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The analysis of irregularly sampled time series remains a challenging task requiring methods that account1
for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit
distance is an effective metric to quantitatively compare time series segments of unequal length by computing
the cost of transforming one segment into the other. We show that transformation costs generally exhibit a
nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this
effect impedes unbiased comparison between different time episodes. We study the impact of this effect on
recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time
series. A constrained randomization approach is put forward to correct for the biased recurrence quantification
measures. This strategy involves the generation of a type of time series and time axis surrogates which we call2
sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a
synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical
Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by
an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with
enhanced ENSO and tropical cyclone activity.3
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I. INTRODUCTION32

The analysis of time series from complex systems calls33

for numerical methods that capture the most relevant features34

in the observed variability. At the same time, the impact of35

various frequently encountered data-related intricacies such36

as low signal-to-noise ratio, nonstationarity, and limited time37

series length must be accounted for. A major challenge is38

posed by irregular sampling, i.e., variations in the interval39

�i = ti − ti−1 between consecutive measurement times ti−140

and ti. Irregular sampling is observed in many complex real-41

world systems. The underlying mechanisms that render the42

*tobraun@pik-potsdam.de
†Also at University of Potsdam, Institute of Geosciences, 14473

Potsdam, Germany

temporal sampling irregular may differ: sampling can be in- 43

herently irregular due to an additional process that controls 44

the sampling interval (e.g., financial or cardiac time series 45

[1,2]); a mixture of various external processes can result in 46

“missing values,” i.e., multiple interacting processes result 47

in the nonavailability of measurements (e.g., sociological or 48

psychological survey data [3]) or cause failures of the sys- 49

tem (e.g., mechanical or electronical systems [4]); finally, 50

the measurement process often results in irregularly sampled 51

time series (e.g., astronomical [5] or geophysical systems 52

[6]). Proxy time series obtained from palaeoclimate archives 53

are a particularly challenging example since irregularity in 54

the temporal sampling can itself contain valuable informa- 55

tion on the processes of interest [7]. The growth rate of a 56

stalagmite, for example, depends on variable environmental 57

factors, including temperature in the cave and drip rate [8], 58

among others. Since these factors and their variability are 59
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strongly coupled to the environmental conditions outside the60

cave, growth rate must be regarded as a dynamical indicator,61

for example, hydrological conditions, which in turn deter-62

mine variations in the temporal sampling of the proxy time63

series.64

Across many research communities, resampling based on65

interpolation techniques and imputation approaches are pop-66

ular methods for making irregularly sampled time series67

compatible with standard time series analysis tools [9,10].68

Artifacts and statistical biases caused by interpolation tech-69

niques are well known and may result in misinterpretation of70

the extracted time series properties, an issue further aggra-71

vated by the fact that biases introduced by interpolation may72

vary among different systems [11]. The robustness of results73

arising from different interpolation techniques for the same74

data set is rarely examined. For instance, linear interpolation75

will not compensate for the effect of lower variability dur-76

ing sparsely sampled episodes in a time series compared to77

more densely sampled periods. In fact, linear interpolation and78

mean imputation decrease variance to a hardly quantifiable,79

data-related degree [12]. Finally, more complex imputation80

models may account for such finite (sampling) size effects81

but may not represent the “natural” variability of a time series82

adequately. For data not missing at random, the assignment of83

a sufficient imputation model can be challenging and must ac-84

count for nonstationarity in the underlying nonrandom effects85

(e.g., for the palaeoclimate example mentioned above). Sim-86

ilar biases are known from the problem of imbalanced data,87

i.e., given two populations that should be compared based88

on a statistical model, a majority class exists that contains89

significantly more samples than the minority class, and thus,90

oversampling techniques are applied to compensate for the91

resulting bias [13,14].92

Geophysical time series frequently exhibit nonlinear fea-93

tures such as nonlinear oscillations and critical regime94

transitions, e.g., tipping points [15]. Dynamical system theory95

regards observations from such systems as embedded in a96

higher-dimensional phase space and offers a range of tools to97

quantify gradual or abrupt changes in these dynamics [16,17].98

The power of these methods relies on their ability to uncover99

features that regular techniques, such as autocorrelations or100

variance estimation, fail to uncover [18]. Aiming for higher101

applicability of nonlinear time series analysis methods in102

the Earth sciences, irregular sampling approaches have been103

proposed [19–21]. One of these approaches is based on the104

idea of transforming subsequences of unequal lengths in a105

time series into each other and comparing the costs of these106

transformations for all subsequences [22]. More generally,107

the definition of a metric distance between states at different108

instances of time can entail dynamical information on the109

evolution of the phase space trajectory of the studied sys-110

tem. While standard metrics (such as Euclidean distance) fail111

to account for irregular sampling, the TrAnsformation-Cost112

Time-Series (TACTS) [23] includes the temporal information113

for distinct time series segments. The TACTS method is based114

on the edit distance measure, which was originally introduced115

to measure the similarity between marked point processes116

[22]. Similar approaches based on the edit or Levenshtein117

distance have been used in natural language processing [24]118

and metric analyses of point processes [25], among many 119

others. 120

In this work, we focus on the application of the (m)Edit 121

distance [25], which is a modified edit distance measure using 122

a nonlinear transformation function instead of a scaler factor 123

for measuring a cost operation. The modification helps to eval- 124

uate temporal patterns in sparse data sets such as paleoclimate 125

proxies or extreme events. The time-sampling regularization 126

by (m)Edit-distance preprocesses irregularly sampled time 127

series for the computation of recurrence plots (RPs) [26]. 128

The (m)Edit-distance approach can potentially be employed in 129

any methodological framework that includes computation of a 130

distance (or similarity) measure. The RP technique represents 131

one particular application that has proven to be a powerful 132

approach, tackling many of the fundamental problems in time 133

series analysis, such as time series classification [27], the 134

study of synchronization between multiple time series [28], 135

and detection of regime transitions [29]. Recurrence quantifi- 136

cation analysis (RQA) provides a means of quantifying the 137

tendency of a time series to revisit previously visited states 138

and has grown in its scope from basic predictability quantifi- 139

cation towards more ambitious measures that, e.g., capture the 140

multiscale nature of transitions [30–32]. The identification of 141

shifts stands out as a particularly interesting application since 142

critical transitions can often be linked to the vulnerability 143

of the respective regional climate system towards external 144

shocks or feedback mechanisms. The combination of the 145

(m)Edit-distance approach and RPs offers a promising ap- 146

proach to identify regime transitions in irregularly sampled 147

records, which may otherwise be impeded without an ade- 148

quate technique designed to account for sampling variations 149

[33–35]. In following this approach, special care must be 150

taken if irregular sampling intervals undergo strong variations, 151

i.e., where the process(es) that control the sampling rate are 152

rendered nonstationary. In some applications, segments can 153

be chosen such that they do not cover the same time period 154

but the same number of values on average. Other applications 155

require fixing a particular time period to be covered by each 156

segment since this time period corresponds to the timescale 157

under investigation, e.g., a year for seasonal time series. Even 158

if such an approach is not motivated by the research ques- 159

tion, splitting the time series into segments that correspond 160

to nonequal time periods will result in mixing of timescales 161

in the resulting distance matrix if the sampling rate is highly 162

nonstationary. Here we focus on segments that cover equal 163

time periods but varying numbers of values, referred to as 164

segment size. We will show that in such cases, the resulting 165

strong variations in segment size entail a nontrivial sampling 166

bias of the (m)Editdistance. 167

We introduce the (m)Edit-distance methodology in 168

Sec. II A followed by a short summary of recurrence analy- 169

sis in Sec. II B. Section III illustrates the problem of strong 170

variations in the sampling rate whereas model time series 171

are studied to elucidate the sample size effects. A correction 172

scheme based on constrained randomization is proposed in 173

Sec. IV. In Sec. V we demonstrate the importance to correct 174

for the identified sample-size dependence in an application to 175

a palaeoclimate record from Niue island in the central Pacific 176

where we identify variations in seasonal predictability. We 177

conclude our findings in Sec. VI. 178
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II. METHODOLOGY179

A. The (m)Edit-distance measure180

Many approaches in nonlinear time series analysis are181

based on some notion of a (dis)similarity measure. For deter-182

ministic systems, embedding the univariate time series into an183

m-dimensional phase space offers a multitude of quantitative184

approaches to analyze the variability of its trajectory [36]. Yet185

appropriate techniques to extract the embedding dimension186

and delay from empirical data are needed. These approaches187

can be cumbersome. In this work we focus on univariate time188

series wherein the most widespread dissimilarity measure be-189

tween distinct segments Sa,Sb is the Euclidean distance. It is190

a metric distance, i.e., its value is always positive D(Sa,Sb) �191

0, it is symmetric D(Sa,Sb) = D(Sb,Sa), and the triangle192

inequality holds D(Sa,Sc) � D(Sa,Sb) + D(Sb,Sc). If the193

time series is characterized by missing values or the sam-194

pling interval �i is irregular (e.g., due to irregularities in195

the measurement process), no straightforward application of196

Euclidean distance or comparable metrics is possible: dissim-197

ilarity of values at unequal timescales would be computed198

without accounting for their nonequality. Linear interpolation199

as a means of resampling the time series values onto a regular200

time axis is among the most popular approaches to regularize201

sampling [37]. Yet hardly controllable artifacts arise from202

linear interpolation, ranging from difficulties related to altered203

absolute timing to underestimation of variance or overestima- 204

tion of persistence [11,38]. 205

Originally proposed for natural language processing, the 206

edit distance measure [39] is designed to compare sequences 207

of variable length. Shifting and adding and deleting of strings 208

were proposed as two elementary operations to quantify dis- 209

similarities between words, an objective also pursued by 210

other methods such as dynamic time warping [40]. The re- 211

sulting costs are calculated by identifying a minimum cost 212

path to transform one sequence into the other. Taking the 213

next step towards an application to empirical time series, the 214

edit distance was applied to point process data whereby cost 215

parameters for the elementary operations remained arbitrary 216

[22,41]. By equipping the technique with data-driven cost 217

parameter estimates, it was then applied to irregularly sam- 218

pled palaeoclimate time series [23]. A further modification 219

[(m)Edit distance] with an application to extreme events was 220

proposed to consider the saturation of shifting costs when a 221

certain timescale τ , separating the two compared segments, is 222

exceeded [25]. The main difference between applying the edit 223

distance to series of events and spike trains and irregularly 224

sampled time series is that for the latter, amplitudes of time 225

series values must be considered. In the following, whenever 226

no assumptions are made about the amplitudes of a signal, 227

we refer to “events.” The edit distance between two segments 228

Sa,Sb of an irregularly sampled time series is computed by 229

minimizing the transformation costs by 230

D(Sa,Sb) = min

⎧⎪⎨
⎪⎩

∑
α,β∈C

[
f�0 (t (α), t (β ); τ )︸ ︷︷ ︸

shifting

+�k‖La(α) − Lb(β )‖︸ ︷︷ ︸
amplitude change

]
+ �S(|I| + |J| − 2|C|)︸ ︷︷ ︸

adding and deleting

⎫⎪⎬
⎪⎭ (1)

with a norm ‖ · ‖ (e.g., the Euclidean norm), the αth and βth231

amplitudes La(α), Lb(β ) of the segments Sa,Sb, and the car-232

dinalities | · | of the sets I, J , and C. While the latter are a set of233

indices of the time series values, C denotes the values that are234

shifted. D(Sa,Sb) is a metric distance. The cost parameters235

�0,�k, and �S need to be fixed prior to cost optimization.236

We choose the cost parameter for amplitudes changes �k as237

suggested in [23]:238

�k = M − 1∑M−1
i=1 ‖xi − xi+1‖

. (2)

The cost parameter �S for deleting and adding has to be239

chosen such that deletions are neither “too cheap” nor “too ex-240

pensive.” For a set of time series values with a large temporal241

distance or very distinct amplitudes, a deletion and addition242

should be favorable, while a too low value of �S will result in243

a transformation of sequences solely by deletion and adding244

operations even for very close time series values. We follow245

the scheme proposed in [33] by assuming normality for the246

distance values between all segments of the time series and247

optimize �S within a specified range using a Kolmogorov-248

Smirnov (KS) test to ensure that the normality assumption249

holds as close as possible. Following the modification pro-250

posed in [25], costs associated with shifting of time instances251

between two time series values are controlled by the logistic252

function 253

f�0 (t (α), t (β ); τ ) = �0

1 + e−[‖ta (α)−tb(β )‖−τ ]
, (3)

where τ is the location parameter of the logistic function, re- 254

flecting a characteristic timescale that separates exponentially 255

increasing from saturating or bounded exponentially increas- 256

ing costs for shifting. We choose τ as the average sampling 257

interval of the time series; τ = T/M with the total time period 258

T and the number of samples M. Interpreting τ as a “temporal 259

tolerance,” this choice ensures that shifting exponentially fast 260

becomes less favorable if time instances are separated by 261

several standard deviations of the sampling interval distribu- 262

tion. Finally, a value for the maximum costs associated with 263

shifting �0 needs to be set. The ratio �K/�0 reflects the 264

relative importance of temporal and magnitudinal separation; 265

in the limiting case �K/�0 � 1, irregular sampling is no 266

longer accounted for and the resulting distance between two 267

segments solely reflects the norm ||La(α) − Lb(β )|| for all 268

amplitudes La(α), Lb(β ) of both segments Sa,Sb. In the op- 269

posite case �K/�0 � 1, the time series can be regarded as a 270

series of events since cost optimization is independent of their 271

amplitudes. We choose �K = �0 = 1. It must be stressed that 272

this rate depends on the research question and the data under 273

study. 274
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FIG. 1. Schematic illustration of how irregularly sampled segments of varying lengths are transformed with the (m)Edit-distance method.
Two exemplary pairs of segments Sa,Sb (a: red, blue) and Sc,Sd (b: green, orange) of an irregularly sampled synthetic AR(1)-time series are4
displayed. Each row shows an operation applied to the respective segment (shift: purple, deletion or adding: cyan). Final costs C and C̃ result
from a specific choice of cost parameters as described in Sec. II A. Note that the higher total cost in b showcases the dependence on segment
length.

In the following, we discuss the finite-sample effects bias275

(m)Edit-distance values D(Sa,Sb) and give a summary of the276

RP methodology. This facilitates the presentation of finite-277

sample effects discussed in Sec. III alongside an illustration278

of the (m)Edit-distance methodology (Fig. 1).279

B. Recurrence analysis280

The tendency to recur to previously visited states is a281

ubiquitous feature shared by time series from many different282

complex systems. Recurrence plots encode this information283

in a two-dimensional binary matrix, indicating a recurrence284

between two states �xi and �x j at times i and j if the re-285

spective states are similar with respect to a given norm286

D(�xi, �x j ) [42]:287

Ri j =
{

1 if D(�xi, �x j ) � ε

0 if D(�xi, �x j ) > ε.
(4)

The norm D(�xi, �x j ) yields a symmetric, real-valued distance288

matrix D between states at all time instances i, j. By thresh-289

olding D with the vicinity threshold ε, a notion of similar and290

dissimilar states is implemented and defines the recurrence291

between each pair of states. The underlying idea is based on292

the Poincaré recurrence theorem that states the recurrence of293

a dynamical system’s trajectory �x(t ) to an ε neighborhood of294

any perviously visited state after sufficiently long time [43].295

For the main diagonal of the RP, it always holds that Ri j ≡ 1.296

If no phase space reconstruction is applied, states �xi and �x j297

correspond to time series amplitudes xi and x j . The threshold298

ε can be chosen based on different data-dependent criteria. 299

In many applications, the recurrence rate is fixed to a certain 300

percentage (e.g., 10% recurrences [44]) or set to a multiple of 301

the standard deviation of the distance matrix D [45]. The ge- 302

ometric recurrence patterns encoded in a RP can be exploited 303

to distinguish between stochastic and deterministic systems 304

[26]; while a purely random white noise process will result 305

in isolated dots in the recurrence matrix, time series from 306

deterministic systems are known to yield diagonal line struc- 307

tures [26]. Long diagonal lines are characteristic for periodic 308

systems; interrupted diagonal lines indicate chaotic dynamics. 309

Recurrence quantification analysis (RQA), which evaluates 310

the statistical properties of a RP, has proven a versatile tool 311

for diverse real-world applications, such as time series clas- 312

sification [46], study of causal relations [47], or regime shift 313

detection [48]. 314

Recurrence analysis overcomes some of the flaws of other 315

statistical analysis tools when applied to geophysical time se- 316

ries, such as the Lyapunov exponent or correlation dimension 317

[49,50]. It is less sensitive to noise and can be applied to 318

short time series. In combination with the (m)Edit-distance 319

approach, first applications demonstrated its ability to detect 320

regime transitions in palaeoclimate proxy records [23,51]. In 321

order to compute a RP for irregularly sampled time series, 322

D(�xi, �x j ) in Eq. (4) is identified with the modified edit distance 323

from Eq. (1). In contrast to regular computation of metric 324

distances, segments of the time series are required to obtain 325

a distance value between two states. Generally speaking, seg- 326

ment size should be chosen sufficiently small to ensure that no 327
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aliasing effects arise due to interference between the segment328

width and the characteristic timescale of a time series (e.g.,329

characteristic period of a periodic time series). For some ap-330

plications the segments can be chosen such that all are equally331

sized |Sa| = |Sb| = · · · = N . If this is not possible, the vari-332

ance of segment widths can still be minimized and for each333

pair of segments with differing widths; deletion and adding334

operations will contribute to the resulting transformation cost.335

If time series are short, we can allow for an overlap between336

segments, although caution is advised since this introduces a337

serial dependence in the resulting edit distances of overlap-338

ping segments and violates the normality assumption used in339

the estimation of �S. Here we focus on the most general case340

of unequal segment sizes. Apart from cases where segment341

size deviations can hardly be minimized, this is relevant in342

some real-world applications where we are interested in the343

recurrences between segments that correspond to a particu-344

lar timescale, or where sampling rate is highly nonstationary345

and selecting a constant segment size would result in mixing346

of distinct timescales. The application to palaeoclimate data347

(Sec. V) will illustrate such a case. There the focus lies on the348

comparison of seasonal sequences in an irregularly sampled349

proxy time series.350

Predictability is a feature of time series that can help to351

identify and classify different dynamical regimes in the evolu-352

tion of the studied system. Since the lengths of diagonal lines353

in a RP reflect the predictability of a system, the number of354

diagonal lines which exceed a specified minimum line length355

lmin can be used as a predictability measure:356

DET =
∑N

l=lmin
P(l )∑N

l=1 P(l )
(5)

with the number P(l ) lines of length l . Determinism (DET)357

can be linked to the correlation dimension of a dynamical sys-358

tem [52] and has successfully been used in diverse empirical359

analyses [33,34,48] to detect transitions between regimes of360

varying predictability. We use DET as a recurrence quantifier361

to test the impact of the sampling-based correction scheme362

introduced below.363

III. SEGMENT SIZE DEPENDENCE364

Finite-sample effects are known to entail statistical biases365

in various time series analysis methods. Linear or spline in-366

terpolation is often employed as a preprocessing technique to367

enable the application of standard time series analysis tools368

to irregularly sampled time series. Interpolation techniques369

do not account for basic finite-sample biases. For instance,370

statistical location and scale measures (such as the median or371

volatility indicators) are known to be biased for small sample372

sizes [53,54]. Given two segments Sa,Sb with |Sa| � |Sb|,373

estimating their variance (e.g., as a volatility indicator or in374

order to compute a continuous wavelet spectrum) can result375

in underestimation of the variance for the shorter segment.376

Similarly, persistence estimators are generally biased due to377

finite-sample effects, even for Markovian stationary stochas-378

tic processes [55]. Whenever a sliding-window analysis for379

nonstationary, irregularly sampled time series is carried out,380

variations in the sampling rate will inevitably result in a381

mixture between the actual variability of the statistical indi- 382

cator and purely sampling-related variations. As interpolation 383

techniques are usually limited to resampling values such that 384

sampling intervals are equal, this effect is not compensated. 385

Similar intricacies need to be considered in short time series, 386

e.g., when computing correlations between multiple time se- 387

ries (of varying length) [56]. 388

While not designed to compensate such effects, the 389

(m)Edit-distance methodology does not introduce any known 390

additional biases. The computation of transformation costs is 391

demonstrated with two exemplary pairs of segments Sa,Sb 392

and Sc,Sd (Fig. 1). The segments Sa,Sb all display distinct 393

operations for transforming a segment into another: in the 394

first step, a shift of amplitude and time are applied to trans- 395

form the time instance ta(1) and amplitude La(1) of the first 396

segment into time instance tb(2) and amplitude Lb(2) of the 397

second segment. The cost C1 associated with this operation is 398

the sum of shifting both time and amplitude. After shifting 399

the third value of Sa to match the third value of Sb, both 400

a deletion and an adding operation are performed in step 3 401

with twice the cost �S for a adding and deleting operation. 402

The same transformation could have been achieved with an 403

additional shifting operation. The preferred operation is deter- 404

mined by the particular choice of cost parameters. As |Sa| = 3 405

and |Sb| = 4, the first value of Sb is added in step 4. The 406

resulting cost is the sum of all costs for each step. While 407

different transformation paths are possible, the algorithmic 408

implementation ensures that C is minimized with respect to 409

all possible combinations. Another example is displayed in the 410

right column of Fig. 1. The setup differs in that the indicated 411

segments Sc,Sd are longer than Sa,Sb (|Sc| = 8, |Sd | = 7). 412

Despite a similar set of transformations, the resulting costs C̃ 413

are significantly higher for the exemplary choice of parame- 414

ters. 415

A systematic derivation of transformation costs on segment 416

size or sampling rate for exponentially distributed sampling 417

intervals is given in Appendix A. Note that the identified 418

effect is not due to an immanent misconception in the edit 419

distance computation. It solely arises from the fact that the 420

edit distance is applied in a setting where the time axis is 421

not only irriations. in its sampling rate. In particular, abrupt 5422

transitions in the sampling rate between a time period T1 with 423

low sampling rate λ1 and T2 with high sampling rate λ2 will 424

imprint a nontrivial λ1, λ2-dependence on the transformation 425

cost D(SaSb) between any two segments. In a recurrence 426

analysis of time series, the focus lies on the similarity of states 427

based on the amplitudes of the time series. Hence, we argue 428

that the identified dependencies counteract the goal of recur- 429

rence analysis of irregularly sampled time series and thus need 430

to be corrected such that recurrence quantification measures 431

reflect the dynamical behavior of the underlying system rather 432

than mere shifts in the sampling rate. 433

We numerically examine the dependence of transformation 434

costs between segments Sa,Sb on their sizes Na, Nb for simple 435

synthetic time series. We test irregularly sampled time se- 436

ries from three different model systems: uncorrelated uniform 437

noise, an AR(1)-process (τ = 5), and a sinusoidal (ν = 1/25) 438

with superimposed low-amplitude white noise. Segments of 439

specified sizes from each of these systems are drawn to com- 440

pute segment size-specific costs. 441
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FIG. 2. Cost matrices C(Na, Nb) for the transformation of segments with different lengths, including basic deletions (a) and excluding basic
deletions (b). Costs are shown for uncorrelated uniform-distributed noise (left), an AR(1)-process (center), and a sinusoidal with superimposed
white noise (right). Sampling intervals are γ -distributed.

Irregular time axes are generated from a γ (�; k,�)-442

distribution with scale � and shape k = √
2/�, where �443

denotes the skewness of the distribution. This choice is444

motivated by the observation that sampling intervals in445

palaeoclimate proxy time series are often γ - rather than446

exponentially distributed. For each system, we generate a “su-447

perpopulation” (K = 100) of time series and time axes. Fixing448

a different skewness � of the γ -distribution of each of the time449

axes between � ∈ [1, 8] ensures that for T = 10 000, seg-450

ment sizes range between N ∈ [1, 20]. The (m)Edit-distance451

is used [Eq. (1)], and deletions are included as a competing452

operation to shifting. The optimal �S is estimated for each453

system according to the procedure outlined in Sec. II A: the454

KS statistic is minimized for each systems, yielding �
(unif )
S =455

1.5,�
(AR1)
S = 1.5,�

(sin)
S = 3.5.456

Figure 2(a) displays the obtained transformation costs in457

the cost matrices C(Na, Nb) and C̃shift (Na, Nb) after averaging458

over K = 100 different realizations. Regardless of the irregu-459

larity of the time axis and the respective system, a tendency460

of increasing total costs for larger segment sizes is observed461

(upper row). For the AR(1)-system, this increase is slower462

for fixed Nb and increasing Na composed to the uncorrelated463

noise and the sinusoidal examples. More generally, the rate of464

increase differs between the considered systems but follows465

the same trend. In total, |Na − Nb| “basic deletions” (or adding466

operations) need to be carried out for each pair of segments467

with Na 	= Nb. If costs for these basic deletions are subtracted 468

and computed per shifting step, a similar dependency on 469

Na, Nb as observed in Fig. 7(c) for the more simple case can 470

be observed in the cost matrices C̃shift (Na, Nb) in Fig. 2(b): the 471

cost of an average shift from a segment with N = Na increases 472

towards Nb = Na and decays if segment size increases further. 473

Consequently, the leading effect results from the basic dele- 474

tions that are directly linked to the difference in segment sizes 475

|Nb − Na|. Yet transformation costs still depend on segment 476

size even after aligning both segment sizes by means of basic 477

deletions; this effect likely results from having a higher prob- 478

ability of finding closely spaced values on the time axis as the 479

sampling rate of one segment increases, yielding an increasing 480

trend for average costs per operation [in Fig. 2]. 481

IV. SAMPLING RATE CONSTRAINED SURROGATES 482

Irregularly sampled time series with constant sampling 483

rate can be studied with the (m)Edit-distance to obtain dis- 484

similarity estimates between different time series segments. 485

The resulting distance matrix can be used to perform a re- 486

currence analysis. Moreover, other analysis techniques such 487

as complex networks, clustering, or correlation analysis are 488

based on (dis)similarity measures and could use the (m)Edit 489

distance as a metric to account for irregular sampling or to 490

characterize event-like data. In Sec. III we showed that in 491
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case of a nonconstant sampling rate, an estimation of the492

(m)Edit-distance matrix is biased by significant differences in493

the segment sizes.494

In the following, we propose a numerical correction tech-495

nique for recurrence analysis. We generate an ensemble of496

time series and time axis surrogates that reproduces the497

sampling properties of the real irregularly sampled time se-498

ries. This surrogate ensemble is used for bias correction of499

recurrence quantification measures, exemplified by the deter-500

minism DET.501

A. Constrained randomization502

When studying a system’s dynamics with time series anal-503

ysis tools, a null hypothesis is formulated which can be be504

tested. In case of recurrence analysis, this hypothesis could505

for example be nonstationarity of a dynamical property of506

the system (predictability, serial or cross-dependence, etc.)507

expressed by a particular recurrence quantification measure.508

In the used example, the null hypothesis tests whether the509

observed dynamics could be solely caused by variations in the510

sampling rate.511

Parametric hypothesis testing for time series analysis often512

poses severe constraints on the statistical properties of the513

underlying probability distribution, e.g., normality. Surrogate514

tests represent a nonparametric and flexible method to test for515

a range of properties in a system, including nonlinearity or516

periodicity, among others [57–59]. Time series surrogates are517

altered copies of a real, underlying time series that preserve518

only a specified set of properties of the real time series. The519

general technique to generate surrogate realizations of a time520

series is constrained randomization [60]. After defining a set521

of constraints that state which properties of the real time series522

should be preserved, the time series is randomized such that523

these constraints are still fulfilled. Here randomization will be524

carried out on the sampling interval �i with the constraint that525

for each segment Si of the real time series, segment size Ni526

is preserved. This is achieved by drawing sampling intervals527

�i (with replacement) from the empirical sampling interval528

distribution p(�,λ(t )). For a given segment Si with size Ni, Ni529

sampling intervals are drawn from p(�,λ(t )) and cumulated530

to generate a surrogate realization of the particular time axis531

segment:532

t̃ (0)
Si

= t (0)
Si

, t̃ ( j+1)
Si

= t̃ (0)
Si

+
j∑

m=0

�
(m)
i . (6)

Let w be the time period covered by each segment. For any533

randomly sampled set of sampling intervals, the constraint of534

preserved segment size requires that535

t̃ (Ni )
Si

!
� w, (7)

otherwise the random sampling of sampling intervals �i has536

to be repeated. If the distribution of segment sizes is short-537

tailed, i.e., no segments with size N � E[k] exist, this simple538

randomization procedure converges rapidly for each segment.539

If segments of relatively large size are present, which is likely540

the case for nonstationary sampling rates, only a small subset541

of sampling intervals from the left tail of p(�,λ(t )) will542

fulfill the condition (7). In order to ensure convergence of543

the algorithm for large segments, a weight function can be 544

introduced for all sampling intervals to increase the likelihood 545

of drawing short sampling intervals when a segment with large 546

size is generated. We suggest the use of β-distributed weights 547

ω: 548

ω(X ; α, β ) = 1

B(α, β )
xα−1(1 − x)β−1 (8)

with the β function B(α, β ). This choice is motivated by 549

the fact that for α = β = 1, ω(X ; α, β ) becomes a uniform 550

distribution. In our application, we choose α = β = 1 when 551

the first iteration of sampling Ni sampling intervals �i is 552

carried out. The population of sampling intervals is ordered 553

from shortest to largest and each xi ↔ �i is assigned a 554

β-distributed weight ωi, i.e., for the first iteration, every sam- 555

pling interval is drawn with equal probability. If the iteration 556

fails (t̃ (Ni )
Si

> w), α is increased by a small number �α, re- 557

shaping the beta distribution and increasing the probability 558

of drawing small sampling intervals. Thus, we perform a 559

weighted sampling from the empirical distribution p(�,λ(t )) 560

of sampling intervals with β-distributed weights. In the lth it- 561

eration, we use ω(X ; αl , β = 1), αl = 1 + l�α as the weight 562

function for each segment. Finally, we can identify an am- 563

plitude difference �yi of the time series with each sampling 564

interval �i. This correspondence is exploited by also drawing 565

the respective amplitude difference for each drawn sampling 566

interval. After the procedure is finalized and a surrogate has 567

been generated, amplitude differences are cumulated, and that 568

yields both a time axis and time series surrogate. Both are 569

denoted as sampling-rate-constrained (SRC) surrogates. The 570

full randomization procedure thus preserves segment sizes in 571

the correct temporal order and by definition approximately 572

reproduces the distribution of amplitude differences and sam- 573

pling intervals. 574

It also preserves the correspondence between sampling 575

intervals and amplitude differences, ensuring that if periods 576

with high local sampling rate entail larger variance or strong 577

amplitude changes in a real time series, this property is also 578

included in the SRC surrogates. The full procedure is outlined 579

in Fig. 3 for an exemplary time series. Other randomization 580

schemes are conceivable, e.g., varying the sampling weights 581

after drawing each single sampling interval based on the size 582

of the latter, or stratified randomization, i.e., performing the 583

randomization differently for strata that correspond to the 584

different segment sizes. However, the proposed scheme has 585

proven to be effective within the scope of this work. 586

With the presented scheme of generating SRC surrogates, 587

an ensemble of surrogates can be generated and (m)Edit- 588

distance matrices D computed for each SRC surrogate. Any 589

measure that is based on D can consequently be computed for 590

each surrogate separately, yielding a distribution that can be 591

used for testing the null hypothesis formulated above based 592

on the desired α-confidence level. 593

B. Recurrence analysis of an AR(1) process 594

In the example below, the proposed correction scheme is 595

applied to an irregularly sampled AR(1)-process [Fig. 5(a)].

6

596

We consider an autocorrelation increasing with time, visible 597

by autocorrelation time τ [Fig. 5(b)]. A recurrence analysis is 598
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FIG. 3. Schematic illustration of the constrained randomization procedure that generates SRC surrogates for an exemplary irregularly
sampled time series with nonstationary sampling rate. The left column shows the segmentation of the time series into segments of constant
time period s but of variable size Ni. The center column illustrates the weighted sampling of sampling intervals and amplitude differences. Each
sampling interval is assigned a β-distributed weight whereby the α parameter of the weight distribution is increased with each lth failed iteration
to favor short sampling intervals. The resulting surrogates preserve the empirical distributions and segment sizes. Since amplitude differences
are sampled jointly with the respective sampling intervals, increased volatility simply due to a higher local sampling rate is reproduced by the
SRC surrogates.

used to characterize the predictability of the time series in a599

sliding window analysis. Predictability is computed by means600

of determinism, DET, as defined in Eq. (5). In particular, we601

study how an abrupt shift of the sampling rate (represented by602

the skewness of γ -distributed sampling intervals) affects DET603

and if a continuous increase of predictability can be recov-604

ered despite this shift by using the proposed SRC-surrogate605

method. The shift appears at t = 1250 [visible by variation of606

the segment size; Fig. 5(b)].607

We expect DET to reproduce the linear increase in auto-608

correlation time, because increased serial dependence implies609

longer and more diagonal lines in the RP. For the computation610

of the (m)Edit-distance measure, segments are picked such611

that each covers a constant time interval of w = 1 which could612

correspond to a year in a real-world application. 200 SRC-613

surrogates are generated (see Appendix B) with α0 = 1, β =614

1 and a step size for the shape parameter α of the beta dis-615

tribution �α = 0.15. We set an upper limit of N (max)
it = 1000616

for the number of iterations in the generation of each segment617

which is never exceeded in the performed simulations. The618

deletion and adding cost parameter �S is estimated sepa-619

rately for the real time series and the surrogate realizations,620

yielding �
(real)
S = 5.3 and �

(SRC)
S = 2.6. Recurrence plots are621

computed on sliding windows of size s = 200� with 75%622

overlap (time series length: T = 5000). We fix a recurrence 623

rate of 15% and do not apply any time-delay embedding. 624

For each window, two DET values are obtained [Fig. 5(c)]: 625

the DET value of the real time series and the α(= 95%) 626

confidence level of DET values calculated from the SRC- 627

surrogate ensemble. The DET measure indicates a spurious 628

transition of predictability induced by the abrupt shift in sam- 629

pling rate [Fig. 5(c), gray shading]. Both the real time series 630

and the surrogate ensemble indicate this shift, demonstrating 631

that the proposed SRC-surrogates effectively reproduce the 632

sampling bias. The SRC-based correction is applied to DET 633

values by dividing the real DET-series by the 95% confidence 634

level for each window [Fig. 5(d)]. The resulting predictability 635

estimates reproduce the expected linear increase in serial de- 636

pendence while eliminating the spurious shift due to the jump 637

of the sampling rate. 638

V. REAL-WORLD APPLICATION: RAINFALL 639

SEASONALITY IN THE CENTRAL PACIFIC 640

Many real-world proxy time series are characterized by 641

irregular sampling or missing data and stationarity of the 642

underlying process that controls the sampling rate cannot be 643

guaranteed. This perspective even goes beyond uneven time 644
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FIG. 4. Application of SRC-surrogate correction method to7
(a) an irregularly sampled AR(1)-process with (b) nonstationary sam-
pling rate (blue) and linearly increasing autocorrelation time (red).
Gray shading indicates the abrupt shift in sampling rate. (c) A sliding
window RQA using determinism (DET) as a predictability measure
is carried out. Real DET values are displayed in dark blue, the 95%
confidence level computed from 200 SRC surrogates is shown in
yellow. (d) The ratio DETreal by DETsurr provides a sampling-bias
corrected predictability measure that reproduces the linear increase
in serial dependence.

axes as for some systems, it might be desirable to apply an645

adaptive windowing in order to obtain segments with seg-646

ment sizes depending on specific parameters of the system.647

For instance, when analyzing cardiac time series it might be648

reasonable to choose the segment size adaptively to capture649

one heart-beat cycle within each segment. The length of every650

cycle is controlled by a variety of other physical, nonstation-651

ary parameters. Below we focus on an irregularly sampled652

FIG. 5. Grayscale record (in black) extracted from a high-
resolution scan of the surface of the stalagmite C132 from Niue
island. Lower gray values are associated with dense microcrystalline
calcite layers that form during drier periods.

FIG. 6. Application of SRC-surrogate correction method to an
irregularly sampled grayscale proxy record from the central Pacific
(a) with nonstationary sampling rate (blue) (b). A sliding window
RQA using determinism (DET) as a predictability measure is car-
ried out (c). Real DET values are displayed in dark blue, the 95%
confidence level computed from 200 SRC surrogates is shown in
yellow. Dividing DETreal by DETsurr yields a sampling-bias cor-
rected predictability series (d) that indicate mid-Holocene variations
in seasonal-scale predictability. Gray shading indicates two periods
with low seasonal predictability.

palaeoclimate proxy time series with a nonstationary temporal 653

sampling rate. We demonstrate the effectiveness of the pro- 654

posed approach by carrying out a sliding window recurrence 655

analysis. 656

The palaeoclimate record analyzed here is a seasonally 657

resolved stalagmite proxy record from Niue island in the 658

southwestern Pacific (19◦S, 169◦W). It covers 1000 years 659

in the mid-Holocene [6.4–5.4 thousand years before present 660

(ka BP)]. Niue island has a tropical climate, receiving an 661

average of 2000 mm of precipitation annually with a pro- 662

nounced wet season from November to April. Rainfall is 663

most strongly controlled by seasonal displacement of the 664

South Pacific Convergence Zone but also reacts sensitively 665

to atmospheric circulation changes associated with the El 666

Niño-Southern Oscillation. Here we analyze seasonal rain- 667

fall variability on Niue recorded in grayscale changes that 668

arise from crystallographic variations caused by changes in 669

the stalagmite growth rate (Fig. 6). Grayscale values are ob- 670

tained from high-resolution scans of the stalagmite surface 671

along its growth axis subsequently extracted with ImageJ [61]. 672

During the dry season, low drip rates promote the deposi- 673

tion of layers with compact and dark crystals, yielding low 674
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Subcosts for adding or deleting (a–c) and shifting (d–i) operations for exponentially distributed sampling intervals. Only necessary
deleting or adding operations are regarded (“no competing operations”). The sampling rate dependence of deletion costs is given as difference
between expected number of samples per unit interval (left matrix and gray dashed line) and as expected costs given two rates λ1, λ2 [right
matrix and black line, Eq. (A10)]. Shifting costs are studied (b) numerically with respect to their dependence on the sampling rates λ1, λ2 and
(c) on the actual number of samples per unit interval Na, Nb. The left matrices shows shifting costs for the full transformation of segments, the
center matrices show shifting costs per operation. Exemplary columns are displayed in the line plots, whereas the red dashed line marks the
respective rate λ1 and segment size Nb.

grayscale values. In the wet season, the drip rates are higher,675

and crystal growth is enhanced as dissolved inorganic carbon676

is supplied to a greater extent (see Fig. 6). The inferred link677

between dark layers and dry season is supported by earlier678

studies [62,63].679

Prior to the recurrence analysis of the grayscale time series,680

we subtracted a centennial-scale trend using a Gaussian kernel681

filter in order to focus on the high-frequency variability in682

the record [Fig. 6(a), black line]. Next, we downsampled the683

time series uniformly by only storing every tenth value due684

to computational constraints. This downsampling does not685

alter the relative changes in the sampling rate [Fig. 6(b)]. The686

number of samples per year (i.e., the segment size) under-687

goes an abrupt shift at ≈ 6.15 ka BP. The period with the688

highest average segment size (≈ 6.4 to 6.15 ka BP) coin-689

cides with the wettest period covered by the record, indicated690

by high grayscale values. This suggests that during this wet691

period, stalagmite growth was enhanced which resulted in692

thicker crystal laminae and a higher number of samples per693

layer. This observation reflects the complex nature of irregular694

sampling of palaeoclimate-proxy data. If spatial sampling on695

the stalagmite is performed such that the number of sam-696

ples is as high as possible, it will inevitably be linked to697

its growth rate and thus to other environmental parameters 698

and their nonstationary characteristics. Finally, we perform 699

the recurrence analysis [Fig. 6(c)]. In order to characterize 700

seasonal features, the period covered by one segment is fixed 701

as one year. Optimization of deletion and adding costs yields 702

�s = 2. A window size of s = 200 years is chosen with 90% 703

overlap. A recurrence plot with fixed recurrence rate of 15% 704

is obtained for each window and analyzed with DET. DET 705

reveals variations in seasonal-scale predictability for the real 706

grayscale record [Fig. 6(c), blue line]. The effect of the vary- 707

ing sampling size is obtained by the 95% quantile of the 708

DET distribution from 200 SRC surrogates [Fig. 6(c), yellow 709

line]. Five exemplar SRC-surrogate realizations are shown in 710

Appendix B. Both DET time series indicate an increase of 711

seasonal-scale predictability during the wet period between 712

6.35 and 6.2 ka BP, potentially caused by the simultaneously 713

increased sampling rate. The predictability estimate is cor- 714

rected for the identified sampling bias by considering the ratio 715

DETr/DETsurr [Fig. 6(d)]. Two periods (6.4 and 6.2 ka BP, 716

and between 5.9 and 5.72 ka BP) show relatively low seg- 717

ment size-corrected seasonal predictability DETr/DETsurr<1. 718

While the latter is not significantly affected by the correc- 719

tion, the former can only be identified as less predictable 720
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FIG. 8. Zoomed section of synthetic AR(1)-time series (black) and five exemplar SRC-surrogate realizations (gray). The red dotted line
indicates the transition of the sampling rate towards more dense sampling. Sampling intervals are γ -distributed.

when the variations in sampling rate are taken into account.721

This result corroborates previous findings that suggested that722

both of these identified periods were more irregular, i.e.,723

showing less steady seasonal fluctuations [63]. However, it724

was not possible to characterize all subannual values as a725

proxy for subannual rainfall distribution rather extracting726

only the contrast between wet and dry season. The (m)Edit-727

distance approach employed here in combination with the728

proposed correction technique allows for a more reliable729

interpretation of mid-Holocene seasonal variations in the west730

Pacific.731

In particular, an enhanced control of the seasonal cycle732

by variability was found in [63] for the periods of reduced8 733

predictability (6.4 and 6.2 ka BP, and between 5.9 and 5.72734

ka BP). High tropical cyclone activity between 6.4–6.2 ka BP735

could have been triggered by increased ENSO activity, yield-736

ing a more irregular subannual distribution of rainfall. Our737

results indicate that not only contrast between both seasons738

is rendered less predictable during this period but also the739

seasonal rainfall distribution appears less stable from one year740

to another. Reconstructing past climate variability at seasonal741

scale plays a critical role in the context of human adaption to742

continuous and abrupt climate variations, and therefore our743

approach has direct relevance for teasing out the seasonal-744

scale signals.745

VI. CONCLUSION 746

The characterization of time series from complex nonlin- 747

ear systems is a challenging task. Irregular sampling, i.e., 748

variations in the sampling interval between consecutive val- 749

ues, additionally impedes typical research objectives such as 750

spectral analysis, persistence estimation or quantifying the 751

predictability of a system. Even though interpolation tech- 752

niques offer a seemingly efficient way of preprocessing a time 753

series to allow application of standard time series analysis 754

tools, these entail various biases which are difficult to control. 755

A different perspective is pursued by the (m)Edit-distance 756

method. Many analysis methods are based on an estimate of 757

(dis)similarity. With the (m)Edit distance, a suitable distance 758

measure between states of a system at different times i and j 759

is defined by computing the transformation cost of segments 760

centered at these time instances. First analyses demonstrated 761

its scope in the context of recurrence analysis, enabling re- 762

searchers to examine predictability variations of irregularly 763

sampled palaeoclimate time series. Applications to other com- 764

plex systems (also for time series with “missing values”) and 765

other methodological frameworks (e.g., complex networks, 766

clustering, correlation analysis, etc.) are possible and should 767

be attempted in the near future. 768

For some real-world systems, it is instructive to 769

quantitatively compare sequences corresponding to a specific 770

timescale in order to analyze the scale-specific variability. 771

In such cases, segment sizes will vary in the presence of 772
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FIG. 9. Zoomed section of grayscale anomaly time series (black) and five exemplar SRC-surrogate realizations (gray). The red dotted line
indicates the transition of the sampling rate towards more dense sampling.

irregular sampling. Furthermore, splitting time series with a773

nonstationary sampling rate into segments that do not cover774

the same time period will result in a mixing of timescales. We775

have shown that (m)Edit-distance-based recurrence analyses776

are affected by variations in segment sizes, resulting in a777

nontrivial sampling bias if episodes with variable sampling778

rate are included in a single RP. The (m)Edit distance regards779

pairs of longer segments to be generally more dissimilar than780

shorter segments due to higher deletion costs. Shifting costs781

conversely decrease for increasing segment size, resulting in a782

nontrivial dependence of costs on local sampling rates. When783

including amplitudes of a signal into the (m)Edit-distance784

computation, similar general tendencies were observed but the785

strength of the segment size dependencies varied for different786

systems. A more detailed examination of how dissimilar787

amplitude segments of different paradigmatic systems depend788

on their timescale will be investigated in a future study.789

We introduced a numerical technique based on constrained790

randomization to address and correct the issue of segment-791

size dependence in recurrence analysis. This method involves792

generating an ensemble of sampling rate constrained surrogate793

realizations (SRC surrogates). Each SRC surrogate repro-794

duces the real variations of sampling rate and its assignment795

to the corresponding amplitude differences, allowing the en-796

semble to be used for correcting the undesired segment size797

dependence. The effectiveness of the proposed correction was798

applied to a synthetic AR(1)-time series and real palaeo-proxy 799

data. In both applications, a recurrence analysis successfully 800

recovered variations in the scale-specific predictability of 801

the system while discarding spurious effects imprinted by 802

sampling rate variations. We found that seasonal-scale pre- 803

dictability varied significantly during the mid-Holocene in the 804

west Pacific, corroborating and extending the results from a 805

recent study. The reasons for these changes in predictability 806

warrant further investigation. 807

The identified sampling bias is a specific case of a more 808

general problem in time series analysis; sliding window anal- 809

yses (or the study of short time series) often suffer from finite- 810

sampling biases which may introduce artificial variability into 811

any statistical indicator that is computed. As pointed out in 812

Sec. V, finite-sampling biases are also not limited to irregular 813

temporal sampling but are likely to also occur in settings 814

where other parameter axes determine suitable window sizes 815

or adaptive windowing is required. In future, the proposed 816

method could also be applied in such settings to test its effec- 817

tiveness beyond the examples considered in this study. Python 818

code for the generation of SRC surrogates is available at [64]. 9819
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(Grant No. 118C236) and the BAGEP Award of the Sci-829

ence Academy. C.N.F. acknowledges financial support from830

the German Academic Exchange Service (DAAD). A.H. ac-831

knowledges support from the Royal Society of New Zealand832

(Grant No. RIS-UOW1501), and the Rutherford Discovery833

Fellowship program (Grant No. RDF-UOW1601). The au-834

thors declare that they have no conflict of interest.835

APPENDIX A: ANALYTICAL AND NUMERICAL836

SEGMENT SIZE RELATIONS837

In the following, we elaborate on the systematic de-838

pendence of the (m)Edit distance on segment lengths839

Na = |Sa|, Nb = |Sb| in the most simple application: we840

study events (i.e., no assumptions about the amplitude of841

the signal) which are unevenly spaced by exponentially dis-842

tributed sampling intervals � with a sampling rate λ:843

p(�,λ) = λe−λ�. (A1)

Consequently, the number of samples per unit interval k is844

Poisson distributed:845

ρ(k, λ) = λke−k

k!
(A2)

with λ being equivalent to the expected number of samples 846

per unit interval; E(X ) = λ. Furthermore, the nth time step is 847

Erlang distributed with the rate parameter λ: 848

f (t ; n, λ) = λntn−1e−λt

(n − 1)!
, (A3)

which is a general result for a sum of n independent expo- 849

nential random variables with equivalent rate parameters λ 850

[65]. 851

We are interested in the segment size dependence of dele- 852

tion (adding) and shifting costs for the edit distance. This can 853

be evaluated by considering M exponential random variables 854

where each is drawn from a distribution p(�,λm) with dis- 855

tinct λm, m = 1, 2, . . . , M. When applied, this setting can be 856

considered equivalent to a scenario where a time axis changes 857

its local sampling rate λm at M points and segments from 858

these should be compared via the edit distance. For a specific 859

pair of segments with sizes Na, Nb, the minimum deletion 860

cost (no deletions as competing to shifts included) for their 861

transformation is 862

Cdel(Na, Nb) = �S|Na − Nb|. (A4)

Consequently, for two segments of average sizes E[Na] = 863

λ1,E[Nb] = λ2 we obtain a minimum deletion cost of 864

Cdel(E(Na),E(Nb)) = �S|λ1 − λ2|. A cost matrix Cdel(λ1, λ2) 865

is exemplified in Fig. 7(a). The expected minimum deletion 866

cost for two randomly selected segments from time periods 867

with different rates λ1, λ2 can be computed by using the the 868

Skellam distribution 869

ρs(k = |z|; λ1, λ2) =
⎧⎨
⎩e−λ1−λ2

((
λ1
λ2

) k
2 Ik (2

√
λ1λ2) + (

λ2
λ1

) k
2 I−k (2

√
λ1λ2)

)
ifk > 0

e−λ1−λ2 I0(2
√

λ1λ2) ifk = 0
(A5)

for the difference Z = X − Y where X,Y are Poisson-870

distributed random variables with rates λ1, λ2, Eq. (A2). Ik (a)871

denotes the modified Bessel function of the first kind. For872

k > 0, the moment-generating function is consequently given873

by874

M(t ; λ1, λ2) = e−λ1−λ2

( ∞∑
k=0

etkIk (2
√

λ1λ2)

×
[

bigg(
λ1

λ2

k/2)
+

(
λ2

λ2

k/2)]
−I0(2

√
λ1λ2)

)
.

(A6)

With “Marcum’s Q”875

Q(
√

2λ1,
√

2λ2) = e−λ1−λ2

∞∑
k=0

(
λ1

λ2

) k
2

Ik (2
√

λ1λ2) (A7)

and its derivative876

d

dt
Q(

√
2λ1,

√
2λ2) = e−λ1et −λ2e−t [

λ2e−t I0(2
√

λ1λ2)

+
√

λ1λ2I1(2
√

λ1λ2)
]

(A8)

this can be written as 877

M(t ; λ1, λ2) = e−λ1−λ2
[
Q

(√
2λ2e−t ,

√
2λ1et

)
eλ1et +λ2e−t

Q

× (√
2λ1e−t ,

√
2λ2et

)
eλ2et +λ1e−t

I0(2
√

λ1λ2)
]
.

(A9)

Differentiating this moment-generating function [using 878

Eq. (A8)] around t = 0 with Leibniz rule yields the expected 879

value: 10880

E[k; λ1, λ2] = 2e−λ1−λ2
[
λ2I0(2

√
λ1λ2) +

√
λ1λ2I1(2

√
λ1λ2)

]
+ [(λ2 − λ1)(1 − 2Q(

√
2λ1,

√
2λ2))].

(A10)

Hence, E[Cdel(λ1, λ2)] = �SE[k; λ1, λ2] [Fig. 7(a), middle]. 881

In the right line plot of Fig. 7(a), two columns with λ1 fixed at 882

3.1 are shown to illustrate the scaling of deletion costs with the 883

rate λ more clearly. While Cdel(E(Na),E(Nb)) shows a sharp 884

minimum at the rate λ2 = λ1, E[k; λ1, λ2] decreases more 885

smoothly with increasing λ2, and increases afterwards. The 886

latter becomes minimal for a value λ < λ2 instead of λ = λ2 887

since Poisson distributions ρ(k, λ) are right-skewed, having 888

higher cumulated probability mass for all values k > λ. Note 889
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that all said above holds in the same way for adding opera-890

tions.891

For the analysis of shifting costs, we focus on the simple892

case of linear shifting costs893

f̃�0 (t (α), t (β )) = |t (α) − t (β )| (A11)

between the αth event in segment Sa and the βth event in894

segment Sb as proposed in the original, unmodified edit-895

distance measure. To exclude effects caused by absolute896

timing of events, timing of events within each segment is897

always transformed into the interval I = [0, 1]. The sum of898

all shifting costs for a pair of segments is denoted as dab =899

�0
∑

α,β f�0 (t (α), t (β )) with �0 = 1. Note that Na = Nb as900

|Na − Nb| deletions and additions have already been carried901

out. A closed-form solution for the shifting costs between902

two time instances drawn randomly from the distributions903

f (x; m1, λ1), f (y; m2, λ2) most likely exists, at least for the904

case m1 = m2 but its computation is beyond this study. We905

examine shifting costs for this case numerically, while we906

explicitly exclude any deletions as an alternative operation907

to shifting after the necessary |Na − Nb| deletions (“basic908

deletions”) [Fig. 7(b)]. We fix w = 1 as the unit interval909

(arbitrary units). The numerical estimate of the average cost910

for transforming a segment sampled with rate λ1 into a seg-911

ment sampled with rate λ2 is based on generating time axes912

for a fixed time period T = 10 000 (but varying number of913

events). Given a fixed combination of λ1, λ2, a total of K =914

10 000 segment pairs are randomly sampled (with replace-915

ment) from both corresponding time axes. The edit distance916

is computed for each pair of segments and averaged over all917

pairs to obtain a single value d (λ1, λ2) that is characteristic918

for the combination of rates λ1, λ2. This is shown as a cost919

matrix Cshift (λ1, λ2) of averaged total shifting costs between920

randomly drawn segments [Fig. 7(b), left]. The total number921

of shifts performed after deleting |Na − Nb| events generally922

differs for distinct pairs of segments Sa,Sb at fixed λ1, λ2.923

However, when averaged over all randomly drawn segment924

pairs, an increasing trend along the diagonals is observed.925

Furthermore, average total shifting costs d (λ1, λ2) increase 926

for fixed λ1 and increasing λ2 [Fig. 7(b), right] which is to 927

be expected as a higher number of shifts will entail higher 928

summed costs. On the other hand, no monotonous relation 929

between the average shifting costs per shifting operation 930

C̃shift (λ1, λ2) =
K∑

k=1

d (S (λ1 )
a,k ,S (λ2 )

b,k )

/
max{Na, Nb}, (A12)

and sampling rate is observed [Fig. 7(b), center and bold black 931

line on the right]. With increasing sampling rates, the cost of 932

an average single shifting operation decreases (diagonals of 933

the matrix). For fixed λ1, it is maximized at a value λ2 < λ1 934

for the same reason as above, i.e., the Erlang distribution being 935

right-skewed. 936

If we instead examine the dependence of shifting costs 937

on the actual segment size C̃shift (Na, Nb) rather than the rates 938

[Fig. 7(c)], a sharp maximum at Nb = λ1 is found (black 939

line, right plot). Total shifting costs increase for Nb < λ1 and 940

continue to increase more slowly for Nb > λ1. For fixed Na, 941

an increasing number Nb of events per unit interval increases 942

the likelihood that some events are placed close to the events 943

in segment Sa, resulting in lower distances dab(Na, Nb). 944

APPENDIX B: SAMPLING RATE-CONSTRAINED 945

SURROGATES 946

The proposed sampling-rate correction approach involves a 947

constrained randomization procedure, in which sampling rate- 948

constrained surrogates (SRC surrogates) are generated. To il- 949

lustrate the resulting time series, we show five SRC-surrogate 950

realizations of the irregularly sampled AR(1)-process from 951

Sec. IV B in Fig. 8. The transition in sampling rate (dotted red 952

line) is well visible from the different surrogate realizations. 953

We can also identify the rapid increase in sampling rate for 954

the grayscale proxy time series in the real-world example from 955

Sec. V (Fig. 9). Visually, it is expressed as an increase of vari- 956

ance which is reproduced by the SRC-surrogate realizations. 957
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