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A system model of three-body

interactions in complex networks:

Consensus and conservation
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Abstract
Networked complex systems in a wide range of physics, biology and

social sciences involve synergy among multiple agents beyond pair-
wise interactions. Higher-order mathematical structures such as hy-
pergraphs have been increasingly popular in modelling and analysis of
complex dynamical behaviors. Here, we study a simple three-body con-
sensus model, which favorably incorporates higher-order network inter-
actions, higher-order dimensional states, group reinforcement effect as
well as social homophily principle. The model features asymmetric
roles of acting agents using modulating functions. We analytically es-
tablish sufficient conditions for nonlinear consensus and conservation
of states for agents with both discrete-time and continuous-time dy-
namics. We show that higher-order interactions encoded in three-body
edges give rise to consensus and conservation for systems with gravity-
like and Heaviside-like modulating functions. Furthermore, we illus-
trate our theoretical results with numerical simulations and examine
the system convergence time through a network depreciation process.

Keywords: higher-order interaction, higher-dimension, complex net-
work, consensus, conservation law, nonlinear dynamics

1 Introduction

Complex networks have the ability to model many natural and man-made
systems composed of interacting units [1, 2]. The overall system behavior
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is governed by its nodes, whose states are influenced by neighboring nodes
through connecting edges in the network. Understanding the interaction
between network components and how it shapes the collective dynamics of
the entire complex system is therefore of transdisciplinary interest.

In the conventional network representation of complex systems, a dom-
inating hypothesis is that basic interacting units in networks are captured
exclusively by pairwise interactions. This assumption is often not verified in
diverse real-world systems such as neuroscience [3, 4, 5], ecological systems
[6, 7] and scientific collaboration [8, 9], where essential interplay takes place
at a collective level involving group or multibody interactions [10, 11, 12].
Examples include the presence of higher-order neuronal connection patterns
in human brain networks to support nervous activities and cognitive pro-
cesses [13]; social changes require complex contagions with multiple expo-
sures and group social interactions [14]; and species coexistence and biodiver-
sity can be promoted in an ecosystem if three or more species are factored
in the species competition relationship [15]. Distinct from pairwise inter-
actions, higher-order interactions account for the group effect as a whole,
which cannot be regarded as a combination effect of dyadic connections.

To account for higher-order organization of complex systems and its
structural and dynamical implications, the building blocks of network struc-
ture have been extended from pairs of nodes to small subgraphs and motifs
[16, 17]. Higher-order network architectures are often described by hyper-
graphs, Petri nets, and simplicial complexes. A simplicial complex can be
formed by binding simplexes along their faces of any dimension, where a
k-simplex is a filled clique of k + 1 nodes for k ≥ 1 [18]. With their origin
in algebraic topology and the geometric interpretation, simplicial complexes
have been found very useful in the analysis of high-dimensional topologi-
cal data [19, 20, 21]. Hypergraphs [22, 23] allow interaction between nodes
through hyperedges consisting of any number of nodes such as pairs (conven-
tional two-body edges), triples (three-body edges), quadruples (four-body
edges) etc. Petri nets [24] are an important kind of directed hypergraphs,
which underpin the finite-state machine theory in theoretical computer sci-
ence [25]. Different from the simplicial complex approach, the hypergraph
approach does not require the existence of all lower-order interactions. A
range of dynamical processes such as social contagion [14, 26], oscillator syn-
chronization [27, 28], random walks [29, 30], opinion dynamics [31, 32] and
naming games [33] have been studied on these higher-order system models
in the last few years.

On the other hand, consensus over networks has become a major research
topic with applications across a wide spectrum of fields including physics,
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engineering, biology and social science. In a consensus problem [34], a group
of agents reach a common state through local information exchange through
the underlying communication network. Consensus problems have been
investigated extensively in both discrete-time and continuous-time models
[35, 36, 37, 38, 39, 40]. In tandem with the recent flurry of research enthusi-
asm in multibody interactions, consensus problems have been generalized to
accommodate these higher-order models. In [41], a continuous-time consen-
sus framework is developed over simplicial complex structures by using the
gradient flow of an energy functional. A continuous-time multibody con-
sensus model is proposed in [42, 43] incorporating group reinforcement on
hypergraphs. It is unraveled that linear consensus protocols are not able to
model genuine higher-order interactions. Building on the siphon theory of
Petri net, the author [24] studies a continuous-time opinion dynamic model
with bounded confidence and observer effect. It is shown that consensus
state can be reached asymptotically via higher-order neighbor-dependence
synergy.

Motivated by this line of research, we here propose a three-body consen-
sus dynamical model over hypergraphs featuring asymmetric roles in triples
with both primary and secondary agents. The update rule of an agent i that
forms a hyperedge with a primary agent j and a secondary agent k depends
on the diffusive interaction with j and the modulating action of k on both
i and j. By specifying different roles in a triple, we put together a non-
linear dynamical system that incorporates reinforcing group effect and ho-
mophily. Our framework for consensus has some differences compared with
the existing works [24, 41, 42, 43]. First, we propose both discrete-time
and continuous-time system models whereas only continuous-time models
are considered previously. Second, unlike the above works dealing with
only scalars, we consider general vector states. Third, we develop analytical
frameworks and provide rigorous proof in addition to numerical simulations.
In the case of gravity-like modulating functions with infinite supports, both
discrete-time and continuous-time models are shown to achieve consensus
when the interaction hypergraph is connected and the modulating functions
satisfy some mild conditions. In the case of modulating functions with finite
supports, in order to ensure consensus in both models, we propose sufficient
conditions on the initial state configuration in terms of some energy func-
tions. Fourth, the ultimate consensus state is shown to be the average of
initial states of agents. Hence, average consensus is achieved. As the num-
ber of agents in the system is fixed, our model is capable of conserving total
states over the system at all times.

The remainder of the paper is organized as follows. Section 2 provides the
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nonlinear three-body dynamical models. Section 3 and Section 4 are devoted
to the analysis of discrete-time and continuous-time systems, respectively.
Numerical studies are presented in Section 5. Conclusions in Section 6 end
the paper.

2 Consensus dynamics with three-body interac-
tions: asymmetric roles

The object of this study is n coupled dynamical agents, whose interconnec-
tion network structure is encoded in a hypergraph G = (V, E ,A) with the
node set V = {1, 2, · · · , n} and the edge set E = {{i, j, k}|i, j, k ∈ V}. Here,
E consists of unordered triples or triangles (three-body edges), and the as-
sociated adjacency tensor is given by A = (aijk) ∈ Rn×n×n with aijk = 1
if {i, j, k} ∈ E and aijk = 0 otherwise. We assume aijk = 0 if the triple is
degenerate, namely i = j, i = k or j = k. Two nodes i and j are said to be
adjacent if they are in the same edge in E . Two nodes i and j are connected
if there is a list of nodes starting from i and ending at j, every two contigu-
ous nodes of which are adjacent. Accordingly, G is called connected if each
pair of nodes is connected in G. The hypergraph G is a natural counterpart
for a undirected graph structure characterizing interactions over two-body
edges [10]. From a graph theory perspective, G is a 3-uniform hypergraph.
In other words, it only characterizes three-body edges and no edges (inter-
actions) of other orders are considered. For simplicity, we will just use the
word ‘edge’ to represent edge of any order if the meaning is clear from the
context.

The equations of evolution governing the dynamics of agents in G are
given by

xi(t + 1) = xi(t) + hui(t), i ∈ V, t = 0, 1, 2, · · · (1)

for discrete-time system, and

ẋi(t) = ui(t), i ∈ V, t ≥ 0 (2)

for continuous-time system, where h > 0 is a regulation constant, xi(t) ∈ Rm

is the state vector of agent i and ui(t) ∈ Rm is the interaction function
describing the coupling strength as well as influence of other agents on agent
i. The state space of agents is assumed to be m-dimensional while previous
studies [24, 41, 42, 43] focus on the low-dimension case of m = 1. We propose
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an interaction function written as

ui(t) =
n∑

j,k=1

aijkg(‖xi(t) − xj(t)‖)gI
k(‖xi(t) − xk(t)‖)gI

k(‖xj(t) − xk(t)‖)

· gII
k

(∥∥∥xi(t) + xj(t)
2

− xk(t)
∥∥∥)

(xj(t) − xi(t)), (3)

where ‖ ·‖ represents the Euclidean norm, each triple of affected node i, pri-
mary acting node j and secondary acting node k is modulated by functions
g, gI

k and gII
k . We consider two commonly used classes of functions for these

modulating functions g, gI
k and gII

k . The first class is gravity-like functions.
Namely,

F1 = {f : [0,∞) → (0,∞)|f(y1) ≥ f(y2) if y1 ≤ y2}. (4)

These functions are non-increasing and have infinite supports. The second
class is made up of Heaviside-like functions:

F2(σ, φ) ={f : [0,∞) → [0,∞)|f(y) ≡ 0 for y ≥ σ > 0; f(y) ≥ φ > 0
for y < σ; f(y1) ≥ f(y2) if y1 ≤ y2}. (5)

The functions in F2(σ, φ) are also monotonic and have a positive lower bound
φ over the support set [0, σ).

Figure 1: Schematic of a three-body edge {i, j, k} with i being the affected
node, j the primary acting node and k the secondary acting node. As the
states of j and k are closer (as the color indicated), the modulation along
{j, k} is stronger compared to that along {i, k}.

The three nodes in an edge {i, j, k} with aijk = 1 have asymmetric
roles in (3). For the affected node i, we view j as the primary acting node
and k the secondary acting node; c.f. Fig. 1. The modulating function
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g(‖xi(t)−xj(t)‖) models the homophily principle in social networks [44, 45]
or the visual distance in Euclidean space. For the latter, note that the
Cucker-Smale flocking model [46, 47] offers an example of g ∈ F1 and Vicsek
model [48] is an example of g ∈ F2. This modulating function together with
a linear diffusive coupling, i.e., the last term in (3), has been extensively
investigated in many dynamical systems over graphs such as consensus and
synchronization problems [2, 34]. In our hypergraph setting, the action
of the secondary node k is captured by two possible types of modulating
functions gI

k and gII
k . Both of them reflect a reinforcing group effect among

the three nodes in an edge, where closer nodes states give rise to a higher
modulation weight. The function type gI

k gives a sense of ‘separation of
variables’ while the type gII

k treats the two neighbors i and j as a whole.
Clearly, if any of these functions are in the class F1, we can freely choose
them as a constant function to adjust modulation mechanism in (3).

The introduction of nonlinear modulating functions is inspired by the
works [42, 43]. In addition to the differences discussed in Section 1, the
asymmetric roles introduced in the current model allows the system to pre-
serve the total states (see Definition 2 below), which are not achievable in
[42, 43]. There are some examples in which our notion of asymmetric roles of
the primary and secondary acting nodes is of interest. In practical scenarios
such as distributed bird flocks, driving in a traffic, and social and animal
hierarchies, it is prevalent to have systems that are organized into a hierar-
chical influence or leadership structure [49, 50], where nodes at a lower level
look up to nodes at higher levels (see e.g. [51, Fig. 1]). In our setting, the
primary node j influences i through g and the secondary node k influences
i and j through gI

k and gII
k . The effective role of a secondary node k as

a reference providing adjustment or recommendation has been highlighted
in some friend finder algorithms in social network analysis [52]. A similar
distance-modulated mechanism is also adopted in the study of higher-order
interaction for species coexistence [53], where the biotic interaction between
a focal tree (i) and a neighboring tree (j) is modulated by an intermediary
tree (k). Tree survival and growth is shown to be better predicted with this
approach.

We are interested in two important properties of the system regarding
the equilibrium and transient evolution, namely, whether the ultimate states
of the coupling agents will reach a common state vector and how will the
total or average state over the entire system evolve. Formally, we have the
following definitions. Let x(t) = (x1(t)T, x2(t)T, · · · , xn(t)T)T ∈ Rnm, where
T represents the transpose operator.
Definition 1. (Consensus) Consensus for the system is said to be achieved
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if for any initial configuration of x(0) ∈ Rnm, limt→∞ ‖xi(t) − xj(t)‖ = 0
holds true for all i, j ∈ V.
Definition 2. (Conservation) Conservation for the system is said to
be achieved if for any initial configuration of x(0) ∈ Rnm,

∑n
i=1 xi(t) =∑n

i=1 xi(0) for all t ≥ 0.
Clearly, if both consensus and conservation can be reached, we obtain

the average consensus limt→∞ xi(t) = 1
n

∑n
i=1 xi(0).

3 Consensus and conservation of discrete-time dy-
namics

We will analyze the discrete-time system (1) in this section and defer the
continuous-time system (2) to Section 4. To set the scene for later develop-
ment, let Tij be the set of nodes in G such that there exists a three-body
edge with the other two nodes being i and j. Obviously, the cardinality |Tij |
counts the number of triangles in G sharing a common edge {i, j}. Given
i, j ∈ V, define

bij(t) =
n∑

k=1

aijkg(‖xi(t) − xj(t)‖)gI
k(‖xi(t) − xk(t)‖)gI

k(‖xj(t) − xk(t)‖)

· gII
k

(∥∥∥xi(t) + xj(t)
2

− xk(t)
∥∥∥)

. (6)

In the following, we sometimes choose to suppress the time t and write
notations like bij and xi for ease of reading. Feeding (6) into (3), we have a
time-dependent linear feedback

ui(t) =
n∑

j=1

bij(t)(xj(t) − xi(t)). (7)

We define the diagonal degree matrix for the system as D = diag(d11, d22,
· · · , dnn) ∈ Rn×n, where dii =

∑n
j=1 bij . The corresponding Laplacian ma-

trix is given by L = D−B, where B = (bij) ∈ Rn×n. It is worth noting that
these matrices are not functions of the hypergraph topology as opposed to
classic consensus theory [34, 35]. They encode both the higher-order network
architecture and nonlinear (higher-dimensional) agent dynamics.

3.1 Gravity-like modulating functions

We first consider the conservation and consensus of the discrete-time system
(1) when the modulating functions are all gravity-like.
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For i ∈ V, let ∆i = 1
2

∑n
j=1 |Tij | count the number of triangles, i.e.

three-body edges, that i is in. Denote by ∆max = maxi∈V ∆i. In general,
the number of d-body edges connected to a node is also known as generalised
degree [54].
Theorem 1. Assume g, gI

k, g
II
k ∈ F1 for all k ∈ V and G is connected. If h ∈(

0, (2∆maxg(0) maxk∈V{gI
k(0)2gII

k (0)})−1
)
, then the discrete-time system (1)

with (3) achieves consensus and conservation.
Proof. Recall that x(t) = (x1(t)T, x2(t)T, · · · , xn(t)T)T for t ≥ 0. By (1)
and (3) we obtain a compact form

x(t + 1) = x(t) − h(L ⊗ Im)x(t), (8)

where Im ∈ Rm×m is the identity matrix and ⊗ is the Kronecker product.
Let M = span{1n ⊗ z|z ∈ Rm} ∈ Rnm be the synchronization manifold and
PM be the projection operator over M, where 1n ∈ Rn represents the all-one
vector. It is not difficult to check that PMx = 1n ⊗ 1

n

∑n
i=1 xi. Applying

PM on both sides of (8) yields

PMx(t + 1) = PMx(t) − h(L ⊗ Im)PMx(t), (9)

where we have used LT = L and L1n = 0n for any time t. Here, 0n ∈ Rn is
the all-zero vector. Let ξ(t) = x(t) − PMx(t) be the difference. We aim to
show that ξ is vanishing as t tends to infinity.

Combining (8) and (9), we obtain

ξ(t + 1) = ξ(t) − h(L ⊗ Im)ξ(t). (10)

Define θ(t) = ξ(t)Tξ(t) and we obtain by (10)

θ(t + 1) − θ(t) = ξ(t)T((In − hL) ⊗ Im)2ξ(t) − ξ(t)Tξ(t)

= −ξ(t)T(Θ(t) ⊗ Im)ξ(t), (11)

where Θ(t) = 2hL−h2L2. Denote the eigenvalues of L by λ1(L) ≤ λ2(L) ≤
· · · ≤ λn(L). Note that they are time-dependent. In view of (6) and the
assumption g, gI

k, g
II
k ∈ F1 for k ∈ V, we obtain 0 ≤ bij(t) ≤ |Tij |g(0)

maxk∈V{gI
k(0)2gII

k (0)} for any t ≥ 0. Using the Gershgorin circle theorem,

λi(L) ≤ 2max
i∈V

n∑
j=1

bij(t) ≤ 4∆maxg(0)max
k∈V

{gI
k(0)2gII

k (0)} (12)

for all i ∈ V. Since λi(Θ(t)) = hλi(L)(2 − hλi(L)) and (2 − hλi(L)) > 0
by the condition h ∈

(
0, (2∆maxg(0)maxk∈V{gI

k(0)2gII
k (0)})−1

)
and (12),
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we know that all eigenvalues of Θ(t) are non-negative and the number of
possible zero eigenvalues is equal to the number of zero eigenvalue of L for
any time t. Hence, Θ(t) is positive semidefinite.

Denote by λ̂(·) the minimum non-zero eigenvalue of a positive semidefi-
nite matrix and N (·) its eigenspace corresponding to 0. Since G is connected,
neither L nor Θ(t) is a zero matrix. With the observation in the above para-
graph, we have λ̂(Θ(t) ⊗ Im) = λ̂(Θ(t)) > 0. It follows from (11) and the
Rayleigh-Ritz theorem that

θ(t + 1) − θ(t) ≤− λ̂(Θ(t)) ·
(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)T

·
(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)
. (13)

As G is connected, by the assumption g, gI
k, g

II
k ∈ F1 for k ∈ V we know

that N (L) = span{z1n|z ∈ R}. Therefore, N (L ⊗ Im) = M. In light of
the definition of Θ(t), we then have N (Θ(t) ⊗ Im) = M. Furthermore,
PMξ(t) = PMx(t)−PMPMx(t) = 0nm. Due to the connectedness of G and
the positiveness of the modulating functions, the right-hand side of (13) is
equivalent to

− λ2(Θ(t)) ·
(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)T(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)
= − λ2(Θ(t)) · ξ(t)Tξ(t) ≤ 0 (14)

and λ2(Θ(t)) > 0 for any t ≥ 0. Since θ(t) = ‖ξ(t)‖2, we know ‖ξ(t)‖ is
non-increasing by (13) and (14). Recall that our aim is to show ξ(t) → 0nm

as t → ∞. So we are still one step away.
We will estimate the eigenvalue λ2(Θ(t)) in (14). By assumptions we

know λ2(L) > 0 for all t ≥ 0. Moreover, it has a positive lower bound.
In fact, let η = (η1, η2, · · · , ηn)T ∈ Rn be the normalized unit eigenvector
associated with λ2(L). By direct calculations we have maxi,j∈V ‖xi(t) −
xj(t)‖ ≤

√
2‖ξ(t)‖; see e.g. [55, Lemma 1]. Hence, maxi,j∈V ‖xi(t)−xj(t)‖ ≤
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√
2‖ξ(0)‖. Involving (6) and the assumption g, gI

k, g
II
k ∈ F1, we have

λ2(L) =ηTLη

=
1
2

n∑
i,j,k=1

aijkg(‖xi − xj‖)gI
k(‖xi − xk‖)gI

k(‖xj − xk‖)

· gII
k

(∥∥∥xi + xj

2
− xk

∥∥∥)
(ηi − ηj)2

≥1
2
g(
√

2‖ξ(0)‖)min
k∈V

{
gI
k(
√

2‖ξ(0)‖)2

· gII
k (

√
2‖ξ(0)‖)

} n∑
i,j,k=1

aijk(ηi − ηj)2

=g(
√

2‖ξ(0)‖)min
k∈V

{
gI
k(
√

2‖ξ(0)‖)2gII
k (

√
2‖ξ(0)‖)

}
ηTL̂η

≥ g(
√

2‖ξ(0)‖)min
k∈V

{
gI
k(
√

2‖ξ(0)‖)2gII
k (

√
2‖ξ(0)‖)

}
λ2(L̂) := c1 > 0,

(15)

where L̂ is the Laplacian corresponding to the graph Ĝ with (i, j)-element of
its adjacency matrix being

∑n
k=1 aijk. Clearly, Ĝ is connected and we have

relied on Rayleigh-Ritz theorem again in the last inequality of (15).
We have λ1(Θ(t)) = 0 and for i ≥ 2 we estimate

λi(Θ(t)) =hλi(L)(2 − hλi(L))

≥hc1

(
2 − 4h∆maxg(0)max

k∈V
{gI

k(0)2gII
k (0)}

)
:= c2 > 0 (16)

by using (12), (15) and the assumption of h. Combining (13), (14) and
(16), we have θ(t + 1) − θ(t) ≤ −c2ξ(t)Tξ(t). This indicates ξ(t) → 0nm as
t → ∞. [If this does not hold, there exists some ε > 0 such that ‖ξ(t)‖ > ε
for infinitely many t. This would conflict with the lower bound θ(t) =
‖ξ(t)‖2 ≥ 0 for all t.] Hence, consensus is reached. A direct calculation
using (1) and (3) shows that

∑n
i=1 xi(t + 1) =

∑n
i=1 xi(t) for any t ≥ 0.

This concludes the conservation of the system. Hence, average consensus is
achieved asymptotically as t tends to infinity. 2

It is worth noting that the condition that all gI
k, g

II
k ∈ F1 in Theorem 1

can be weakened. We may only require that this holds for one k ∈ V and
the modulating functions for all other k are simply non-increasing (and can
be in F2 for example). The same proof can be applied as this would not
affect the underlying connectivity of the system.
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3.2 Heaviside-like modulating functions

In this section, we examine the scenario that all modulating functions belong
to F2 and they may affect the overall connectivity underlying the system
(1). In particular, we confine ourselves to the case that both gI

k and gII
k are

Heaviside functions. Namely, for every k ∈ V we assume gI
k ∈ F2(σI

k, φ
I
k)

and gII
k ∈ F2(σII

k , φII
k ) satisfying gI

k(y) ≡ φI
k for y < σI

k and gII
k (y) ≡ φII

k for
y < σII

k . We introduce a function γ(y) : [0,∞) → [0,∞):

γ(y) =
b y

s
c∑

l=1

g(ls)s1{y≥s} + g
((⌊y

s

⌋
+ 1

)
s
)
·
(
y −

⌊y

s

⌋
s
)
, (17)

where s is a parameter of the function and 1{··· } represents an indicator
function. It is easy to see that γ(y) is an increasing function for any given s >
0, and it is essentially a Riemann sum satisfying lims→0 γ(y) =

∫ y
0 g(z)dz.

To analyze the consensus and conservation, we need the concept of en-
ergy Γ of the system at time t defined by

Γ(t) =
1
2

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k γ(‖xi(t) − xj(t)‖2) ≥ 0. (18)

The function γ(y) plays a key role in the energy (18) and the following
estimate will be used in the proof of Theorem 2 below.

γ(‖xi(t + 1) − xj(t + 1)‖2) − γ(‖xi(t) − xj(t)‖2)

≤g(‖xi(t) − xj(t)‖2) ·
(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
. (19)

This can be seen by examining two cases: (a) ‖xi(t) − xj(t)‖2 < ‖xi(t +
1) − xj(t + 1)‖2 and (b) ‖xi(t) − xj(t)‖2 ≥ ‖xi(t + 1) − xj(t + 1)‖2. In each
case, we then consider three subcases in view of the definition (17): (a1)
‖xi(t) − xj(t)‖2 < ‖xi(t + 1) − xj(t + 1)‖2 < s; (a2) ‖xi(t) − xj(t)‖2 < s ≤
‖xi(t+1)−xj(t+1)‖2; and (a3) s ≤ ‖xi(t)−xj(t)‖2 < ‖xi(t+1)−xj(t+1)‖2

and similarly for case (b). Below we just show (a), and the other situations
for (b) can be proved along the same line.

(a1): For y < s, γ(y) = g(s)y. Noting that g is non-increasing, we have

γ(‖xi(t + 1) − xj(t + 1)‖2) − γ(‖xi(t) − xj(t)‖2)

=g(s) ·
(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
≤g(‖xi(t) − xj(t)‖2) ·

(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
. (20)
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(a2):

γ(‖xi(t + 1) − xj(t + 1)‖2) − γ(‖xi(t) − xj(t)‖2)

=g(s)(s − ‖xi(t) − xj(t)‖2) +
b y

s
c∑

l=2

g(ls)s + g
((⌊y

s

⌋
+ 1

)
s
)

·
(
‖xi(t + 1) − xj(t + 1)‖2 −

⌊‖xi(t + 1) − xj(t + 1)‖2

s

⌋
s
)

≤g(‖xi(t) − xj(t)‖2) ·
(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
, (21)

where y = ‖xi(t + 1)− xj(t + 1)‖2 and we have used the monotonicity of g.
(a3): Similarly, we have

γ(‖xi(t + 1) − xj(t + 1)‖2) − γ(‖xi(t) − xj(t)‖2)

=g
((⌊y1

s

⌋
+ 1

)
s
)
·
((⌊y1

s

⌋
+ 1

)
s − y1

)
+ g

((⌊y1

s

⌋
+ 2

)
s
)
s + · · ·

+ g
(⌊y2

s

⌋
s
)
s + g

((⌊y2

s

⌋
+ 1

)
s
)(

y2 −
⌊y2

s

⌋
s
)

≤g(‖xi(t) − xj(t)‖2) ·
(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
, (22)

where y1 = ‖xi(t) − xj(t)‖2 and y2 = ‖xi(t + 1) − xj(t + 1)‖2.
As we here consider Heaviside-like modulating functions which signif-

icantly affect the connectivity, we will assume the hypergraph G is fully
connected, namely aijk = 1 for all distinct triples. Under this assumption,
when the initial energy is sufficiently small, we can expect the connectivity
of the system may be maintained. The main result in this section is the
following.
Theorem 2. Let G be fully connected. For every k ∈ V, assume g ∈
F2(σ, φ), gI

k ∈ F2(σI
k, φ

I
k) and gII

k ∈ F2(σII
k , φII

k ) satisfying gI
k(y) ≡ φI

k

for y < σI
k and gII

k (y) ≡ φII
k for y < σII

k . Suppose h ∈
(
0, ((n − 1)g(0)

maxk∈V{(φI
k)

2φII
k })−1

)
and there exists s ∈ (0, σ̂) satisfying

Γ(0) < (n − 1)γ(σ̂2) min
i,j∈V

∑
k∈V\{i,j}

(φI
k)

2φII
k , (23)

where σ̂ = mink∈V{σ, σI
k, σ

II
k }. Then the discrete-time system (1) with (3)

achieves consensus and conservation.
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Proof. It follows from (1), (3), (18) and (19) that

Γ(t + 1) − Γ(t) ≤1
2

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k g(‖xi(t) − xj(t)‖2)

·
(
‖xi(t + 1) − xj(t + 1)‖2 − ‖xi(t) − xj(t)‖2

)
=

1
2

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k g(‖xi(t) − xj(t)‖2)

·
(
‖xi(t) − xj(t) + hui(t) − huj(t)‖2 − ‖xi(t) − xj(t)‖2

)
=

h2

2

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k g(‖xi(t) − xj(t)‖2)

· (ui(t) − uj(t))T(ui(t) − uj(t))

+ h

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k g(‖xi(t) − xj(t)‖2)

· (xi(t) − xj(t))T(ui(t) − uj(t))

=h2u(t)TLu(t) + 2hx(t)TLu(t)

= − x(t)TΛ(t)x(t), (24)

where Λ(t) = 2hL2 − h2L3. By the Gershgorin circle theorem, λi(L) ≤
4(n − 1)∆maxg(0) maxk∈V{(φI

k)
2φII

k }. Since h ∈
(
0, (2(n − 1)∆maxg(0)

maxk∈V{(φI
k)

2φII
k })−1

)
, we know 2 − hλi(L) > 0 for all i ∈ V. Hence,

all eigenvalues of Λ(t) are non-negative and Γ(t + 1) − Γ(t) ≤ 0 by (24).
This means the energy of the system is non-increasing.

Combining this observation with (23), we have Γ(t) < (n − 1)γ(σ̂2)
for any t ≥ 0. Denote by G̃(t) the graph having the adjacency matrix
(bij(t)) ∈ Rn×n, where bij is given by (6). We claim G̃(t) is connected. If
this is not true, then the node set V can be divided into two parts with size
k and n − k for 1 ≤ k ≤ n − 1 without edges running between them. Note
that f(k) = k(n − k) is a concave parabolic function with the minimum
attained at k = 1 or k = n − 1. This means there are no less than n − 1
pairs of nodes that are not connected in G̃(t). Since G is fully connected and
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γ is increasing, we obtain

Γ(t) ≥1
2

∑
i,j∈V:‖xi(t)−xj(t)‖≥σ̂

( ∑
k∈Tij

(φI
k)

2φII
k

)
γ(‖xi(t) − xj(t)‖2)

≥(n − 1)γ(σ̂2) min
i,j∈V

∑
k∈V\{i,j}

(φI
k)

2φII
k , (25)

which conflicts (23). Hence, we have proved the claim.
Given t ≥ 0, let η = (η1, η2, · · · , ηn)T ∈ Rn be the normalized unit

eigenvector associated with λ2(L). In view of (6), full connectedness of G,
and our assumption on the modulating functions, we obtain

λ2(L) = ηTLη

=
1
2

n∑
i,j,k=1

aijkg(‖xi − xj‖)gI
k(‖xi − xk‖)gI

k(‖xj − xk‖)

· gII
k

(∥∥∥xi + xj

2
− xk

∥∥∥)
(ηi − ηj)2

≥ 1
2
φk(φI

k)
2φII

k

∑
{i,j}∈G̃(t)

(ηi − ηj)2

= φk(φI
k)

2φII
k ηTL̃η

≥ φk(φI
k)

2φII
k ηTλ2(L̃) := c3(t) > 0, (26)

where L̃ is the Laplacian corresponding to the graph G̃(t) with a (0, 1)-
adjacency matrix, and we have used the Rayleigh-Ritz theorem and the
connectedness of G̃(t). Since L̃ can only be chosen from a finite set, we
conclude c3(t) ≥ c3 > 0 for some constant c3.

Define θ(t) = ξ(t)Tξ(t) as in the proof of Theorem 1, and we obtain by
(10) that θ(t+1)− θ(t) = −ξ(t)T(Θ(t)⊗ Im)ξ(t), where Θ(t) = 2hL−h2L2.
Employing the full connectedness of G and the Gershgorin circle theorem,

λi(L) ≤ 2max
i∈V

n∑
j=1

bij(t) ≤ 2(n − 1)g(0)max
k∈V

{(φI
k)

2φII
k } (27)

for all i ∈ V. Accordingly, we have λ1(Θ(t)) = 0 and for i ≥ 2 we derive

λi(Θ(t)) =hλi(L)(2 − hλi(L))

≥hc3

(
2 − 2h(n − 1)g(0)max

k∈V
{(φI

k)
2φII

k }
)

:= c4 > 0 (28)
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by using (26), (27) and the assumption of h.
As in the proof of Theorem 1, by using the Rayleigh-Ritz theorem and

the projection PN (Θ(t)⊗Im), we obtain

θ(t + 1) − θ(t) ≤− λ2(Θ(t)) ·
(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)T

·
(
ξ(t) − PN (Θ(t)⊗Im)ξ(t)

)
= − λ2(Θ(t)) · ξ(t)Tξ(t)

≤− c4ξ(t)Tξ(t), (29)

where we have applied (28). As in Theorem 1, this means ξ(t) → 0nm as
t → ∞. Therefore, consensus is reached. A direct calculation using (1) and
(3) shows that

∑n
i=1 xi(t + 1) =

∑n
i=1 xi(t) for any t ≥ 0. This shows the

conservation of the system and completes the proof. 2

If φI
k ≡ φI and φII

k ≡ φII for all k ∈ V, then the initial energy condition
(23) can be reduced to

Γ(0) < (n − 1)(n − 2)γ(σ̂2)(φI)2φII . (30)

By (18) and the full connectedness of G, we have

Γ(0) =
n − 2

2
(φI)2φII

n∑
i,j=1

γ(‖xi(0) − xj(0)‖2). (31)

Since γ is increasing with γ(0) = 0, it is easy to see that when the discrep-
ancies between nodes are small enough the condition (30) holds. Moreover,
the condition is easier to meet for a smaller number of nodes.

The assumption g ∈ F2(σ, φ) in Theorem 2 models the homophily prin-
ciple in social networks [44, 45], where people are more willing to make a
contact and negotiate with those who have similar views or traits. If the
distance between nodes i and j is over the threshold

√
σ, the interaction be-

tween them ceases. It follows from the energy inequality (23) that a larger
σ implies a more relaxed condition and hence agents in the system are more
open-minded and inclined to reach consensus and conservation. This agrees
with our intuition. An analogous result can be seen below in Theorem 4 for
continuous-time dynamics. Similar homophily mechanisms have been widely
studied in opinion dynamics with bounded confidence; see e.g. [2, 57].
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4 Consensus and conservation of continuous-time
dynamics

We move on to consider the continuous-time system (2) with the same input
ui given by (3). In the analysis of continuous-time dynamical behavior, we
will assume local Lipschitz continuity [56] of the modulating functions.

4.1 Gravity-like modulating functions

The scenario for gravity-like modulating functions can be dealt with in anal-
ogy with the discrete-time counterpart in Section 3.1 with some algebraic
tweaks.
Theorem 3. Assume g, gI

k, g
II
k ∈ F1 and they are locally Lipschitz contin-

uous for all k ∈ V. If G is connected, then the continuous-time system (2)
with (3) achieves consensus and conservation.
Proof. Recall that the state of the system is encoded in x(t) = (x1(t), x2(t),
· · · , xn(t)) ∈ Rnm and the difference between its projection to the synchro-
nization manifold is given by ξ(t) = x(t) − PMx(t) for t ≥ 0. We define the
Lyapunov function θ(t) = 1

2ξ(t)Tξ(t). The Dini derivative of it along the
trajectory leads to

dθ(t)
dt

=ξ(t)T
dξ(t)
dt

=
(
x(t) − 1n ⊗ 1

n

n∑
i=1

xi(t)
)T

·
(
− (L ⊗ Im)x(t) + (L ⊗ Im)

(
1n ⊗ 1

n

n∑
i=1

xi(t)
))

= − x(t)T(L ⊗ Im)x(t), (32)

where we have made use of the expression PMx = 1n ⊗ 1
n

∑n
i=1 xi. Thanks

to the connectedness of G, the assumption on the modulating functions and
(3), we know that L ⊗ Im is positive semidefinite. It follows from (32) that
θ(t) is non-increasing and hence ‖ξ(t)‖ is decreasing for t ≥ 0.

By an application of the Rayleigh-Ritz theorem following the similar
argument as in Theorem 1, we have

dθ(t)
dt

≤− λ2(L) ·
(
ξ(t) − PN (L⊗Im)ξ(t)

)T(
ξ(t) − PN (L⊗Im)ξ(t)

)
= − λ2(L) · ξ(t)Tξ(t) (33)
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noting that N (L ⊗ Im) = M = span{1n ⊗ z|z ∈ Rm}. By (15) we have
λ2(L) ≥ c1 > 0 for some constant c1. Feeding this into (33) yields dθ(t)

dt ≤
−c1ξ(t)Tξ(t) for t ≥ 0. An argument of contraction gives rise to the vanish-
ing of ξ, namely, ξ(t) → 0nm as t → ∞. Consensus is reached as expected.
A direct calculation using (2) and (3) shows that d

dt

∑n
i=1 xi(t) = 0 for any

t ≥ 0. This completes the conservation part of the theorem. As in the
discrete-time case, average consensus can be achieved. 2

As commented in the discrete case below Theorem 1, the condition that
gI
k, g

II
k ∈ F1 just needs to be held here for one node k ∈ V.

4.2 Heaviside-like modulating functions

Analogously as in the discrete-time system studied in Section 3.2, we here
redefine the following energy function Γ of the continuous-time system (2)
at time t:

Γ(t) =
1
2

n∑
i,j=1

∑
k∈Tij

(φI
k)

2φII
k

∫ ‖xi(t)−xj(t)‖2

0
g(z)dz ≥ 0. (34)

The overall energy of the system at time t is captured by (34). We show that
consensus and conservation can be achieved if the initial energy is small.
Theorem 4. Let G be fully connected. For every k ∈ V, assume g ∈
F2(σ, φ), gI

k ∈ F2(σI
k, φ

I
k) and gII

k ∈ F2(σII
k , φII

k ) satisfying gI
k(y) ≡ φI

k for
y < σI

k and gII
k (y) ≡ φII

k for y < σII
k . Suppose

Γ(0) < (n − 1)
( ∫ σ̂2

0
g(z)dz

)
min
i,j∈V

∑
k∈V\{i,j}

(φI
k)

2φII
k , (35)

where σ̂ = mink∈V{σ, σI
k, σ

II
k }. Then the continuous-time system (2) with

(3) achieves consensus and conservation.
Proof. Let x = (x1, x2, · · · , xn) ∈ Rnm be the solution of the system.
Consider the locally Lipschitz potential function θ(x) = 1

2xTx. Using (2)
and (7), the time derivative of θ is

dθ(x)
dt

= −xT(L ⊗ Im)x ≤ 0. (36)

By LaSalle’s invariance principle [56, Thm 3.2], the set of accumulation
points of x is always contained in the set N (L ⊗ Im).
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The derivative of the energy function (34) is

dΓ(t)
dt

=
n∑

i,j=1

∑
k∈Tij

(φI
k)

2φII
k g(‖xi(t) − xj(t)‖2)(xi(t) − xj(t))T(ui(t) − uj(t))

=2x(t)TLu(t) = −2u(t)Tu(t) ≤ 0. (37)

Therefore, employing (35) we obtain

Γ(t) ≤ Γ(0) < (n − 1)
( ∫ σ̂2

0
g(z)dz

)
min
i,j∈V

∑
k∈V\{i,j}

(φI
k)

2φII
k , (38)

This means there are less than n − 1 pairs of nodes in V satisfying ‖xi(t) −
xj(t)‖ ≥ σ̂. Denote by G̃(t) the graph having the adjacency matrix (bij(t)) ∈
Rn×n, where bij is given by (6). Since G is fully connected, by considering
the concave parabolic function f(k) = k(n − k) (1 ≤ k ≤ n − 1) as in
Theorem 2, we derive that G̃(t) is connected. As a result, N (L ⊗ Im) =
M = span{1n ⊗ z|z ∈ Rm}. This proves consensus. Conservation follows
again from d

dt

∑n
i=1 xi(t) = 0 for t ≥ 0. 2

If φI
k ≡ φI and φII

k ≡ φII for all k ∈ V, then the initial energy condition
(35) becomes

Γ(0) < (n − 1)(n − 2)(φI)2φII

∫ σ̂2

0
g(z)dz. (39)

By (34) and the full connectedness of G, we obtain

Γ(0) =
n − 2

2
(φI)2φII

n∑
i,j=1

∫ ‖xi(0)−xj(0)‖2

0
g(z)dz. (40)

When the discrepancies between nodes are small enough the condition (39)
holds. The condition is easier to meet for a smaller number of nodes.

It can be seen from the above results that the group reinforcement effect
caused by the modulating functions g, gI

k, g
II
k places a challenge in the theo-

retical analysis for consensus and conservation, where we resort to detailed
eigenvalue analysis and synchronization manifold projection in the case of
gravity-like modulation, and construction of Lyapunov and energy functions
in the case of Heaviside-like modulation. Peer pressure and group reinforce-
ment have often been observed in social psychology and biology [58, 59]. For
example, in social networks the influence of an opinion on another depends
nonlinearly on its popularity. The coordination of an individual’s motion
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within a group, be it a swarm of insects, a school of fish, or a flock of birds,
depends on the nonlinear actions among its close neighbors. Moreover, the
idea of group reinforcement also underpins the multiagent reinforcement
learning [60], where agents learn the behavior and keep cohesion by expo-
sure to a group of neighbors with nonlinear rewards and modulation.

5 Numerical simulations

Following is a series of numerical examples that demonstrate the developed
theoretical framework above.
Example 1. In this example, we illustrate the action of gravity-like modu-
lating functions on the three-body interactions based on Theorem 1 and The-
orem 3. Consider a fully connected hypergraph G composed by n = 5 nodes,
namely, V = {1, 2, 3, 4, 5}. Let m = 2 and write xi = (xi1, xi2) ∈ R2 for the
state of agent i ∈ V. The modulating functions g, gI

k, g
II
k ∈ F1 are chosen as

g(y) = e−y, gI
k(y) = gII

k (y) = (y + 10)−1 for all k ∈ V. Noting ∆max = 6, we
take h = 80 for the discrete-time dynamical system (1). The initial configu-
ration is given by x(0) = (−4, 3, 1, 2.5, 5,−0.5, 1.5,−3,−3.5,−2)T, for which
the average state over the system is at the origin (0, 0).

We show in Fig. 2 the evolution of the discrete-time system (1) and
the continuous-time system (2) with (3). Since the conditions in Theorem 1
and Theorem 3 are satisfied, the average consensus at (0, 0) agrees with our
theoretical predictions. Even if both the hypergraph topology (G) and the
modulating functions (gI

k ≡ gII
k ) are symmetric, the component dynamics

show interesting phased convergence due to the introduction of asymmetric
roles and initial configuration. In the first component, for example, agents
2, 3, and 4 first reach a consensus and then join with agents 1 and 5.

For the discrete-time case, usually a larger h can speed up the conver-
gence but cannot exceed the limitation pertinent to bandwidth in informa-
tion theory [34, 61]. In Fig. 3 we show the same discrete-time dynamics but
for h = 170. The condition of h in Theorem 1 is violated and we observe
that consensus is not reached. In fact, there is a low level interpretation and
a high level interpretation. The low level explantation is that the regulation
constant h here plays the role of gain in control systems, which affects the
system matrix (and its eigenvalues) of the discrete-time dynamics. A larger
h will reduce system stability as can be seen from the theorem proof. The
high level explantation is that in information theory, a channel’s bandwidth
affects its capacity. The information flow in a signaling network (the hy-
pergraph G in our case) often breaks down due to low bandwidth or data
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Figure 2: State evolution of agents in Example 1 with gravity-like modu-
lating functions for: (a, b, c) the discrete-time system (1) and (d, e, f) the
continuous-time system (2). (a) and (d) show the states in R2 with the
origin indicated by a circle; (b) and (c) are for the time evolution of the
discrete-time system with h = 80; (e) and (f) are for the continuous-time
system.

rate by the Nyquist theorem, which amounts to a large h under the Laplace
transform.
Example 2. We now consider the action of Heaviside-like modulating
functions on the three-body interactions based on Theorem 2 and The-
orem 4. The same hypergraph G and the two-dimensional dynamics as
in Example 1 are adopted here. The modulating functions are chosen as
g(y) = 1{y<2} ∈ F2(σ = 2, φ = 1), gI

k = gII
k = 1{y<2} ∈ F2(σI

k = σII
k =

2, φI
k = φII

k = 1) for all k ∈ V. In other words, all modulating functions
are the same switching function at value 2. By taking the initial configura-
tion x(0) = (−0.28, 0.36, 0.1, 0.27, 0.54,−0.09, 0.18,−0.36,−0.54,−0.18)T, it
is direct to verify that the equilibrium is at the origin and the initial energy
Γ(0) ≈ 15.5 < 24 in (23) and (35). We choose h = 0.1 for the discrete-time
dynamical system (1). All conditions in Theorem 2 and Theorem 4 are met.

Fig. 4 shows the state trajectories of both systems. We observe that
average consensus has been achieved as one would expect. Compared with
Fig. 2 in Example 1, the states converge much faster because the modulating
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Figure 3: State evolution of agents in Example 1 with gravity-like modulat-
ing functions for the discrete-time system (1) with h = 170. Consensus fails
for both components (a) xi1 and (b) xi2.

functions used here apply a much stronger coupling on the network structure.
From Fig. 4(a) and (d) we note that the trajectories only move in lower-
dimensional planes (in lines in this case). This can be seen from the system
equations (1), (2) and (3) as the coupling in this example is fixed when the
modulating functions are switched on (which is always the case given the
initial configuration).

In Fig. 5 we consider a different initial condition x(0) = (−0.76, 1, 0.35,
0.76, 1.5,−0.25, 0.5,−1, −1.6,−0.5)T. The initial energy now becomes Γ(0) ≈
56.5 > 24 violating the conditions (23) and (35). It can be seen that the
distance between agent 5 and any other agent in V is always greater than√

2. By (17), (18) and our choice of the modulating functions, the dynamics
of agent 5 is isolated from the other agents, leading to a divergent system.
Example 3. Finally, in this example we explore the influence of network
structure over the convergence time. We take the fully connected hypergraph
G with n = 5 as a starting point. Its network representation is shown
in Fig. 6(a), i.e. a complete graph K5. In each step, a specific edge is
removed following the procedure shown in Fig. 6(a) until it becomes a
sparsest connected hypergraph (in terms of three-body edge interactions).
The convergence or consensus time is defined as mint≥0{t : maxi,j∈V ‖xi(t)−
xj(t)‖ < 0.01}.

The modulating functions g, gI
k, g

II
k ∈ F1 are chosen as g(y) = e−

y2

10 ,
gI
k(y) = gII

k (y) = (y + 10)−1 for all k ∈ V. We fix h = 30, which satisfies
the condition in Theorem 1 of the discrete-time system (1) for all topologies
considered in this example. The initial conditions are taken uniformly at
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Figure 4: State evolution of agents in Example 2 with switching modulat-
ing functions for: (a, b, c) the discrete-time system (1) and (d, e, f) the
continuous-time system (2). (a) and (d) show the states in R2 with the
origin indicated by a circle; (b) and (c) are for the time evolution of the
discrete-time system with h = 0.1; (e) and (f) are for the continuous-time
system. Dashes lines are shown in (a, b, c) for the aid of eyes.

random within the region [−1, 1]×[−1, 1] while keeping the average at (0, 0).
The results are shown in Fig. 6(b) and (c) for the discrete-time system (1)
and the continuous-time system (2), respectively. In the insets of Fig. 6(b)
and (c), we display the analogous results for an edge removal process starting
from the fully connected hypergraph with n = 9. We observe that the
consensus time increases as the hypergraph becomes sparser. On average,
consensus time shows a roughly linear scale in its growth.

6 Conclusion

In this paper we have proposed a three-body consensus model to implement
some desirable dynamical characteristics including higher-order interactions,
higher-dimensional states, group reinforcement effect and homophily princi-
ple. The model features asymmetric roles of interacting agents in a triangle,
which is influenced by modulating functions. We have developed analyti-
cal frameworks for consensus and conservation of agents with discrete-time
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Figure 5: State evolution of agents in Example 2 with switching
modulating functions for (a, b) the discrete-time system (1) and (c,
d) the continuous-time system (2) with initial configuration x(0) =
(−0.76, 1, 0.35, 0.76, 1.5,−0.25, 0.5,−1,−1.6,−0.5)T. Consensus fails for
both components (a) xi1 and (b) xi2. Dashes lines are shown in (a, b)
for the aid of eyes.

dynamics and continuous-time dynamics. In particular, two types of mod-
ulating functions, i.e., gravity-like and Heaviside-like functions, have been
investigated. Numerical simulations have also confirmed our theoretical find-
ings. This work leads to some interesting directions that could be further
explored. First, as consensus processes are usually sensitive to the communi-
cation topology, further numerical or even analytical studies can be done to
explore the influence of heterogeneous topologies such as hypergraphs with
community structures. Second, the current framework only works for three-
body interactions. It would be interesting to extend the framework to allow
interactions involving a mix of pairs, triples and even general motifs. An-
other interesting direction is to probe more sophisticated asymmetric roles
involving, for example, random noises or game-theoretic strategies.
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Figure 6: (a) Depreciation process in Example 3 of a fully connected hyper-
graph by removing one edge at each step. Convergence times for discrete-
time system (1) and continuous-time system (2) are shown in (b) and (c)
respectively. The insets show the analogous results for depreciating a hy-
pergraph with n = 9. Each data point is an average of 50 independent sim-
ulation runs for random initial configurations in the region [−1, 1]× [−1, 1].
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