Aeolian driven oxidant and hydrogen generation in Martian regolith: The role of mineralogy and abrasion temperature

Edgar, John O., Gilmour, Katie, White, Maggie L., Abbott, Geoffrey D. and Telling, Jon (2022) Aeolian driven oxidant and hydrogen generation in Martian regolith: The role of mineralogy and abrasion temperature. Earth and Planetary Science Letters, 579. p. 117361. ISSN 0012-821X

[img] Text
Edgar et al. (2022)_Aeolian driven oxidant and hydrogen generation in Martian regolith.pdf - Accepted Version
Restricted to Repository staff only until 13 January 2023.
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (833kB) | Request a copy
Official URL: https://doi.org/10.1016/j.epsl.2021.117361

Abstract

The surface of Mars is a dynamic, cold environment where aeolian abrasion leads to the fracturing of silicate minerals which can produce oxidants upon exposure to water. Here we report results of a series of laboratory experiments where the abrasion of sand sized (125 – 300 μm) quartz, labradorite, forsterite and opal were conducted under a simulated Martian atmosphere at a range of temperatures common to Mars' surface (193 to 273 K). Our results suggest that abrasion rates are controlled by temperature; an observation that may have potential for providing insight into Martian paleo-temperatures. On the addition of water, detectable H2O2 was generated in all abraded experiments with crystalline quartz, labradorite and forsterite, but not amorphous opal – supporting previous inferences that mineral crystal structure plays a role in oxidant production. Dissolved Fe concentrations also indicated a strong additional control on net H2O2 production by Fenton reactions. Detectable H2 was similarly measured in abraded experiments with crystalline minerals and not for amorphous opal. Labradorite and forsterite generated minimal H2 and only in more abraded samples, likely due to the reaction of Si• with water. In quartz experiments H2 was only present in samples where a black magnetic trace mineral was also present, and where H2O2 concentrations had been reduced to close to detection. In the quartz samples we infer a mechanism of H2 generation via the previously proposed model of spinel-surface-promoted-electron transfer to water. The presence of H2O2 may exert an additional control on net H2 production rates either directly (via reaction of H2 with OH• and H2O2) or indirectly (by the oxidation of H2 generating sites on mineral surfaces). Overall, our data supports previous inferences that aeolian abrasion can produce additional oxidants within the Martian regolith that can increase the degradation of organic molecules. We further suggest that the apparent control of H2O2 concentrations on net H2 generation in our experiments may help explain some previous apparently contradictory evidence for mineral-water H2 generation at low temperatures.

Item Type: Article
Additional Information: Funding information: This work was supported by the UK Space Agency [grants ST/S001484/1 and ST/R001421/1].
Uncontrolled Keywords: Fenton chemistry, hydrogen, hydrogen peroxide, low-temperature, aeolian abrasion, Mars
Subjects: C900 Others in Biological Sciences
F100 Chemistry
F200 Materials Science
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Rachel Branson
Date Deposited: 18 Jan 2022 10:21
Last Modified: 18 Jan 2022 10:30
URI: http://nrl.northumbria.ac.uk/id/eprint/48194

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics