Material Removal Optimization Strategy of 3D Block Cutting Based on Geometric Computation Method

Shao, Hui, Liu, Qimeng and Gao, Zhiwei (2022) Material Removal Optimization Strategy of 3D Block Cutting Based on Geometric Computation Method. Processes, 10 (4). p. 695. ISSN 2227-9717

 Preview
Text
processes-10-00695.pdf - Published Version

Official URL: https://doi.org/10.3390/pr10040695

Abstract

During the material removal stage in stone rough processing, milling type has been widely explored, which, however, may cause time and material consumption, as well as substantial stress for the environment. To improve the material removal rate and waste reuse rate in the rough processing stage for three-dimensional stone products with a special shape, in this paper, circular saw disc cutting is explored to cut a convex polyhedron out of a blank box, which approaches a target product. Unlike milling optimization, this problem cannot be well solved by mathematical methods, which have to be solved by geometrical methods instead. An automatic block cutting strategy is proposed intuitively by considering a series of geometrical optimization approaches for the first time. To obtain a big removal block, constructing cutting planes based on convex vertices is uniquely proposed. Specifically, the removal vertices (the maximum thickness of material removal) are searched based on the octree algorithm, and the cutting plane is constructed based on this thickness to guarantee a relatively big removal block. Moreover, to minimize the cutting time, the geometrical characteristics of the intersecting convex polygon of the cutting plane with the convex polyhedron are analyzed, accompanied by the constraints of the guillotine cutting mode. The optimization algorithm determining the cutting path is presented with a feed direction accompanied by the shortest cutting stroke, which confirms the shortest cutting time. From the big removal block and shortest cutting time, the suboptimal solution of the average material removal rate (the ratio of material removal volume to cutting time) is generated. Finally, the simulation is carried out on a blank box to approach a bounding sphere both on MATLAB and the Vericut platform. In this case study, for the removal of 85% of material with 19 cuts, the proposed cutting strategy achieves five times higher the average material removal rate than that of one higher milling capacity case.

Item Type: Article Funding information: The authors would like to acknowledge the research support from the Natural Science Foundation of Fujian Province, China, grant number 2021J01291; the Science and Technology Planning Project of Quanzhou City, Fujian Province, China, grant number 2017T001; the research support from Northumbria University, UK. block cutting, data reconstruction, convex polyhedron (CPH), convex polygon (CPG), path optimization, average material removal rate (AMRR) H600 Electronic and Electrical EngineeringH900 Others in Engineering Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering Rachel Branson 04 Apr 2022 09:55 04 Apr 2022 10:00 http://nrl.northumbria.ac.uk/id/eprint/48802