 

 Rule #1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (11) 

 Rule #2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (12) 

where (A1&A2) and (B1&B2) are linguistic terms of the inputs 𝑥 and 𝑦, and 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2 

are coefficients of linear equations. 

[Fig 2] 

Within the first layer of the model, each node is considered as an adaptive node with the following 

node function 

 For input 𝑥:      𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑥),            𝑖 = 1,2 (13) 

 For input 𝑦:      𝑂1,𝑖 = 𝜇𝐵𝑖
(𝑦),            𝑖 = 1,2 (14) 

where the subscript “1” stands for “the first layer”, 𝑥 or 𝑦 represents the input value to the node 𝑖 

and 𝜇𝐴𝑖
 and 𝜇𝐵𝑖

 denote the membership functions representing the linguistic term 𝐴𝑖 (for input 
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value 𝑥) and 𝐵𝑖 (for input value 𝑦), respectively. Various types of membership functions have 

earlier been reported in the literature, such as trapezoidal, Gaussian, and triangular; however, this 

study adopted the Gaussian function, which is expressed thus: 

 
𝜇𝐴𝑖

(𝑥) = exp (−(
𝑥 − 𝑎𝑖

𝑏𝑖
)
2

) 
(15) 

 
𝜇𝐵𝑖

(𝑥) = exp (−(
𝑦 − 𝑐𝑖

𝑑𝑖
)
2

) 
(16) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖, are distribution variables.  

The second model layer has each node fixed while the model output is computed as 

 𝑂2,𝑖 = 𝑊𝑖  =  𝜇𝐴𝑖
(𝑥) ∗  𝜇𝐵𝑖

(𝑦),         𝑖 = 1,2 (17) 

where the subscript “2” stands for “second layer” and 𝑊𝑖 are the rules’ weights.  

Within the third layer of the model, each node computes the ratio of the corresponding rule weight 

and the sum of the weights as follows: 

 
𝑂3,𝑖 = 𝑊𝑖

̅̅ ̅  =
𝑊𝑖

𝑊1 + 𝑊2
,         𝑖 = 1,2 

(18) 

In the fourth layer, each node is adaptive, and the output is computed as  

 𝑂4,𝑖 = 𝑊𝑖
̅̅ ̅𝑓𝑖  =  𝑊𝑖

̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖),       𝑖 = 1,2 (19) 

where 𝑊𝑖
̅̅ ̅ stands for the third layer output and the coefficients 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are updated during the 

training based on the training set.  

In the fifth layer (the final one), the circulation of the nodes is carried out as follows: 
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𝑂5 = ∑ 𝑊𝑖

̅̅ ̅

𝑖=1,2

𝑓𝑖 = 
∑ 𝑊𝑖𝑖 𝑓𝑖
∑ 𝑊𝑖𝑖

       
(20) 

3.2.Optimization algorithms 

The optimization of the rules that map the inputs to an output value is typically done with trial and 

error procedures and the ANFIS model utilizing this type of optimization is referred to as ‘classic’ 

ANFIS model. Such trial and error procedures have the disadvantage of often being time-

consuming and can lead to overfitting. These issues can be mitigated by using global optimization 

algorithms. The methodologies for optimization used in this investigation are outlined in the 

following sub-sections. 

3.2.1. Particle Swarm Optimization (PSO) algorithm 

The PSO technique is a bio-based optimizer first introduced by Eberhart & Kennedy (1995); it was 

inspired by the pattern of movement of natural creatures like such as fish, insects, and birds. This 

methodology models each candidate solution to an optimization problem as a particle flowing in 

the search domain of the optimization problem. The location (position) and speed of every single 

particle are adjusted following its own experience and the neighboring particles.  

The formulation to update the location of particle i is 

 𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 + 𝑉𝑖
𝑡+1 (21) 

where 𝑃𝑖
𝑡+1 is the position of the particle at time  t+1 and and 𝑃𝑖

𝑡 is the position of the particle at 

time t; 𝑉𝑖
𝑡+1 is the velocity of the particle at time  t+1, which is updated thus 
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 𝑉𝑖
𝑡+1 = 𝑉𝑖

𝑡 + 𝑐1𝑈1
𝑡(𝑃𝐵𝑖

𝑡 − 𝑃𝑖
𝑡) + 𝑐2𝑈2

𝑡(𝐺𝐵𝑖
𝑡 − 𝑃𝑖

𝑡) (22) 

where  𝑉𝑖
𝑡 is the particle velocity at time  t,  𝑐1 and 𝑐2 are acceleration coefficients, 𝑈1

𝑡 and 𝑈2
𝑡 are 

random values varying between 0 and 1, and 𝑃𝐵𝑖
𝑡 is the personal best position while 𝐺𝐵𝑖

𝑡 is the 

global best position, in optimization terms, of the ith particle at time t. The parameters used for the 

application of the PSO optimization technique are summarized in Table 1. 

3.2.2. Ant Colony Optimization (ACO) algorithm 

The ACO was first presented by Dorigo & Di Caro (Dorigo and Di Caro 1999) as an optimizer 

which has undergone several modifications to suit multiple engineering applications (Weise 2009; 

Afshar et al. 2015; Ajay Adithyan et al. 2018). The ACO algorithm is an optimization technique 

that is most effective in addressing both dynamic and static problems in the field of engineering 

(Dorigo et al. 1996; Blum 2005; Dorigo and Blum 2005; Dorigo and Socha 2007). 

Although colonies of ants are composed of simple individuals, they are considered to have one of 

the most well-organized structures in nature (Guo and Zhu 2012). The stigmergy mechanism 

which facilitates self-organization controls activities like foraging, brood sorting, co-operative 

transport, and division of labor (Dorigo and Di Caro 1999). Stigmergy in ant colonies is based on 

the pheromone track left by each ant, which affects the actions of all the other ants. The ACO 

algorithm, inspired by this concept, can find the best solution in an optimization problem through 

forward & backward movements, as well as a step-wise decision process. The parameters used for 

the application of the ACO optimization technique are summarized in Table 1. 

3.2.3. Differential Evolution (DE) algorithm 
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The DE methodology is a stochastic nature-inspired framework for solving problems that are 

considered highly nonlinear & multi-dimensional (Suribabu 2010; Chen and Chau 2016); it was 

first proposed by Storn and Price (Storn and Price 1995). The optimization of a function with 

population size k and n real variables first requires the formulation of the vectors in the following 

manner: 

 𝑥𝑖,𝐺  =  [𝑥1,𝑖,𝐺 , 𝑥2,𝑖,𝐺 , . . . 𝑥𝑛,𝑖,𝐺]          𝑖 =  1, 2, . . . , 𝑘 (23) 

where G represents the number of generations. Each parameter has an upper & lower boundary 

defines as follows: 

 𝑥𝑗
𝐿  ≤  𝑥𝑗,𝑖,1  ≤  𝑥𝑗

𝑈 (24) 

Therefore, identity probability is invoked in setting the initial magnitudes of the variables. The 

parameters used for the application of the DE optimization technique are summarized in Table 1. 

3.2.4. Genetic Algorithm (GA) 

GA algorithm is an evolution-based algorithm that was developed based on the Darwins principle 

of natural selection for addressing numerous optimization problems (Yang and Honavar 1998; 

Maulik and Bandyopadhyay 2000; Deb et al. 2002; Levasseur et al. 2008; Iba and Aranha 2012; 

Kubat 2017)(Koza 1994). The algorithm is initialized by generating an initial random population 

of individual solutions to the considered problem. The goodness of fit for each solution is then 

assessed using suitable metrics, and crossover and mutation operators are employed to generate 

the next generation of individual solutions and allow the population to evolve towards an optimal 

solution. The parameters used for the application of the GA optimization technique are 

summarized in Table 1. 
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[Table 1] 

3.2.5. Optimization of parameters 

For live-bed conditions, two Gaussian and two linear functions are defined as the membership 

functions of the input and output variables, respectively. For clear-water conditions, one Gaussian 

and one linear function are defined as membership functions of the input and output variables, 

respectively. For instance, for a combination of three input variables, the total number of 

parameters to be optimized is 20 (12 antecedent – input-related – parameters and 8 consequent – 

output-related – parameters) for live-bed conditions and 10 (6 antecedent parameters and 4 

consequent parameters) for clear-water conditions. The number of membership functions 

employed in this study is selected based on the available number of data for the training phase, 

and the number of parameters to optimize is less than the number of training data. Table 2 shows 

an example of optimized parameters for the ANFIS-PSO model with three input variables.  

[Table 2] 

3.3.Description of the proposed predictive models  

Several combinations of input variables (
𝑒

𝐷
, 𝜃 𝑎𝑛𝑑 𝐾𝐶) are considered to identify the optimal 

predictive model for wave-induced pipeline scour depth under live-bed as well as clear-water 

conditions. Individually, seven input combinations, called 𝑀1 to 𝑀7, are evaluated (Table 3). In 

total, 35 different predictive models are assessed, employing different predictive approaches 

(𝐴𝑁𝐹𝐼𝑆, 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂, 𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂, 𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸 and 𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴) and different input 

variable combinations (𝑀1 to 𝑀7).  

[Table 3] 
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4. Dataset for the analysis  

To develop the mentioned AI models, laboratory experimental datasets with a total of 69 scour 

depth observations from four sources are collected (Lucassen 1984; Sumer and Fredsøe 1990; Pu 

et al. 2001; Mousavi et al. 2009). The datasets are deemed suitable for the present study because 

of the following: all the datasets were collected for conditions characterized by KC < 100, which 

imply the pipelines were exposed to the wind wave, the pipe surface was hydraulically-smooth, 

and the current induced by waves was perpendicular to the pipe; the experiments were performed 

under a wide range of Reynolds numbers, reproducing field conditions; and the channel width in 

all the tests was large enough to neglect the influence of sidewalls. 

The analysis is performed separately for clear-water (21 observations), and live-bed (48 

observations) scour conditions. The training-testing data are provided based on the 31-17 (in live-

bed condition) and 13-8 (in clear-water condition) observations. The data division adopted 

between training and testing phases is the result of a trial and error search to attain the best 

performance. Table 4 summarizes the statistical characteristics of the dimensionless parameters 

e/D, θ, KC and S/D for the overall dataset considered; the range of variation of the parameters is 

wide enough to obtain robust results. 

[Table 4] 

5. Indices of prediction performance 

Four different indices, i.e. Root Mean Square Error (𝑅𝑀𝑆𝐸) (Salih et al. 2019, 2020), Mean 

Absolute Error (𝑀𝐴𝐸)(Hai et al. 2020), Correlation of determination (𝑅2) (Sharafati et al. 2020a) 

and Willmott’s Index (WI) (Malik et al. 2020; Mohammed et al. 2020), are computed to measure 
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the adequacy of the predictive models for wave-induced pipeline scour depth. The indices are 

calculated as follows:  

 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑇
∑ ((

𝑆

𝐷
)
𝑂𝑏𝑠,𝑗

− (
𝑆

𝐷
)
𝑆𝑖𝑚,𝑗

)

2𝑁𝑇

𝑗=1
 (25) 

 

 

 𝑀𝐴𝐸 =
1

𝑁𝑇
∑ |(

𝑆

𝐷
)

𝑂𝑏𝑠,𝑗
− (

𝑆

𝐷
)
𝑆𝑖𝑚,𝑗

|
𝑁𝑇

𝑗=1
 (26) 
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𝑆
𝐷

)
𝑂𝑏𝑠,𝑗

− (
𝑆
𝐷

)
𝑂𝑏𝑠,𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) ((

𝑆
𝐷

)
𝑆𝑖𝑚,𝑗

− (
𝑆
𝐷

)
𝑆𝑖𝑚,𝑗
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𝑁𝑇
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𝐷
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𝑁𝑇
𝑗=1

∑ ((
𝑆
𝐷

)
𝑆𝑖𝑚,𝑗

− (
𝑆
𝐷

)
𝑆𝑖𝑚,𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2
𝑁𝑇
𝑗=1

 
(27) 

   

 𝑊𝐼 = 1 −

[
 
 
 
 ∑ ((

𝑆
𝐷)

𝑂𝑏𝑠,𝑗
− (

𝑆
𝐷)

𝑆𝑖𝑚,𝑗
)
2

𝑁𝑇
𝑖=1

∑ (|(
𝑆
𝐷)

𝑆𝑖𝑚,𝑗
− (

𝑆
𝐷)

𝑂𝑏𝑠,𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
| + |(

𝑆
𝐷)

𝑂𝑏𝑠,𝑗
− (

𝑆
𝐷)

𝑂𝑏𝑠,𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
|)

2
𝑁𝑇
𝑖=1 ]

 
 
 
 

 (28) 

   

where (
𝑆

𝐷
)
𝑂𝑏𝑠

 and (
𝑆

𝐷
)
𝑆𝑖𝑚

 are observed and predicted non-dimensional scour depth magnitudes, 

respectively, while (
𝑆

𝐷
)
𝑂𝑏𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
 is the observed non-dimensional scour depth mean magnitude while 

and (
𝑆

𝐷
)
𝑆𝑖𝑚

 
̅̅ ̅̅ ̅̅ ̅̅ ̅

is the predicted non-dimensional scour depth mean magnitude. NT stands for the 

number of considered datasets. The smaller 𝑅𝑀𝑆𝐸 or 𝑀𝐴𝐸, or the closer to 1.0 𝑅2 or 𝑊𝐼 are, the 

better the prediction performance. 

To quantify the performance improvement offered by the ANFIS models optimized using the 

nature-inspired algorithms compared with the classic ANFIS model, the Improvement Index (IM) 

is calculated in the testing stage (Sharafati et al. 2020b) as follows: 

  (29) 
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 𝐼𝑀𝑡𝑒𝑠𝑡 = 
(𝐼𝑀𝑡𝑒𝑠𝑡

𝑅𝑀𝑆𝐸 + 𝐼𝑀𝑡𝑒𝑠𝑡
𝑀𝐴𝐸 + 𝐼𝑀𝑡𝑒𝑠𝑡

𝑅2
+ 𝐼𝑀𝑡𝑒𝑠𝑡

𝑊𝐼 )

4
 

  

   

where 

  

(30)  𝐼𝑀𝑡𝑒𝑠𝑡
𝑅𝑀𝑆𝐸 = 

(𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
ANFIS − 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡

𝑀𝑜𝑑𝑒𝑙)

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
ANFIS

× 100 

  

  

(31)  𝐼𝑀𝑡𝑒𝑠𝑡
𝑀𝐴𝐸 = 

(𝑀𝐴𝐸𝑡𝑒𝑠𝑡
ANFIS − 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑀𝑜𝑑𝑒𝑙)

𝑀𝐴𝐸𝑡𝑒𝑠𝑡
ANFIS

× 100 

  

  

(32)  𝐼𝑀𝑡𝑒𝑠𝑡
𝑅2

= 
(𝑅2

𝑡𝑒𝑠𝑡
𝑀𝑜𝑑𝑒𝑙

− 𝑅2
𝑡𝑒𝑠𝑡
ANFIS

)

𝑅2
𝑡𝑒𝑠𝑡
ANFIS × 100 

  

   

 𝐼𝑀𝑡𝑒𝑠𝑡
𝑊𝐼 = 

(𝑊𝐼𝑡𝑒𝑠𝑡
𝑀𝑜𝑑𝑒𝑙 − 𝑊𝐼𝑡𝑒𝑠𝑡

ANFIS)

𝑊𝐼𝑡𝑒𝑠𝑡
ANFIS

× 100 (33) 

   

where, 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
ANFIS , 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

ANFIS , 𝑅2
𝑡𝑒𝑠𝑡
ANFIS

, and 𝑊𝐼𝑡𝑒𝑠𝑡
ANFIS  are, respectively, the computed 𝑅𝑀𝑆𝐸 , 

𝑀𝐴𝐸 , 𝑅2 , and 𝑊𝐼 for the classic ANFIS model, while 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡
𝑀𝑜𝑑𝑒𝑙 , 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑀𝑜𝑑𝑒𝑙 , 𝑅2
𝑡𝑒𝑠𝑡
𝑀𝑜𝑑𝑒𝑙

, and 

𝑊𝐼𝑡𝑒𝑠𝑡
𝑀𝑜𝑑𝑒𝑙 are the computed indices for the models optimized using the nature-inspired algorithms, 

for the testing stage. 

6. Uncertainty analysis 

In this study, two sources of uncertainty attributable to the model structure and the input variables 

are investigated. To quantify the uncertainty of the model structure, a set of five predicted scour 

depth values in the testing phase (i.e., predicted set by the aforementioned hybridized models) is 

assigned to each observed scour depth. For each predicted set, the mean and standard deviation are 

computed to describe a normal distribution function. Using this distribution, 1000 scour depth 
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values are generated through the ‘Monte Carlo’ simulation (MCS) technique. The MCS technique 

generally quantifies the uncertainty associated with random variables based on their Probability 

Density Functions (PDFs). A set of input variables is generated in each iteration to simulate a 

system (model). Then, the model outputs are generated randomly based on the obtained stochastic 

input variables. This process is repeated for an appropriate number of iterations to achieve a 

reliable description of the output variability due to the different predictive models adopted 

(Sharafati and Zahabiyoun 2014; Sharafati and Azamathulla 2018). Recent studies on scouring 

have used the MCS technique to quantify model output uncertainty, confirming this technique as 

a robust method to assess the uncertainty associated with scouring prediction (Khalid et al. 2019; 

Salamatian and Zarrati 2019; Homaei and Najafzadeh 2020; Wu and Luo 2020). To quantify the 

uncertainty of scour depth prediction, the 95% prediction confidence interval (i.e., the interval 

between the 97.5% and the 2.5% quantiles), called the ‘95 percent prediction uncertainty’ (95 

PPU), is extracted using the generated scour depths for each observed scour depth. Individually, 

the uncertainty is measured using the 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 index as follows (Sharafati and Azamathulla 

2018):  

 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑑𝑥

𝜎𝑥
  (34) 

 

where 𝜎𝑥 denotes the standard deviation of the observed data and dx is computed as follows 

𝑑𝑥 = ∑( 𝑈𝐿
𝑖 − 𝐿𝐿

𝑖 )/𝑘

𝑘

𝑖=1

 

(35) 
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where 𝑘 stands for the number of observed data and  𝑈𝐿
𝑖  and 𝐿𝐿

𝑖  denote the 𝑖𝑡ℎ value of upper 

quantile (i.e., 97.5%) and lower quantile (i.e., 2.5%) of the 95 PPU band, respectively. This 

procedure for computation of the 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 index is carried out in this study for both live-bed 

and clear-water scour conditions. 

To evaluate the uncertainty associated with the input variables, for each observed scour depth, the 

predicted scour depth is computed in the testing phase for a single model but multiple input 

combinations (𝑀1 to 𝑀7). Then, the uncertainty associated with the input variables is quantified 

using the same 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 approach described above for the uncertainty related to the model 

structure. Again, this procedure is carried out for both live-bed and clear-water conditions. 

7. Results and Discussion 

7.1. Assessment of the proposed predictive models 

This study examines several ANFIS models hybridized with the different nature-inspired 

algorithms presented above. Each model uses a different tuning process to obtain the appropriate 

ANFIS model parameters. Hence, the models provide different prediction performances based on 

their tuning processes. Comparing the performance metrics of the models is a way to assess the 

impact of their tuning processes on prediction performance. Specifically, to analyze the prediction 

performance of the mentioned 35 different predictive models (𝐴𝑁𝐹𝐼𝑆, 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂, 𝐴𝑁𝐹𝐼𝑆 −

𝐴𝐶𝑂, 𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸 and 𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴 for the input combinations 𝑀1 to 𝑀7), the selected 

prediction performance indices (𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑅2 𝑎𝑛𝑑 𝑊𝐼) are computed for training, and testing 

phases and live-bed or clear-water scour conditions (Tables 5-9). 

[Table 5-9] 

Considering only the classic ANFIS model (see Table 5),  𝐴𝑁𝐹𝐼𝑆 − 𝑀5 exhibits the best 
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prediction performance for live-bed conditions (𝑅2
𝑡𝑟𝑎𝑖𝑛 = 0.955, 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0.025 for 

training and 𝑅2
𝑡𝑒𝑠𝑡 = 0.568 , 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = 0.058 for testing) among all ANFIS prediction models. 

For the clear-water conditions, no clearly preferable ANFIS model emerges in training and testing 

phases, although  𝐴𝑁𝐹𝐼𝑆 − 𝑀4 (𝑅2
𝑡𝑟𝑎𝑖𝑛 = 0.998, 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0.013 for training and 𝑅2

𝑡𝑒𝑠𝑡 =

0.391, 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = 0.116 for testing) shows the best performance. For both the clear-water and 

live-bed scour conditions, predictions with higher accuracy are resulted from the training phase 

than the testing phase. Overall, the classic ANFIS model is not robust enough to predict wave-

induced scour around the pipelines.  

Table 6 indicates that the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 model offers more accurate predictions than the classic 

ANFIS model and the best prediction performance among all models considered. In particular, 

𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 shows the best prediction performance for both live-bed conditions 

(𝑅2
𝑡𝑟𝑎𝑖𝑛 = 0.957, 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0.024 for training and 𝑅2

𝑡𝑒𝑠𝑡 = 0.832, 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = 0.032 for 

testing) and clear-water conditions (𝑅2
𝑡𝑟𝑎𝑖𝑛 = 0.999, 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0.0048 for training and 

𝑅2
𝑡𝑒𝑠𝑡 = 0.984 , 𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 = 0.014 for testing).   

Tables 7-9 (relative to ANFIS-ACO, ANFIS-DE and ANFIS-GA) show that the input variable 

combination that results in the best prediction performance is different for live-bed and clear-water 

conditions. The 𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂 − 𝑀7 (𝑅2
𝑡𝑒𝑠𝑡 = 0.324), 𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸 − 𝑀5 (𝑅2

𝑡𝑒𝑠𝑡 = 0.623) 

and 𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴 − 𝑀5 (𝑅2
𝑡𝑒𝑠𝑡 = 0.559) models are the best performing models for live-bed 

conditions, whereas the 𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂 − 𝑀5 (𝑅2
𝑡𝑒𝑠𝑡 = 0.71), 𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸 − 𝑀7 (𝑅2

𝑡𝑒𝑠𝑡 =

0.692) and 𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴 − 𝑀7 (𝑅2
𝑡𝑒𝑠𝑡 = 0.433) models are the best performing models for 

clear-water conditions.  

It must be noted that Tables 5-9 include both error indices (e.g., RMSE and MAE) and similarity 
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indices (e.g., R2 and WI). For instance, the ANFIS-M1 model in live-bed conditions results in 

0.072, 0.048, 0.623 and 0.876 for RMSE, MAE, R2 and WI, respectively, in the training phase, 

and 0.077, 0.054, 0.043, 0.552, respectively, in the testing phase (Table 5). It can, therefore, be 

observed that the prediction performance is reduced in testing phase by 6.94%, 12.50%, 93.10% 

and 36.99%, judging respectively from RMSE, MAE, R2 and WI. This means that, for the case of 

the ANFIS-M1 model, the prediction performance based on the error indices is reduced from 

training to testing phase less significantly than the prediction performance based on the similarity 

indices. For the ANFIS-M5 and ANFIS-M7 models, instead, the error indices show a more 

significant prediction performance reduction than the similarity indices. This behavior excludes 

an issue of overfitting in our approach because overfitting would produce the same pattern of 

prediction performance reduction for the testing phase in both error and similarity indices. The 

low prediction performance indices, when observed in the testing phase, reflect instead the 

limitations associated with the dataset sample size and the prediction capability of the model 

considered. For the best predictive model, ANFIS-PSO-M7, the prediction performance reduction 

from training to testing phase is quantified, using the RMSE and MAE indices, by a decrease in 

performance of 25% and 30.8%, respectively (in live-bed conditions), and a decrease of 65.7% 

and 75.8%, respectively (in clear-water conditions). Considering the R2 and WI indices, the 

decrease in performance is 15% and 7.2%, respectively, in live-bed conditions, and 1.6% and 

0.49%, respectively, in clear-water conditions. Overall, the error metrics (RMSE and MAE) 

obtained in testing phase indicate a moderate prediction performance reduction (49.3%), while for 

the similarity metrics (R2 and WI) the reduction (6.1%) is negligible. 

Our findings indicate that the classic ANFIS model is not accurate in predicting the wave-induced 

scour depth around pipelines, especially in clear-water conditions (R2 = 0.39 for testing phase) for 
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which the models ANFIS-PSO (R2 =0.98), ANFIS-ACO (R2 =0.71), and ANFIS-DE (R2 = 0.69) 

provide a significantly better prediction performance, as a result of the nature-inspired 

optimization algorithms introduced in this research for the ANFIS model. 

The best prediction performance indices for each model in the testing phase is presented in Table 

10.  

As mentioned, the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 model with the input variable combination 𝑀7 (all the three 

variables, 
𝑒

𝐷
, 𝜃 𝑎𝑛𝑑 𝐾𝐶, included) is the model resulting in the best prediction performance for 

both live-bed and clear-water conditions. Furthermore, the obtained 𝐼𝑀 values (also shown in 

Table 10) quantify the significant improvement in prediction provided by all the ANFIS models 

optimized using the nature-inspired algorithms compared with the classic ANFIS  model for both 

live-bead and clear-water conditions in the testing phase, with the most significant improvement 

obtained with the ANFIS-PSO model (𝐼𝑀𝐿𝑖𝑣𝑒−𝑏𝑒𝑑 = 35% and 𝐼𝑀𝐶𝑙𝑒𝑎−𝑤𝑎𝑡𝑒𝑟 = 90%, for testing 

phase). 

[Table 10] 

A visual performance comparison between the different models is provided in the heat map in 

Figure 3, based on the standardized 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑅2, and 𝑊𝐼 performance indices. The RMSE 

and MAE indices are standardized using the formula (
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
), while the R2 and WI indices are 

standardized using the formula (
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
), where 𝑋 is the index value. The resulting standardized 

values are therefore within the range 0 to 1 with the best index value having a standardized value 

of 1. As mentioned, the model 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 (dark blue column) has the best performance 

indices for both live-bed and clear-water conditions. In contrast, 𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂 − 𝑀7  and 
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𝐴𝑁𝐹𝐼𝑆 − 𝑀4  (red columns) offer the lowest performance for live-bed and clear-water conditions, 

respectively. 

[Fig. 3] 

The prediction performance is also evaluated on two-dimensional scatter plots comparing the 

simulated and the observed values of scour depth (Figure 4), where the identity (1:1) line is a 

reference to visualize how close the simulated and observed values are. For live-bed conditions 

(Figure 4a), the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7  points are generally the closest to the 1:1 line and show the 

most linear pattern (coefficient of determination 𝑅2 = 0.832), whereas the points corresponding 

to the other models are noticeably more scattered (𝑅2 = 0.324~0.623). Likewise, for clear-water 

conditions, the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 points are the nearest to the 1:1 line with 𝑅2 = 0.984, 

whereas most of the points for the other models suggest overestimation of the predicted scour 

depth. 

 [Fig. 4] 

Models are also comparatively assessed on a Taylor diagram (Figure 5), considering RMSE, R 

and normalized standard deviation (Taylor 2001). Again, in the diagram the model with the best 

predictions (i.e., the closest points to the points labeled “observed”) is the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 

for both live-bed and clear-water scour conditions. 

[Fig. 5] 

The variability of the measured and predicted scour depth magnitudes is quantified and compared 

for the different models by computing and plotting the quantiles 𝑄25%, 𝑄50% and 𝑄75% (Figure 6). 

The median scour depth predicted by the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 model is the closest to the median 
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observed value for both live-bed conditions (𝑄50%,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0.24, 𝑄50%,𝐴𝑁𝐹𝐼𝑆−𝑃𝑆𝑂−𝑀7 = 0.23) 

and clear-water conditions ( 𝑄50%,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0.11, 𝑄50%,𝐴𝑁𝐹𝐼𝑆−𝑃𝑆𝑂−𝑀7 = 0.14 ). From a 

comparison of the interquartile range (𝐼𝑄𝑅), which is the difference between Q75% and Q25%, it 

appears that the predictive models underestimate the variability of the observed data in live-bed 

conditions. In contrast, they either under- or overestimate the measured values in clear-water 

conditions.  

 [Fig. 6] 

7.2. Comparison of the proposed predictive models with the available models in the literature 

Besides assessing the performance of the proposed models against observed values of scour depth, 

a comparison with other recently developed methodologies from literature is carried out. 

Specifically, two recent studies are considered (Etemad-Shahidi et al. 2011; Sharafati et al. 2018). 

Etemad-Shahidi et al. (2011) proposed several MT-based equations to predict wave-induced scour 

depth beneath pipelines in clear-water (Eq. 36) and live-bed (Eqs. 37 and 38) conditions as follows: 

 𝑆

𝐷
= 3.344𝐾𝐶0.512𝜃1.296𝑒𝑥𝑝(−2.32 𝑒

𝐷⁄ )   𝑓𝑜𝑟     𝜃 ≤ 0.064 
(36) 

 𝑆

𝐷
= 0.149𝐾𝐶0.477𝜃0.121𝑒𝑥𝑝(−0.472 𝑒

𝐷⁄ )      𝑓𝑜𝑟     𝜃 > 0.064  𝑎𝑛𝑑 𝑒 𝐷⁄ ≤ 0.145 
(37) 

 𝑆

𝐷
= 0.048𝐾𝐶0.782𝜃0.121𝑒𝑥𝑝(−0.942 𝑒

𝐷⁄ )   𝑓𝑜𝑟     𝜃 > 0.064  𝑎𝑛𝑑 𝑒 𝐷⁄ > 0.145 
(38) 

Sharafati et al. (2018) improved Etemad-Shahidi et al. (2011)’s equations using the stochastic 

GLUE and SUFI approaches and developed Eqs. (9) and (10). The best proposed model (𝐴𝑁𝐹𝐼𝑆 −

𝑃𝑆𝑂 − 𝑀7) was compared with the mentioned formulations from literature using prediction 

performance indices (Table 11) and several visual performance comparisons (Figure 7).    

In the two-dimensional scatter plots (Figure 7a,b) the proposed 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7  model points 
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are closer to the 1:1 line and show a more linear pattern (coefficient of determination closer to 

unity) compared to Etemad-Shahidi et al. (2011)’s and Sharafati et al. (2018)’s models for both 

live-bed and clear-water scour conditions. The better performance of the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 − 𝑀7 

model is also confirmed by the heat maps (Figure 7c,d) and the Taylor diagrams (Figure 7e,f). 

Although the ANFIS-PSO model provides a better prediction performance compared to the 

formulas obtained by Etemad-Shahidi et al. (2011) and Sharafati et al. (2018), its additional 

structure complexity may potentially hinder its application by some practitioners in the field of 

scouring. Indeed, the ANFIS model comprises several unknown parameters which needs tuning 

with an optimization algorithm such as PSO. Hence, we especially advise to use the model 

proposed in the present study in high-stakes pipeline projects that require a very accurate 

prediction of scour depth. 

[Table 11] 

[Fig. 7] 

To verify that the best predictive model (ANFIS-PSO-M7) is consistent with the physics of the 

pipeline scour phenomenon, Figure 8 shows how the normalized scour depth S/D is predicted to 

vary with varying e/D, θ, and KC in live-bed conditions. The ANFIS-PSO-M7 correctly predicts 

S/D to increase for decreasing e/D or increasing θ and KC, as observed in physical investigations 

(Sumer and Fredsøe 2002).  

[Fig. 8] 

7.3. Uncertainty analysis of the proposed predictive models 

The uncertainty associated with the model structure is evaluated considering the considered five 
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models (𝐴𝑁𝐹𝐼𝑆, 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂, 𝐴𝑁𝐹𝐼𝑆 − 𝐴𝐶𝑂, 𝐴𝑁𝐹𝐼𝑆 − 𝐷𝐸 and 𝐴𝑁𝐹𝐼𝑆 − 𝐺𝐴) with 𝑀7 input 

variable combination (the best performing combination as shown earlier). The uncertainty 

associated with the input variables is assessed for the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 model (the best performing 

model, as explained earlier) and different input variable combinations (𝑀1 to 𝑀7). Figures 9 and 

10 show the generated 95 PPU band, for model structure and input variable uncertainty, 

respectively. The figures also show the corresponding observed values and are provided for both 

live-bed and clear-water scour conditions.  

From Figure 9, the uncertainty in predicted scour depth associated with the model structure in 

clear-water (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 2.53) is higher than in live-bed conditions (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.87). 

From Figure 10, the uncertainty in predicted scour depth associated with the input variables is also 

higher in clear water (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 5.11) compared with live-bed conditions (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 =

3.44). It can generally be concluded that prediction of scour depth caused by waves at pipelines in 

clear-water conditions is characterized by more considerable uncertainty, due to both model 

structure and input variables, than in live-bed conditions. Furthermore, the uncertainty associated 

with the input variables (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑎𝑣𝑒 =
(5.11+3.44)

2
= 4.3) is larger than the one associated with 

the model structure (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑎𝑣𝑒 =
(2.53+1.87)

2
= 2.2). 

[Fig. 9] 

[Fig. 10] 

8. Summary and Conclusion 

This study proposed and assessed the application of nature-inspired optimization algorithms to 

enhance the ANFIS model performance in predicting wave-induced pipeline scour depth. The 



29 
 

considered algorithms (PSO, ACO, DE & GA) are alternatives to the common trial and error 

methods for optimization, which are not time-efficient and may lead to overfitting.  

The proposed models were trained and tested using four datasets (Lucassen 1984; Sumer and 

Fredsøe 1990; Pu et al. 2001; Mousavi et al. 2009), considering different combinations of input 

variables (𝑒 𝐷⁄ , 𝜃 𝑎𝑛𝑑 𝐾𝐶) derived from dimensional analysis. The prediction accuracy of the 

various proposed models was assessed based on indices of prediction performance (RMSE, MAE, 

R2, WI) and visual comparison (heatmap of standardized performance metrics, scatter plot, 

normalized Taylor diagram and boxplot of the predicted and observed scour depth). From the 

comparison results, it emerged that the ANFIS model including all the three input variables and 

optimized using a PSO algorithm provides the most accurate wave-induced pipeline scour depth 

predictions, for both live-bed and clear-water scour conditions. 

This paper also evaluated two sources of uncertainty associated with the scour depth prediction, 

disaggregating the uncertainty of the model structure (type of optimization algorithm) and the one 

due to the input variable combination (selection of input variables for the model). To evaluate 

uncertainty, a Monte Carlo simulation technique is used, and the 95 percent prediction uncertainty 

is quantified through the 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 index. From the results, the model structure and the input 

parameter selection both lead to more considerable uncertainty in scour depth prediction for clear-

water conditions than for live-bed conditions. Also, the uncertainty due to the input variable 

combination is larger than the model structure-associated uncertainty. 

This study shows that a relatively simple improvement in the optimization of an ANFIS model, 

based on the PSO algorithm, may lead to significant improvement in prediction performance not 

only in comparison with a classic ANFIS model optimized through trial and error procedure, but 

also in comparison with recently developed models based on the MT approach (Etemad-Shahidi 
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et al. 2011) or GLUE and SUFI stochastic approaches (Sharafati et al. 2018). The added 

complexity of the ANFIS-PSO model compared to simpler formulations (still suitable for most 

projects) is counterbalanced by a higher accuracy.  

This paper provides new insight into scouring depth prediction for the design of submarine 

pipelines. Although the use of conventional equations is straightforward for practical purposes, 

their prediction is not always accurate. This study shows that an ANFIS-PSO model can be trained 

and applied for more accurate scour depth predictions that can support a more robust and safer 

design. 

Conflict of interest: Author declare no conflict of interest. 
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Figure 1. Proposed integrated ANFIS models with nature-inspired optimization 

algorithms (PSO, ACO, DE and GA) 
 

 

 

 

 
Figure 2. Conceptual structure of an ANFIS model 

 

 

 



 

 
Figure 3. Heat map of scour depth model prediction performance, based on four standardized 

performance metrics, for testing phase in (a) live-bed and (b) clear-water conditions 

 
 

 



 

 
Figure 4. Scatter plot of computed vs. observed scour depth in testing phase for (a) live-bed and (b) 

clear-water conditions 
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Figure 5. Normalized Taylor diagrams of the predicted and the observed scour depth in testing phase 

for (a) live-bed conditions (b) clear-water conditions 

 



 
 

 
Figure 6. Boxplot of observed and predicted scour depth in testing phase for (a) live-bed and (b) clear-

water conditions 
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Figure 7. Comparison between the best proposed predictive model (ANFIS-PSO-M7) from this study 

and recently developed models for testing phase. a) Scatter plot for live-bed conditions, b) Scatter plot 

for clear-water conditions, c) Heat map of standardized performance metrics for live bed conditions, d) 

Heat map of standardized performance metrics for clear-water conditions, e) Taylor diagram for live-

bed conditions, f) Taylor diagram for clear-water conditions 
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Figure 8. Normalized scour depth in live-bed as function of a) normalized distance between pipeline 

and sea bed, b) Shields number and c) Keulegan–Carpenter number 
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Figure 9. Generated 95 PPU band accounting for model structure uncertainty for (a) live-bed and (b) 

clear-water conditions 
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Figure 10. Generated 95 PPU band accounting for the input variable combination uncertainty for (a) 

live-bed and (b) clear-water conditions 
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Table 1. Parameters used for application of the various optimization techniques 

 
 

 

 

 

 

 

 

 

 

 

 

 

Optimization technique  Description of the parameter  Parameter value 

PSO 

Number of Iterations 1500 

Number of Populations 50 

Inertia Weight 1 

Inertia Weight Damping Ratio 0.99 

Personal Learning Coefficient 0.9 

Global Learning Coefficient 2 

ACO 

Number of Iterations 1500 

Number of Populations 50 

Intensification Factor 0.5 

Deviation-Distance Ratio 1 

DE 

Lower Bound of Scaling Factor 0.2 

Upper Bound of Scaling Factor 0.8 

Crossover Probability 0.15 

GA 

Number of Iterations 1500 

Number of Populations 50 

Crossover Percentage 0.7 

Number of Offsprings 
80 (Crossover Percentage * 

Number of Populations) 

Mutation Rate 0.15 

Mutation Percentage 0.45 

Number of Mutants 
60 (Mutation Percentage * 

Number of Populations) 

Selection Pressure 8 

ANFIS 

Train Epochs 250 

Train-Error Goal 0 

Train-Initial Step Size 0.015 

Train-Step Size Decrease 0.95 

Train-Step Size Increase 1.15 



 

 

Table 2: Optimized parameters for the ANFIS-PSO model 
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Table 3. Combinations of input variables to predict wave-induced scour depth at pipelines 

Predictive Variables Input 

Combination 𝑒
𝐷⁄  θ 𝐾𝐶 

  ✓  M1 

 ✓   M2 

✓    M3 

 ✓  ✓  M4 

✓   ✓  M5 

✓  ✓   M6 

✓  ✓  ✓  M7 

 

 

 

Table 4. Statistical characteristics of dimensionless parameters for the four selected datasets 

Parameter 

Inputs Output 

𝐾𝐶 𝜃 𝑒/𝐷 𝑆/𝐷 

Minimum 1.42 0.02 0.00 0.03 

Maximum 55.77 0.28 2.04 0.95 

Average 13.40 0.09 0.19 0.26 

Standard 

Deviation 

9.97 0.05 0.38 0.16 

Coefficient of 

Variation 

0.74 0.58 2.04 0.62 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5. Performance indices of the classic ANFIS model for both live-bed and clear-water conditions  

Hydraulic Condition Phase Input Combination RMSE MAE 𝑅2 WI 

Live bed 

Training 

M1 0.072 0.048 0.623 0.876 

M2 0.099 0.073 0.280 0.640 

M3 0.085 0.068 0.469 0.791 

M4 0.060 0.041 0.738 0.919 

M5 0.025 0.018 0.955 0.988 

M6 0.075 0.053 0.589 0.855 

M7 0.028 0.021 0.941 0.985 

Testing 

M1 0.077 0.054 0.043 0.552 

M2 0.134 0.103 0.015 0.337 

M3 0.082 0.064 0.275 0.672 

M4 0.049 0.034 0.466 0.794 

M5 0.058 0.043 0.568 0.837 

M6 0.073 0.055 0.334 0.717 

M7 0.077 0.061 0.478 0.775 

Clear water 

Training 

M1 0.042 0.028 0.978 0.994 

M2 0.105 0.065 0.858 0.960 

M3 0.268 0.205 0.079 0.332 

M4 0.013 0.010 0.998 0.999 

M5 0.039 0.027 0.981 0.995 

M6 0.070 0.053 0.938 0.983 

M7 0.006 0.004 0.997 0.998 

Testing 

M1 0.344 0.255 0.010 0.295 

M2 0.516 0.357 0.001 0.171 

M3 0.157 0.128 0.090 0.531 

M4 0.116 0.101 0.391 0.750 

M5 0.495 0.359 0.198 0.043 

M6 0.996 0.636 0.364 0.029 

M7 0.245 0.184 0.043 0.269 

 

 

 

 

 

 

 

 

 



 

 

Table 6. Performance indices of the ANFIS-PSO model for both live-bed and clear-water conditions  

Hydraulic Condition Phase Input Combination RMSE MAE 𝑅2 WI 

Live bed 

Training 

M1 0.086 0.063 0.457 0.789 

M2 0.099 0.080 0.287 0.665 

M3 0.086 0.070 0.467 0.788 

M4 0.055 0.035 0.779 0.934 

M5 0.031 0.024 0.932 0.982 

M6 0.075 0.053 0.594 0.859 

M7 0.024 0.018 0.957 0.989 

Testing 

M1 0.075 0.055 0.002 0.448 

M2 0.088 0.070 0.044 0.468 

M3 0.081 0.061 0.286 0.680 

M4 0.047 0.033 0.511 0.787 

M5 0.036 0.029 0.761 0.930 

M6 0.087 0.065 0.250 0.658 

M7 0.032 0.026 0.832 0.923 

Clear water 

Training 

M1 0.040 0.029 0.979 0.995 

M2 0.101 0.057 0.933 0.964 

M3 0.268 0.205 0.079 0.332 

M4 0.026 0.018 0.991 0.998 

M5 0.017 0.011 0.996 0.999 

M6 0.076 0.046 0.939 0.978 

M7 0.0048 0.0029 0.9997 0.9999 

Testing 

M1 0.263 0.219 0.162 0.164 

M2 0.605 0.380 0.131 0.176 

M3 0.222 0.161 0.633 0.634 

M4 0.454 0.383 0.249 0.150 

M5 0.322 0.228 0.360 0.424 

M6 1.533 0.688 0.058 0.031 

M7 0.014 0.012 0.984 0.995 

 

 

 

 

 

 

 

 

 



 

 

Table 7. Performance indices of the ANFIS-ACO model for both live-bed and clear-water conditions  

Hydraulic Condition Phase Input Combination RMSE MAE 𝑅2 WI 

Live bed 

Training 

M1 0.102 0.072 0.255 0.669 

M2 0.115 0.095 0.032 0.251 

M3 0.102 0.084 0.244 0.607 

M4 0.106 0.088 0.184 0.558 

M5 0.065 0.048 0.697 0.904 

M6 0.101 0.080 0.268 0.565 

M7 0.063 0.049 0.715 0.903 

Testing 

M1 0.088 0.069 0.008 0.387 

M2 0.071 0.060 0.162 0.474 

M3 0.070 0.057 0.313 0.665 

M4 0.078 0.062 0.010 0.257 

M5 0.057 0.047 0.288 0.657 

M6 0.066 0.056 0.340 0.675 

M7 0.055 0.041 0.324 0.692 

Clear water 

Training 

M1 0.075 0.068 0.929 0.980 

M2 0.204 0.166 0.467 0.804 

M3 0.268 0.205 0.079 0.332 

M4 0.079 0.065 0.919 0.978 

M5 0.076 0.062 0.925 0.980 

M6 0.164 0.122 0.654 0.886 

M7 0.049 0.037 0.970 0.992 

Testing 

M1 0.160 0.126 0.124 0.259 

M2 0.348 0.284 0.004 0.333 

M3 0.222 0.161 0.633 0.634 

M4 0.204 0.146 0.031 0.360 

M5 0.053 0.045 0.71 0.909 

M6 0.313 0.258 0.849 0.595 

M7 0.116 0.093 0.811 0.837 

 

 

 

 

 

 

 

 

 



 

 

Table 8. Performance indices of the ANFIS-DE model for both live-bed and clear-water conditions  

Hydraulic Condition Phase Input Combination RMSE MAE 𝑅2 WI 

Live bed 

Training 

M1 0.097 0.074 0.376 0.726 

M2 0.114 0.092 0.054 0.323 

M3 0.098 0.078 0.311 0.648 

M4 0.099 0.080 0.297 0.701 

M5 0.057 0.042 0.766 0.930 

M6 0.098 0.075 0.331 0.707 

M7 0.060 0.047 0.744 0.915 

Testing 

M1 0.081 0.052 0.034 0.549 

M2 0.071 0.059 0.173 0.463 

M3 0.064 0.052 0.372 0.748 

M4 0.077 0.061 0.004 0.284 

M5 0.042 0.032 0.623 0.863 

M6 0.063 0.055 0.382 0.755 

M7 0.053 0.042 0.372 0.706 

Clear water 

Training 

M1 0.063 0.053 0.950 0.987 

M2 0.183 0.139 0.600 0.877 

M3 0.268 0.205 0.079 0.332 

M4 0.063 0.054 0.950 0.987 

M5 0.059 0.046 0.958 0.988 

M6 0.155 0.111 0.694 0.907 

M7 0.046 0.037 0.973 0.993 

Testing 

M1 0.204 0.164 0.221 0.156 

M2 0.600 0.429 0.002 0.199 

M3 0.222 0.161 0.633 0.634 

M4 0.109 0.086 0.002 0.418 

M5 0.277 0.200 0.069 0.212 

M6 1.745 0.941 0.420 0.121 

M7 0.090 0.068 0.692 0.846 

 

 

 

 

 

 

 

 

 



 

 

Table 9. Performance indices of ANFIS-GA model for both live-bed and clear-water conditions  

Hydraulic Condition Phase Input Combination RMSE MAE 𝑅2 WI 

Live bed 

Training 

M1 0.085 0.060 0.470 0.796 

M2 0.101 0.079 0.259 0.622 

M3 0.086 0.070 0.465 0.785 

M4 0.072 0.052 0.622 0.875 

M5 0.039 0.027 0.890 0.970 

M6 0.076 0.061 0.578 0.847 

M7 0.041 0.027 0.878 0.967 

Testing 

M1 0.072 0.049 0.013 0.477 

M2 0.082 0.070 0.015 0.420 

M3 0.081 0.063 0.280 0.674 

M4 0.066 0.048 0.133 0.575 

M5 0.042 0.032 0.599 0.870 

M6 0.065 0.053 0.269 0.683 

M7 0.040 0.034 0.648 0.887 

Clear water 

Training 

M1 0.045 0.035 0.974 0.993 

M2 0.107 0.068 0.853 0.959 

M3 0.268 0.205 0.079 0.332 

M4 0.024 0.017 0.993 0.998 

M5 0.046 0.031 0.973 0.993 

M6 0.095 0.066 0.885 0.968 

M7 0.010 0.007 0.999 0.999 

Testing 

M1 0.226 0.191 0.144 0.211 

M2 0.368 0.168 0.034 0.172 

M3 0.222 0.161 0.633 0.634 

M4 0.283 0.234 0.414 0.081 

M5 0.392 0.285 0.630 0.418 

M6 0.557 0.295 0.002 0.185 

M7 0.087 0.065 0.433 0.789 

 

 

 

 

 

 

 

 

 



 

 

Table 10. Best performance indices obtained for each ANFIS model type for the testing phase 

Hydraulic Condition Phase Model RMSE MAE 𝑅2 WI IM 

Live bed Testing 

ANFIS-M5 0.058 0.043 0.568 0.837 - 

ANFIS-PSO-M7 0.032 0.026 0.832 0.923 35.28 

ANFIS-ACO-M7 0.055 0.041 0.324 0.692 -12.61 

ANFIS-DE-M5 0.042 0.032 0.623 0.863 16.49 

ANFIS-GA-M5 0.042 0.032 0.599 0.870 15.64 

Clear water Testing 

ANFIS-M4 0.116 0.101 0.391 0.750 - 

ANFIS-PSO-M7 0.014 0.012 0.984 0.995 90.09 

ANFIS-ACO-M5 0.053 0.045 0.71 0.909 53.14 

ANFIS-DE-M7 0.090 0.068 0.692 0.846 36.22 

ANFIS-GA-M7 0.087 0.065 0.433 0.789 19.15 

 

 

 

Table 11. Performance indices of the best proposed predictive model (ANFIS-PSO-M7) and the 

models from previous studies 

Hydraulic 

Condition 
Phase Model RMSE MAE 𝑅2 WI 

Live bed 

Training 

Etemad-Shahidi et al. (2011) 0.056 0.044 0.834 0.949 

Sharafati et al. (2018) 0.046 0.034 0.850 0.958 

Present study (ANFIS-PSO-M7) 0.024 0.018 0.957 0.989 

Testing 

Etemad-Shahidi et al. (2011) 0.039 0.034 0.688 0.894 

Sharafati et al. (2018) 0.038 0.033 0.798 0.894 

Present study (ANFIS-PSO-M7) 0.032 0.026 0.832 0.923 

Clear water 

Training 

Etemad-Shahidi et al. (2011) 0.121 0.083 0.947 0.931 

Sharafati et al. (2018) 0.071 0.049 0.951 0.982 

Present study (ANFIS-PSO-M7) 0.0048 0.0029 0.999 0.999 

Testing 

Etemad-Shahidi et al. (2011) 0.028 0.021 0.962 0.980 

Sharafati et al. (2018) 0.026 0.022 0.973 0.985 

Present study (ANFIS-PSO-M7) 0.014 0.012 0.984 0.995 

 


