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SOME INEQUALITIES INVOLVING THE DISTANCE SIGNLESS LAPLACIAN

EIGENVALUES OF GRAPHS

ABDOLLAH ALHEVAZ, MARYAM BAGHIPUR, SHARIEFUDDIN PIRZADA AND YILUN SHANG∗

Abstract. Given a simple graph G, the distance signlesss Laplacian DQ(G) = Tr(G) +D(G) is the

sum of vertex transmissions matrix Tr(G) and distance matrix D(G). In this paper, thanks to the

symmetry of DQ(G), we obtain novel sharp bounds on the distance signless Laplacian eigenvalues of

G, and in particular the distance signless Laplacian spectral radius. The bounds are expressed through

graph diameter, vertex covering number, edge covering number, clique number, independence number,

domination number as well as extremal transmission degrees. The graphs achieving the corresponding

bounds are delineated. In addition, we investigate the distance signless Laplacian spectrum induced

by Indu-Bala product, Cartesian product as well as extended double cover graph.

1. Introduction

In this paper we consider a simple connected graph G(V (G), E(G)), where V (G) = {v1, v2, . . . , vn}
is the vertex set and E(G) is the edge set. We assume its order is n = |V (G)| and size is m = |E(G)|.
For a vertex v ∈ V (G), N(v) denotes its neighborhood. The degree of v is represented by dG(v) or dv for

brevity. The distance between two vertices u and v is denoted by duv. The distance matrix is defined

as D(G) = (duv)u,v∈V (G) [6]. The complement of G is represented by G. The transmission of a vertex

v is TrG(v) =
∑

u∈V (G)

duv. G is called k-transmission regular if for any vertex TrG(v) ≡ k. Let σ(G)

be the Wiener index or transmission. TrG(vi) (or Tri for short) is also known as transmission degree.

{Tr1, T r2, . . . , T rn} is called transmission degree sequence and Tr(G) = diag(Tr1, T r2, . . . , T rn) is
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a diagonal matrix. The second transmission degree of vi is expressed as Ti =

n∑
j=1

dijTrj . Standard

terminology is utilized throughout the paper, see textbooks e.g. [15] or [16]. Some classical graphs are

used as follows: Kn for the complete graph, Ks,t for the complete bipartite graph, Pn for the path,

Cn for the cycle, and Sn for the star.

In the work [7, 8, 9], the authors examined the (signless) Laplacian for graph distance matrix.

Distance Laplacian matrix of G is defined as DL(G) = Tr(G)−D(G) and distance signless Laplacian

matrix is DQ(G) = Tr(G) +D(G). When G is connected, DQ(G) is nonnegative and irreducible. We

rank its eigenvalues as ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G), where ρ1(G) is the distance signless Laplacian

spectral radius. Taking into consideration of the Perron-Frobenius theorem, ρ1(G) is simple and there

is a unique positive unit eigenvector X associated with ρ1(G). This vector is known as the distance

signless Laplacian Perron vector.

As the research of distance signless Laplacian spectra is of great significance for both algebraic graph

theory and practical applications, determining eigenvalue bounds have received intensive attention in

the literature. Xing et al. [27] recently determined minimum distance signless Laplacian spectral

radius among trees with fixed order. Further in [28], Xing et al. identified minimum and second

minimum distance signless Laplacian spectral radii among bicyclic graphs with fixed order. In [20],

bounds for these spectral radius are presented through vertex transmissions. We refer the readers to

[1, 2, 3, 4, 8, 9, 10, 11, 13, 22, 25, 27, 28] for more results related to such eigenvalues and spectral

radii.

The rest of the paper is organized as follows. In Section 2, we obtain some bounds for the eigenvalues

of the distance signless Laplacian matrix, in particular for the spectral radius through diameter,

covering number, clique number, independence number, domination number, extremal transmission

degrees. The graphs achieving the corresponding bounds are determined. In Section 3, we study the

eigenvalues of distance signless Laplacian derived by graph operations including Indu-Bala product,

Cartesian product and extended double cover graph.

2. Some bounds on the distance signless Laplacian eigenvalues

In this section, we are concerned with some bounds for the distance signless Laplacian eigenvalues,

in particular those for spectral radius. We begin with the following lemmas.

Lemma 2.1. [27] Suppose that G is connected.

ρ1(G) ≥ 4σ(G)

n
,

where the equality holds if and only if G is transmission regular.

Lemma 2.2. [5] Suppose that G is connected. It has two distinct distance signless Laplacian eigen-

values if and only if it is a complete graph.
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Lemma 2.3. [26] If A ∈ Rn×n is nonnegative with the spectral radius λ(A) and row sums r1, r2, . . . , rn,

then

min
1≤i≤n

ri ≤ λ(A) ≤ max
1≤i≤n

ri.

When A is irreducible, the above equalities are true if and only if the row sums are all equivalent.

The following lemmas will be also helpful for proving of our main results in the sequel.

Lemma 2.4. [14] Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) contain positive numbers. Then(∑n
i=1 a

2
i

)(∑n
i=1 b

2
i

)
(∑n

i=1 aibi

)2 ≤

(
ab+AB

)2
4abAB

,

where 0 < a ≤ ai ≤ A and 0 < b ≤ bi ≤ B, i = 1, . . . , n.

Lemma 2.5. [18] Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) contain positive numbers. Then

aA
∑n

i=1 b
2
i + bB

∑n
i=1 a

2
i

ab+AB
≤

n∑
i=1

aibi,

where 0 < a ≤ ai ≤ A and 0 < b ≤ bi ≤ B, i = 1, . . . , n. The equality holds if and only if, for each i,

either (ai, bi) = (a,B) or (ai, bi) = (A, b), where the alternative depends upon the particular value of i.

Our first theorem gives an inequality using transmission σ(G), maximum transmission degree Trmax

and minimum transmission degree Trmin.

Theorem 2.6. Suppose G is connected and let Trmax and Trmin be the two extremal transmission

degrees.

(i)

n∑
i=1

Tr2i ≤ σ2(G)

n

(√
Trmax

Trmin
+

√
Trmin

Trmax

)2

,(2.1)

with equality if G is transmission regular.

(ii)

n∑
i=1

Tr2i ≤ 2(Trmax + Trmin)σ(G)− nTrmaxTrmin,(2.2)

where the equality holds if and only if G has only two type of transmission degrees Trmin and Trmax.

Proof. (i) Let (a1, . . . , an) = (Tr1, . . . , T rn) and (b1, . . . , bn) = (1, . . . , 1). Applying Lemma 2.4 with

a = Trmin, A = Trmax, and b = B = 1, we obtain the required result. If G is a transmission regular

graph, then it is not difficult to verify that the equality in (2.1) holds.

(ii) Let (a1, . . . , an) = (Tr1, . . . , T rn) and (b1, . . . , bn) = (1, . . . , 1). Applying Lemma 2.5 with a =

Trmin, A = Trmax and b = B = 1, we obtain the result.

http://dx.doi.org/10.22108/toc.2020.121940.1715
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Suppose that the equality in (2.2) holds. Applying Lemma 2.5, we observe that G has only two

types of transmission degrees Trmin and Trmax. Conversely, it is easy to verify that the equality in

(2.2) holds if G has only two type of transmission degrees Trmin and Trmax. □

The following theorem gives bounds for the k-th largest distance signless Laplacian eigenvalue.

Theorem 2.7. Suppose G is connected having diameter d and minimum degree δ. Let

φ(G) = min

{
n2(n− 1)

(n2(n− 1)

4
+ d2

)
− 4σ2(G),

n2
((

nd− d(d− 1)

2
− 1− δ(d− 1)

)2
+ (n− 1)d2

)
− 4σ2(G)

}
.

Then, for any k = 1, . . . , n, we have

1

n

{
2σ(G)−

√
k − 1

n− k + 1
φ(G)

}
≤ ρk(G) ≤ 1

n

{
2σ(G) +

√
n− k

k
φ(G)

}
.(2.3)

Proof. First we prove the upper bound. Clearly,

((
DQ(G)

)2)
=

k∑
i=1

ρ2i +

n∑
i=k+1

ρ2i ≥

(∑k
i=1 ρi

)2
k

+

(∑n
i=k+1 ρi

)2
n− k

.

Let Mk =
∑k

i=1 ρi. Then

((
DQ(G)

)2) ≥
M2

k

k
+

(2σ(G)−Mk)
2

n− k
,

which implies

ρk(G) ≤ Mk

k
≤ 1

n

{
2σ(G) +

√
n− k

k

(
n ·
((

DQ(G)
)2)− 4σ2(G)

)}
.

Since for each 1 ≤ i ≤ n, we have Tri ≤ n(n−1)
2 , hence we observe that

n ·
((

DQ(G)
)2)− 4σ2(G) = n

n∑
i=1

Tr2i + 2n
∑

1≤i<j≤n

(dij)
2 − 4σ2(G)

≤ n
n3(n− 1)2

4
+ 2n

n(n− 1)

2
d2 − 4σ2(G)

= n2(n− 1)

(
n2(n− 1)

4
+ d2

)
− 4σ2(G).

http://dx.doi.org/10.22108/toc.2020.121940.1715
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Also, since Tri ≤ nd− d(d−1)
2 − 1− di(d− 1), we have

n ·
((

DQ(G)
)2)− 4σ2(G)

= n

n∑
i=1

Tr2i + 2n
∑

1≤i<j≤n

(dij)
2 − 4σ2(G)

≤ n2

(
nd− d(d− 1)

2
− 1− δ(d− 1)

)2

+ 2n
n(n− 1)

2
d2 − 4σ2(G)

= n2

((
nd− d(d− 1)

2
− 1− δ(d− 1)

)2

+ (n− 1)d2

)
− 4σ2(G).

Hence we get the right-hand side inequality of (2.3).

Now, we prove the lower bound. Let Nk =
∑n

i=k ρi. We know

((
DQ(G)

)2)
=

k−1∑
i=1

ρ2i +

n∑
i=k

ρ2i ≥

(∑k−1
i=1 ρi

)2
k − 1

+

(∑n
i=k ρi

)2
n− k + 1

=
(2σ(G)−Nk)

2

k − 1
+

N2
k

n− k + 1
.

Hence

ρk(G) ≥ Nk

n− k + 1
≥ 1

n

{
2σ(G)−

√
k − 1

n− k + 1

(
n ·
((

DQ(G)
)2)− 4σ2(G)

)}
,

and we get the left-hand side inequality of (2.3). □

In particular, taking k = 1 and k = n in Theorem 2.7, we have the following observations.

Corollary 2.8. Suppose G is connected with the extremal distance signless Laplacian eigenvalues

ρn(G) and ρ1(G). We have

ρ1(G) ≤ 2σ(G)

n
+

√
(n− 1)

(
n(2

∑
1≤i<j≤n(dij)

2 +
∑n

i=1 Tr
2
i )− 4σ2(G)

)
n

,

and

ρn(G) ≥ 2σ(G)

n
−

√
(n− 1)

(
n(2

∑
1≤i<j≤n(dij)

2 +
∑n

i=1 Tr
2
i )− 4σ2(G)

)
n

.

Now, we state the following observation.

Corollary 2.9. Suppose G is connected having diameter d.

ρ1(G) ≤
2σ(G) +

√
(n− 1) (n(n− 1)W − 4σ2(G))

n
,

where W = nd2 + (n+ 2)σ(G)− n2(n−1)
2 .

http://dx.doi.org/10.22108/toc.2020.121940.1715
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Proof. Since for each i = 1, 2, . . . , n, we have n− 1 ≤ Tri ≤ n(n−1)
2 , hence by Theorem 2.6 (ii), we get

2
∑

1≤i<j≤n

(dij)
2 ≤ 2

n(n− 1)

2
d2,

n∑
i=1

Tr2i ≤ (n2 + n− 2)σ(G)− n2(n− 1)2

2
.

Then by Corollary 2.8, the result follows. □

The following shows an upper bound for ρ1(G) through transmission degrees, the second transmis-

sion degrees as well as a parameter α.

Theorem 2.10. Recall that {Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn} are the transmission degree se-

quence and the second transmission degree sequence.

ρ1(G) ≤ max
1≤i≤n

−α+
√

α2 + 8Tri(Tri +
Ti
Tri

+ α)

2

 ,(2.4)

where α ≥ 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular

graph.

Proof. Let X = (x1, . . . , xn) be the distance signless Laplacian Perron vector of G and

xi = max{xj |j = 1, 2, . . . , n}. Since

ρ1(G)2X =
(
DQ(G)

)2
X = (Tr +D)2X = Tr2X + TrDX +DTrX +D2X,

we have

ρ21(G)xi = Tr2i xi + Tri

n∑
j=1

dijxj +

n∑
j=1

dijTrjxj +

n∑
j=1

n∑
k=1

dijdjkxk.

Now, we consider a simple quadratic function of ρ1(G):(
ρ21(G) + αρ1(G)

)
X = (Tr2X + TrDX +DTrX +D2X) + α(TrX +DX).

Considering the i-th equation, we have

(
ρ21(G) + αρ1(G)

)
xi = Tr2i xi + Tri

n∑
j=1

dijxj +

n∑
j=1

dijTrjxj

+

n∑
j=1

n∑
k=1

dijdjkxk + α(Trixi +

n∑
j=1

dijxj).

It is easy to check that the following inequalities are valid:

Tri

n∑
j=1

dijxj ≤ Tr2i xi,

n∑
j=1

dijTrjxj ≤ Tixi,

http://dx.doi.org/10.22108/toc.2020.121940.1715
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n∑
j=1

n∑
k=1

djkdijxk ≤ Tixi,
n∑

j=1

dijxj ≤ Trixi.

Hence, we have (
ρ21(G) + αρ1(G)

)
xi ≤ 2Tr2i xi + 2Tixi + 2αTrixi

⇒ ρ21(G) + αρ1(G)− (2Tr2i + 2Ti + 2αTri) ≤ 0

⇒ ρ1(G) ≤
−α+

√
α2 + 8Tri(Tri +

Ti
Tri

+ α)

2
.

From this the result follows.

Assume that equality occurs in (2.4), then each of the above inequalities in the above argument

occur as equalities. Since each of the inequalities

Tri

n∑
j=1

dijxj ≤ Tr2i xi,
n∑

j=1

dijTrjxj ≤ Tixi,

n∑
j=1

n∑
k=1

djkdijxk ≤ Tixi,

n∑
j=1

dijxj ≤ Trixi

occur as equalities if and only if G is a transmission regular graph, hence the equality occurs in (2.4)

if and only if G is a transmission regular graph. □

The following upper bound regarding distance signless Laplacian spectral radius ρ1(G) was obtained

in [22]:

ρ1(G) ≤ max
1≤i≤n

{√
2Tr2i + 2Ti

}
,(2.5)

where the equality holds if and only if Tr2i + Ti is same for all i.

Remark 2.11. For a connected graph G with the property that Ti ≤ Tr2i , for all i. Then we have

−α+
√

α2 + 8Tri(Tri +
Ti
Tri

+ α)

2
≤
√
2Tr2i + 2Ti.

Hence, the upper bound given by Theorem 2.10 improves the upper bound given by (2.5).

If in particular we take the parameter α in Theorem 2.10 as vertex covering number, edge covering

number, clique number, independence number, domination number, minimum transmission degree,

maximum transmission degree, then Theorem 2.10 leads to an upper bound for ρ1(G) in terms of

vertex covering number, edge covering number, clique number, independence number, domination

number, minimum transmission degree, maximum transmission degree, respectively.

Let xi = min{xj | j = 1, . . . , n} be the minimum among the elements of the distance signless

Laplacian Perron vector X = (x1, . . . , xn) of the graph G. Proceeding similar to Theorem 2.10, we

derive the following lower bound for ρ1(G) via (second) transmission degrees as well as parameter α.

http://dx.doi.org/10.22108/toc.2020.121940.1715
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Theorem 2.12. We have

ρ1(G) ≥ min
1≤i≤n

−α+
√

α2 + 8Tri(Tri +
Ti
Tri

+ α)

2

 ,(2.6)

where α ≥ 0 is an unknown parameter. The equality occurs if and only if G is a transmission regular

graph.

The following lower bound for the distance signless Laplacian spectral radius ρ1(G) was obtained

in [22]:

ρ1(G) ≥ min
1≤i≤n

{√
2Tr2i + 2Ti

}
,(2.7)

where the equality holds if and only if Tr2i + Ti is same for all i.

Similar to Remark 2.11, it can be seen that the lower bound given by Theorem 2.12 improves the

lower bound given by (2.7) for all graphs G with Ti ≥ Tr2i , for all i.

Theorem 2.13. [25]

Suppose G has minimum degree δ1 and second minimum degree δ2.

ρ1(G) ≤ 2dn− d(d− 1)− 2− (d− 1)(δ1 + δ2),

where the equality holds if and only if G is a regular graph with diameter d ≤ 2.

Remark 2.14. It is worth noting that, if we take α = Tri, then for any connected graph G of order

n having minimum degree δ and diameter d, since

Tri ≤ nd− d(d− 1)

2
− 1− di(d− 1) ≤ nd− d(d− 1)

2
− 1− δ(d− 1).

Hence we have

−α+
√

α2 + 8Tri(Tri +
Ti
Tri

+ α)

2
≤ 2Tri

≤ 2Trmax ≤ 2dn− d(d− 1)− 2− 2δ(d− 1).

Therefore, the upper bound given by Theorem 2.10 improves the upper bound given by Theorem 2.13,

provided that Ti ≤ Tr2i , for all i.

Theorem 2.15. [25] Suppose G has maximum degree ∆1 and second maximum degree ∆2.

ρ1(G) ≥ 4n− 4−∆1 −∆2,

where the equality holds if and only if G is a regular graph with diameter d ≤ 2.

http://dx.doi.org/10.22108/toc.2020.121940.1715
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Remark 2.16. Similar to Remark 2.14, if we take α = Tri, then for any connected graph G of order

n having maximum degree ∆, since Tri ≥ di+2(n−1−di) = 2n−2−di ≥ 2n−2−∆, hence we have

−α+
√

α2 + 8Tri(Tri +
Ti
Tri

+ α)

2
≥ 2Tri ≥ 2Trmin ≥ 4n− 4− 2∆.

Therefore, the lower bound given by Theorem 2.12 improves the lower bound given by Theorem 2.15,

provided that Ti ≥ Tr2i , for all i.

Next we obtain a lower bound for ρ1(G) through transmission σ(G) and maximum transmission

degree Trmax.

Theorem 2.17. Suppose G is connected having diameter d. If the transmission degree sequence of G

is {Tr1, T r2, . . . , T rn}, then

ρ1(G) ≥ 1

n

[
8(σ(G) + n(n− 1)−m) +

4

Trmax

n∑
i=1

(2n− di − 2)Tr2i

− 8

Tr2max

(M1 + 2M2)

]
,(2.8)

where M1(G) =
∑

i<j,dij=1 TriTrj and M2(G) =
∑

i<j,dij≥2 TriTrj . Moreover, the equality holds in

(2.8) if and only if G is a complete graph Kn or G is isomorphic to a transmission regular graph of

diameter 2.

Proof. Let DQ(G) = [qij ] and X = (x1, . . . , xn)
T be any unit vector. As the spectral radius of DQ(G)

and Tr(G)−1DQ(G)Tr(G) are same, we have

XT
{
Tr(G)−1DQ(G)Tr(G)

}
X ≤ ρ1(G)XTX.(2.9)

Since
∑n

i=1 x
2
i = 1, hence from (2.9) we get

ρ1(G) ≥
n∑

i=1

n∑
j=1

Trj
Tri

qij(xi + xj)
2.(2.10)

As X is a unit vector, we assume that X = ( 1√
n
, . . . , 1√

n
)T . From (2.10), we get

ρ1(G) ≥ 4

n

∑
i<j

dij

(
Tri
Trj

+
Trj
Tri

)
+

4

n

n∑
i=1

Tri

≥ 4

n

∑
i<j,dij=1

(
Tri
Trj

+
Trj
Tri

)

+
8

n

∑
i<j,dij≥2

(
Tri
Trj

+
Trj
Tri

)
+

8

n
σ(G).(2.11)
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Now ∑
i<j,dij=1

(
Tri
Trj

+
Trj
Tri

)
= 2m+

∑
i<j,dij=1

(Tri − Trj)
2

TriTrj

≥ 2m+
1

Tr2max

( ∑
i<j,dij=1

(Tr2i + Tr2j )

−2
∑

i<j,dij=1

TriTrj

)
(2.12)

= 2m+
1

Tr2max

( n∑
i=1

diTr
2
i

−2
∑

i<j,dij=1

TriTrj

)
,(2.13)

and ∑
i<j,dij≥2

(
Tri
Trj

+
Trj
Tri

)
= n(n− 1)− 2m+

∑
i<j,dij≥2

(Tri − Trj)
2

TriTrj

≥ n(n− 1)− 2m

+
1

Tr2max

 ∑
i<j,dij≥2

(Tr2i + Tr2j )− 2
∑

i<j,dij≥2

TriTrj

(2.14)

= n(n− 1)− 2m

+
1

Tr2max

 n∑
i=1

(n− 1− di)Tr
2
i − 2

∑
i<j,dij≥2

TriTrj

 .(2.15)

Using (2.13) and (2.15) in (2.11), we get the required result (2.8).

Suppose that equality holds in (2.8). Then X = ( 1√
n
, . . . , 1√

n
)T is an eigenvector corresponding to

eigenvalue ρ1(G) of Tr(G)−1DQ(G)Tr(G). From equality in (2.11), it is seen d ≤ 2. From equality

in (2.12), it is seen Tr1 = · · · = Trn. Similarly, from equality in (2.14), we have Tr1 = · · · = Trn.

Consequently, G ∼= Kn or G is isomorphic to a transmission regular graph of diameter 2.

On the other hand, one can easily see that the equality holds in (2.8) ifG = Kn orG is a transmission

regular graph of diameter 2. □

Suppose the matrix of a graph G takes the form

M =



X β · · · β β

βt B · · · C C
...

... · · ·
...

...

βt C · · · B C

βt C · · · C B


,(2.16)
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where X ∈ Rt×t, β ∈ Rt×s and B,C ∈ Rs×s, satisfying n = t+ cs, where c is the number of copies of

B. Then the following technique given in [21] can be applied in order to extract the spectrum via the

union of building blocks. Let σ[k](Y ) represent the multi-set formed by k copies of the spectrum of Y

(i.e. σ(Y )).

Lemma 2.18. [21] Let M be a matrix as in (2.16), with c ≥ 1 copies of the block B. Therefore,

(i) σ[c−1](B − C) ⊆ σ(M);

(ii) σ(M) \ σ[c−1](B − C) = σ(M
′
) is the set of the remaining t + s eigenvalues of M , where M

′
=(

X
√
c.β

√
c.βt B + (c− 1)C

)
.

Let Ta,b, with a+ b = n− 2 and a ≥ b ≥ 1 be the tree obtained by joining an edge between the root

vertices of stars K1,a and K1,b(the vertex of degree greater than one in a star is called root vertex).

It is clear that a tree with diameter d = 3 is always of the form Ta,b. The following gives the distance

signless Laplacian spectrum of Ta,b.

Lemma 2.19. The distance signless Laplacian spectrum of Ta,b is

{y1 − 2[b−1], y2 − 2[a−1], x1, x2, x3, x4}, y1 = 2a+ 3b+ 1, y2 = 2b+ 3a+ 1,

where x1 ≥ x2 ≥ x3 ≥ x4 are the eigenvalues of the matrix

M2 =


2a+ b+ 1 1 2

√
a

√
b

1 2b+ a+ 1
√
a 2

√
b

2
√
a

√
a y1 + 2(a− 1) 3

√
ab

√
b 2

√
b 3

√
ab y2 + 2(b− 1)

 .

Proof. Let V (K1,b) = {v1, u1, . . . , ub} and V (K1,a) = {v2, w1, . . . , wa}. The vertex set of Ta,b is

V (Ta,b) = {v1, v2, u1, . . . , ub, w1, . . . , wa}. It is not hard to see that Tr(v1) = 2a + b + 1, Tr(v2) =

2b + a + 1, Tr(ui) = 2b + 3a + 1 = y2 and Tr(wj) = 2a + 3b + 1 = y1, for i = 1, 2, . . . , b and j =

1, 2, . . . , a. With this labeling, the distance signless Laplacian matrix of Ta,b takes the form DQ(Ta,b) =

X β β · · · β

βt y1 2 · · · 2

βt 2 y1 · · · 2
...

...
... · · ·

...

βt 2 2 · · · y1


, where β =



2

1

3
...

3


and X =



2a+ b+ 1 1 1 · · · 1

1 2b+ a+ 1 2 · · · 2

1 2 y2 · · · 2
...

...
... · · ·

...

1 2 2 · · · y2


. Using

Lemma 2.18, with B = [y1], C = [2] and c = a, it follows that σ(DQ(Ta,b)) = σ[a−1](B−C)∪σ(M1) =

σ[a−1]([y1−2])∪σ(M1), where M1 =

(
X

√
aβ

√
aβ y1 + 2(a− 1)

)
. Interchanging the third and last column

of M1 and then third and last row of the resulting matrix, we obtain a matrix similar to M1. In the
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resulting matrix taking

X =


2a+ b+ 1 1 2

√
a

1 2b+ a+ 1
√
a

2
√
a

√
a y1 + 2(a− 1)

 , β =


1

2

3
√
a

 ,

B = [y2], C = [2] and c = b in Lemma 2.18, It follows that σ(M1) = σ[b−1](B − C) ∪ σ(M2) =

σ[b−1]([y2−2])∪σ(M2), where M2 is the matrix given in the statement. That completes the proof. □

The next result concerns with the distance signless Laplacian spectral radius of trees.

Theorem 2.20. Let T be a tree of order n ≥ 2 having diameter d.

(i) If d = 1, then ρ1(T ) = 1.

(ii) If d = 2, then ρ1(T ) =
5n−8+

√
9(n−2)2+4(n−1)

2 .

(iii) If d = 3, then ρ1(T ) = x1, where x1 is the largest eigenvalue of the matrix M2 defined in Lemma

2.19.

(iv) If d ≥ 4, then let P = v1v2 · · · vdvd+1 be a diametral path of G, such that there are a1, a2 pendent

vertices at v2, vd, respectively. Then

ρ1(T ) ≥
6n+ d(d− 7) + (a1 + a2)(d− 4) + 2

√
(a2 − a1)2(d− 2)2 + 4d2

2
.

Proof. If T is a tree of diameter d = 1, then T ∼= K2 and so ρ1(T ) = 1. If T is a tree of diameter

d = 2, then T ∼= K1,n−1 and so ρ1(T ) =
5n−8+

√
9(n−2)2+4(n−1)

2 , (see [7]). If T is a tree of diameter

d = 3, then T ∼= Ta,b and so using Lemma 2.19, it follows that ρ1(T ) = x1, where x1 is the largest

eigenvalue of M2 given in Lemma 2.19. So, suppose that diameter of tree T is at least 4, then n ≥ 5.

Let v1v2 . . . vd+1 be a diametral path of T , and let a1 and a2 be the number of pendent neighbors of

v2 and vd, respectively. We have

Tr(v1) ≥ 2(a1 − 1) + 1 + 2 + · · ·+ (d− 1) + da2 + 3(n− a1 − a2 − d+ 1)

= 3n− a1 + a2(d− 3)− 3d+ 1 +
d(d− 1)

2
.

Similarly

Tr(vd+1) ≥ 3n− a2 + a1(d− 3)− 3d+ 1 +
d(d− 1)

2
.

Let M be the principal sub-matrix of DQ(T ) induced by the vertices v1 and vd+1. Then

M =

(
Tr(v1) d

d Tr(vd+1)

)
,

thus

ρ1(M) =
Tr(v1) + Tr(vd+1) +

√
(Tr(v1)− Tr(vd+1))2 + 4d2

2

≥
6n+ d(d− 7) + (a1 + a2)(d− 4) + 2) +

√
(a2 − a1)2(d− 2)2 + 4d2

2
.
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Now, by Interlacing Theorem [15], we have ρ1(T ) ≥ ρ1(M). □

The following observation follows from Theorem 2.20.

Corollary 2.21. Suppose a tree T has diameter d ≥ 4.

ρ1(T ) ≥
1

2

(
6n+ d2 − 5d+ 2

)
.

Proof. Using a1, a2 ≥ 0 in Theorem 2.20 (iv), the result follows. □

3. Distance signless Laplacian spectrum of some graph classes

It is well recognized that some of the graph families can be determined by their spectra. In this

section, we are interested in investigating the distance signless Laplacian spectrum of graphs with

diameter 2 and 3 which are derived from graph operations. In particular, we consider Cartesian

product, Indu-Bala product and extended double cover graph. Some lemmas are in order.

Lemma 3.1. [19] Suppose

A =

(
A0 A1

A1 A0

)
is a symmetric block matrix. The spectrum of A is the union of the spectra of A0 +A1 and A0 −A1.

We first consider the Cartesian product of graphs. The Cartesian product G×H of two graphs is

built up over vertex set V (G) × V (H) in which (u1, u2) and (v1, v2) are adjacent when u1 = v1 and

u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G).

Theorem 3.2. Suppose G is r-regular with diameter 1 or 2 and adjacency spectrum spec(G) =

{λ1, . . . , λn}. The distance signless Laplacian spectrum of H = G×K2 is of the form
{
2(5n− 2r− 4),

2(2n− r − 2), 5n− 2r − 4[n−1], 5n− 2λi − 2r − 8
}
, i = 2, 3, . . . , n.

Proof. Since G is a graph with diameter no more than 2, diameter ofH is 2 or 3 andH is (r+1)-regular.

The distance signless Laplacian matrix of H must be of the form(
A+ 2Ā+ (5n− 2r − 4)I A+ 2Ā+ J

A+ 2Ā+ J A+ 2Ā+ (5n− 2r − 4)I

)
,

in which A is the adjacency matrix of G, Ā is the adjacency matrix of Ḡ, J is the all one matrix and

I is the identity matrix. Recall that Ā = J − I −A, and the result follows from Lemma 3.1. □

The extended double cover graph of a graph is introduced by Alon [12]. For results of eigenvalues

of such graphs we refer to [17]. The extended double cover graph of G can be viewed as a bipartite

structure with partitions X = {x1, x2, . . . xn} and Y = {y1, y2, . . . , yn}. The two vertices xi and yj

are adjacent if and only if i = j or vi and vj are adjacent in G. The extended double cover graph is

denoted by G∗.

http://dx.doi.org/10.22108/toc.2020.121940.1715

http://dx.doi.org/10.22108/toc.2020.121940.1715


22 Trans. Comb. 10 no. 1 (2021) 9-29 A. Alhevaz, M. Baghipur, S. Pirzada and Y. Shang

Theorem 3.3. Suppose G is r-regular with diameter 2. Let r, λ2, λ3, . . . , λn be the adjacency spectrum

of G. The distance signless Laplacian spectrum of G∗ is of the form {10n− 4r− 8, 4n− 4, 5n− 2λi −
2r − 8, 5n+ 2λi − 2r − 4}, i = 2, 3, . . . , n.

Proof. It can be seen that G∗ is r+1 regular graph with diameter 3. A vertex v ∈ V (G∗) has reciprocal

transmission 5n− 2r − 4. Thereby, DQ(G∗) has the form(
(5n− 2r − 6)I + 2J A+ 3Ā+ I

A+ 3Ā+ I (5n− 2r − 6)I + 2J

)
,

where A, Ā, Ḡ, J , I have the same definition as in Theorem 3.2. Now the result follows from Lemma

3.1 and Ā = J − I −A. □

If G1 = (V1, E1) and G2 = (V2, E2) are defined on disjoint sets of V1 and V2 with |V1| = n1 and

|V2| = n2, then the union is G1∪G2 = (V1∪V2, E1∪E2). The join G1∇G2 is characterized by G1∪G2

and all those edges linking V1 to V2.

Corollary 3.4. The distance signless Laplacian spectrum of the extended double cover graph Cn∇Cn,

is of the form {16(n−1), 4(2n−1), 2(5n−8), 2(3n−2), 2(4n−λi−6)[2], 2(4n+λi−4)[2]}, i = 2, 3, . . . , n.

Proof. The join of Cn with another copy is a regular graph of diameter 2 having adjacency eigenvalues

n + 2, 2 − n, λi, (2 times) for i = 2, 3, . . . , n, where {2, λ2, . . . , λn} is the adjacency spectrum of

Cn. Then, by Theorem 3.4, the distance signless Laplacian spectrum of extended double cover graph

Cn∇Cn is 16(n − 1), 4(2n − 1), 2(5n − 8), 2(3n − 2), 2(4n − λi − 6), (twice) for i = 2, 3, . . . , n and

2(4n+ λi − 4), (twice) for i = 2, 3, . . . , n. Hence the result follows. □

The following results concerns distance signless Laplacian spectrum of join graphs.

Theorem 3.5. Let Gi be ri-regular graph with order ni and adjacency eigenvalues λi,1 = ri ≥ −λi,2 ≥
. . . ≥ λi,ni for i = 0, 1, 2,. The distance signless Laplacian spectrum of G0∇(G1 ∪G2) has eigenvalues

m+ n0 − λ0,j − r0 − 4 for j = 2, . . . , n0, and 2m− n0 − λi,j − ri − 4, for i = 1, 2 and j = 2, 3, . . . , ni,

where m =
∑2

i=0 ni, and eigenvalues of the following matrix

(3.1)


m+ 3n0 − 2r0 − 4 n1 n2

n0 2m+ 2n1 − n0 − 2r1 − 4 2n2

n0 2n1 2m+ 2n2 − n0 − 2r2 − 4

 .

Proof. The distance signless Laplacian matrix of F = G0∇(G1 ∪G2) takes the form
S0 J J

J S1 2J

J 2J S2

 ,

where S0 = 2J −A(G0) + (m+ n0 − r0 − 4)I, and Si = 2J −A(Gi) + (2m− n0 − ri − 4)I for i = 1, 2.

http://dx.doi.org/10.22108/toc.2020.121940.1715

http://dx.doi.org/10.22108/toc.2020.121940.1715


Trans. Comb. 10 no. 1 (2021) 9-29 A. Alhevaz, M. Baghipur, S. Pirzada and Y. Shang 23

G0 is regular and it has the all-one vector 1 as an eigenvector associated with eigenvalue r0. Other

eigenvectors are orthogonal to 1. If λ is an arbitrary adjacency eigenvalue of G0 associated with X

satisfying 1TX = 0, [XT 0 0]T is an eigenvector of DQ(F ) associated with m+ n0 − λ− r0 − 4.

Set µ, ξ as arbitrary adjacency eigenvalues of G1 and G2 with corresponding eigenvectors Y and

Z. Likewise, the vectors [0 XT 0]T and [0 0 XT ]T are eigenvectors of DQ(F ) associated with

2m− n0 − µ− r1 − 4 and 2m− n0 − ξ − r2 − 4, respectively.

As such we obtain eigenvectors of the form [XT 0 0]T , [0 XT 0]T and [0 0 XT ]T . They are

m − 3 eigenvectors. All of them are orthogonal to [1T 0 0]T , [0 1T 0]T and [0 0 1T ]T . The

rest three eigenvectors of DQ(F ) are of the form [α1 β1 γ1]T for some (α, β, γ) ̸= (0, 0, 0).

If ν is an eigenvalue of DQ(F ) associated with an eigenvector (α1, β1, γ1)T , from DQ (α1, β1, γ1)T

= ν(α1, β1, γ1)T , and A(Gi)1 = ri1 for i = 0, 1, 2, we know that

(m+ 3n0 − 2r0 − 4)α+ n1β + n2γ = να,

n0α+ (2m+ 2n1 − n0 − 2r1 − 4)β + 2n2γ = νβ,

n0α+ 2n1β + (2m+ 2n2 − n0 − 2r2 − 4)γ = νγ.

This system has a nontrivial solution if and only if ν is an eigenvalue of (3.1). Any nontrivial solution

of it forms an eigenvector of DQ(F ) associated with ν. Since all the rest eigenvectors of DQ(F ) are

formed as such, we know that each eigenvalue of (3.1) is also an eigenvalue of DQ(F ). □

For G(n0, n1, n2) = Kn0∇(Kn1 ∪Kn2), its distance signless Laplacian spectrum can be derived on

the basis of Theorem 3.5.

Corollary 3.6. The distance signless Laplacian eigenvalues of G(n0, n1, n2) consists of eigenvalue

m−2, with multiplicity n0−1, the eigenvalue 2m−n0−n1−2, with multiplicity n1−1, the eigenvalue

2m− n0 − n2 − 2, with multiplicity n2 − 1 and all eigenvalues of the following matrix
m+ n0 − 2 n1 n2

n0 2m− n0 − 2 2n2

n0 2n1 2m− n0 − 2

 ,

where m =
∑2

i=0 ni.

Proof. Proof follows from Theorem 3.5, by taking r0 = n0 − 1, r1 = n1 − 1, r2 = n2 − 1, λi,j = −1, for

all i = 0, 1, 2 and j = 2, 3, . . . , ni. □

Let Kn−e be the graph obtained from Kn by discarding an edge e. Taking n0 = n−2, n1 = n2 = 1

and m = n, in Corollary 3.6, we know that the distance signless Laplacian spectrum of Kn − e

comprises of {n − 2[n−3], x1, x2, x3}, where x1, x2 and x3 are the roots of f(x) = x3 − 4(n − 1)x2 +

5n(n− 2)− 2n3 + 6n2 − 8 = 0.

Next, we consider Indu-Bala product of graphs [23]. The Indu-Bala product of two graphs

G1 and G2, G1▼G2, can be defined as follows. Assume V (G1) = {u1, u2, . . . , un1} and V (G2) =
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{v1, v2, . . . , vn2}. Take a disjoint copy G′
1∇G′

2 of G1∇G2 with vertex sets V (G′
1) = {u′1, u′2, . . . , u′n1

}
and V (G′

2) = {v′1, v′2, . . . , v′n2
}. vi is adjacent to v′i for any i = 1, 2, . . . , n2. In Figure 1, we sketch the

Indu-Bala product of P4 and K3.

Figure 1. The graph K3▼P4

Theorem 3.7. Suppose Gi is ri-regular with ni vertices and λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni is adjacency

eigenvalues for i = 1, 2. The distance signless Laplacian spectrum of G1▼G2 is given by 2m− λ1,j +

n1 − n2 − r1 − 4 for j = 2, 3, . . . , n1 each with multiplicity 2, 2m − 2λ2,j + n2 − n1 − 2r2 − 8 for

j = 2, 3, . . . , n2; 2m + n2 − n1 − 2r2 − 4 with multiplicity (n2 − 1), where m = 2(n1 + n2), also all

eigenvalues of the matrix

(3.2)


m1 n2 2n2 3n1

n1 m2 3n2 − r2 − 2 2n1

2n1 3n2 − r2 − 2 m2 n1

3n1 2n2 n2 m1

 ,

where m1 = 2m+ 3n1 − n2 − 2r1 − 4 and m2 = 2m+ 3n2 − n1 − 3r2 − 6.

Proof. The distance signless Laplacian matrix of the graph H = G1▼G2 has the form
S1 J 2J 3J

J S2 3J − 2I −A(G2) 2J

2J 3J − 2I −A(G2) S3 J

3J 2J J S4

 ,

where Si = 2J −A(G1) + (2m+ n1 − n2 − r1 − 4)I, i = 1, 4 and Si = 2J −A(G2) + (2m+ n2 − n1 −
2r2 − 6)I, i = 2, 3.

As in Theorem 3.5, let λ be an adjacency eigenvalue of G1 associated with X, satisfying 1TX = 0.

[XT 0 0 0]T is an eigenvector of DQ(H) associated with 2m − λ + n1 − n2 − r1 − 4. Likewise,

the vector [0 0 0 XT ]T is an eigenvector of DQ(H) associated with 2m − λ + n1 − n2 − r1 − 4.

Let µ be an arbitrary adjacency eigenvalue of G2 with eigenvector Y, satisfying 1TY = 0. The

vectors [0 Y T Y T 0]T and [0 − Y T Y T 0]T are similarly eigenvectors of DQ(H) with eigen-

values 2m − 2µ + n2 − n1 − 2r2 − 8 and 2m + n2 − n1 − 2r2 − 4 respectively. Therefore, we have
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[XT 0 0 0]T , [0 0 0 XT ]T , [0 Y T Y T 0]T and [0 − Y T Y T 0]T as m − 4 eigenvec-

tors. Other eigenvectors are orthogonal to [1T 0 0 0]T , [0 1T 0 0]T , [0 0 1T 0]T and

[0 0 0 1T ]T . They must span the space spanned by the rest four eigenvectors of DQ(H). They

are of the form [α1 β1 γ1 δ1]T for some (α, β, γ, δ) ̸= (0, 0, 0, 0). If ν is an eigenvalue of DQ(H)

with an eigenvector (α1 β1 γ1 δ1)T , usingDQ(α1 β1 γ1 δ1)T = ν(α1 β1 γ1 δ1)T , and

A(Gi)1 = ri1 for i = 1, 2, we arrive at:

(2m+ 3n1 − n2 − 2r1 − 4)α+ n2β + 2n2γ + 3n1δ = να,

n1α+ (2m+ 3n2 − n1 − 3r2 − 6)β + (3n2 − r2 − 2)γ + 2n1δ = νβ,

2n1α+ (3n2 − r2 − 2)β + (2m+ 3n2 − n1 − 3r2 − 6)γ + n1δ = νγ,

3n1α+ 2n2β + n2γ + (2m+ 3n1 − n2 − 2r1 − 4)δ = νδ.

The system has a nontrivial solution when ν is an eigenvalue of (3.2). Any nontrivial solution of

the system must be an eigenvector of DQ(H) associated with ν. Because all four rest eigenvectors of

DQ(H) are as such, any eigenvalue of (3.2) is also an eigenvalue of DQ(H). □

Recall that the k-th power Gk has the same set of vertices as G. Two vertices in Gk forms an edge

if the distance between them in G is no more than k. We will obtain the distance signless Laplacian

spectrum of the square of cycle and square of hypercube of dimension n. We show that the square of

hypercube of dimension n has three distinct distance signless Laplacian eigenvalues.

Theorem 3.8. Let {n2

4 , 0, λ3, . . . , λn} or {n2

4 ,−1, λ3, . . . , λn} be the distance spectrum of Cn depending

on whether n
2 is even or odd. Then, the distance signless Laplacian spectrum of C2

n is given by{
n2 + 2n

4
,
n2

8
,
n2 + 2n+ 4λ3

8
, . . . ,

n2 + 2n+ 4λn

8

}
,

if n
2 is even and by {

n2 + 2n

4
,
n2 − 4

8
,
n2 + 2n+ 4λ3

8
, . . . ,

n2 + 2n+ 4λn

8

}
,

if n
2 is odd.

Proof. Suppose Cn has vertex set {u1, u2, . . . , un}. We partition it as V1 ∪ V2 where V1 has vertices of

even index and V2 has those of odd index. Each pair of vertices in V1 or V2 has even distance between.

A vertex of V1 and a vertex of V2 has odd distance between them. We index the rows and columns

of distance signless Laplacian matrix taking those in V1 followed by those in V2. With an appropriate

ordering, the distance signless Laplacian matrix becomes

DQ(Cn) =

(
K + S U

U K + S

)
,

where each entry of the block S is even and any row in S is given by the sum of distances from a

vertex in V1 to other vertices in V1. S has constant row sum r(S). Elements in the block U are even
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and rows in U are given by the sum of distances from a vertex in V1 to other vertices in V2. U has

constant row sum r(U) with

r(S) =

{
n2−4
8 if n

2 is odd
n2

8 if n
2 is even

}
, r(U) =

{
n2+4
8 if n

2 is odd
n2

8 if n
2 is even.

Also K =
(
n2

4

)
I. Therefore, the distance signless Laplacian matrix of C2

n has the form

DQ(C2
n) =

1

2

(
P + S U + Jn

2
×n

2

U + Jn
2
×n

2
P + S

)
,

where P =
(
n2+2n

4

)
I. Now, using Lemma 3.1, the eigenvalues of DQ(C2

n) are the union of the

eigenvalues of 1
2(P + S + U + J) and 1

2(P + S − U − J). Hence, if
n

2
is even, then

spec(DQ(C2
n)) =

{
n2 + 2n

8
+

n2

8
+

n

4
,
n2 + 2n

8
− n

4
,
n2 + 2n

8
+

λ3

2
,

. . . ,
n2 + 2n

8
+

λn

2

}
,

and if
n

2
is odd, then

spec(DQ(C2
n)) =

{
n2 + 2n

8
+

n2

8
+

n

4
,
n2 + 2n

8
−
(
1

2
+

n

4

)
,
n2 + 2n

8
+

λ3

2
,

. . . ,
n2 + 2n

8
+

λn

2

}
.

Hence, the proof is complete. □

Finally, we consider the distance signless Laplacian spectrum of the square of hypercube of dimen-

sion n. The n-dimensional hypercube Qn admits V (Qn) = {(a1, a2, . . . , an) : ai = 0 or 1} and an edge

in it means the two end points differ with precisely one coordinate. For u, v ∈ V (Qn), d(u, v) = r if

and only if u and v have coordinates different in precisely r locations.

The Hamming graph H(n, d) has vertex set Xn with d = |X| ≥ 2, and an edge in it means the

two end points differ with just one coordinate. The n-dimensional hypercube Qn can be thought of

as H(n, 2).

Lemma 3.9. [24] The distance spectrum of H(n, d) is{
ndn−1(d− 1)[1], 0[d

n−n(d−1)−1],−(dn−1)[n(d−1)]
}
.

Theorem 3.10. Suppose Qn is the hypercube with dimension n. The distance signless Laplacian

spectrum of Q2
n is{ n∑

i=1

i

(
n

i

)
+ (2n−2)[1],

1

2

n∑
i=1

i

(
n

i

)
+ (2n−2)[2

n−(n+2)],
1

2

n∑
i=1

i

(
n

i

)[n+1]}
.
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Proof. For a vertex x = (0, 0, . . . , 0), let V1 have vertices with even distance from x and V2 have

vertices with odd distance from x. Vertices in V1 and those in V2 have even distance between them.

A vertex in V1 and a vertex in V2 have odd distance between them. With a suitable order in V1 and

V2, the distance signless Laplacian matrix becomes

DQ(Qn) =

(
K + S U

U K + S

)
,

where U and S are just as in Theorem 3.8 and K =

(
n∑

i=1

i

(
n

i

))
I, because the sum of distances from

a vertex in V1 to others in V1 is

k1 =


∑
i

i

(
n

i

)
, i ∈ 2k, k = 1, 2, . . . ,

n− 1

2
, if n is odd∑

i

i

(
n

i

)
, i ∈ 2k, k = 1, 2, . . . ,

n

2
, if n is even.

The sum of the distances from a vertex in V1 to those inV2 is

k2 =


∑
i

i

(
n

i

)
, i ∈ 2k − 1, k = 1, 2, . . . ,

n+ 1

2
, if n is odd∑

i

i

(
n

i

)
, i ∈ 2k − 1, k = 1, 2, . . . ,

n

2
, if n is even.

The matrix U + S has constant row sum k1 + k2 =
n∑

i=1

i

(
n

i

)
and the matrix U − S has constant row

sum k1 − k2 = 0. for all n. Therefore, the distance signless Laplacian matrix of Q2
n has the form

DQ(Q2
n) =

1

2

(
F + S U + J2n−1×2n−1

U + J2n−1×2n−1 F + S

)
,

where F =

(
n∑

i=1

i

(
n

i

)
+ 2n−1

)
I. Now, using Lemma 3.1, the eigenvalues of DQ(Q2

n) are the union

of the eigenvalues of 1
2(F + S +U + J) and 1

2(F + S −U − J). Hence, the distance signless Laplacian

spectrum is {
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2 +

1

2

n∑
i=1

i

(
n

i

)
+ 2n−2,

1

2

n∑
i=1

i

(
n

i

)
+ 2n−2 + 0,

1

2

n∑
i=1

i

(
n

i

)
+ 2n−2 − 2n−2

}
.

Thanks to Lemma 3.9, we derive the conclusion. □
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