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Physics informed neural networks for Triple Deck

Purpose – This paper introduces physics-informed neural networks (PINN) applied to the two-

dimensional steady-state laminar Navier-Stokes equations over a flat plate with roughness elements 

and specified local heating. The method bridges the gap between asymptotics theory and three-

dimensional turbulent flow analyses, characterised by high costs in analysis setups and prohibitive 

computing times. The results indicate the possibility of using surface heating or wavy surface to 

control the incoming flow field.

Design/methodology/approach – The understanding of the flow control mechanism is normally 

caused by the unsteady interactions between the aircraft structure and the turbulent flows as well as 

some studies have shown, surface roughness can significantly influence the fluid dynamics by 

inducing perturbations in the velocity profile.

Findings – The description of the boundary-layer flow, based upon a Triple-Deck structure, shows 

how a wavy surface and a local surface heating generate an interaction between the inviscid region 

and the viscous region near the flat plate.

Originality/value–The presented approach is especially original in relation to the innovative concept 

of physics-informed neural networks as a solver of the asymptotic triple deck method apply to the 

viscous-inviscid boundary layer interaction.

Keywords PINN's, Triple Deck, Asymptotic, Flow control. 

Paper type: Research paper.

1 Introduction 

Triple-Deck Theory (TdT) developed by Lighthill (Lighthill, 1952), is a theory that describes a three-

layered boundary-layer structure when disturbances are present in the boundary layer. The 

theoretical approach takes into account the influence of viscosity on a disturbance to an incident 

boundary-layer profile. The physical process is referred to as a pressure–displacement (or viscous–

inviscid) interaction. The inviscid flow outside the boundary layer, the displaced boundary layer in 
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which the perturbations are governed by linearized compressible Euler equations, and an inner part 

close to the wall in which the perturbations are governed by incompressible boundary-layer 

equations.

Independently Neiland (Neiland, 1969), Stewartson (Stewartson, 1969), Stewartson and Williams 

(Williams et al., 1969), and Messiter (Messiter, 1970) extended Lighthill’s theory to non-linear 

interactions. They used Gadd’s approximation to modify the TdT to overcome the singularities in the 

boundary-layer solutions at the separation point and the edge of the flat plate (Gadd, 1957).

Hunt (Hunt, 1971) and Smith (Smith, 1973), using order of magnitude arguments, investigated the 

structure of an incompressible flow at a high Reynolds number past a hump on an otherwise smooth 

surface. In these cases, the TdT is able to accurately describe the interaction between the boundary 

layer flow and inviscid flow outside the boundary layer.

The TdT was extended to include unsteady flows by Schneider (Schneider, 1974). It was noted that 

the flow in the viscous lower deck was the most sensitive to unsteady perturbations. The asymptotic 

foundation of two-dimensional, steady-state TdT (for incompressible and compressible flows) was 

reviewed by Zeytounian (Zeytounian, 2003). Diesperov and Korolev (Diesperov et al., 2003) 

investigated the transonic flow past a small hump on a flat plate by solving the Triple-deck equations. 

Recently, Lipatov and Koroteev have published a series of papers (see for instance Lipatov (Lipatov, 

2006), Koroteev and Lipatov (2008, 2009, 2012, 2013)) in which micro-electro-mechanical-system 

(MEMS) devices are modelled as small flat-plate localised heating elements located in the boundary 

layer. The work of Mengaldo (Mengaldo et al., 2015) who looked at subsonic and transonic flows over 

roughness elements, suggests that TdT is able to correctly capture the main qualitative physics in 

practical aeronautical applications.

This paper investigates the possibility of using the non-linear lower deck approach of the TdT of the 

viscous-inviscid interactions due to a wavy surface and a local heating surface. More precisely, the 

aim is to gain a better understanding, from a mathematical perspective, of how surface waviness can 

be used to change the flow properties. For instance, it is shown in the case of the aircraft, if we 
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consider large typical Reynolds numbers and assume the characteristic size of a wing-fuselage to be 

4 m, then the size of the interaction region in the TdT is approximately 1 cm. These methods could be 

applied for flow control on wings. An outline of the paper is as follows: In the next section, we detail 

the triple-deck model, the appropriately scaled governing equations and boundary conditions. 

Additionally, the physics-informed neural networks method for solving lower-deck equations is 

introduced. In Section 3, the results of the non-linear calculations are examined for increasing heights 

of rippled surfaces and different local temperature amplitudes. Finally, some conclusions are drawn in 

Section 4.

2 TRIPLE-DECK ANALYSIS

A laminar, incompressible, two-dimensional, steady flow over a flat plate is considered. Two cases 

are studied: a wavy surface and a local surface heating. The incoming flow is uniform and, therefore, 

irrotational. We assume that the perturbation produced by the boundary layer on the inviscid flow is of 

order  (Eqn. 1) for the velocity components and the pressure.𝜀

(1)𝜀 =
1

𝑅𝑒
𝑚,    𝑤ℎ𝑒𝑟𝑒    𝑚    𝑖𝑠    𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦    (𝑚 > 0)

The two dimensionless Navier-Stokes equations in terms of dimensionless variables are given by: 

∂𝑢
∂𝑥 +

∂𝑣
∂𝑦 = 0

𝑢
∂𝑢
∂𝑥 + 𝑣

∂𝑢
∂𝑦 = ―

∂𝑝
∂𝑥 +

1
𝑅𝑒

∂2𝑢
∂𝑥2 +

1
𝑅𝑒

∂2𝑢
∂𝑦2

𝑢
∂𝑣
∂𝑥 + 𝑣

∂𝑣
∂𝑦 = ―

∂𝑝
∂𝑦 +

1
𝑅𝑒

∂2𝑣
∂𝑥2 +

1
𝑅𝑒

∂2𝑣
∂𝑦2

(2)

The scaling of this problem requires a division of the vertical structure into a Triple-Deck regime as 

shown in Figure 1: a viscous sublayer (’Lower Deck’) and an inviscid main part of the boundary layer 

(’Main Deck’), where the third tier is an inviscid potential flow (’Upper Deck’) outside of the boundary 

layer. The Triple-Deck structure establishes a link between the unperturbed upstream flow and the 

downstream flow.
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Figure 1: Triple deck structure (Mauss et al., 2007)

The longitudinal and transverse length scales of the perturbed region are . Inside the perturbed 𝐿𝑅𝑒

―3
8

region, there are three decks.

    • First, the "Lower Deck": the thickness of the lower deck is , is comprised of the stream 𝐿𝑅𝑒

―5
8

filaments immediately adjacent to the wall. Even a small variation of pressure along the wall may 

cause significant deceleration/acceleration of fluid particles. As a result, the flow filaments change 

their thickness leading to a deformation of streamlines. This process is termed the displacement 

effect of the boundary layer. The perturbations in this lower layer are transmitted through the "Main 

Deck". 

    • The basic boundary layer is now the "Main Deck". The flow in this tier is significantly less 

sensitive to pressure variations. It does not produce any noticeable contribution to the displacement 

effect of the boundary layer. 

    • Finally, the upper tier. It serves to convert the perturbations in the form of the streamlines into 

perturbations of pressure. These are then transmitted through the main part of the boundary layer 

back to the "Lower Deck", enhancing the process of fluid deceleration. 

  As in all Triple-Deck problems, it reduces to solving the lower-deck equations. These, in turn, will 

provide solutions for the main and upper decks.
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The structure of the Triple Deck is: 

𝑌 ∗ =
𝑦
𝜀𝛼    𝑌 = 𝑌 =

𝑦
𝜀𝑚/2    𝑌 =

𝑦
𝜀(4𝛼 + 𝑚)/4

 Upper deck   

    •  𝑢 = 1 + 𝜀𝑚 ― 2𝛼𝑈 ∗
1 +...,

    •  𝑣 = 𝜀𝑚 ― 2𝛼𝑉 ∗
1 +...,

    • 𝑝 = 𝜀𝑚𝑎 ― 2𝛼𝑃 ∗
1 +...,

    • , 
∂𝑈 ∗

1

∂𝑋 +
∂𝑉 ∗

1

∂𝑌 ∗ = 0

    • , 
∂𝑈 ∗

1

∂𝑋 = ―
∂𝑃 ∗

1

∂𝑋

    • .
∂𝑉 ∗

1

∂𝑋 +
𝑑2𝑓
𝑑𝑋2 = ―

∂𝑃 ∗
1

∂𝑌 ∗

(3)

   Main deck   

    •  𝑢 = 𝑈0 + 𝜀(𝑚 ― 2𝛼)/2𝑈1 +...,

    •  𝑣 = 𝜀𝑚 ― 2𝛼𝑉1 +...,

    • 𝑝 = 𝜀𝑚 ― 2𝛼𝑃1,

    • , 
∂𝑈1

∂𝑋 +
∂𝑉1

∂𝑌 = 0

    • ,𝑈0
∂𝑈1

∂𝑋 + 𝑉1
𝑑𝑈0

𝑑𝑌 = 0

    • .
∂𝑃1

∂𝑌 = 0
(4)

   Lower deck

    •  𝑢 = 𝜀(𝑚 ― 2𝛼)/2𝑈1 + 𝜀(3𝛼 ― 𝛽)/4𝜆𝑌 +...,

    •  𝑣 = 𝜀(3𝑚 ― 4𝛼)/4𝑉1 +...,

    • 𝑝 = 𝜀𝑚 ― 2𝛼𝑃1 +...,

    • , 
∂𝑈1

∂𝑋 +
∂𝑉1

∂𝑌 = 0

    •  𝑈1
∂𝑈1

∂𝑋 + 𝑉1
∂𝑈1

∂𝑌 = ―
∂𝑃1

∂𝑋 +
∂2𝑈1

∂𝑌2

    • .
∂𝑃1

∂𝑌 = 0

(5)

2.1 MAIN DECK

The Eqns. 4 are solved.give: 

(6)― 𝑈0
∂𝑉1

∂𝑌 + 𝑉1
𝑑𝑈0

𝑑𝑌 = 0

 Dividing both terms by , the Eqn. 6 become   or equivalently 𝑈2
0 ―

1
𝑈0

∂𝑉1

∂𝑌 + 𝑉1
𝑈′0

𝑈2
0

= 0
∂

∂𝑌(
𝑉1

𝑈0
) = 0

The ratio  is a function of  only,  become  where  is an unknown displacement 
𝑉1

𝑈0
𝑋 𝑉1 ―

𝑑𝐴
𝑑𝑋𝑈0 𝐴(𝑋)

function. 
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In the main deck, the solution is given by: 

𝑈1 = 𝐴(𝑋)𝑈′0(𝑌)    𝑤𝑖𝑡ℎ    𝑈′0(𝑌) =
𝑑𝑈0

𝑑𝑌

𝑉1 = ― 𝐴′(𝑋)𝑈0(𝑌)    𝑤𝑖𝑡ℎ    𝐴′(𝑋) =
𝑑𝐴
𝑑𝑋

𝑃1 = 𝑃1(𝑋)

(7)

The appropriate form of the solution to the resulting equations is: 

𝑢 = 𝑈0 + 𝜀(𝑚 ― 2𝛼)/2𝐴(𝑋)𝑈′0(𝑌) + ...,

𝑣 = ― 𝜀𝑚 ― 2𝛼𝐴′(𝑋)𝑈0(𝑌) + ...,

𝑝 = 𝜀𝑚 ― 2𝛼𝑃1.

(8)

 can be interpreted as the velocity slip at the base of the main deck corresponding 𝐴(𝑋)

to the inviscid perturbation of the upstream Blasius solution by the induced pressure gradient.

2.2 LOWER DECK

The initial conditions are given by:

    •   is satisfied provided  . 𝑋→ ― ∞ 𝐴( ― ∞) = 0

    • On the surface waviness  no-slip conditions ,  ,   𝑌 = 𝑓(𝑋) 𝑈1 = 0 𝑉1 = 0
∂𝑈1

∂𝑌 = 0

    • ,  or  , as  . 𝑙𝑖𝑚
𝑌→∞

(𝑈1 ― 𝜆𝑌) = 𝜆(𝐴 + 𝑓) 𝑈1→𝜆(𝑌 + 𝐴 + 𝑓) 𝑌→∞

The conditions which relate the displacement thickness with the longitudinal velocity are supplied with 

the interaction condition, which in turn, relates the displacement thickness with the pressure and thus 

expresses the interaction of the viscous sublayer with the outer inviscid flow (Lipatov et al. 2011).

2.3 UPPER DECK

The first term in the upper deck is 1. The value of the first approximation for the inviscid flow outside 

the boundary layer from matching the solutions between the upper layer (as ) and main layer 𝑌 ∗ →0

(as ) is: 𝑌→∞
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𝑎)    𝑌 ∗ →0:    𝑈0→1    𝑈 ∗

1 = 0;

𝑏)    𝑉 ∗
1 = ―

∂𝑓
∂𝑋;

𝑐)    𝑉 ∗
1 (𝑋,0) = 𝑙𝑖𝑚

𝑌→∞
𝑉1(𝑋,𝑌);

𝑑)    𝑉 ∗
1 (𝑋,0) = ―

𝑑𝐴
𝑑𝑋;

𝑒)    𝑃 ∗
1 (𝑋,0) = ― 𝑈 ∗

1 (𝑋,0);

𝑓)    𝑃 ∗
1 (𝑋,0) = 𝑙𝑖𝑚

𝑌→∞
𝑃1(𝑋,𝑌).

(9)

Moreover, as we have  and , we deduce that: .
∂𝑃1

∂𝑌 = 0
∂𝑃1

∂𝑌 = 0 𝑃 ∗
1 (𝑋,0) = 𝑃1(𝑋) = 𝑃1(𝑋)

The Triple-Deck displacement function, , is related to the air pressure through the Cauchy-Hilbert 𝐴(𝑋)

integral: 

(10)𝑃1(𝑋) =
1
𝜋∫∞

―∞

∂
∂𝜉(𝐴 ― 𝑓)

𝑋 ― 𝜉 𝑑𝜉

2.4 NUMERICAL SOLUTION OF TRIPLE DECK

To find the resulting flow field and in particular the displacement function and pressure it is 

necessary to solve the non-linear lower-deck equation. Apart from the non-linearity of the governing 

equations, complications arise from the elliptic nature of the Hilbert integral pressure displacement 

relationship. One relationship between the unknown pressure  and displacement  is obtained from 𝑃 𝐴

the potential flow properties holding in the upper deck outside the boundary layer (Smith 1973; 

Stewartson 1974). 

The Lower Deck equations taking into account the asymptotic scales and the Hilbert integral are:

    • Flow past a shape: 

∂𝑈1

∂𝑋 +
∂𝑉1

∂𝑌
= 0

(11)
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𝑈1

∂𝑈1

∂𝑋 + 𝑉1
∂𝑈1

∂𝑌
= ―

∂𝑃1

∂𝑋 +
∂2𝑈1

∂𝑌2

∂𝑃1

∂𝑌
= 0

(12)
∂𝑃1

∂𝑋 (𝑋) = ―
1
𝜋∫∞

―∞
𝐴′′(𝜉) ― 𝑓′′(𝜉)

𝜉 ― 𝑋 𝑑𝜉

    • In order to obtain wall heat and transfer for interacting flows, the asymptotic form of the energy 

equation resulting from a triple-deck analysis must be solved (Lipatov, 2006) (Lipatov et al., 2011), 

(Lipatov et al., 2012) : 

(13)

∂𝑈1

∂𝑋 +
∂𝑉1

∂𝑌 = 0

𝑈1
∂𝑈1

∂𝑋 + 𝑉1
∂𝑈1

∂𝑌 + 𝑇
∂𝑃1

∂𝑋 =
∂2𝑈1

∂𝑌2

𝑈1
∂𝑇1

∂𝑋 + 𝑉1
∂𝑇1

∂𝑌 +=
∂2𝑇1

∂𝑌2

(14)
∂𝑃1

∂𝑋 (𝑋) = ―
1
𝜋∫∞

―∞
𝐴′′(𝜉)
𝜉 ― 𝑋𝑑𝜉

The basic problem was solved by using PINN’s approach introduced recently by Raissi (Raissi et al. 

2017 and 2019). We can replace traditional numerical discretization methods with a neural network 

that approximates the solution to a PDE. To obtain the approximate solution of a PDE via deep 

learning, a key step is to constrain the neural network to minimize the PDE residual. Compared to 

traditional mesh-based methods, such as the finite difference method (FDM) and the finite element 

method (FEM), deep learning could be a mesh-free approach by taking advantage of automatic 

differentiation. The optimizer is used after the comparison between target values and outputs of the 

network and the goal is to minimize the loss function by adjusting model parameters (weights and 

biases). There are different types of optimisers. Each type of optimiser has its own merits. The most 

common optimizers are Adam and the L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno Bound) (DU, Ke-Lin et al., 2014). When training the network, we prefer starting with Adam 

optimizer rather than L-BFGS-B, because this latter has more probability to get stuck on a local 

minimum.
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The PINN introduces physical information into the network by forcing the network output to 

satisfy the corresponding partial differential equations. Neural networks (NN) are a set of algorithms, 

inspired by the biological neural networks in brains, for classification and regression tasks. A NN 

defines a mapping from the input layer  to the output . The layers between the input 𝑧0 ∈ ℝ𝑛0 𝑧𝐿 ∈ ℝ𝑛𝐿

and output layers are called hidden layers , where . By convention, a neural network 𝑧𝑙 𝑙 = 1,…,𝐿 ―1

with more than one hidden layer is called a “deep” NN. Mathematically, two adjacent layers are 

connected as,

𝑧𝑙 = 𝜎𝑙(𝑤𝑇
𝑙 𝑧𝑙 ― 1 + 𝑏𝑙)

Between each layer, a weight matrix "  and bias vector "  are applied, the 𝑤𝑙 ∈ ℝ𝑛𝑙 ― 1 × 𝑛𝑙" 𝑏𝑙 ∈ ℝ𝑛𝑙"

subscript denotes the index of the layer; (·) is an activation function. Feed-forward neural networks 𝑙 𝜎𝑙

are composed of the input layer, fully connected hidden layers having a nonlinear activation function 

at each neuron, and the output layer. Figure 2 (a and b) shows a general architecture of PINN and 

details its application to solve the Triple-Deck system. The PINN’s framework consists of two parts. 

The first part is a neural network NN(w, b) that takes the coordinate  as the input and outputs (𝑥,𝑦)

predict five scalar state variables, i.e., velocity (u,v), pressure p, temperature T, and displacement of 

the fluid flow. The NN architecture is composed of eight (8) hidden layers, with one hundred (100) 

neurons per layer, and a hyperbolic tangent tanh is chosen as the Swish activation function.

Then, the output of NN is fed into a second part, which is essentially the governing differential 

equations of the lower deck and the Hilbert integral, to evaluate the pressure gradient of the Triple-

Deck equations. The physics loss function is the summation of the governing loss, the initial and 

boundary condition loss given by: 

(15)𝑀𝑆𝐸𝑢 = 𝑀𝑆𝐸𝑖/𝑏𝑐 + 𝑀𝑆𝐸𝑓

The calculation of the mean square error (MSE) is given by the following formula: 

(16)𝑀𝑆𝐸𝑖/𝑏𝑐 =
1

𝑁𝑖/𝑏𝑐
∑𝑁𝑖/𝑏𝑐

𝑗 = 1|𝑢𝑖 ― 𝑢|2

(17)𝑀𝑆𝐸𝑓 =
1

𝑁𝑔
∑𝑁𝑔

𝑗 = 1|𝑓|2
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During training, weight matrices and biases are optimized to find the best neural network parameters 

that minimize the loss function

{𝑤 ∗ ,𝑏 ∗ } = 𝑎𝑟𝑔 min
{𝑤,𝑏}

{𝑀𝑆𝐸𝑢(𝑤,𝑏)}

For the optimization procedure, we set the learning rate to 0.001, and in order to balance 

convergence speed and global convergence, we ran L-BFGS-B 500,000 epochs and then continued 

the optimization using Adam until convergence.

Figure 2: The schematic of PINN for solving TdT with Smith (Smith et al, 1981) method

(a)
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(b)

Eqn. (16) requires the neural network to satisfy the initial and boundary conditions, while Eqn. 

(17) requires the neural network to satisfy the constraints of the partial differential equation, which 

corresponds to the physical information part of the neural network. Given the displacement "A",      

Eqn. (10) allows calculation of the "inviscid pressure gradient", . On the other hand, we calculate 
∂𝑃
∂𝑋|𝑖𝑛𝑣

the "viscous pressure gradient", , based on the Eqns. (11) or (13). The optimization problem for 
∂𝑃
∂𝑋|𝑣

Eqn. (15) is addressed by optimizing the parameters in order to find the minimum value of the loss 

function.

To validate the prediction performance of the trained PINN, corresponding CFD simulations 

are also conducted using an open CFD solver, OpenFOAM version 2.4.0 stands for (Open Source 

Field Operation And Manipulation), (https://openfoam.org). We will be using PISO (Pressure Implicit 

with Splitting of Operator) algorithm implemented in pisoFoam solver. The time discretization is 

performed by the implicit Crank-Nicolson scheme with a coefficient of 0.5. The Gaussian-type 

schemes are chosen for the spatial (gradient, divergence, and laplacian) discretization. The Poisson 

equation for pressure is solved by GAMG (Generalized Geometric-Algebraic Multi-Grid) algorithm, 
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while the linear equation for velocity is solved by PBiCG algorithm (Preconditioned Bi-Conjugate 

gradient solver for asymmetric matrices). Linear interpolation is used to obtain the physical quantities 

at the surface centers of the cells.

3 Results and discussion

In this section, we present results from the numerical solution of the non-linear Triple-Deck 

problem for subsonic flow past different geometries (humps or Gaussian shape, hump-dip Figure 3) 

and a heated part on the surface of the plate (Figure 10), respectively, located at a distance  from 𝐿0

the leading edge. We discuss the numerical data for the two functions,  and , with the 𝐴(𝑋) 𝑃(𝑋)′

predicted asymptotic method (TdT) coupling with the PINN’s techniques. Satisfying the asymptotic 

boundary conditions is of major importance in assessing the accuracy of the numerical procedure.

3.1 FLAT PLATE WITH SHAPED FORMS

New results have been presented, obtained by PINN technics, which serve to identify the effects of 

roughness elements as represented in Figure 3 in the distribution of the displacement and pressure. 

They also constitute a concrete step towards understanding the mechanism of momentum transfer 

between inviscid flow outside and viscous sub-layer. The shape of the roughness element was given 

by:

    • Hump shape equation:  𝑓(𝑥) = ℎ𝑟𝑒𝑥𝑝( ― (𝐿𝑟 ― 𝑥)2/𝛽2)

    • Ripped shape equation:  𝑓(𝑥) = ℎ𝑟𝑠𝑖𝑛(
2𝜋
𝐿 𝑥)

where  is the distance from the center of the roughness element to the leading edge of the flat 𝐿𝑟

plate,  is the height of the roughness element and  is a parameter that controls the shape of the ℎ𝑟 𝛽

roughness element. In particular,  and  were fixed and equal to  and , 𝐿0 𝛽 0.05𝑚 1.7961 ∗ 10 ―4𝑚

respectively. Concerning the height of the roughness element, we took into account four different 

values: , where  is the thickness of the lower deck.ℎ𝑟 = [0,
1
8,

2
8,

4
8]𝑌𝐿𝑜𝑤𝑒𝑟 𝑌𝐿𝑜𝑤𝑒𝑟 = 𝐿0𝑅

―3
8

Figure 3: flat plate deformed by rippled shapes
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The results of the calculations are summarized in Figures 4, 5, 6 and 7, which shows the comparison 

of the velocity upper the rippled surface, the displacement function , the displacement gradient  𝐴(𝑥)
𝑑𝐴
𝑑𝑥

and the pressure gradient  as a function of the scaled length.
𝑑𝑝
𝑑𝑥

Figure 4: Comparison of the four predictions for hump case

(a) Axial velocity; (b) pressure gradient, (c) Displacement; (d) displacement gradient
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The detailed results of the Triple-Deck analysis show that the predominant effect of the rippled 

surface on the boundary layer is to cause a local distortion in the pressure. We have seen that far 

upstream, where the interaction region matches with the unperturbed boundary layer, the 

displacement and the pressure perturbation are neglected. As the pressure starts to decrease in the 

interaction region, it causes the flow in the viscous sublayer to "decelerate" (Figure 4 b). This is 

revealed by the observed "increase" of the displacement function (Figure 4 c, d). 

An additional case tested the effect of the imperfections [circle Figures 5, Double circle (hump-dip) 

Figures 6] at the leading aircraft wing on the boundary layer. The pressure gradient and the 

displacement gradient are plotted, the pressure gradient is adverse as the flow approaches the circle 

and then becomes favorable until the crest of the circle. It then becomes less favorable in the 

recovery region of the flow. 
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Figure 5: Comparison of the four predictions for circle case

(a) Axial velocity; (b) radial velocity; (c) pressure gradient; (d) displacement gradient.

Figure 6: Double circele (hump-dip) case

(a) Contours; (b) pressure gradient; (c) displacement gradient.

Figure 7 and Table 1 shows the computational domain and the grid structure for the hump adopted to 

RANS simulation (  SST turbulence model). The flow is from left to right-hand side.𝑘–𝜔
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Figure 7: View of the Meshing Domain

Table 1. Meshing Parameters

Edges A B
Nodes 100 300

grid size 30000
Mesher Type quadrilateral mesh

𝑦 +
𝑚𝑎𝑥 O.118

y-plus
𝑦 + =

𝜏𝜔

𝜌 𝑦

𝜈
𝑦 +

𝑚𝑒𝑎𝑛 0.025

𝐶𝑚𝑎𝑥 2.1162
Courant-Friedrichs-Lewy (CFL) 𝐶 =  

𝑢𝑥Δ𝑡
Δ𝑥 +

𝑢𝑦Δ𝑡
Δ𝑦 𝐶𝑚𝑒𝑎𝑛 5.9410 ―3

The results presented here were normalized on the following conditions: Air at   and 1 bar; 20 °𝐶

Dynamic viscosity , Density . The boundary conditions are 𝜇 =  1.82 × 10 ―5  𝑁 𝑠 𝑚 ―2 𝜌 =  1.19 𝑘𝑔 𝑚 ―3

defined in Table 2.

Table 2: Boundary conditions of the

Furthermore, time dependency is a crucial factor of this study due to the unsteadiness of the flow field 

consisting of random and periodic pressure fluctuation occurring within the hump. Each time step was 

set as  seconds with an initial time equal to zero.0.25 × 10 ―5

Boundary Type Value
Inlet Free-stream timeVaryingUniformFixedValue

Outlet Pressure Outlet zeroGradien
Bottom Wall No – Slip smooth

Top Free- stream zeroGradient
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Figure 8 shows the density of mesh resolution near the walls and in the hump region

Figure 8 Mesh density hump case

From Figure 9 it is possible to see an overall good agreement between triple-deck PINN’s simulation 

and PisoFoam solvers with  turbulence model.𝑘–𝜔 SST 

Figure 9 Comparison of axial pressure gradient , 𝑑𝑝/𝑑𝑥

PINN and RANS approach for hr =
4
8YLower

 

From the above figure, we can see how the difference between  and Triple-Deck PINN’s data 𝑘–𝜔 SST

in terms of , in proximity to the hump, a larger acceleration of the flow in the  results 𝑑𝑝/𝑑𝑥 𝑘–𝜔 SST

when compared to the Triple-Deck PINN’s data. Also, the deceleration of the flow behind the hump is 

larger in the data when compared to the triple-deck PINN. We observe a zero pressure 𝑘–𝜔 SST 

gradient along the wall axial direction in the  when compared to the triple-deck PINN’s data.𝑘–𝜔 SST
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3.2 FLAT PLATE WITH LOCAL SURFACE HEATING

We present results of the Triple-Deck problem where subsonic flow past a local heating element that 

is placed on a flat surface (Figure 10). 

Figure 10: Two-dimensional flow of a boundary layer over a flat heating element

The size of the heating element r is  while the wall temperature is given by 
1
4𝑌𝐿𝑜𝑤𝑒𝑟

(18)𝑇(𝑥) = {1 + 𝛥𝑇 |𝑥| ≤
𝑟
2

1 |𝑥| >
𝑟
2

where  is the amplitude of perturbations of the temperature Figure 11(a).𝛥𝑇

Figure 11: Temperature distributions for various values of 𝛥𝑇

(a), the contour of velocity, pressure, and temperature (b)

In Figure 12 distributions of the axial velocity, pressure gradient, and displacement gradient are 

presented while  varies. It can be observed that increasing the  increases the pressure gradient 𝛥𝑇 𝛥𝑇

and decreases the axial velocity and the displacement gradient which are located on the upstream 
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edge of the heating region and decreases the pressure gradient increases the displacement gradient 

which is located on the downstream edge of the heating region.

Figure 12: (a) Axial velocity, (b) pressure gradient, (c) Displacement 

and (d) displacement gradient distributions for various values of 𝛥𝑇

The displacement thickness of the boundary layer changes due to the effect of the surface 

temperature change that, in turn, induces a pressure perturbation in the external subsonic flow. The 

induced pressure perturbation exerts an effect on the region of slow boundary flow in which the main 

contribution to the change in the displacement thickness is formed. It has been shown that this 

situation leads to the formation of a local effective roughness on the surface and the problem 
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becomes similar to the problems considered above of the flow of a viscous gas over small 

irregularities Figure 11(b).

4 Conclusion

In this work, we have applied physics-informed neural networks (PINN) to two-dimensional 

steady-state laminar Navier-Stokes equations over a flat plate with a wavy surface of arbitrary 

amplitude and shape and specified local heating. We employ the Triple-Deck structure to describe the 

boundary-layer flow, which shows how a wavy surface and a local surface heating generates an 

interaction between the inviscid region and the viscous region near the flat plate. The Reynolds 

numbers were chosen to be relevant for aeronautical applications, while the shape and the related 

parameters can be seen as simple models of small deformation placed at the leading edge of the 

aircraft landing gear cavity. Clearly, the size, shape, and temperature of the surface elements are 

important factors to be taken into consideration in designing suitable forms which can be used to 

control the flow and separation of the boundary layer. Although for this particular application it is 

understood that effects of turbulence, unsteadiness of the flow may also be important, and should be

included when considering the full problem.
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Symbols

δ - Boundary layer thickness

f - Surface waviness

A - Displacement function

 – Perturbation paramter𝜀

Re - Reynolds number

 - Local scaled skin friction𝜆

Acronyms and Abbreviations

TdT - Triple-Deck Theory PINN - Physics-Informed Neural Network
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MSE - Mean Square Error

PDE - partial differential equations

RANS - Reynolds-averaged Navier–Stokes

.
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