The geomorphological distribution of subaqueous tufa columns within a hypersaline lake: Mono Lake, USA

Rogerson, Michael, Keevil, Claire, Mercedes-Martin, Ramon, Parsons, Dan, Brasier, Alex, Reijmer, John and Matthews, Anna (2022) The geomorphological distribution of subaqueous tufa columns within a hypersaline lake: Mono Lake, USA. Journal of Sedimentary Research. ISSN 1527-1404 (In Press)

[img] Text
2021.034_R2_3_.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Understanding the flow of carbon through hyperalkaline lakes is a key means of understanding their biogeochemistry, sedimentology and their palaeoenvironmental and palaeoclimatic records. Furthermore, understanding how mineral precipitation is regulated in these lakes can provide insight into how their carbon sequestration behaviour can be managed. We report geophysical surveys of Mono Lake, California, USA, which show unanticipated geomorphological control on the recent / contemporary formation of lacustrine carbonate formations (“tufa”). Acquired shallow seismic data shows a fault zone below the lake floor, but despite the regional evidence for geothermal waters rising up these fractures, we find no evidence for tufa precipitation at the surface exposure of this structure, either in the seismic data or in the swath bathymetry. However, we do find sub-lacustrine tufa columns in this data elsewhere, which is the first time these have been reported directly. We find and report on a strong link between column location and meteoric Ca supply, with the latter sourced either through surface runoff or groundwater. For example, a region close to a creek inlet has more frequent and larger tufa bodies, which grow at a greater depth range, than another region far from an inlet but close to the fault. This demonstrates the importance of meteoric water ingress in regulating carbonate mineral formation in these basins, and raises the possibility that management of water within the catchment could be a means to enhance carbon capture within natural and artificial hyperalkaline lakes.

Item Type: Article
Subjects: F600 Geology
F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Rachel Branson
Date Deposited: 02 Mar 2022 13:56
Last Modified: 02 Mar 2022 14:00
URI: http://nrl.northumbria.ac.uk/id/eprint/48591

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics