Northumbria Research Link

Citation: Shayanfar, Javad, Barros, Joaquim A.O. and Rezazadeh, Mohammadali (2021) Generalized Analysis-oriented model of FRP confined concrete circular columns. Composite Structures, 270. p. 114026. ISSN 0263-8223

Published by: Elsevier

URL: https://doi.org/10.1016/j.compstruct.2021.114026 <https://doi.org/10.1016/j.compstruct.2021.114026>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/48270/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

1	Generalized Analysis-oriented Model of FRP Confined Concrete Circular
2	Columns

3

Javad Shayanfar¹, Joaquim A. O. Barros² and Mohammadali Rezazadeh³

¹ PhD Candidate, ISISE, Department of Civil Engineering, University of Minho, Azurém 4800-058 Guimarães, Portugal, <u>arch3d.ir@gmail.com</u> (corresponding author)

² Full Prof., ISISE, IBS, Department of Civil Engineering, University of Minho, Azurém 4800-058 Guimarães, Portugal, <u>barros@civil.uminho.pt</u>

³Lecturer, Civil Eng., Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom, <u>mohammadali.rezazadeh@northumbria.ac.uk</u>

4 Abstract

This study is dedicated to the development of a generalized confinement model applicable to 5 6 circular concrete columns confined by FRP full and partial confinement arrangements. To simulate 7 the axial stress versus strain curve, a new strength model is proposed addressing the relation of axial stress and confinement pressure during axial loading, whose calibration was based on an 8 extensive set of test results. By combining theoretical basis and experimental observations, the 9 10 influence of non-homogenous distribution of concrete transversal expansibility with full/partial confinement during axial compressive loading is taken into the account in the establishment of 11 confinement stiffness index. To estimate the ultimate condition of FRP fully/partially confined 12 13 concrete, a new model with a design framework is also developed. It is demonstrated that global axial stress-strain curves and also dilation responses simulated by the proposed confinement model 14 are in good agreement with those registered experimentally in available literature, and provides 15 better predictions in terms of ultimate axial stress/strain than the formulations proposed by design 16 standards. 17

18 Keywords: FRP confined columns; FRP confinement; Axial behavior; Dilation behavior;
19 Confinement stiffness index

20

21

Notations

$A_{ m g}$	Total area of circular cross-section columns	n_f	FRP layer number
<i>c</i> ₁	Non-dimensional empirical coefficient	R_1	Non-dimensional empirical coefficient
D	Diameter of circular column	R_2	Non-dimensional empirical coefficient
E_c	Concrete modulus elasticity	R_{f}	Non-dimensional parameter as s_f/D
E_{f}	FRP modulus elasticity	S_f	Distance between FRP strips
f_c	Axial stress corresponding to ε_c	t_f	FRP thickness
f_c Active	Axial stress of AFC corresponding to ε_c	$k_{\varepsilon,min}$	Minimum value of k_{ε} FFC
f_c^{Passive}	Axial stress of passively confined concrete at ε_c	L_d	Damage zone length of FRP confined concrete
f_{c0}	Peak compressive stress of unconfined concrete	L_{d0}	Damage zone length of unconfined concrete
f_{cc} Active	Peak axial stress of AFC	W_f	FRP width
f_{cc} Passive	Peak axial stress of passively confined concrete	$\mathcal{E}_{\mathcal{C}}$	Axial strain corresponding to f_c
f_{cc}	Peak axial stress of FFC/FPC	\mathcal{E}_{c0}	Axial strain corresponding to f_{c0}
f_f	FRP confining stress	$\mathcal{E}_{C,m}$	Axial strain corresponding to $v_{s,max}$
f_{f} FFC	FRP confining stress for FFC	\mathcal{E}_{cc}	Axial strain corresponding to <i>f</i> _{cc}
$f_f FPC$	FRP confining stress for FPC	\mathcal{E}_{CU}	Ultimate axial strain
$f_{f}^{* FFC}$	Uniform FRP confining stress for FFC	Еси,с	Ultimate axial strain at concrete crushing
$f_{l,f}$	FRP confinement pressure	E _{cu,r}	Ultimate axial strain at concrete crushing
$f_{l,f}$ FFC	FRP confinement pressure for FFC	\mathcal{E}_{fu}	Ultimate FRP tensile strain
$f_{l,f}^{*FFC}$	Uniform FRP confinement pressure for FFC	\mathcal{E}_h	FRP hoop strain
Н	Column height	$\mathcal{E}_{h,max}$	Maximum FRP hoop strain
I_f	Confinement stiffness index	Eh,rup	FRP hoop rupture strain
K_e	Confinement efficiency factor	$\varepsilon_l(z)$	Concrete lateral strain
$k_{f\!f}$	Reduction factor	$\mathcal{E}_{l,i}$	Concrete expansion at the mid-plane of FRP strips
k _{ff} FFC	Reduction factor k_{ff} for FFC	El,j	Lateral concrete expansion at the critical section
k_{ff} FPC	Reduction factor k_{ff} for FPC	\mathcal{E}_V	Volumetric strain
$k_{v,f}$	Reduction factor	$\rho_{K,f}$	FRP confinement stiffness index
k_{ε} FFC	Reduction factor for FFC	v_s	Secant Poisson's ratio
k_{ε} FPC	Reduction factor for FPC	$V_{s,0}$	Initial Poisson's ratio of unconfined concrete
Ν	Total number of the fitted points	V _{s,max}	Maximum Poisson's ratio at the critical section
п	Concrete brittleness	$v_{t,eff}$	Effective tangential Poisson's ratio

26 1- Introduction

The reliability of fiber-reinforced-polymer (FRP) composites in various axial/shear/flexural strengthening scenarios has been demonstrated at laboratory level, as well as in real case applications in order to retrofit vulnerable as-built RC columns over seismic actions. For the case of axial strengthening, based on numerous experimentally, numerically, and theoretically conducted studies, it is now well-established that the application of FRP lateral confinement arrangements is efficiently capable of inducing improvements in terms of axial strength and deformability due to the curtailment of concrete lateral expansibility.

34 An experimental study conducted by Oliveira *et al.* [1] revealed that the capability of confinement strategy for improving the axial response of FRP fully confined concrete columns (FFC as 35 illustrated in Fig. 1) is a function of the type of FRP material, concrete compressive strength, and 36 confinement stiffness, which was also confirmed by Lim and Ozbakkaloglu [2-4]. Zeng et al. [5] 37 have experimentally evaluated the efficiency of partial confinement arrangements using carbon 38 fiber-reinforced polymer (CFRP) for increasing the load carrying capacity of concrete columns. 39 The test results demonstrated that the axial and dilation responses of FRP partially confined 40 concrete columns (FPC as illustrated in Fig. 1) strongly depend on the distance between 41 42 consecutive strips (s_f) as a key parameter, besides the strip thickness and width, and the used FRP material properties. Barros and Ferreira [6] evidenced that by increasing s_{f} , the axial and dilation 43 responses of FPC drove to be similar to those of unconfined concrete (UC), as verified by Zeng et 44 45 al. [7]. For the case of FPC, Guo et al. [8, 9] and Janwaen et al. [10, 11] showed that concrete at the middle distance between two consecutive FRP strips, known as critical section, would be 46 47 subjected to the maximum transversal deformation in comparison with the concrete expansion at 48 the strip regions.

Numerous confinement models, known as analysis-oriented model (i.e. [3, 12-15]), have been 49 proposed to simulate global axial stress-strain of FFC. Based on the implemented methodology for 50 the establishment of axial stress-strain relationship, these models can be generally classified into 51 three categories as demonstrated in Table 1. Category I (i.e. Lim and Ozbakkaloglu [15]) includes 52 models for actively confined concrete columns (AFC), where the concrete is subjected to an active 53 confinement pressure (f_l^{Active}), with a constant value during entire axial loading, as illustrated in 54 Fig. 1b. In this case, axial stress (f_c^{Active}) at a certain axial strain (\mathcal{E}_c) can be determined by adopting 55 an axial stress-strain relation (i.e. Popovics [16] suggested for AFC), expressed as a main function 56 of peak axial stress (f_{cc}^{Active}), leading to $f_{c}^{Active} = g_1(f_{cc}^{Active})$, henceforth designated by stress-57 strain base relation. In this case, as the most widely adopted framework to date, f_{cc}^{Active} is generally 58 determined as $f_{cc}^{Active} = g_2(f_l^{Active})$ depending on f_l^{Active} as demonstrated in Table 1. Several 59 studies have been carried out to suggest the calibration factors of m_{a1} and m_{a2} for the g_2 function 60 (Table 1) through using a regression analysis-based method on a set of test database of AFC, which 61 62 presents the effectiveness of confinement strategy in axial strength enhancements. In Category II (i.e. [12-14]), conventionally, by adopting a stress-strain base relation, for the case of FFC under 63 a FRP confinement pressure ($f_{l,f}^{* Passive}$) assumed to be homogenously imposed to the entire column 64 height with a variable value during axial loading (Figs. 1b and 1c), its axial stress ($f_c^{Passive}$) at a 65 certain ε_c is considered to be identical to f_c^{Active} through taking into account $f_l^{Active} = f_{l,f}^{* Passive}$ (66 $f_c^{Passive} = g_1(f_{cc}^{Passive})$). However, studies conducted by Lim and Ozbakkaloglu [3], Lin *et al.* [17] 67 and Yang and Feng [18] demonstrated that this approach, whose development is based on the 68 calibration of m_{a1} and m_{a2} for AFC (Table 1), would lead to overestimations in predicting global 69

axial stress-strain relation of FFC (Δf_c), even though $f_{l,f}^{Active} = f_{l,f}^{Passive}$ at a certain \mathcal{E}_c , as 70 highlighted in Fig. 1b-d. It can be attributed to the considerable difference in the confinement 71 pressure path imposed to concrete in AFC and FFC with constant and variable trends, respectively, 72 as presented in Fig. 1b. Confinement pressure path in the present context represents the relation 73 74 between confinement pressure and axial stress/strain during the entire axial compressive loading. Category III includes analysis-oriented models formulating the noticeable influence of 75 confinement pressure path on axial response of FFC. In this category, Lim and Ozbakkaloglu [3] 76 introduced the concept of a reduced stress-strain base relation for the case of FFC to reflect this 77 effect in the calculation of $f_{cc}^{Passive}$ through applying a reduction Δf_l in the actual FRP confinement 78 pressure obtained from dilation model. In this model, as presented in Fig. 1b, Δf_l represents the 79 gradient of confinement pressure that was suggested empirically as a function of confinement 80 stiffness (known as the ratio of FRP confinement pressure over concrete lateral strain), concrete 81 compressive strength and the corresponding concrete lateral strain. Yang and Feng [18] proposed 82 a refined version of Jiang and Teng [12]'s model (Category II) to account for the difference in 83 confinement pressure paths of FFC and AFC in terms of the peak axial stress of the stress-strain 84 base relation (Δf_{cc}). In this approach, the calibration factors of m_{p1} and m_{p2} (Table 1) were 85 derived from a set of test results of FFC specimens. It was also demonstrated that this effect plays 86 a key role in the establishment of global axial stress-strain response of FCC. Based on Zhao et al. 87 88 [19]'s model originally suggested for concrete-filled steel tube columns, Lin et al. [17] investigated the influence of confinement pressure path on ultimate axial stress of FFC, which was 89 demonstrated to be a function of the level of confinement pressure at FRP rupture and concrete 90 91 compressive strength. By considering this effect in the establishment of ultimate axial stress of FFC, the model demonstrated a better performance in predicting the experimental counterparts. 92

93 Nonetheless, to the best of the authors' knowledge, the substantial influence of confinement 94 pressure path on axial stress-strain response of FPC has not been investigated comprehensively in 95 the existing models. Accordingly, the development of a confinement model addressing 96 confinement pressure path to predict the global axial-stress-strain of FPC with a unified approach 97 with FFC is still lacking.

98 On the other hand, in existing analysis-oriented models, in general, for the sake of the simplicity, by assuming a uniform distribution of concrete expansion for FFC, confinement pressure ($f_{l,f}^*$ Passive 99) is subsequently considered to be homogenous along the column height. However, this assumption 100 is only acceptable prior to the loading stage corresponding to the peak axial stress of unconfined 101 102 concrete. Beyond this stage, the rate of concrete lateral expansion tends to significantly increase due to the development of longitudinal concrete cracking, leading to a non-uniform distribution of 103 concrete transversal dilatancy, particularly in the case of FRP lightly confined concrete [20-22]. 104 Wu and Wei [20] performed axial compressive tests on FFC, FPC and unconfined concrete (UC) 105 columns to examine the distribution of concrete lateral strain along the column height. It was 106 107 highlighted that during axial loading, concrete would experience a non-uniform distribution of 108 expansion depending on confinement configuration. To evaluate the influence of confinement on concrete axial/lateral strain distribution of FFC along the column height, Fallahpour et al. [22] 109 110 conducted an experimental investigation through Digital Image Correlation (DIC) technique for the measurement of full- field strain evolution. The test results demonstrated that FFC only with 111 high confinement stiffness revealed relatively homogenous axial and dilation responses, while in 112 113 the case of lower confinement stiffness, less uniform behavior along with local strain gradients 114 was exhibited. Therefore, since the generation of FRP confining hoop strain/stress is in a direct relation with concrete dilation behavior, the generated confining stress would be imposed non-115

116 homogenously on the concrete as a main function of confinement stiffness. As a result, the assumption of uniform confinement pressure $(f_{l,f}^{* Passive})$ can be considered to be acceptable only 117 for highly-confined concrete. For the case of low confinement stiffness with non-homogenous 118 119 confining stress distribution, this assumption does not seem to adequately comply the described 120 experimental observations. For the case of FPC, Zeng et al. [7] experimentally evidenced the distribution of concrete expansion would be predominantly non-homogenous, particularly in case 121 122 of large s_f (distance between strips of FRP, Fig. 1a), as also confirmed by Guo *et al.* [8, 9]. 123 Shayanfar et al. [23] presented a refined version of the concept of confinement efficiency factor, originally suggested by Mander et al. [24] for concrete confined partially with steel stirrups, by 124 125 formulating the non-homogenous distribution of concrete dilatancy of FPC, besides the influence 126 of vertical arching action. However, in this model, the pattern of concrete expansion of FFC was assumed as uniform, for the sake of simplicity. Therefore, to the best of the authors' knowledge, 127 the influence of non-homogenous distribution of concrete expansion along the column height of 128 129 FFC/FPC on the determination of confinement pressure and subsequently, axial and dilation 130 responses has not been addressed comprehensively in the existing analysis/design-oriented 131 models.

The present study is dedicated to the development of a generalized confinement model, applicable to full and partial confinement arrangements applied on circular cross section concrete columns, by using a unified approach in the prediction of their axial and dilation responses. For formulating the influence of concrete expansion distribution in the calculation of confinement pressure, Shayanfar *et al.* [23]'s model is extended to be applicable to FFC as a function of confinement stiffness, along with some refinements for the case of FPC. A new analysis-oriented model as confinement-path dependent in compliance with Category III is proposed for the establishment of

the axial stress-strain curve of FFC and FPC, by introducing new calibration factors of m_{p1} and 139 m_{p2} depending on confinement stiffness. A new expression is subsequently developed to estimate 140 141 ultimate axial strain of FFC/FPC by combining theoretical knowledge and experimental observations. Finally, the reliability of the developed model is vastly examined by simulating the 142 global axial stress-strain curves registered experimentally in available literature. The comparative 143 assessment of the predicted performance in term of ultimate axial stress/strain obtained from the 144 developed model versus by fib [25], CNR DT 200/2004 [26] and ACI 440.2R-17 [27] approaches 145 (briefly presented in Appendix A) is also demonstrated. 146

147 2- Proposed confinement model for FFC

This section provides the determination of the confinement characteristics of FFC under axial compressive loading. The effectiveness of FRP confining system to limit concrete dilatancy during axial loading is dependent on the level of confinement pressure. For the case of full confinement with a uniform concrete expansibility along the column height (assuming identical hoop and radial strain $\varepsilon_h = \varepsilon_{l,j}$), the FRP confining stress, $f_f^{* FFC}$, and the FRP confinement pressure, $f_{l,f}^{* FFC}$, can be derived using force equilibrium conditions (Fig. 1a):

$$f_{l,f}^{* \ FFC} = 2\frac{n_f t_f}{D} f_f^{* \ FFC} = 2\frac{n_f t_f}{D} E_f \varepsilon_{l,j}$$
(1)

where n_f is the number of FRP layers, t_f is the FRP thickness, D is the diameter of the column, E_f is the FRP modulus elasticity, and $\varepsilon_{l,j}$ is the maximum concrete lateral expansibility along with the assumption of perfect bond between FRP and concrete substrate. Nevertheless, the studies conducted by Wu and Wei [20] and Wei and Wu [21] demonstrated that the distribution of the concrete lateral expansion in the case of FFC system during axial compressive loading would vary along the column height as a function of confinement stiffness. As shown in Fig. 2, the maximum $(\varepsilon_{l,j})$ and minimum $(\varepsilon_{l,i})$ concrete lateral expansibility can be assumed to occur at the Point *j* and Point *i*, respectively, with the distance of L_d defining the damage zone length, which will be addressed in detail in Section 3. Consequently, at a certain level of $\varepsilon_{l,j}$, the maximum and minimum FRP confining stresses are $f_{f,j}^{FFC} = E_f \varepsilon_{l,j}$ and $f_{f,i}^{FFC} = E_f \varepsilon_{l,i}$, respectively. In this study, the reduction factor k_{ff} is introduced to determine an average FRP confining stress (f_f^{FFC}) uniformly applied on the columns in order to account for the non-uniform concrete expansibility:

$$f_{f}^{FFC} = k_{ff}^{FFC} f_{f,j}^{FFC} = k_{ff}^{FFC} E_{f} \varepsilon_{l,j}$$

$$\tag{2}$$

166 Based on Eq. (1), FRP confinement pressure $(f_{l,f}^{FFC})$ resulting from f_{f}^{FFC} can be expressed as:

$$f_{l,f}^{FFC} = 2\frac{n_f t_f}{D} f_f^{FFC} = 2\frac{n_f t_f}{D} k_{ff}^{FFC} E_f \varepsilon_{l,j}$$
(3)

For the sake of simplicity, the reduction factor k_{ij} , can be determined by taking an average of the $\varepsilon_l(z)/\varepsilon_{l,j}$ ratio along the damage zone (Fig. 3):

$$k_{ff}^{FFC} = 2 \frac{\int_{0}^{L_{d}/2} \frac{\varepsilon_{l}(z)}{\varepsilon_{l,j}} dz}{L_{d}} = 2 \frac{\int_{0}^{L_{d}/2} k_{\varepsilon}(z) dz}{L_{d}}$$

$$\tag{4}$$

169 where $\varepsilon_l(z)$ defines the concrete lateral strain within the damage zone (L_d) along the *z* axis as 170 illustrated in Fig. 3. Considering a second order parabola function distribution for $k_{\varepsilon}(z)$ along 171 with $k_{\varepsilon} = k_{\varepsilon}^{FFC}$ and $dk_{\varepsilon}(z)/dz = 0$ at the point *i* ($z = L_d/2$), leads to (Fig. 3):

$$k_{ff}^{FFC} = \frac{2\int_{0}^{L_{d}/2} \left(a_{1}z^{2} + a_{2}z + a_{3}\right)dz}{L_{d}} = \frac{2\int_{0}^{L_{d}/2} \left[1 - 4\left(1 - k_{\varepsilon}^{FFC}\right)\left(\frac{z}{L_{d}} - \left(\frac{z}{L_{d}}\right)^{2}\right)\right]dz}{L_{d}} = \frac{1}{3} + \frac{2}{3}k_{\varepsilon}^{FFC}$$
(5)

where k_{ε}^{FFC} is the ratio between $\varepsilon_{l,i}$ and $\varepsilon_{l,j}$. For highly-confined concrete by FRP confinement pressure, concrete transversal expansibility tends to be uniform, leading to $k_{\varepsilon}^{FFC} = 1$ and according to Eq. (5), $k_{ff}^{FFC} = 1$. In this case, the volumetric strain would be positive during axial compressive loading ($\varepsilon_{V} \ge 0$), as shown in Fig. 4, representing a specimen's volume decrease. On the other hand, lightly-confined concrete experiences a noticeable variation in expansion, depending on the confinement stiffness. In this study, based on Teng *et al.* [28] achievements, for FFC with uniform concrete expansibility, confinement stiffness index I_{f} can be determined as:

$$I_{f} = \frac{f_{l,f}^{FFC} / \left(k_{ff}^{FFC} \varepsilon_{l,j}\right)}{f_{c0} / \varepsilon_{c0}} = 2 \frac{n_{f} t_{f} E_{f} \varepsilon_{c0}}{D f_{c0}}$$
(6)

in which

$$\mathcal{E}_{c0} = 0.0015 + \frac{f_{c0}}{70000}$$
 (f_{c0} in MPa) (7)

180 where ε_{c0} is the axial strain corresponding to f_{c0} , as suggested by Karthik and Mander [29]. Fig. 181 4 shows the relation between the normalized axial stress (f_c/f_{c0}) and volumetric strain (182 $\varepsilon_v = \varepsilon_c - 2\varepsilon_{l,j}$) for the test specimens conducted by Wang and Wu [30], Eid *et al.* [31], Lim and 183 Ozbakkaloglu [4] and Zeng *et al.* [5] with different I_f . As can be seen, the confinement 184 configurations corresponding to the confinement stiffness index less than 0.045 are not capable of 185 controlling concrete dilation, with concrete dilation as high as smaller is I_f . Teng *et al.* [28]

recommended that for lightly confined concrete ($I_f \leq 0.01$), the effectiveness of confinement 186 pressure on axial and dilation response can be neglected. At I_f of about 0.045, the volumetric 187 strain evolution virtually becomes reversed due to FRP jacket capability to restrain the concrete 188 expansion. For $I_f \ge 0.045$, since the FRP confinement pressure is significantly activated, the 189 confined concrete drives to behave in a compaction way. Accordingly, for high value of I_f with 190 $\varepsilon_{v} \ge 0$, the distribution of concrete expansion of FFC is expected to be approximately uniform 191 with $k_{\varepsilon}^{FFC} = \varepsilon_{l,i} / \varepsilon_{l,j} \simeq 1$. To evaluate the influence of confinement on concrete axial/lateral strain 192 distribution of FFC along the column height, Fallahpour et al. [22] experimentally evidenced that 193 FFC only with high confinement stiffness ($I_f = 0.061$) revealed relatively homogenous axial and 194 dilation responses, while in the case of lower confinement stiffness, less uniform behavior along 195 with local strain gradients (leading to a low value of k_{ε}^{FFC}) was exhibited. 196

Based on the aforementioned discussion, using the dilation model developed by Shayanfar *et al.* [23] (Eq. (8)), when $\varepsilon_V = 0$, the value of confinement stiffness index (I_f^*) corresponding to the maximum secant Poisson's ratio $(v_{s,max})$ equal to 0.5 can be determined by Eq. (9).

$$v_{s,\max} = \frac{0.155}{\left(1.23 - 0.003f_{c0}\right)\sqrt{I_f}} \tag{8}$$

$$I_{f}^{*} = \left(\frac{0.155}{\left(1.23 - 0.003f_{c0}\right) \times 0.5}\right)^{2} \approx 0.06 + 0.0005f_{c0} \qquad (f_{c0} \text{ in MPa})$$
(9)

Accordingly, based on the experimental observations conducted by Fallahpour *et al.* [22] for $I_f < I_f^*$, a non-uniform distribution of concrete expansion with maximum and minimum lateral strains at Point *j* and Point *i*, respectively, can be assumed, so that $k_{\varepsilon}^{FFC} < 1$. Based on the above discussion, to develop the relation between k_{ε}^{FFC} and I_{f} , the following conditions should be satisfied:

205 i.
$$k_{\varepsilon}^{FFC}$$
 enhances with increasing I_{f}

206 ii. k_{ε}^{FFC} approaches the value of $k_{\varepsilon,\min}$ when confinement pressure is equal to zero 207 (unconfined concrete).

208 iii. k_{ε}^{FFC} approaches 1 when $I_{f} \ge I_{f}^{*}$ as evidenced by Fallahpour *et al.* [22]

Shayanfar *et al.* [23, 32] recommended $k_{\varepsilon,\min} = 0.08$ based on the experimental dilation results of a series of unconfined concrete specimens. Considering the aforementioned conditions, a new expression was derived to determine k_{ε}^{FFC} from I_f and I_f^* (Fig. 5):

$$k_{\varepsilon}^{FFC} = 0.08 + 0.92 \left[2 \frac{I_f}{I_f^*} - \left(\frac{I_f}{I_f^*} \right)^2 \right] \le 1 \qquad \text{for } I_f \le {I_f^*}$$

$$k_{\varepsilon}^{FFC} = 1 \qquad \text{for } I_f \ge {I_f^*}$$

$$(10)$$

Ultimately, by determining k_{ε}^{FFC} depending on I_f , k_{ff}^{FFC} can be obtained using Eq. (5) as an input parameter in Eq. (3) for the calculation of $f_{l,f}^{FFC}$.

214 **3- Proposed confinement model for FPC**

This section is dedicated to address the determination of the confinement characteristics of partially confined concrete (FPC) columns under axial compressive loading. In Fig. 6, the nonuniform distributions of concrete lateral expansion and FRP partial confining stress in FPC are presented. As can be seen, the maximum expansion $\varepsilon_{l,j}$ would occur at the critical section corresponding to Point *j*, which is not directly subjected to confinement pressure. However, point *i* corresponding to middle section of FRP strip experiences the minimum concrete dilatancy, $\varepsilon_{l,i}$, leading to FRP confining stress $f_{f,i}$. In this study, according to Eqs. (1) to (3), considering the influence of vertical arching action based on Shayanfar *et al.* [32] presented in Eq. (14), FRP confinement pressure ($f_{l,f}^{FPC}$) generated by f_{f}^{FPC} can be expressed as:

$$f_{l,f}^{FPC} = 2 \frac{n_f t_f w_f}{\left(s_f + w_f\right) D} k_{v,f} f_f^{FPC} = 2 \frac{n_f t_f}{D} k_\rho k_{v,f} f_f^{FPC}$$
(11)

in which

$$f_f^{FPC} = k_{ff}^{FPC} f_{f,j}^{FPC} = k_{ff}^{FPC} E_f \mathcal{E}_{l,j}$$
(12)

$$k_{\rho} = \frac{W_f}{s_f + W_f} \tag{13}$$

$$k_{v,f} = \frac{w_f + s_f \left(1 - R_f + 0.43 R_f^2 - 0.07 R_f^3\right)}{w_f + s_f} \le 1 \qquad ([32])$$

$$R_f = \frac{s_f}{D} \tag{15}$$

where w_f is the strip width. R_f is a non-dimensional parameter. It should be noted that, due to vertical arching action mechanism between two consecutive strips, confinement pressure effectiveness on this zone can be very distinct from the one corresponding to full confinement. Based on the concept of the confinement efficiency factor ([24]), by applying the reduction factor 229 $k_{v,f}$, the entire concrete column can be assumed to be as effectively confined concrete, similar to 230 FFC confinement mechanism.

According to the developed relation for FFC ($s_f = 0$), by increasing s_f in FPC system, the 231 confinement system capability to curtail concrete transversal expansibility decreases. Accordingly, 232 for a relatively large value of s_f , the effectiveness of this partial confining system becomes 233 minimal and approaches to $k_{\varepsilon,\min} = 0.08$, while k_{ff}^{FPC} can be assumed as k_{ff}^{FPC} when $s_f = 0$. In 234 this study, for $s_f \ge L_d$, representing the condition that the damage zone occurs between FRP strips, 235 the effect of confinement was conservatively ignored and its dilation behavior would be similar to 236 that of unconfined concrete (Wei and Wu [21]). Consequently, for this case, L_d can be estimated 237 to be equal to the length of damage zone of unconfined concrete columns (L_{d0}). By using the 238 concept of localized compressive fracture length proposed by Lertsrisakulrat et al. [33], Wu and 239 Wei [20] recommended an empirical equation to calculate L_{d0} as a function of column diameter 240 and concrete compressive strength as follows (with a slight rearrangement): 241

$$0.57 \le \frac{L_{d0}}{D_{Ler}\psi_f} = 1.71 - 3.53 \times 10^{-5} D_{Ler}^2 \le 1.36$$
(16)

242 in which

$$D_{Ler} = \sqrt{A_g} \simeq 0.886D \qquad (D \text{ in MPa}) \tag{17}$$

$$\psi_f = \frac{6.3}{\sqrt{f_{c0}}} \le 1 \qquad (f_{c0} \text{ in MPa})$$
(18)

where D_{Ler} is the equivalent diameter that is calculated as the square root of the total crosssectional area [33].

To develop the relation between k_{ff}^{FPC} and s_f , the following conditions should be satisfied:

246 i.
$$k_{ff}^{FPC}$$
 decreases with the increase of s_f .
247 ii. k_{ff}^{FPC} is equal to k_{ε}^{FPC} when $s_f \simeq L_{d0}$
248 iii. k_{ff}^{FPC} follows a hoop strain distribution similar to FFC when $s_f \simeq 0$
249 iv. k_{ff}^{FPC} approaches the value of $k_{\varepsilon,\min}$ when $s_f \simeq L_{d0}$ (unconfined concrete).
250 v. k_{ff}^{FPC} approaches k_{ff}^{FFC} when $s_f \simeq 0$.

251 Therefore, the relation between k_{ff}^{FPC} and s_f/L_{d0} was formulated to decrease linearly from

252
$$k_{ff}^{FPC} = k_{ff,ave}^{FPC}$$
 at $s_f = 0$ (full confinement) to $k_{ff}^{FPC} = 0.08$ at $s_f = L_{d0}$:

$$k_{ff}^{FPC} = k_{ff,ave}^{FPC} - \left(k_{ff,ave}^{FPC} - k_{\varepsilon}^{FPC}\right) \frac{s_f}{L_{d0}} \ge 0.08$$
(19)

253 in which

$$k_{ff,ave}^{FPC} = \frac{1}{3} + \frac{2}{3} k_{\varepsilon}^{FPC}$$

$$\tag{20}$$

where $k_{ff,ave}^{FPC}$ represents the ratio of average hoop strain and maximum hoop strain within the damage zone, based Eq. (5) with a uniform approach with FFP, when the distribution of concrete lateral strain would be identical to full confinement in the case of $s_f = 0$. Introducing Eq. (20) into Eq. (19) gives

$$k_{ff}^{FPC} = \frac{1}{3} \left(1 + 2k_{\varepsilon}^{FPC} \right) - \frac{s_f}{3L_{d0}} \left(1 - k_{\varepsilon}^{FPC} \right) \ge 0.08$$
(21)

For the determination of k_{ε}^{FPC} , based on Eq. (19), it was assumed that it linearly decreases from

259 $k_{\varepsilon}^{FPC} = k_{\varepsilon}^{FFC}$ (at s_f / L_{d0} =0, full confinement) to $k_{\varepsilon}^{FPC} = 0.08$ (at $s_f = L_{d0}$) (Fig. 7):

$$k_{\varepsilon}^{FPC} = k_{\varepsilon}^{FFC} - \left(k_{\varepsilon}^{FFC} - 0.08\right) \frac{s_f}{L_{d0}} \ge 0.08$$
⁽²²⁾

Accordingly, by replacing k_{ε}^{FFC} obtained from Eq. (22) in Eq. (21), k_{ff}^{FPC} can be determined, as an input parameter in Eq. (12). The k_{ff}^{FPC} versus s_f/L_{d0} relationship for FPC is demonstrated in Fig 7. It estimates k_{ff}^{FPC} lower than Shayanfar *et al.* [23] model due to the consideration of a nonuniform distribution for concrete lateral expansion in case of FFC.

It is now well-established that the FRP confinement-induced improvements in FFC and FPC substantially depend on the confinement stiffness imposed on the confined concrete. For reflecting the influence of this parameter, the recommendation of Shayanfar *et al.* [23] was taken, by proposing a new confinement stiffness index applicable to both full and partial systems, taking into account the concrete transversal expansibility (by considering Eqs. (6), (11) and (12)):

$$\rho_{K,f} = \frac{f_{l,f}^{FPC} / \varepsilon_{l,j}}{f_{c0} / \varepsilon_{c0}} = k_{\rho} k_{\nu,f} k_{ff}^{FPC} I_{f} = K_{e} I_{f}$$
(23)

269 in which

$$K_e = k_\rho k_{v,f} k_{ff}^{FPC}$$
⁽²⁴⁾

where K_e is defined as the confinement efficiency factor. For FFC, Eq. (23) leads to $\rho_{K,f} = k_{ff}^{FFC} I_f$ that can be calculated using Eqs. (5) and (6), respectively.

272 **4- Dilation model**

This section is dedicated to address the determination of the dilation characteristics for FFC and FPC. According to the confinement mechanism, at a certain axial stress, f_c , the corresponding ε_c leads to lateral strain $\varepsilon_{l,j}$ (radial strain) in compliance with concrete secant Poisson's ratio v_s , resulting in confining stress to restrain concrete tendency to dilate. By rearranging Eq. (23), FRP confinement pressure can become explicitly dependent on v_s :

$$\frac{f_{l,f}^{FPC}}{f_{c0}} = \rho_{K,f} \frac{\varepsilon_{l,j}}{\varepsilon_{c0}} = \rho_{K,f} \frac{v_s \varepsilon_c}{\varepsilon_{c0}}$$
(25)

Accordingly, the determination of v_s corresponding to ε_c is essential for calculating the confinement pressure. Based on a large database of the experimental dilation responses of FFC and FPC, Shayanfar *et al.* [23] proposed a strategy to calculate the relation between $v_s/v_{s,max}$ and ε_c , as illustrated in Fig. 8. Here, $v_s/v_{s,max}$ is the secant Poisson's ratio normalized by its maximum value at the critical section during axial loading corresponding to the axial strain of $\varepsilon_{c,m}$, which was empirically suggested as:

$$\varepsilon_{c,m} = 0.0085 - 0.05\rho_{K,f} \tag{26}$$

As shown in Fig. 8, the dilatancy of confined concrete is equal to that of unconfined concrete up to $\varepsilon_c = \varepsilon_{c0}$ (point A) with $v_s = v_{s,0}$, which can be calculated by (Candappa *et al.* [34]):

$$v_{s,0} = 8 \times 10^{-6} f_{c0}^{2} + 2 \times 10^{-4} f_{c0} + 0.138 \qquad (f_{c0} \text{ in MPa})$$
(27)

Since the development of concrete cracking induces an increase in v_s , the trend evolves from $v_{s,0}$ 286 to $c_1 \times v_{s,max}$ (point B), corresponding to $\varepsilon_c = 2\varepsilon_{c0}$ ([25]), and further increases up to $v_{s,max}$ at 287 $\varepsilon_c = \varepsilon_{c,m}$ (point C), followed by a decrease until ultimate conditions. To formulate the relation 288 between v_s and ε_c , the determination of $v_{s,max}$ as an input parameter is necessary, which was 289 derived empirically through regression analysis method. The test database (Table 2), used for 290 291 deriving/calibrating the model parameters in the present study, consists of the test specimens of FFC and FPC with a wide range of material properties. It comprises $70 \le D \le 300$ (mm), 292 $15.8 \le f_{c0} \le 171.0 \, (\mathrm{MPa}), \ \ 13.6 \le E_f \le 276.0 \quad (\mathrm{MPa}), \ \ 0.013 \le \varepsilon_{fu} \le 0.035 \, , \ \ 0.001 \le \rho_{K,f} \le 0.262 \, . \ \ 0.001 \le 0.001 \le 0.001 \le 0.001 \le 0.0000 \, . \ \ 0.0000 \, . \ \ 0.0000 \le 0.0000 \, . \ \ 0.0000 \ \ 0.0000 \ \ 0.0000 \, . \ \ 0.0000\ \ 0.0000\ \ 0.0000\ \ 0.0000\ \ \ 0.0000\ \ 0.0000\ \ 0.0000\ \ 0.000\ \ 0.0000\ \ \ 0.0000\$ 293 and different FRP types as carbon, glass, basalt and aramid FRP (CFRP, GFRP, BFRP, AFRP). 294

Fig. 9a demonstrates the variation of $v_{s,max}$ with $\rho_{K,f}$ based on the test database by Shayanfar *et* al. [23]. As expected, the $v_{s,max}$ decreases with the increase of the confinement stiffness, as $v_{s,max} = 0.15/\sqrt{\rho_{K,f}}$ using a preliminary regression analysis (Fig. 9a). The decrease is quite abrupt up to $\rho_{K,f} \cong 0.015$, and smooth above this value. In the present study, based on the best fit with experimental results, a new formulation to calculate $v_{s,max}$ as a main function of $\rho_{K,f}$ (along with L_{t0}/D) was developed, resulting in:

$$v_{s,\max} = \frac{0.15}{\left(0.585 + 0.585\frac{L_{d0}}{D}\right)\sqrt{\rho_{K,f}}} = \frac{0.256}{\left(1 + \frac{L_{d0}}{D}\right)\sqrt{\rho_{K,f}}}$$
(28)

The acceptable predictive performance of Eq. (28) in the simulation of the experimental counterparts can be confirmed in Fig. 9b.

303 5- Model to determine the axial stress-strain response

This section addresses the establishment of the axial stress-strain relation of circular cross section concrete columns with FFC and FPC arrangements. A new model in compliance with Category III is proposed by introducing new calibration factors of m_{p1} and m_{p2} as presented in Table 1. In this category, at a certain level of axial strain (ε_c), the corresponding axial stress (f_c) can be determined by adopting a stress-strain base relation, whose characteristics are expressed as a function of the peak stress (f_{cc}) and the corresponding axial strain (ε_{cc}).

To formulate f_c versus ε_c relation as a stress-strain base relation, the expression suggested by Popovics [16], originally for AFC, was adopted:

$$f_c = f_{cc} \frac{\left(\varepsilon_c / \varepsilon_{cc}\right) n}{n - 1 + \left(\varepsilon_c / \varepsilon_{cc}\right)^n}$$
(29)

312 in which

$$\frac{\varepsilon_{cc}}{\varepsilon_{c0}} = 1 + 5 \left(\frac{f_{cc}}{f_{c0}} - 1 \right) \tag{[25]}$$

$$n = \frac{E_c}{E_c - f_{cc} / \varepsilon_{cc}}$$
(31)

$$E_c = 4400\sqrt{f_{c0}}$$
 (f_{c0} in MPa) (32)

where *n* defines the concrete brittleness introduced by Carreira and Chu [47]; E_c is the modulus elasticity of concrete proposed by Lim and Ozbakkaloglu [15].

In the present study, according to Yang and Feng [18], a new strength model in compliance with Category III (Table 1) is developed to determine the relation between f_{cc} and $f_{l,f}^{FPC}$ (which is determined from Eq. (25)), derived from global axial stress-strain of FFC/FPC test specimens with
passive confinement path. It can be expressed as

$$\frac{f_{cc}}{f_{c0}} = 1 + m_{p1} \left(\frac{f_{l,f}^{* Passive}}{f_{c0}}\right)^{m_{p2}} = 1 + \frac{R_1}{R_2} \left(\frac{f_{l,f}^{FPC}}{f_{c0}}\right)^{R_2} = 1 + \frac{R_1}{R_2} \left(\rho_{K,f} \frac{v_s \varepsilon_c}{\varepsilon_{c0}}\right)^{R_2}$$
(33)

where R_1 and R_2 are the terms introduced to calibrate this equation. For this purpose, the extracted 319 experimental R_1 and R_2 were determined using back analysis method performed on the global 320 321 axial stress-strain of FFC/FPC test specimens. It is because that contrary to the case of AFC in which f_{cc}^{Active} as a function of f_l^{Active} is constant during entire axial loading, f_{cc} significantly 322 varies with $f_{l,f}^{FPC}$ in the case of passive confinement. Accordingly, calibrating Eq. (33) just based 323 on the failure stage of the test specimens does not sufficiently reflect the relation of f_{cc} and $f_{l,f}^{FPC}$ 324 . Therefore, in the present study, considering the variable relation of f_{cc} and $f_{l,f}^{\ FPC}$ depending on 325 the level of axial strain, based on the best fitting with the experimental f_c vs ε_c curves collected 326 327 in the test database, these parameters as a main function of the developed confinement stiffness index ($\rho_{K,f}$) were determined as,: 328

$$R_1 = \frac{23.9\rho_{K,f}}{\lambda_{fc}\lambda_{Rf}\lambda_D} \le 4.25$$
(34)

$$R_2 = 1.85 \rho_{K,f}^{0.26} \ge 0.3 \tag{35}$$

329 in which

$$\lambda_{fc} = 0.75 + 0.008 f_{c0} \qquad (f_{c0} \text{ in MPa}) \tag{36}$$

$$\lambda_{Rf} = 1 + 0.5R_f \tag{37}$$

$$\lambda_D = 0.82 + 0.0012D \ge 1$$
 (*D* in MPa) (38)

where λ_{fc} , λ_{Rf} and λ_D are the calibration terms introduced to reflect the influence of f_{c0} , R_f 330 and D in Eq. (34). To highlight the correlations of Eqs. (34 and 35), the developed R_1 and R_2 331 332 were compared to the extracted experimental results in Fig. 10. The statistical indicates show that the proposed equations for these parameters estimate the experimental counterparts of FFC/FPC 333 with acceptable accuracy. It should be noted that since the proposed confinement model was 334 developed with a uniform approach for FFC and FPC, Eq. (33) can be considered valid for both 335 cases. The incremental calculation procedure based on the developed model to determine the axial 336 response of FFC/FPC with $\rho_{K,f}$ is as follows: 337

338 1- Assume a value of ε_c

2- Calculate the secant Poisson's ratio v_s as a function of $\rho_{K,f}$ (from Fig. 8 considering Eqs.

```
340 (26-28))
```

- 341 3- Calculate the peak axial stress f_{cc} using Eq. (33)
- 342 4- Calculate the peak axial stress ε_{cc} using Eq. (30)
- 343 5- Calculate the axial stress f_c using Eq. (29)
- 344 6- Continue the steps 1-5 up to ultimate condition.

345 **6- Ultimate condition**

346 In this section, a new methodology will be introduced to determine ultimate axial strain of FFC 347 and FPC under axial compressive loading. According to failure mechanism of FFC (Fig. 11a),

when the maximum concrete hoop strain along the column height reaches FRP ultimate hoop strain 348 $(\mathcal{E}_{h,rw})$, the confinement provided by the FRP is lost, followed by an abrupt column's load decay. 349 350 However, in the case of FPC with a large s_f , damage tends to initiate by concrete spalling, and the specimen finally fails as concrete crushing along with inclined concrete cracking between FRP 351 352 strips, as illustrated in Fig. 11e. In this case, as concrete lateral expansion at the critical section 353 increases, FRP hoop strain at the mid-plane of the strips, generating lateral confinement, does not 354 enhance considerably due to lower concrete expansion. Accordingly, the failure mechanism can be regarded as that of unconfined concrete. However, by decreasing s_f , since expansion at the 355 mid-plane of the strips would increase, the confined column would fail due to rupture of FRP 356 jacket (Fig. 11b-d). According to the failure mechanism of partially confined columns, concrete 357 lateral expansion increases until hoop rupture of FRP jacket along with concrete crushing 358 simultaneously. The concrete crushing seems to be more probable in the case of the specimens 359 with larger R_f due to a substantial increase in ineffective confinement area. 360

In this study, for the calculation of the ultimate axial strain (ε_{cu}), a unified model with a design framework was developed applicable to both cases of FFC and FPC based on a combination of theoretical basics and regression analysis. For the case of FFC, when maximum hoop strain ($\varepsilon_{h,max}$) in FRP jacket reaches FRP hoop rupture strain, $\varepsilon_{h,rup}$, the corresponding $v_{s,u}$ depending on $\varepsilon_{cu} = \varepsilon_{cu,r}$ can be determined as:

$$v_{s,u} = \frac{\mathcal{E}_{h,\max}}{\mathcal{E}_{cu,r}} = \frac{\mathcal{E}_{h,rup}}{\mathcal{E}_{cu,r}}$$
(39)

By defining $\varepsilon_{h,rup} = \beta_{\varepsilon} \varepsilon_{fu}$ and $v_{s,u} = \alpha_v v_{s,max}$, then rearranging Eq. (39), the normalized ultimate axial strain can be expressed as:

$$\frac{\varepsilon_{cu,r}}{\varepsilon_{c0}} = \frac{\varepsilon_{h,rup}}{v_{s,u}\varepsilon_{c0}} = \frac{\beta_{\varepsilon}\varepsilon_{fu}}{\alpha_{v}v_{s,\max}\varepsilon_{c0}} = \frac{\beta_{\varepsilon}\rho_{\varepsilon}}{\alpha_{v}v_{s,\max}}$$
(40)

368 in which

$$\rho_{\varepsilon} = \frac{\mathcal{E}_{fu}}{\mathcal{E}_{c0}} \tag{41}$$

where α_{v} is the ratio of $v_{s,u}$ and $v_{s,max}$; β_{ε} introduces the ratio of FRP ultimate hoop strain ($\varepsilon_{h,rup}$) and FRP ultimate tensile strain (ε_{fu}). To obtain the α_{v} , the ratio of $v_{s,u}$ at $\varepsilon_{cu,r}^{Exp}$ and $v_{s,max}$ for 191 test specimens of FFC were simulated by the developed dilation model, and the obtained results are presented in Fig. 12a. By best fitting these results, the following equation was obtained:

$$\alpha_{v} = 1 - 0.85 \rho_{K,f} \ge 0.8 \tag{42}$$

373 It should be noted that in Eq. (42), for low level of $\rho_{K,f}$ ($\rho_{K,f} \le 0.015$) (with $\mathcal{E}_{cu,r}^{Exp} < \mathcal{E}_{c,m}$), the

ascending branch α_v versus $\rho_{K,f}$ relation was neglected for the sake of simplification. Then, by

using Eq. (42), $\beta_{\varepsilon}^{Exp}$ was calculated as $\alpha_{\nu} v_{s,\max} \varepsilon_{cu,r}^{Exp} / \varepsilon_{fu}$. Accordingly, the relation of β_{ε} with

376 f_{c0} was determined as follows (Fig. 12b):

$$\beta_{\varepsilon} = 1.45 f_{c0}^{-0.27} \tag{43}$$

Therefore, with the consideration of $v_{s,max} = 0.15 / \sqrt{\rho_{K,f}}$ (Fig. 9a), replacing Eq. (43) in Eq. (40) leads to:

$$\frac{\varepsilon_{cu,r}}{\varepsilon_{c0}} = 9.67 f_{c0}^{-0.27} \frac{\sqrt{\rho_{K,f}}}{1 - 0.85 \rho_{K,f}} \rho_{\varepsilon}$$
(44)

In order to simplify Eq. (44), rearranging this equation gives:

$$\frac{\varepsilon_{cu,r}}{X} = \frac{\sqrt{\rho_{K,f}}}{1 - 0.85\rho_{K,f}} \simeq C_1 \rho_{K,f}^{\ C_2}$$
(45)

in which $X = 9.67 f_{c0}^{-0.27} \varepsilon_{c0} \rho_{\varepsilon}$, while C_1 and C_2 are the calibration factors, which were determined equal to 1.83 and 0.61, respectively, based on the relation of $\varepsilon_{cu,r}^{Exp} / X$ with $\rho_{K,f}$ as demonstrated in Fig. 13c. Accordingly, $\varepsilon_{cu,r}$ can be expressed as:

$$\frac{\mathcal{E}_{cu,r}}{\mathcal{E}_{c0}} = 17.7 f_{c0}^{-0.27} \rho_{K,f}^{0.61} \rho_{\varepsilon} \ge 1.5$$
(46)

The lower bound of 1.5 was considered to limit ultimate axial strain corresponding to unconfined concrete. For the case of FPC, $\varepsilon_{cu,r}$ corresponding to $\varepsilon_{h,rup} = k_{ff}^{FPC} \varepsilon_{l,j}$ at the FRP strips can be written as:

$$\mathcal{E}_{cu,r} = \frac{\mathcal{E}_{l,j}}{v_{s,u}} = \frac{\mathcal{E}_{h,rup}}{k_{ff}^{FPC} v_{s,u}}$$
(47)

Rearranging Eq. (38), the normalized ultimate axial strain can be expressed as:

$$\frac{\varepsilon_{cu,r}}{\varepsilon_{c0}} = \frac{\varepsilon_{h,rup}}{k_{ff}^{FPC} v_{s,u} \varepsilon_{c0}} = \frac{\beta_{\varepsilon} \rho_{\varepsilon}}{k_{ff}^{FPC} \alpha_{v} v_{s,max}} = \frac{17.7}{k_{ff}^{FPC}} f_{c0}^{-0.27} \rho_{K,f}^{0.61} \rho_{\varepsilon}$$
(48)

In order to minimize the complexity of Eq. (48), based on the best-fit with the derived results from
135 test specimens of FPC, Eq. (48) was simplified as follows:

$$\frac{\varepsilon_{cu,r}}{\varepsilon_{c0}} = 17.7\gamma_{sf} f_{c0}^{-0.27} \rho_{K,f}^{0.61} \rho_{\varepsilon} \ge 1.5 \quad (f_{c0} \text{ in MPa})$$
(49)

389 in which

$$\gamma_{sf} = \frac{\gamma_1}{\gamma_2} \tag{50}$$

$$\gamma_1 = 70R_f^{\ 3} - 85R_f^{\ 2} + 33R_f - 2.1 \le 5$$
(51)

$$\gamma_2 = 1.85 - 0.85 \frac{L_{d0}}{D} \tag{52}$$

where γ_{sf} , γ_1 and γ_2 are the calibration parameters determined based on regression analyses as shown in Figs. 12d-e; R_f defines the ratio of the FRP strip distance (s_f) and the column crosssection diameter (D) as presented in Eq. (15). It should be noted that γ_1^{Exp} and γ_2^{Exp} were determined based on Eq. (49), as $\gamma_1^{Exp} = \varepsilon_{cu,r}^{Exp} / (17.7 f_{c0}^{-0.27} \rho_{K,f}^{0.61} \rho_{\varepsilon} \varepsilon_{c0})$ and $\gamma_2^{Exp} = (17.7 \gamma_1 f_{c0}^{-0.27} \rho_{K,f}^{0.61} \rho_{\varepsilon} \varepsilon_{c0}) / \varepsilon_{cu,r}^{Exp}$, respectively.

For the case of FPC with a large R_f , the failure mode is prominently overwhelmed by the concrete 395 crushing within the damage length zone. Wang et al. [44] experimentally evidenced that for the 396 case of $R_f \ge 1$, the failure mode would be as concrete crushing with no FRP rupture (Fig. 11e). It 397 398 can be attributed to the difference in Poisson's ratio at the critical section experiencing a major 399 damage and at the mid-plane of FRP strip in which concrete expansion could not be enough to increase FRP hoop strain to experience the rupture. Accordingly, for FPC with a large R_{f} , the 400 application of Eq. (49), predicting ultimate axial strain corresponding to FRP rupture ($\mathcal{E}_{cu,r}$), might 401 lead to overestimation in terms of deformability, considering the fact that FPC would behave 402

similar to unconfined concrete. Shayanfar et al. [23] developed a new methodology to predict 403 ultimate axial strain (ε_{cu}) of FPC formulating the possibility of concrete crushing failure mode (404 $\varepsilon_{cu,c}^{FPC}$), in addition to FRP rupture ($\varepsilon_{cu,r}$), leading to $\varepsilon_{cu} = \min(\varepsilon_{cu,r}, \varepsilon_{cu,c}^{FPC})$. Since all test 405 specimens of FFC with $R_f \leq 0.75$, available in the test database, experienced FRP rupture failure 406 mode, the application of $\varepsilon_{cu,r}$ in Eq. (49) for estimation of ε_{cu} would be reasonable. However, for 407 the case of $R_f \ge 0.75$, based on Shayanfar *et al.* [23], an upper bound needs to be introduced to 408 409 restrain ultimate axial strain by considering the possibility of concrete crushing. Even though the application of FPC with $R_f \ge 0.75$ is not allowed in the real strengthening cases, in the present 410 study, ε_{cu} for $R_f \ge 0.75$ was assumed to be equal to $\varepsilon_{cu,r}$ and $1.5\varepsilon_{c0}$ (ultimate axial strain of 411 412 unconfined concrete) corresponding to $R_f = 0.75$ and $R_f \ge 1$ (considered as unconfined concrete), respectively. Consequently, using a linear function, $\varepsilon_{cu,c}^{FPC}$ can be as determined as: 413

$$\frac{\varepsilon_{cu,c}}{\varepsilon_{c0}} = 1.5 + 4 \left(\frac{\varepsilon_{cu,r}}{\varepsilon_{c0}} - 1.5 \right) \left(1 - R_f \right) \ge 1.5$$
(53)

In Fig. 12f, ultimate axial strains of FPC obtained from the developed model were compared with those of the experimental studies. It can be evidenced that the proposed approach is capable of calculating ε_{cu} (min $(\varepsilon_{cu,r}, \varepsilon_{cu,c})$) with an acceptable agreement with the experimental counterparts.

418 **7- Verification**

In this section, the reliability of the proposed confinement model in simulating the experimental counterparts is addressed. In Fig. 13, a flowchart for calculating axial stress-strain curve of FRP fully/partially confined concrete columns is presented. As can be seen, the effectiveness of FRP 422 confining system can be easily determined through following the proposed incremental procedure. 423 In order to appropriately assess the model, in addition to global axial response, its capability in predicting the dilation response is also examined. Zeng *et al.* [5] conducted an experimental study 424 425 on fully/partially FRP confined circular concrete with different s_f , n_f and confinement types of 426 full and partial systems. The test specimens had a diameter of 150 mm with a height of 300 mm. The compressive strength of unconfined cylindrical concrete was 23.4 MPa. The values of 427 428 thickness, tensile elastic modulus and rupture strain of FRP strips were reported as 0.167 mm, 429 249.1 GPa and 1.66%, respectively. Complete detailed of the test specimens can be found from Zeng et al. [5]. The axial and dilation responses of the test specimens reported by the experiment 430 431 and obtained from the proposed model are compared in Fig. 14. As can be observed, the proposed 432 model has a good predictive performance, with a slightly conservative tendency to predict not only the global axial stress-strain curves of the test specimens with full/partial confinement systems, 433 but also experimental axial stress versus lateral strain. 434

For further examination of the model capability in predicting axial response, In Fig. 15, axial 435 436 responses obtained from the analytical model are compared to those experimentally measured by 437 Zeng et al. [43], Shan et al. [46] and Gue et al. [8], which are the larger dimension specimens found in the database for the assessment of the performance of the developed model in predicting 438 439 their axial stress-strain response. As can be seen, the predictions are in an acceptable agreement with the global axial stress-strain curve of the experimental FFC/FPC specimens. Supplementary 440 results regarding the validations of the developed model in simulating axial behavior of FFC and 441 FPC can be found, respectively, in Figs. B1 and B2 in Appendix B. 442

27

Fig. 16 evaluated the predictive performance of the developed confinement model, in the estimation of ultimate axial stress and strain (f_{cu}^{Exp} and ε_{cu}^{Exp}) of FFC and FPC, compared to that of existing models recommended by *fib* [25], CNR DT 200/2004 [26] and ACI 440.2R-17 [27], which can be found in Appendix A.

As can be seen, for the case of FFC, the proposed model provided the most accurate and uniform 447 predictions of f_{cu}^{Exp} with the values of mean, SD (standard deviation) and MAPE (mean absolute 448 percentage error which is expressed as $MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| 1 - f_{cu}^{Ana} / f_{cu}^{Exp} \right|$ where N is the total 449 number of the test data) as 0.99, 0.15 and 0.12, respectively. ACI 440.2R-17 [27] presented a slight 450 underestimation of the experimental counterpart (mean = 0.89), with the values of SD and MAPE 451 as 0.15 and 0.15. On the other hand, for the case of FPC, CNR DT 200/2004 [26] demonstrated 452 453 the most accurate model, with the values of mean, SD and MAPE as 1.00, 0.12 and 0.10, respectively. The predictive performance of the proposed model in predicting f_{cu}^{Exp} is virtually 454 455 identical to CNR DT 200/2004 [26], but with slightly more SD equal to 0.13.

For the case of ε_{cu}^{Exp} , *fib* [25] and CNR DT 200/2004 [26] conservatively predicted the experimental counterparts, even though ACI 440.2R-17 [27] seems to provide better estimations of ultimate axial strain for the case of FFC, non-conservative results for some test specimens of FPC are obtained which slightly overwhelm its reliability evaluation. The predictive performance of Eq. (48) confirmed its reliability to predict the experimental axial strain with sufficient accuracy demonstrated by the relative statistical values for the both cases of FFC and FPC. 462 As demonstrated in Figs. 14-16, it can be concluded that the developed model conducted in the 463 present study is sufficiently capable of predicting not only the global axial stress-strain relationship 464 of FFC/FPC, but also the ultimate conditions (f_{cu}^{Exp} and ε_{cu}^{Exp}).

465 9-Summary and conclusions

In the present study, a new unified confinement model applicable to different confinement 466 scenarios including circular cross-sections concrete columns with full and partial confining 467 strategies was proposed. To simulate the axial stress versus strain curve, a new strength model is 468 proposed addressing the relation of axial stress and confinement pressure during axial loading, 469 470 whose calibration was based on an extensive set of test results. For formulating the influence of concrete expansion distribution in the calculation of confinement pressure, Shayanfar et al. [23]'s 471 model is extended to be applicable to FFC as a function of confinement stiffness, along with some 472 473 refinements for the case of FPC. In this model, the concrete lateral expansibility was addressed as a main function of confinement stiffness (I_f) and also s_f/L_{d0} for the case of FPC. A new 474 expression is subsequently developed to estimate ultimate axial strain of FFC/FPC with a 475 combination of theoretical basis and experimental observations. Lastly, the predictive performance 476 of the developed confinement model was assessed through analytically simulating experimental 477 counterparts. The comparison between the analytical model and experimental counterparts 478 demonstrated that global axial stress-strain curves simulated by the proposed confinement model 479 480 are in good agreement with those registered experimentally in available literature, and provides better predictions in terms of ultimate axial stress/strain than the formulations proposed by design 481 standards. The authors are working on the extension of the present formulation in order to be 482 483 applicable to non-circular cross section columns, where the non-homogeneous concrete

484 expansibility at the cross-section level must be also considered by taking into account the influence485 of the sectional corner radius.

486

487 **Data Availability Statement**

All data and models related to the present study could be available from the corresponding authorupon rational request.

490 Acknowledgments

This study is a part of the project "StreColesf_Innovative technique using effectively composite materials for the strengthening of rectangular cross section reinforced concrete columns exposed to seismic loadings and fire", with the reference POCI-01-0145-FEDER-029485. The firs author also acknowledges the support provided by FCT PhD individual fellowship 2019 with the reference of "SFRH/BD/148002/2019".

496

497 **References**

498 [1] De Oliveira DS, Raiz V, Carrazedo. Experimental study on normal-strength, high-strength and
499 ultrahigh-strength concrete confined by carbon and glass FRP laminates. J Compos
500 Constr 2019;23(1):04018072.

- [2] Lim JC, Ozbakkaloglu T. Lateral strain-to-axial strain relationship of confined concrete. J Struct Eng
 2014;141(5):04014141.
- 503 [3] Lim JC, Ozbakkaloglu T. Unified stress-strain model for FRP and actively confined normal strength
 504 and high-strength concrete. J Compos Constr 2014;19(4):04014072.
- [4] Lim JC, Ozbakkaloglu T. Hoop strains in FRP-confined concrete columns: experimental observations.
 Mater Struct 2014;48(9):2839-2854.

- [5] Zeng JJ, Guo YC, Gao WY, Chen WP, Li LJ. Stress-strain behavior of concrete in circular concrete
 columns partially wrapped with FRP strips. Compos Struct 2018;200:810-828.
- 509 [6] Barros JA, Ferreira DR. Assessing the efficiency of CFRP discrete confinement systems for concrete
 510 cylinders. J Compos Constr 2008;12(2):134-148.
- [7] Zeng JJ, Guo YC, Li L, Chen W. Behavior and three-dimensional finite element modeling of circular
 concrete columns partially wrapped with FRP strips. Polymers 2018;10(3):253.
- [8] Guo YC, Gao WY, Zeng JJ, Duan ZJ, Ni XY, Peng KD. Compressive behavior of FRP ring-confined
 concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain
 model. Constr Build Mater 2019;201:350-368.
- [9] Guo YC, Xiao SH, Luo JW, Ye YY, Zeng JJ. Confined Concrete in Fiber-Reinforced Polymer Partially
 Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle
 Image Velocimetry Sensing Technique. Sensors 2018;18(12):4118.
- [10] Janwaen W, Barros JA, Costa IG. A new strengthening technique for increasing the load carrying
 capacity of rectangular reinforced concrete columns subjected to axial compressive loading.
 Compos Part B Eng 2019;158:67-81.
- [11] Janwaen W, Barros JA, Costa IG. New Hybrid FRP Strengthening Technique for Rectangular RC
 Columns Subjected to Eccentric Compressive Loading. J Compos Constr 2020;24(5):04020043.
- 524 [12] Jiang T, Teng JG. Analysis-oriented stress-strain models for FRP-confined concrete. Eng Struct
 525 2007;29(11):2968-2986.
- [13] Teng J, Huang YL, Lam L, Ye LP. Theoretical model for fiber-reinforced polymer-confined concrete.
 J Compos Constr 2007;11(2):201-210.
- [14] Teng JG, Lin G, Yu T. Analysis-oriented stress-strain model for concrete under combined FRP-steel
 confinement. J Compos Constr 2015;19(5):04014084.
- 530 [15] Lim JC, Ozbakkaloglu T. Stress–strain model for normal-and light-weight concretes under uniaxial
 531 and triaxial compression. Constr Build Mater 2014;71:492-509.
- [16] Popovics S. A numerical approach to the complete stress-strain curve of concrete. Cement and concrete
 research 1973;3(5):583-599.
- [17] Lin S, Zhao YG, Li J, Lu ZH. Confining Stress Path-Based Compressive Strength Model of Axially
 Loaded FRP-Confined Columns. J Compos Constr 2020;25(1):04020077.

- [18] Yang JQ, Feng, P. Analysis-oriented models for FRP-confined concrete: 3D interpretation and general
 methodology. Eng Struct 2020;216:110749.
- [19] Zhao YG, Lin S, Lu ZH, Saito T, He L. Loading paths of confined concrete in circular concrete loaded
 CFT stub columns subjected to axial compression. Eng Struct 2018;156:21-31.
- 540 [20] Wu YF, Wei Y. Stress–Strain Modeling of Concrete Columns with Localized Failure: An Analytical
 541 Study. J Compos Constr 2016;20(3):04015071.
- 542 [21] Wei Y, Wu YF. Experimental study of concrete columns with localized failure. J Compos Constr
 543 2016:20(5):04016032.
- [22] Fallahpour A, Nguyen GD, Vincent T, Ozbakkaloglu T. Investigation of the compressive behavior and
 failure modes of unconfined and FRP-confined concrete using digital image correlation. Compos
 Struct 2020;252:112642.
- 547 [23] Shayanfar J, Rezazadeh M, Barros JA. Analytical model to predict dilation behavior of FRP confined
 548 circular concrete columns subjected to axial compressive loading. J Compos Constr
 549 2020;24(6):04020071.
- [24] Mander JB, Priestley MJ, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng
 1988;114(8):1804-1826.
- [25] Fib Bulletin 14. Externally bonded FRP reinforcement for RC structures. International Federation for
 Structural Concrete 2001.
- [26] CNR-DT 200. Guide for the design and construction of externally bonded FRP systems for
 strengthening existing structures. Italian National Research Council 2004.
- [27] ACI 440.2R-17. Guide for the design and construction of externally bonded FRP systems for
 strengthening concrete structures; American Concrete Institute (ACI): Farmington Hills MI USA
 2017.
- [28] Teng JG, Jiang T, Lam L, Luo YZ. Refinement of a design-oriented stress–strain model for FRP confined concrete. J Compos Constr 2010;13(4):269-278.
- [29] Karthik MM, Mander JB. Stress-block parameters for unconfined and confined concrete based on a
 unified stress-strain model. J Struct Eng 2010;137(2):270-273.
- [30] Wang LM, Wu YF. Effect of corner radius on the performance of CFRP-confined square concrete
 columns: Test. Eng Struct 2008;30(2):493-505.

- 565 [31] Eid R, Roy N, Paultre P. Normal-and high-strength concrete circular elements wrapped with FRP
 566 composites. J Compos Constr 2009;13(2):113-124.
- 567 [32] Shayanfar J, Rezazadeh M, Barros JA, Ramezansefat H. A new dilation model for FRP fully/partially
 568 confined concrete column under axial loading. The 3RD RILEM Spring Convention 2020
 569 Ambitioning a Sustainable Future for Built Environment: Comprehensive Strategies for
 570 Unprecedented Challenges, Guimarães Portugal 2020.
- [33] Lertsrisakulrat T, Watanabe K, Matsuo M, Niwa, J. Experimental study on parameters in localization
 of concrete subjected to compression. J Mater Concr Struct Pavements 2001;50(669):309–321.
- [34] Candappa DC, Sanjayan JG, Setunge S. Complete triaxial stress-strain curves of high-strength
 concrete. Journal of Materials in Civil Engineering 2001;13(3):209-215.
- [35] Rochette P, Labossiere P. Axial testing of rectangular column models confined with composites. J
 Compos Constr 2000;4(3):129-136.
- 577 [36] Shehata IA, Carneiro LA, Shehata LC. Strength of short concrete columns confined with CFRP
 578 sheets. Mater Struct 2002;35(1):50-58.
- 579 [37] Teng JG, Lam L. Compressive behavior of carbon fiber reinforced polymer-confined concrete in
 580 elliptical columns. J Struct Eng 2002;128(12):1535-1543.
- [38] Xiao Y, Wu H. Compressive behavior of concrete confined by various types of FRP composite
 jackets. J Reinforc Plast Compos 2003;22(13):1187-1201.
- [39] Berthet JF, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite
 jackets. Part A: experimental study. Constr Build Mater 2005;19(3):223-232.
- [40] Wang F, Wu HL. Size effect of concrete short columns confined with aramid FRP jackets. J Compos
 Constr 2011; 15(4), 535-544.
- [41] Benzaid R, Mesbah HA. Circular and square concrete columns externally confined by CFRP
 composite: experimental investigation and effective strength models. Fiber Reinforced Polymers–
 The Technology Applied for Concrete Repair 2013;167-201.
- [42] Vincent T, Ozbakkaloglu T. Compressive behavior of prestressed high-strength concrete-filled aramid
 FRP tube columns: Experimental observations. J Compos Constr 2015;19(6):04015003.
- [43] Zeng JJ, Guo YC, Gao WY, Li JZ, Xie JH. Behavior of partially and fully FRP-confined circularized
 square columns under axial compression. Constr Build Mater 2017;152:319-332.

594	[44] Wang W, Sheikh MN, Al-Baali AQ, Hadi MN. Compressive behaviour of partially FRP confined
595	concrete: Experimental observations and assessment of the stress-strain models. Constr Build
596	Mater 2018;192, 785-797.

- 597 [45] Suon S, Saleem S, Pimanmas A. Compressive behavior of basalt FRP-confined circular and non 598 circular concrete specimens. Constr Build Mater 2019;19, :85-103.
- 599 [46] Shan B, Gui FC, Monti G, Xiao Y (2019). Effectiveness of CFRP confinement and compressive
 600 strength of square concrete columns. J Compos Constr 2019 23(6):04019043.
- [47] Carreira and Chu (1985). Stress-strain relationship for plain concrete in compression. In Journal
 Proceedings 1985;82(6):797–804.

- 610 List of Tables

611	Table 1. Summary of confinement models for AFC and FFC
612	Table 2. Assembled database for FFC and FPC
613	
614	
615	
616	
617	
618	
619	

638 List of Figures

- **Fig. 1.** a) Different confinement configurations; b) Confinement pressure paths of AFC and FFC; c) Peak
- 640 axial stress vs axial strain; c) Different axial responses of AFC and FFC
- 641 Fig. 2. Distribution of concrete lateral expansion and FRP confining stress
- **Fig. 3.** Distribution $k_{\varepsilon}(z)$ along $L_d/2$
- 643 Fig. 4. Normalized axial stress vs volumetric strain
- **Fig. 5.** k_{ε}^{FFC} versus I_{f} relation
- 645 Fig. 6. Distributions of concrete lateral expansion and FRP confining stress for FPC
- 646 Fig. 7. k_{ff}^{FPC} versus s_f / L_{d0} relation
- **Fig. 8.** $v_s / v_{s,max}$ and ε_c relation (redrawn from Shayanfar *et al.* [23])

- **Fig. 9.** a) Variation of the experimental dilation results with $\rho_{K,f}$; b) Predictive performance of Eq. (28)
- 649 Fig. 10. Test data and regression equations for: a) R_1 , and b) R_2

Fig. 11. Failure mechanisms of FRP confined concrete based on the experimental studies conducted by a)

- 651 Suon et al. [45]; b) Zeng et al. [43]; c, d) Zeng et al. [5]; e) Wang et al. [44]
- **Fig. 12.** Comparison of experimental results and analytical models
- **Fig. 13.** A flowchart for calculating the characteristics of FFC/FPC
- **Fig. 14.** Analytical analysis versus experimental results for the FRP fully/partially confined specimens tested by Zeng *et al.* [5]
- Fig. 15. Analytical analysis versus experimental results for FFC/FPC specimens tested by Zeng *et al.* [43],
 Shan *et al.* [46], and Gue *et al.* [8]
- **Fig. 16.** Comparison of experimental results and analytical models
- Fig. B.1. Analytical analyses versus experimental results for FFC specimens tested by Lim andOzbakkaloglu [4]
- Fig. B.2. Analytical analysis versus experimental results for FPC specimens tested by Barros and Ferreira
 [6], Zeng *et al.* [7] and Gue *et al.* [8]
- 663

664

665 Appendix A

- In this section, a brief description of the confinement models recommended by fib [25], CNR DT
- 667 200/2004 [26] and ACI 440.2R-17 [27] will be introduced for predicting the ultimate axial strain
- and the ultimate axial stress of concrete.

669 <u>fib [25]</u>

$$\frac{f_{cu}}{f_{c0}} = 0.3 + 3\sqrt{\frac{f_{l,eff}}{f_{c0}}}$$
(A-1)

$$\frac{\varepsilon_{cu}}{\varepsilon_{c0}} = 2 + 1.25 \frac{E_c \varepsilon_{h,rup}}{f_{c0}} \sqrt{\frac{f_{l,eff}}{f_{c0}}}$$
(A-2)

670 CNR DT 200/2004 [26]

$$\frac{f_{cu}}{f_{c0}} = 1 + 2.6 \left(\frac{f_{l,eff}}{f_{c0}}\right)^{\frac{2}{3}}$$
(A-3)

$$\frac{\varepsilon_{cu}}{\varepsilon_{c0}} = 0.0035 + 0.015 \sqrt{\frac{f_{l,eff}}{f_{c0}}}$$
(A-4)

671 <u>ACI 440.2R-17 [27]</u>

$$\frac{f_{cu}}{f_{c0}} = 1 + 3.3\psi_f \frac{f_{l,eff}}{f_{c0}}$$
(A-5)

$$\frac{\varepsilon_{cu}}{\varepsilon_{c0}} = 1.75 + 12 \frac{f_{l,eff}}{f_{c0}} \left(\frac{\varepsilon_{h,rup}}{\varepsilon_{c0}}\right)^{0.45}$$
(A-6)

where E_c is the concrete modulus elasticity; $\varepsilon_{h,rup}$ is the effective hoop strain at FRP rupture; ψ_f is the additional reduction factor, equal to 0.95; $f_{l,eff}$ defines the effective confinement pressure of FPC, recommended by

$$f_{l,eff} = k_{\nu,f} f_{l,f} = \frac{1}{2} k_{\nu,f} \rho_f E_f \varepsilon_{h,rup}$$
(A-7)

675 in which

 $\mathcal{E}_{h,rup} = \beta_{\varepsilon} \mathcal{E}_{fu} \tag{A-8}$

$$k_{\nu,f} = \left(1 - \frac{s_f}{2D}\right)^2 \tag{A-9}$$

676 where ρ_f is the FRP volumetric ratio; E_f is the FRP modulus elasticity; $k_{v,f}$ is the confinement 677 efficiency factor; β_{ε} is FRP efficiency factor; and ε_{fu} is the ultimate FRP tensile strain. 678

679 Appendix B

- The axial and dilation responses of the test specimens of FFC conducted by Lim and Ozbakkaloglu
- [4] and FPC tested by Barros and Ferreira [6], Zeng *et al.* [7] and Gue *et al.* [8] are compared with
- those obtained from the proposed model in Figs. B.1 and B.2, respectively.

683

684

685

686

Fig. 1.

Fig. 1. a) Different confinement configurations; b) Confinement pressure paths of AFC and FFC; c) Peak axial stress vs axial strain; c) Different axial responses of AFC and FFC

Note: UC: unconfined concrete columns; FFC: FRP fully confined concrete columns; FPC: FRP partially confined concrete columns; *εν* defines the concrete volumetric strain (negative value means specimen's volume increase)

Fig. 2.

Fig. 2. Distribution of concrete lateral expansion and FRP confining stress

Fig. 3.

Fig. 3. Distribution $k_{\varepsilon}(z)$ along $L_d/2$

Fig. 4. Normalized axial stress vs volumetric strain

Note: Experimental results from [4, 5, 30, 31]

Fig. 5.

Fig. 5. k_{ε}^{FFC} versus I_{f} relation

Fig. 6.

Fig. 6. Distributions of concrete lateral expansion and FRP confining stress for FPC

Fig. 7.

Fig. 7. k_{ff}^{FPC} versus s_f / L_{d0} relation

Fig. 8.

Fig. 8. $v_s / v_{s,max}$ and ε_c relation (redrawn from Shayanfar *et al.* [23])

Fig. 9.

Fig. 9. a) Variation of the experimental dilation results with $\rho_{K,f}$; b) Predictive performance of Eq. (28)

Fig. 10. Test data and regression equations for: a) R_1 , and b) R_2

Fig. 11.

Fig. 11. Failure mechanisms of FRP confined concrete based on the experimental studies conducted by a) Suon *et al.* [45]; b) Zeng *et al.* [43]; c, d) Zeng *et al.* [5]; e) Wang *et al.* [44]

Fig. 12.

Fig. 12. Comparison of experimental results and analytical models

Fig. 13.

Fig. 13. A flowchart for calculating the characteristics of FFC/FPC

Fig. 14.

Fig. 14. Analytical analysis versus experimental results for the FRP fully/partially confined specimens tested by Zeng *et al.* [5]

Fig. 15.

Fig. 15. Analytical analysis versus experimental results for FFC/FPC specimens tested by Zeng *et al.* [43], Shan et al. [46], and Gue et al. [8];

Fig. 16.

Fig. 16. Comparison of experimental results and analytical models

Fig. B.1

Fig. B.1. Analytical analyses versus experimental results for FFC specimens tested by Lim and Ozbakkaloglu [4]

Fig. B.2

Fig. B.2. Analytical analysis versus experimental results for FPC specimens tested by Barros and Ferreira [6], Zeng *et al.* [7] and Gue *et al.* [8]

Table 1.

Model	Expression		Note			
Model	Axial stress	Peak axial stress				
Category I	$f_c^{Active} = g_1 \left(f_{cc}^{Active} \right)$	$\frac{f_{cc}}{f_{c0}} = 1 + m_{a1} \left(\frac{f_l^{Active}}{f_{c0}}\right)^{m_{a2}}$	- $f_{cc}^{Active} = g_2(f_l^{Active})$ - Confinement path-independent - m_{a1} and m_{a2} = calibration factors derived from AFC specimens			
Category II	$f_c^{Passive} = g_1 \left(f_{cc}^{Passive} \right)$	$\frac{f_{cc}^{Passive}}{f_{c0}} = 1 + m_{a1} \left(\frac{f_{l,f}^{* Passive}}{f_{c0}}\right)^{m_{a2}}$	- $f_{cc}^{Passive} = g_2(f_{l,f}^*)^{Passive}$ - Confinement path-independent - m_{a1} and m_{a2} = calibration factors derived from AFC specimens			
	$f_c^{Passive} = g_1(f_{cc}^{Passive})$	$\frac{f_{cc}}{f_{c0}}^{Passive} = 1 + m_{a1} \left(\frac{f_{l,f}^{* Passive} - \Delta f_l}{f_{c0}}\right)^{m_{a2}}$	- $f_{cc}^{Passive} = g_2 \left(f_{l,f}^{* Passive}, \Delta f_l \right)$ - Confinement path-dependent - m_{a1} and m_{a2} = calibration factors derived from AFC specimens			
Category III		$\frac{f_{cc}^{Passive}}{f_{c0}} = 1 + m_{p1} \left(\frac{f_{l,f}^{* Passive}}{f_{c0}}\right)^{m_{p2}}$	- $f_{cc}^{Passive} = g_3(f_{l,f}^{*Passive})$ - Confinement path-dependent - m_{p1} and m_{p2} = the calibration factors derived from FFC specimens			

Table 1. Summary of confinement models for AFC and FFC

in which f_c^{Active} is the axial stress of AFC as a function of peak axial stress (f_{cc}^{Active}); $f_c^{Passive}$ is the axial stress of FFC as a function of peak axial stress ($f_{cc}^{Passive}$) in the stress-strain base relation; f_{c0} is the axial compressive strength of unconfined concrete; Δf_l is the confinement pressure gradient; Confinement path represents the variation of confinement pressure with axial strain/stress.

Table 2

Total	Confinement arrangement		D	f _{c0}	OV f	R	R ₂	f_{cu}	<u><i>E</i></u> _{cu}
	FFC	FPC	(mm)	(MPa)	$\rho_{K,j}$	N I	K 2	f_{c0}	\mathcal{E}_{c0}
2	2		100-150	44-45	2.6-4.2	1.97-2.35	0.75-0.86	1.6-1.7	7.2-7.7
2	2		150	26-30	3.2-6.6	3.15-3.72	0.76-0.91	2.1-2.4	7.8-9.3
3	3		152	37-39	1.5-3.9	3.15-3.82	0.64-0.80	1.4-1.9	4.5-8.2
39	39		152	34-55	1.3-8.5	0.62-3.81	0.68-1.05	1.0-2.8	1.9-12.7
15	15		70-160	23.6-171	1.3-15.1	1.10-4.5	0.62-1.01	1.1.2.2	1.6-8.7
39	8	31	150	18-40	0.1-26.2	0.18-4.86	0.34-1.40	1.0-6.5	2.9-28.1
4	4		150	31-52	1.3-5.9	1.00-2.98	0.67-0.90	1.3-2.2	4.8-14.3
18	18		152	32-68	1.1-6.9	0.71-3.47	0.59-0.93	1.2-2.2	2.7-11.1
18	18		70-194	24-52	0.3-5.1	0.19-2.85	0.37-0.89	1.0-3.4	1.5-6.0
6	6		160	26-62	1.0-9.2	0.72-4.10	0.63-0.95	1.1-2.5	1.5-11.9
36	36		152	30-98	0.9-5.2	1.02-3.46	0.59-0.91	1.2-2.0	5.5-12.1
6	6		152	110	2.7-4.8	1.16-1.73	0.80-0.90	1.2-1.5	5.4-6.9
12	3	9	238	23	0.9-8.9	0.45-4.16	0.39-0.95	1.3-3.1	2.7-10.9
60	6	54	150	23	0.1-13.0	0.20-4.25	0.31-1.16	1.1-4.7	5.2-26.8
15		15	150	24	0.1-4.1	0.19-2.07	0.33-0.81	1.0-1.8	4.1-17.3
7	1	6	100	36	0.1-5.7	0.17-4.35	0.35-0.88	1.2-4.0	1.5-18.6
21		21	100-300	34-42	0.2-3.8	0.28-2.61	0.47-0.68	1.1-2.2	6.3-25.0
3	3		150	16	0.9-3.8	1.10-3.25	0.55-0.77	1.5-2.4	6.4-12.8
3	3		300	37	3.8	3.42	0.79	2.1-2.2	6.5-6.6
18	18		150	32-54	3.2-14.5	3.11-4.31	0.75-1.23	1.3-3.7	5.4-19.1
327	191	136	155 ^a -0.22 ^b	40-0.56	3.6-0.94	1.79-0.65	0.68-0.37	1.8-0.38	9.3-5.9
	Total 2 3 39 15 39 4 18 6 36 6 12 60 15 7 21 3 18 33 18	Confin arrang Total Confin arrang FFC 2 2 2 3 3 39 39 15 15 39 8 4 4 18 18 18 18 6 6 36 36 6 6 12 3 60 6 15 1 7 1 21 3 3 3 3 3 3 3 3 18 327 191	Confinement arrangement Total FFC FPC 2 2 2 2 3 3 39 39 15 15 39 8 39 8 39 8 39 8 39 8 39 8 39 8 39 8 39 8 30 8 31 4 4 4 18 18 18 18 10 6 6 6 12 3 3 3 3 3 3 3 3 3 327 191	Confinement arrangement D (mm) FFC FPC D 2 2 100-150 2 2 150 3 3 152 39 39 152 15 15 70-160 39 8 31 150 4 4 150 18 18 152 18 18 152 16 6 160 36 36 152 12 3 9 238 60 6 54 150 7 1 6 100 21 21 100-300 3 3 3 150 300 3 3 150 300 38 18 150 300	Confinement arrangementD (mm) f_{c0} (MPa)22100-15044-452215026-303315237-39393915234-55151570-16023.6-1713983115018-404415031-52181815232-68181815230-986616026-623636152110123923823606541502315151515024716100362121100-30034-42331501633150163315032-54	Confinement arrangementD (mm) f_{c0} (MPa) ρ_{Kf} 22100-15044-452.6-4.22215026-303.2-6.63315237-391.5-3.9393915234-551.3-8.5151570-16023.6-1711.3-15.13983115018-400.1-26.24415031-521.3-5.9181815232-681.1-6.9181815230-980.9-5.26616026-621.0-9.2363615230-980.9-5.2661521102.7-4.81239238230.9-8.960654150230.1-13.01515150240.1-4.1716100360.1-5.72121100-30034-420.2-3.833150160.9-3.833150160.9-3.83315032-543.2-14.5	Confirment arrangementD (mm) $f_{c\theta}$ (MPa) ρ_{Kf} R_I 22100-15044-452.6-4.21.97-2.352215026-303.2-6.63.15-3.723315237-391.5-3.93.15-3.82393915234-551.3-8.50.62-3.81151570-16023.6-1711.3-15.11.10-4.53983115018-400.1-26.20.184.864415031-521.3-5.91.00-2.98181815232-681.1-6.90.71-3.47181815230-980.9-5.21.02-2.85661521102.7-4.81.16-1.731239238230.9-8.90.45-4.1660654150240.1-4.10.19-2.07716100360.1-5.70.17-4.352121100-30034-420.2-3.80.28-2.6133150160.9-3.81.10-3.2533150160.9-3.83.11-3.15327191136155*-0.22 ^b 40-0.563.6-0.941.79-0.65	Confinement arrangementD (mm) f_{c0} (MPa) ρ_{Kf} R_I R_I R_I 22100-15044.452.6-4.21.97-2.350.75-0.862215026-303.2-6.63.15-3.720.76-0.913315237-391.5-3.93.15-3.820.64-0.80393915234-551.3-8.50.62-3.810.68-1.05151570-16023.6-1711.3-15.11.10-4.50.62-1.013983115018-400.1-26.20.18-4.860.34-1.404415031-521.3-5.91.00-2.980.67-0.90181870-19424-520.3-5.10.19-2.850.37-0.896616026-621.0-9.20.72-4.100.63-0.95363615230-980.9-5.21.02-3.460.59-0.91661521102.7-4.81.16-1.730.80-0.901239238230.9-8.90.45-4.160.39-0.9560654150230.1-13.00.20-4.250.31-1.1615150240.1-4.10.19-2.070.33-0.81716100360.1-5.70.17-4.350.35-0.882121100-30034-420.2-3.80.28-2.610.47-0.6833150160.9-3.81.10-3.250.55-0.7733<	Confirment arrangementD (mm) f_{c0} (MPa) ρ_{Kf} R_1 R_2 $\frac{f_{cu}}{f_{c0}}$ 22100-15044-452.6-4.21.97-2.350.75-0.861.6-1.72215026-303.2-6.63.15-3.720.76-0.912.1-2.43315237-391.5-3.93.15-3.820.64-0.801.4-1.9393915234-551.3-8.50.62-3.810.68-1.051.0-2.8151570-16023.6-1711.3-15.11.10-4.50.62-1.011.1.2.23983115018-400.1-26.20.18-4.860.34-1.401.0-6.54415031-521.3-5.91.00-2.980.67-0.901.3-2.2181815232-681.1-6.90.71-3.470.59-0.931.2-2.2181870-19424-520.3-5.10.19-2.850.37-0.891.0-3.46616026-621.0-9.20.72-4.100.63-0.951.1-2.53636152310-980.9-5.21.02-3.460.59-0.911.2-2.0661521102.7-4.81.16-1.730.80-0.901.2-1.51239238230.9-8.90.45-4.160.39-0.951.3-3.160654150230.1-1.300.20-4.250.31-1.161.1-4.7151021100-30034-420.2-3.80.28-2.61

Table 2. Assembled database for FFC and FPC

Note: a: Mean; b: CoV

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

CRediT author statement

Javad Shayanfar: Conceptualization, Methodology, Data curation, Validation, Writing- Original draft preparation; Joaquim A. O. Barros: Conceptualization, Methodology, Writing- Reviewing and Editing, Supervision; Mohammadali Rezazadeh: Conceptualization, Methodology, Data curation, Writing- Reviewing and Editing.