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Abstract. The vegetation’s response to climate change is
a significant source of uncertainty in future terrestrial bio-
sphere model projections. Constraining climate–carbon cy-
cle feedbacks requires improving our understanding of both
the immediate and long-term plant physiological responses
to climate. In particular, the timescales and strength of mem-
ory effects arising from both extreme events (i.e. droughts
and heatwaves) and structural lags in the systems (such as
delays between rainfall and peak plant water content or be-
tween a precipitation deficit and down-regulation of produc-
tivity) have largely been overlooked in the development of
terrestrial biosphere models. This is despite the knowledge
that plant responses to climatic drivers occur across multiple
timescales (seconds to decades), with the impact of climate
extremes resonating for many years.

Using data from 12 eddy covariance sites, covering two
rainfall gradients (256 to 1491 mm yr−1) in Australia, in
combination with a hierarchical Bayesian model, we char-
acterised the timescales and magnitude of influence of an-
tecedent drivers on daily net ecosystem exchange (NEE) and
latent heat flux (λE). By focussing our analysis on a sin-
gle continent (and predominately on a single genus), we re-
duced the degrees of variation between each site, provid-
ing a novel chance to explore the unique characteristics that

might drive the importance of memory. Model fit varied con-
siderably across sites when modelling NEE, with R2 values
of between 0.30 and 0.83. λE was considerably more pre-
dictable across sites, with R2 values ranging from 0.56 to
0.93. When considered at a continental scale, both fluxes
were more predictable when memory effects (expressed as
lagged climate predictors) were included in the model. These
memory effects accounted for an average of 17 % of the
NEE predictability and 15 % for λE. Consistent with prior
studies, the importance of environmental memory in pre-
dicting fluxes increased as site water availability declined
(ρ =−0.73, p < 0.01 for NEE, ρ =−0.67, p < 0.05 for
λE). However, these relationships did not necessarily hold
when sites were grouped by vegetation type. We also tested
a model of k-means clustering plus regression to confirm the
suitability of the Bayesian model for modelling these sites.
The k-means approach performed similarly to the Bayesian
model in terms of model fit, demonstrating the robustness
of the Bayesian framework for exploring the role of en-
vironmental memory. Our results underline the importance
of capturing memory effects in models used to project fu-
ture responses to climate change, especially in water-limited
ecosystems. Finally, we demonstrate a considerable variation
in individual-site predictability, driven to a notable degree by
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environmental memory, and this should be considered when
evaluating model performance across ecosystems.

1 Introduction

Ecosystems respond to climate at a wide range of timescales:
stomata respond to changes in humidity within seconds (Fan-
jul and Jones, 1982), while extreme droughts can impact
plant growth for up to 5 or more years after the event (An-
deregg et al., 2015; Vanoni et al., 2016). There is grow-
ing interest in better understanding these timescales over
which vegetation responds to environmental conditions, par-
ticularly when considering the projected rate of future cli-
mate change and threats this poses to ecosystem stability
(Mottl et al., 2021). An increasing number of studies have
demonstrated the importance of past events such as fires (Sun
et al., 2020), land management (Seabloom et al., 2020), and
droughts (Anderegg et al., 2015; Kannenberg et al., 2020) on
current ecosystem behaviour, in many cases, over time spans
of years.

It is important to differentiate between what shall be re-
ferred to as “legacy” and “lag” effects. The ongoing impacts
of climate extremes are an example of the former – they leave
a persistent yet diminishing “legacy” from their single oc-
currence. A “lagged” effect differs in that it is an ongoing,
constant delay in reaction to current conditions. The differ-
ing response times of vegetation to stimuli mean that lags
exist associated with climate and the exchange of heat, en-
ergy, and carbon fluxes between ecosystems and the atmo-
sphere. For instance, current grassland soil respiration can be
strongly influenced by antecedent moisture from the prior 2
weeks, with the importance of longer lags decreasing sharply
despite cumulative lag effects showing for up to 6 weeks (Ca-
ble et al., 2013). These response timescales are affected by
ecosystem characteristics, such as vegetation structure. Ca-
ble et al. (2013) also found that, relative to grasslands, shrub-
lands had a much longer cumulative lag effect in soil respi-
ration of up to 10 weeks, with the first 4 weeks being most
important.

The timescale of responses also differs among ecosystem
processes. Feldman et al. (2021) found a lag of 5 d between
a pulse of rainfall and peak plant water content in semi-arid
grasslands, which in turn is likely to affect plant water sta-
tus and hence carbon uptake. In arid and semi-arid ecosys-
tems, soil respiration can respond immediately to a rainfall
pulse and remain elevated for up to 2 d, while net ecosys-
tem exchange (NEE) rates have a lagged response of up to
a week (Huxman et al., 2004; Cleverly et al., 2013). Clev-
erly et al. (2016) found a variety of lags for phenological
and photosynthetic responses in central Australia, ranging
from immediate to 6 weeks. Antecedent climate is yet an-
other factor that influences ecosystem response timescales.
Repeated droughts in one growing season can negatively af-

fect a plant’s investment in biomass in comparison to a single
event (Lemoine et al., 2018). In semi-arid and arid regions,
NDVI (normalised difference vegetation index, a measure of
vegetation greenness) responds to precipitation with lags of
up to 7 months, while less arid areas tend to have shorter
response times (Liu et al., 2018). From a study over the en-
tire state of Kansas, Wang et al. (2003) found shorter lags
between NDVI and precipitation, with the strongest corre-
lation being at a 4-week lag. In fact, antecedent conditions
could even be more important than concurrent conditions
when measuring ecosystem productivity (Sala et al., 2012).
Clearly, there is a diverse range of lagged responses to cli-
mate found within terrestrial ecosystems. Confounding fac-
tors, such as differing vegetation characteristics (including
the proportion of woody vegetation, rooting depth, and vary-
ing allocation strategies), prevailing climate, interacting pro-
cesses, and prior extreme events, all influence the magnitude
and timescale of these lags and their impact on ecosystem
fluxes.

Despite increasing attention on the impact of these lags
within ecosystems, they are poorly captured within terres-
trial biosphere models (TBMs) (Anderegg et al., 2015; Frank
et al., 2015; Ogle and Barber, 2016; Kannenberg et al., 2020).
For example, TBMs usually have an instantaneous coupling
between photosynthetic uptake and growth in plants, while
in reality carbon is first allocated to non-structural carbohy-
drates, allowing it to sustain growth and respiratory demands
during periods of lower photosynthetic activity (Fatichi et al.,
2014; Smith and Dukes, 2013; Jones et al., 2020). Anderegg
et al. (2015) similarly found that earth system models are
generally weak at predicting the impact of droughts on pro-
ductivity during the drought recovery period. Models gen-
erally overestimate the immediate impact and underestimate
the recovery times for extreme events (Kolus et al., 2019;
Huang et al., 2016; Ukkola et al., 2016a). Recent satellite
observations have also indicated that models fail to capture
the impact of water stored in reservoirs with longer response
times to climate (such as deeper soil moisture, groundwa-
ter, and surface water), resulting in models being more dom-
inated by anomalies at shorter timescales than observations
(Humphrey et al., 2018). Such model failures may in part be
due to incorrect rooting depths, poor soil profile characteri-
sation, or a lack of representation of these long-term storage
pools such as groundwater or wetlands. Implementing these
“lagged effects” into the models used to predict the carbon
cycle is key to improving their performance (Keenan et al.,
2012).

To better incorporate the role of lags in model process rep-
resentations, we first need to determine which physical pro-
cesses are affected and then quantify the timescales at which
lags persist. Frequently, autoregressive methods are used in
studies looking at specific pre-determined timescales, such
as the current year’s productivity and/or the previous year’s
rainfall and productivity (Sala et al., 2012) or the prior 6
months of climate (Zhang et al., 2015). Many studies have
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however indicated that intra-annual rainfall patterns are more
important to productivity than total annual rainfall (Hoven-
den et al., 2014, 2018). Overcoming these subjective con-
straints and still providing freedom to explore sensitivity to
shorter (sub-yearly) lags seems key to revealing any unex-
pected behaviour and detailing the full extent of memory
effects, including any potential interaction between climate
drivers.

To address this issue of strictly prescribed lags, new sta-
tistical approaches have been developed that allow for more
flexible estimation of timescales of influences and magni-
tudes of lag effects (Ogle et al., 2015). Such methods have
identified a key role of memory effects in many ecosystem
processes, including soil and ecosystem respiration (Ryan
et al., 2015; Cable et al., 2013; Barron-Gafford et al., 2014)
and gross primary production (Ryan et al., 2017). NEE and
latent heat flux (λE) have also been shown to be influenced
by these memory effects (Samuels-Crow et al., 2020), which
are often stronger at drier sites (Liu et al., 2019).

Here we use the stochastic antecedent modelling (SAM)
framework of Liu et al. (2019) to probe lagged flux responses
in individual ecosystems across two environmental gradients
in Australia. We explore whether a relationship between site
aridity and importance of antecedent conditions holds when
viewed at a smaller spatial scale or whether such a relation-
ship is confounded by other site characteristics, such as veg-
etation structure or extreme weather conditions. By focusing
on a number of intensively studied sites within a single conti-
nent and examining the relative contributions of various pre-
dictors in each environment, we aim to reduce these potential
confounding factors. We include the sites of the North Aus-
tralian Tropical Transect (NATT) as an explicit case study
since this “living laboratory” covers a steep rainfall gradi-
ent without a correspondingly strong change in vegetation
(Hutley et al., 2011). By applying the SAM framework to
λE in addition to NEE, we explore how the timescales of
response vary between these coupled fluxes, which can im-
prove our understanding of the processes involved in envi-
ronmental memory. Our second aim is to explore whether
assessing the importance of environmental memory at a site
can offer insights into TBM evaluation. If sites are more pre-
dictable or have a greater dependence on antecedent condi-
tions (and therefore are traditionally less predictable), this
should be taken into account when critically analysing TBM
performance across sites. Finally, we examine an alternative
statistical approach for antecedent modelling to test whether
structural assumptions in the SAM framework notably affect
inferences about environmental lags. In addition to highlight-
ing sites with more complex lagged environmental behaviour
(a tougher test for TBMs), explicit identification of individual
lagged site mechanisms can highlight key processes missing
from TBMs more broadly.

2 Methods

2.1 Datasets

2.1.1 Flux data

Meteorological and flux data were taken from the OzFlux
data repository for 12 eddy covariance towers (see Table 1
for site details). The sites were selected to cover a variety
of vegetation types and fall into two overarching groups.
Firstly, sites comprising the North Australia Tropical Tran-
sect (NATT) were included. These vary from tropical grass-
lands to semi-arid shrublands and savannahs (International
Geosphere–Biosphere Programme – IGBP – classifications
of grassland, savannah, and woody savannah) along a steep
rainfall gradient (321 to 1486 mm annual precipitation) run-
ning from north to south in the Northern Territory, Australia.
Secondly, we grouped the southern Australian woodland
sites (SAWSs). These were selected as sites with a greater
proportion of woody vegetation than the NATT sites (IGBP
classifications of savannah, woody savannah, and evergreen
broadleaf forest) while still covering a broad range of climate
types (256 to 1491 mm annual precipitation). While the veg-
etation differences between the groups are less distinguished
at the drier sites, the NATT sites are considered “savannah”
sites, and the SAWS sites are referred to as “woodland” sites.

In this analysis we used observations of daily NEE and
λE fluxes. NEE is a direct measurement of carbon exchange
which represents the balance of carbon uptake and losses
and is favoured over flux-derived gross primary productivity
due to issues with respiration partitioning (Renchon et al.,
2021). λE measures all evaporation, including contributions
from soil and vegetation. Although carbon (uptake) and wa-
ter fluxes are non-linearly coupled (De Kauwe et al., 2015a),
NEE and λE are expected to exhibit a degree of indepen-
dence in their responses to environmental conditions (in-
cluding differing timescales) since they contain contributions
from different components of the system (e.g. soil or under-
storey vs. canopy).

The fluxes were modelled using meteorological observa-
tions, which included mean downward short-wave radiation,
mean air temperature, mean vapour pressure deficit (VPD),
and precipitation. All OzFlux data were extracted at a half-
hourly time step, aggregated to daily data, screened to only
include complete calendar years, and then mean-centred.
Sites were also screened to ensure that at least 5 years of
good-quality data were available, which excluded five sites
that have previously been included in the NATT (Adelaide
River, Daly River Pasture, Fogg Dam, Litchfield, and Ti Tree
East). Details on the data processing and quality control of
OzFlux data can be found in Isaac et al. (2017). Here, we
used the L6 data, which are quality-checked and gap-filled.

Normalised difference vegetation index (NDVI), a proxy
for vegetation greenness, was obtained for each site from
the global MODIS daily albedo data product at a 500 m res-
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Table 1. Site information for all sites included in the analysis. MAP is the mean annual precipitation at the site. CVP is the coefficient of
variation in precipitation. WI is a wetness index of MAP over mean annual reference evapotranspiration. MAP, CVP, and WI are calculated
from the WorldClim dataset, which covers 1970–2000 (Fick and Hijmans, 2017; Trabucco and Zomer, 2018). “Years analysed” corresponds
to the full years of data available for analysis, inclusive. “World ecoregion” is the biome classification of each site, which is based on climatic
regime and ecological structure, among other criteria (Olson et al., 2001; Beringer et al., 2016). Asterisks indicate sites that are part of the
NATT. Litchfield was initially included in the analysis but was discarded due to the short time series available. All other sites are grouped as
the SAWS. Data were obtained from the OzFlux Data Portal (http://data.ozflux.org.au, last access: 21 September 2020).

Site Name Site code MAP (mm) CVP (%) WI Years analysed World ecoregion Reference

Alice
Springs Mulga*

AU-ASM 321 61 0.12 2011–2018 Deserts and xeric
shrublands

Cleverly et al.
(2015)

Calperum AU-Cpr 256 17 0.12 2011–2019 Mediterranean
woodlands

Meyer et al.
(2013)

Cumberland
Plains

AU-Cum 902 34 0.52 2013–2019 Temperate
woodlands

Pendall et al.
(2019)

Daly River
Uncleared*

AU-DaS 1130 107 0.48 2008–2018 Tropical savannas Beringer et al.
(2015a)

Dry River* AU-Dry 842 112 0.34 2009–2019 Tropical savannas Beringer et al.
(2015b)

Gingin AU-Gin 696 83 0.33 2012–2019 Mediterranean
woodlands

Silberstein et
al. (2015)

Great Western
Woodlands

AU-GWW 273 30 0.11 2013–2019 Mediterranean
woodlands

Macfarlane et
al. (2013)

Howard Springs* AU-How 1486 104 0.75 2002–2019 Tropical savannas Beringer et al.
(2015c)

Sturt Plains* AU-Stp 573 107 0.23 2009–2019 Tropical grasslands Beringer et al.
(2015d)

Tumbarumba AU-Tum 1491 32 1.20 2002–2018 Temperate broadleaf
and mixed forest

Stoll and
Kitchen (2013)

Whroo AU-Whr 577 20 0.36 2012–2018 Temperate woodland Beringer et al.
(2017)

Wombat AU-Wom 1069 33 0.84 2011–2019 Temperate broadleaf
forest

Arndt et al.
(2013)

olution via the Google Earth Engine interface (Schaaf and
Wang, 2015; Gorelick et al., 2017). This dataset is calculated
at a daily time step based on a 16 d composite of observa-
tions. This is used in the Bayesian model as a measure of
whether the sites were in a “growing” (higher greenness) or
“dormant” (lower greenness) state (see below).

General site characteristics including the mean annual pre-
cipitation (MAP) and the coefficient of variation in precipita-
tion (CVP) were obtained from the WorldClim dataset (Fick
and Hijmans, 2017), while the wetness index (WI) was calcu-
lated from these data as MAP divided by mean annual poten-
tial evapotranspiration (Trabucco and Zomer, 2018; Zomer
et al., 2007, 2008). This WI assumes that lower values indi-
cate more water-limited locations, while higher values are lo-
cations with a greater proportion of precipitation to potential
evaporation. These data were used in preference to meteoro-

logical data from individual sites as they cover a significantly
long time period.

2.2 Analysis

2.2.1 Statistical analysis of memory and lags

Following previous work by Liu et al. (2019) in the applica-
tion of the SAM framework, we separately model NEE and
λE using a non-linear mixed-effect Bayesian model at each
site. The same formulation was used to model both fluxes
at the 12 sites, and so the following description of the NEE
model is also applicable to λE modelling.

While the exact distribution of flux errors is site-dependent
and can vary between superimposed Gaussian distributions
(Lasslop et al., 2008) or Student’s t distribution (Weber
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et al., 2018), daily NEE is assumed to be Laplace-distributed
(Richardson et al., 2006) with mean µNEE and variance σ 2

in line with Liu et al. (2019); µNEE at time t is modelled as
per Eq. (1).

µNEE(t)=
16∑
n=1

([
φ(t)×Gn+

(
1−φ(t)

)
×Dn

]
×CLIMATEn(t)

)
(1)

Gn and Dn represent two sets of coefficients, correspond-
ing to “growing” and “dormant” behaviours, respectively.
These two behaviours are a function of NDVI, which we used
to capture a site’s growing seasons. Growing season differ-
ences were accounted for in our statistical modelling because
at many of the sites growth is restricted by water availability
(e.g. following rain), which in Australia is not strictly related
to a specific growth period during the year; φ(t) is a function
that partitions between these two behaviours based on NDVI
such that Dn is 1, and Gn is 0 at minimum NDVI and vice
versa at maximum NDVI:

φ(t)=
[
1−φ∗+φ∗×NDVI(t)

]
×NDVI(t). (2)

A uniform prior on the interval [−1, 1] is assigned to φ∗.
This ensures that φ(t) increases monotonically with increas-
ing NDVI. The φ∗ value modifies this function, allowing ei-
ther a one-to-one linear relationship (when φ∗ is equal to 0)
or varying non-linear relationships. In this manner, the pro-
portion of time steps assigned to predominately “growing”
or “dormant” behaviour (when φ(t) takes a value greater
than 0.5 or less than 0.5, respectively) is modified during the
model fitting.

CLIMATEn(t) is a weighted sum of daily climate mea-
surements with various lags, where n indicates various vari-
ables as follows. When n= 1, CLIMATEn(t)= 1 at all time
steps t and is therefore an intercept term. Where n= 2, 3,
4, or 5, CLIMATEn(t) represents the contribution of each of
the short-term climate predictors (e.g. short-wave radiation,
air temperature); n= 6, . . . , 9 are the quadratic interactions
of these predictors, and n= 10, . . . ,15 are the remaining pair-
wise interactions; n= 16 is the contribution of long-term
precipitation. Equation (3) is the generic form for a short-
term climate predictor, where ωCLIMn

lag represents the weights
assigned to the lagged climate observations CLIMn(t − lag).
The CLIMATEn(t) terms for each n are summarised in Ta-
ble 2.

Long-term precipitation (mean rainfall calculated over
varying periods, up to 365 d prior; Table 3) is included as it is
possible for the vegetation at these sites to be drawing on wa-
ter reservoirs from deeper within the soil profile than would
be recharged by short-term precipitation. This is especially
true for the monsoonal sites along the NATT which experi-
ence prolonged dry seasons. In comparison, radiation, tem-
perature, and VPD are assumed not to influence the fluxes at

time spans longer than 14 d and so are restricted to the shorter
timescale (Ryan et al., 2017).

CLIMATEn(t)=
13∑

lag=0

[
ω

CLIMn

lag ×CLIMn(t − lag)
]

(3)

Each CLIMATEn(t) term has a unique set of weights,
which were assigned a Dirichlet prior. This ensures that each
individual weight is constrained between 0 and 1, and the
sum of the weights within each CLIMATEn(t) term is equal
to 1. As such, each weight is indicative of the relative impor-
tance of the specific climate variable at the corresponding lag
period.

To reduce the number of parameters estimated in the
model, the lagged time steps in the short-term CLIMATEn(t)
sums were grouped into blocks, with each lag in a block as-
signed the same weight, as shown in Table 3. For instance,
the same weight is assigned to observations from 7 and 8 d
prior. The decreasing resolution further into the past is due
to the expectation that the importance of the driving variable
on consecutive days becomes increasingly difficult to distin-
guish as the lag time increases. This reduction in the number
of individual weights being estimated improves the model
computation time and convergence.

Significant changes between Liu et al. (2019) and our
model include the removal of soil moisture, the introduction
of shorter precipitation lags (< 14 d), and min–max normali-
sation of NDVI on a per-site basis. We excluded soil moisture
from our analysis due to inconsistencies in the data record
at some sites as well as varying measurement depths across
sites. Additionally, the soil moisture data are typically col-
lected from relatively shallow depths of the soil profile and,
as such, may not accurately reflect the root zone soil mois-
ture in woody ecosystems. For instance, Eucalyptus species
are known to have dimorphic rooting profiles with deep tap
roots able to access water from below the shallow root zone
(Knight, 1999). To account for short-term impacts of wa-
ter availability following the removal of soil moisture, pre-
cipitation lags at the shorter timescales were introduced. Fi-
nally, NDVI is normalised to vary from 0 at minimum NDVI
to 1 at maximum observed NDVI at each site for two rea-
sons. Firstly, this ensures that each site spans the full range
of φ values between “growing” (1) and “dormant” (0) peri-
ods. The similarity between the individualGn andDn coeffi-
cients was then able to indicate any differences between these
two behaviours. Secondly, it was hypothesised that totally
excluding coefficients of one behaviour at minimum NDVI
(and the other at maximum NDVI) would improve conver-
gence towards well-defined parameter values during model
fitting.

The Bayesian model was implemented in JAGS via R,
using the r2jags package and Markov chain Monte Carlo
(MCMC) simulations (Plummer, 2003; R Core Team, 2020;
Su and Yajima, 2020). Convergence of the MCMC chains
was confirmed visually with trace plots and analytically with
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Table 2. Formulas for the CLIMATEn(t) term in the model for µNEE(t) for each n. TAS is mean air temperature, SWR is incoming short-
wave radiation, VPD is vapour pressure deficit, and PPT is rainfall. The lag term in the sums is in days; i.e. at lag = 3, TAS(t−lag) is the
mean air temperature from 3 d prior. Note that the lags in PPTlong

ant are larger periods than the daily lags for the short-term predictors, and
PPT is here taken as the mean daily rainfall in these lagged periods; ωCLIM

lag is the weight assigned to each lag period and is different for each
of the five climate variables.

Climate predictor Formulation
(n) (CLIMATEn(t))

Intercept term 1 = 1

Short-term predictors

2
= TASant(t)

=
∑13

lag=0

[
ωTAS

lag ×TAS(t − lag)
]

3
= SWRant(t)

=
∑13

lag=0

[
ωSWR

lag ×SWR(t − lag)
]

4
= VPDant(t)

=
∑13

lag=0

[
ωVPD

lag ×VPD(t − lag)
]

5
= PPTshort

ant (t)

=
∑13

lag=0

[
ωPPTshort

lag ×PPT(t − lag)
]

Quadratic terms

6 = TASant(t)×TASant(t)

7 = SWRant(t)×SWRant(t)

8 = VPDant(t)×VPDant(t)

9 = PPTshort
ant (t)×PPTshort

ant (t)

Pairwise interactions

10 = TASant(t)×SWRant(t)

11 = TASant(t)×VPDant(t)

12 = TASant(t)×PPTshort
ant (t)

13 = SWRant(t)×VPDant(t)

14 = SWRant(t)×PPTshort
ant (t)

15 = VPDant(t)×PPTshort
ant (t)

Long-term predictor 16
= PPTlong

ant (t)

=
∑365

lag=13

[
ωPPTlong

lag ×PPT(t − lag)
]

the Gelman–Rubin and Geweke diagnostic values as calcu-
lated with the coda package (Plummer et al., 2006). The
MCMC iterations were set high enough to minimise the num-
ber of parameters with an “effective sample size” of less than
10 000, which ensured the parameters’ posterior distributions
were sufficiently sampled (Kruschke, 2015; Harms and Roe-
broeck, 2018).

Once converged, model performance was assessed us-
ing five metrics: coefficient of determination (R2), correla-
tion coefficient (CCO), standard deviation difference (SDD),
mean bias error (MBE), and normalised mean error (NME)
(Haughton et al., 2016). These were calculated between the
daily time series of the observed and modelled flux. Together,
these metrics capture a broad range of potential model per-
formance measures relative to the observations.

The model was first run in a “current climate only” con-
figuration, referred to as the “CC model”, where the weights
were set to 0 for all but the current-day climate (which were
therefore assigned a weight of 1). This restriction was re-
moved for a second set of model runs to utilise the full SAM
framework. This second set of runs introduces “environmen-
tal memory” to the flux predictions, and so this model con-
figuration is referred to as the “EM model”. Finally, in an
attempt to capture any remaining predictability in the obser-
vations, the residuals from the EM models were themselves
modelled using a standard autoregressive process with a time
lag of 1 d, which is an AR(1) model. This effectively allows a
correction of the predicted flux based on the prior error in the
prediction. While previously this has been referred to as cap-
turing a “biological memory” component, there are various
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Table 3. Assignment of weights to lagged periods. The same weight
is applied to multiple lag periods for the short-term predictors.
Grouping of lags is necessary to reduce the number of parameters
being estimated by the Bayesian framework, which improves model
computing performance and reduces the risk of overfitting.

Weight Short-term Long-term

1 t t − 14 to t − 20
2 t − 1 t − 21 to t − 29
3 t − 2 t − 30 to t − 59
4 t − 3 t − 60 to t − 119
5 t − 4 t − 120 to t − 179
6 t − 5 t − 180 to t − 269
7 t − 6 t − 270 to t − 365
8 t − 7, t − 8 n/a
9 t − 9, t − 10 n/a
10 t − 11, t − 12, t − 13 n/a

n/a: not applicable.

plausible effects that this AR(1) model can be considered to
represent (Liu et al., 2019). As such we do not claim it rep-
resents a specific memory process but rather a lower bound
on site predictability, and it is simply referred to as the “AR
model”.

2.2.2 Additional modelling

For comparison and confirmation of the SAM method, site
NEE and λE were also modelled using an approach of k-
means clustering plus regression (Abramowitz, 2012; Best
et al., 2015). The k-means approach is an alternative in-
sample empirical model, providing a direct comparison to
the SAM approach. The clustering is performed on the envi-
ronmental predictor variables, and the time steps that belong
within each cluster are determined. For each cluster, a linear
regression between the climate predictors and the flux at the
time steps within the cluster is performed. This allows assess-
ment of the degree to which SAM results are indicative of site
behaviour as opposed to resulting from the inherent structure
of the SAM model. Seven different cluster-plus-regression
models were implemented. Firstly, fluxes were modelled as a
linear combination of concurrent-only climate variables. Five
additional models were then run, where each model included
concurrent climate but was further expanded with one indi-
vidual climate predictor including potential lags (see Table 3
for lag timescales for each of the predictors). Finally, clus-
tering and regression were performed for a model including
all concurrent and lagged climate variables. As such, this fi-
nal model contains the same information as that of the EM
SAM model. The NbClust package (Charrad et al., 2014)
indicated that for the majority of sites and models, four or
fewer clusters were preferred for model parsimony. While in-
creasing the number of clusters would increase the R2 values
reported, we found that clusters began to contain fewer than

a reasonable number of observations for the linear regression
(fewer than∼ 260 observations, which is 4 times the number
of parameters in the k-means model containing every lag).
As such, we repeated the k-means clustering for each site
and model, with the number of clusters ranging from two to
eight, and the median R2 value taken as the measure of per-
formance.

For further comparison, we also consider the performance
of a TBM in simulating site NEE. The TBM used was the
CSIRO Atmosphere Biosphere Land Exchange (CABLE)
model (Kowalczyk et al., 2006), a land surface scheme that
can be run offline with prescribed meteorological forcing
(De Kauwe et al., 2015b; Decker et al., 2017; Haverd et al.,
2018; Ukkola et al., 2016b; Wang et al., 2011) or fully cou-
pled (Lorenz et al., 2014; Pitman et al., 2011) within the Aus-
tralian Community Climate Earth System Simulator (AC-
CESS; Kowalczyk et al., 2013). CABLE models the ex-
change of carbon, energy, and water fluxes at the land sur-
face, representing the vegetation with a single-layer, two-
leaf (sunlit or shaded) canopy model (Wang and Leuning,
1998) and a detailed treatment of within-canopy turbulence
(Raupach, 1994; Raupach et al., 1997). Soil water and heat
conduction are numerically integrated over six soil layers (to
4.6 m depth) following the Richards equation. CABLE can
be run with interactive biogeochemistry (Wang et al., 2011)
and vegetation demography (Haverd et al., 2014), but both
were switched off as leaf area index was prescribed on a per-
site basis. CABLE is a state-of-the-art TBM that performs
similarly to other TBMs used in global coupled modelling
(Best et al., 2015). At each site, we applied CABLE with
the parameterisation taken from the assumed dominant plant
functional type (PFT) at the flux tower location. CABLE’s
reported performance at the 12 sites in this study is then es-
sentially the performance one might expect if CABLE were
run in a global coupled model; unlike the empirical models it
is being compared to, it is not calibrated with site data, so in
some sense this is not a fair comparison. Nevertheless, there
are strong indicators that local calibration of TBMs offers
relatively minor performance increases (i.e. that structural in-
adequacies remain) and that empirical approaches benefit to
a much greater degree by the inclusion of local calibration
information (Abramowitz et al., 2007). There is also com-
pelling evidence that TBMs share biases (Haughton et al.,
2016). We suggest therefore that this comparison should
highlight how much more appropriate empirical approaches
are for investigating ecosystem memory effects than TBMs
with additional parameterisations, where existing structural
inadequacies in TBMs could cloud the interpretation of the
inclusion of lagged effects. Effectively, these CABLE model
runs represent a lower bound on the possible performance of
TBMs at each of these sites, and so the comparison between
the statistical approaches and CABLE provides insight into
the role of underlying site predictability (including environ-
mental memory) in model–observation evaluations.
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3 Results

3.1 Model performance

The ability of the CC (“current climate”), EM (“environmen-
tal memory”), and AR (“autoregressive”) models to capture
the temporal variability in NEE varied considerably among
the 12 OzFlux sites (Fig. 1). In general, as sites became drier,
their NEE fluxes became more predictable for the EM and
AR models (p values < 0.05). The introduction of lagged
memory effects (EM model) consistently improved model
performance across sites. The smallest improvement was at
AU-Tum, where the R2 increased from 0.23 to 0.25. AU-
GWW experienced the greatest improvement, with memory
effects increasing R2 from 0.37 to 0.53. The improvement
in model performance when introducing memory effects was
true across all model performance metrics considered, apart
from MBE, which saw small increases at some sites (see
Fig. S1 in the Supplement). The increase in site predictabil-
ity associated with environmental memory was also corre-
lated with the MAP at the sites (Spearman’s ρ =−0.73, p <
0.01). However this relationship between memory and MAP
was only significant when all sites were considered together
and was not apparent when either site grouping (NATT or
SAWS) was considered in isolation, albeit the sample size
is smaller when considering transects separately (n= 12 vs.
n= 5 and 7). Among the savannah sites, the role of lag ef-
fects increased as the precipitation regime became more sea-
sonal (relative improvement in EM compared to CC, corre-
lated with the coefficient of variation in precipitation (CVP)
at the sites, ρ = 0.98, p < 0.01). By contrast, at the wood-
land sites, the importance of memory was instead correlated
with mean annual temperature, with hotter sites exhibiting a
greater lag influence (relative improvement in EM compared
to CC, ρ = 0.83, p < 0.05).

The remaining predictability captured by the AR model
was correlated with the seasonality of precipitation, as ex-
pressed by CVP. Introducing the AR1 process had a greater
influence on absolute improvement in model performance
at sites with greater precipitation variability (purple bar in
Fig. 1, ρ = 0.70, p < 0.05). The relative improvement from
the AR model compared to the EM model (cf. purple bar
relative to the combined yellow and turquoise bars) was
also correlated with CVP, but to a lesser extent (ρ = 0.65,
p < 0.05). When the NATT sites were considered in isola-
tion, this correlation was no longer significant. Instead, there
was a strong correlation between the relative improvement
from the EM to the AR models and measures of site winter
rainfall (ρ = 0.90, p < 0.05). There were no significant rela-
tionships between the AR model performance at SAWS sites
and climate metrics.

By contrast to NEE, the λE flux was more predictable,
with total R2 values once all memory effects were included
ranging from 0.56–0.93, compared to R2

= 0.3–0.83 for
NEE (Fig. 1b). As with the NEE fluxes, the improvement in

λE model performance as additional memory components
were introduced was maintained across all model perfor-
mance metrics and sites (see Fig. S2 in the Supplement). The
addition of environmental memory improved R2 values at
all sites but by varying amounts. AU-DaS saw R2 improve
from 0.79 to 0.81, while R2 values for AU-GWW increased
from 0.55 to 0.73. The improvement in model performance
from the introduction of lagged effects (turquoise bar, Fig. 1)
was correlated to the wetness index of the site (ρ =−0.62,
p < 0.05). The four wettest sites (MAP > 1000 mm yr−1)
had an R2 improvement of between 0.02 and 0.05, while the
four driest sites varied from 0.09 to 0.19. Interestingly, the
results did not show any clear difference in memory impor-
tance between the savannah and woodland sites.

The improvement in performance of the AR1 process for
λE fluxes was not correlated with any of the climate metrics
under consideration. This was true both when all sites were
considered at once and when sites were partitioned into the
savannah or woodland subsets.

3.2 Sensitivity to climate predictors

To explore the impact of individual climate predictors on
NEE, the Gn and Dn coefficients from the EM model were
summed and normalised by the standard deviation, as shown
in Fig. 2 (see also Fig. S3 in the Supplement). For NEE
(Fig. 2a), most climate variables significantly impacted the
flux. Air temperature, short-term precipitation, and VPD
each did not significantly affect NEE at two sites. AU-Dry
was the only site where more than one climate variable
was not significant. The sensitivity magnitude was gener-
ally greater for the short-term variables (past 14 d) than for
long-term precipitation. Short-wave radiation had a mean ab-
solute sensitivity coefficient of 0.74 µmol m−2 s−1, followed
by air temperature (0.58 µmol m−2 s−1), short-term precip-
itation (0.45 µmol m−2 s−1), and VPD (0.37 µmol m−2 s−1).
In comparison, mean NEE sensitivity to long-term precip-
itation was just 0.11 µmol m−2 s−1. For the savannah sites,
the NEE flux appeared to display greater sensitivity to en-
vironmental conditions as sites became wetter, which was
most clear for short-term precipitation. The woodland sites
had both a wider range and larger magnitude of sensitivity
to the environmental drivers, with short-wave radiation, air
temperature, and VPD having a greater impact on NEE than
at the savannah sites.
λE fluxes were sensitive to more climate variables than

NEE fluxes. Across all sites and variables, only two climate
drivers were not significant in their effect on λE at a site: air
temperature at AU-Dry and long-term precipitation at AU-
Tum. The lack of significance in long-term precipitation at
AU-Tum may be due to this site being the wettest, with a
MAP of over 1400 mm yr−1, and one of the sites with the
most even rainfall distributions (CVP = 32). The driest year
in the AU-Tum data is 2006, with 421 mm of precipitation,
which is still greater than the MAP at the four driest sites
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Figure 1. Model performance for (a) NEE and (b) λE. Sites are on the y axis, ordered by descending mean annual precipitation, with AU-
Tum having the highest annual rainfall. The x axis is the cumulative coefficient of determination, R2. Yellow bars indicate the performance
of the current-climate-only model (CC model), the turquoise bars are the improvement when memory effects were introduced with the SAM
model (EM model), and the purple bar is the performance when the SAM residuals were further modelled with an AR1 process (AR model).
Asterisks indicate sites belonging to the NATT.

Figure 2. Sensitivity of the flux to each climate variable for (a) NEE and (b) λE in the environmental memory models. Sites are on the x
axis, ordered by ascending mean annual precipitation. The y axis is the sum of allGn andDn coefficients from Eq. (1), where n includes the
climate variable, divided by the mean standard deviation of the corresponding weighted sums from Table 2, such that sensitivity values are
comparable between variables. Where the range of sensitivity includes 0, those variables are considered to non-significantly affect the flux
and are coloured green in the plots.

in this study. Another result of interest is that the response
of the λE flux to air temperature and VPD at AU-Wom was
the opposite to the relationship at all other sites. AU-Wom
exhibited an increase in λE with an increase in VPD and a
decrease in the flux as temperature increased.

For both NEE and λE fluxes, there was a correlation be-
tween the sites’ sensitivity to short-wave radiation and their
wetness index (ρ =−0.69, p < 0.05 for NEE; ρ = 0.78,
p < 0.01 for λE). However when this relationship was ex-
plored by splitting between the two vegetation groups, it
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was only significant for the SAWS sites. The correlation was
in fact stronger when only the woodland sites are consid-
ered (ρ =−0.86 and 0.86 for NEE and λE, respectively;
p < 0.05). When the NATT sites were taken in isolation, this
relationship between site aridity and sensitivity to short-wave
radiation was not apparent.

3.3 Timescales of memory influence

The cumulative weights from the EM model can provide ev-
idence of the relevant timescales at which the significant cli-
mate variables affected NEE. These are shown for (a) air tem-
perature and (b) long-term precipitation in Fig. 3. Following
Liu et al. (2019), we assumed that the critical lag timescale
is when the cumulative weight reached 0.5, indicated by the
dashed line. For air temperature, at sites where this climate
metric was significant, all but two sites had a lagged response
of > 2 d. NEE at AU-Stp and AU-Gin had dependence on
prior air temperature at longer timescales, around 4–5 d. The
timescales at which precipitation affected NEE were much
less consistent across sites. AU-DaS had a very short lag of
only 21 d, while AU-Tum required over 270 d of prior rainfall
to reach a weight of 0.5. The remaining sites had lags to long-
term precipitation falling between these extremes but with no
obvious correlation between MAP and response timescale.
Similarly, there was no clear relationship between lagged re-
sponse timescales and the prevalence of woody vegetation at
the sites; both NATT and SAWS sites exhibited a range of
critical timescales.

Figure 4 shows that the timescale at which the λE flux re-
sponded to air temperature is generally longer than that for
NEE. This may reflect the contribution of deep soil moisture
(and so longer timescales) to transpiration fluxes (driven by
VPD associated with higher temperature), whereas the im-
pact of temperature on NEE, via for example heterotrophic
respiration, would be controlled by shallower soil moisture
(Parton et al., 1988). We found that 7 of the 12 sites re-
sponded to the air temperature from 3 to 7 d prior. Notably
AU-Gin, which had a relatively long response timeframe for
NEE to air temperature, had a strong immediate response
for λE, with the critical timescale occurring at no lag. The
shapes of the cumulative weight plots were more similar
across sites for λE than for NEE, with a consistent increase
across each lagged period and a much smaller range of initial
weights calculated for the current air temperature.

For long-term precipitation, critical time periods for λE
ranged from 60 to 270 d. No obvious relationship existed be-
tween site aridity and the timescales at which long-term pre-
cipitation affected evapotranspiration, indicating that other
site characteristics (for example rooting depth) were influ-
encing the lagged effects of rainfall. While the overall range
of lagged responses to long-term precipitation was very sim-
ilar between NEE and λE, the critical timescales for each
flux differed at most sites (see Figs. 3b and 4b). For instance,
at AU-Dry and AU-Stp, the critical lagged timescale for λE

was 60 d, but for NEE a total lag of 270 d was required for
a cumulative weight of over 0.5. Conversely, AU-DaS had a
short lagged NEE response to long-term precipitation of 20 d,
but the critical weight was reached at 180 d for λE.

3.4 Comparison to alternative modelling approaches

Finally, NEE fluxes were modelled using both an approach
of k-means clustering plus regression and the CABLE TBM
parameterised by PFT, the results of which are shown in
Fig. 5. At every site, the EM SAM model performed bet-
ter than a current-climate-only k-means model, which is to
be expected due to the far greater degrees of freedom in the
SAM models. The difference between the median k-means
R2 and EM R2 ranges from 0.02 to 0.12. However, the intro-
duction of the lags for individual climate variables to the k-
means model generally improved performance, although the
EM SAM model outperformed these models in most cases.
When all lags were introduced to the k-means model, per-
formance improved at all sites. Performance was compara-
ble to or better than that of the EM SAM model, confirming
the applicability of SAM for predicting terrestrial ecosystem
fluxes.

The sites were also modelled using the Australian TBM,
the Community Atmosphere Biosphere Land Exchange
model (CABLE). In these model runs, CABLE was param-
eterised by assumed PFT, with no site-specific calibration,
and thus indicates a lower bound on TBM performance at
the sites. As shown in Fig. 5, this consistently underper-
formed relative to the predictability expected from the em-
pirical methods. R2 values for the TBM predictions against
observed NEE ranged from 0 to 0.33, with a mean of 0.16.
Performance was generally better at the SAWS sites than at
the NATT sites. CABLE performed better as sites became
drier within the SAWS group, but this behaviour was not seen
for the NATT sites.

4 Discussion

Prior to the introduction of the stochastic antecedent mod-
elling framework (Ogle et al., 2015), little work had at-
tempted to explicitly quantify the role and behaviour of
these lagged effects. This paper provides further evidence
that ecosystem fluxes exhibit complicated responses to an-
tecedent conditions and that these responses are important
components of ecosystem functioning and as such need to be
further explored if these ecosystems are to be properly un-
derstood.

4.1 To what extent does environmental memory
matter?

This study shows that understanding the lagged component
in ecosystem responses to climate, that is the environmen-
tal memory, can significantly improve the ability to model

Biogeosciences, 19, 1913–1932, 2022 https://doi.org/10.5194/bg-19-1913-2022



J. Cranko Page et al.: Environmental memory in the predictability of carbon and water fluxes 1923

Figure 3. Cumulative mean weights from the NEE EM model for (a) air temperature and (b) long-term precipitation. Sites are split into the
(i) NATT and (ii) SAWS groups for each climate predictor. Within each group, sites are ordered by mean annual precipitation, with darker
colours indicating higher MAP. Only sites where the climate variable is significant in Fig. 2a are included. The dashed line at a cumulative
weight of 0.5 indicates the threshold for the critical lag period. Where the cumulative weights cross this line is considered the timescale of
the environmental memory effect for each site for the climatic driver in question.

site fluxes empirically. Introducing antecedent climate to the
NEE model increased the R2 by an average of 0.08, which is
a mean relative improvement of 22 % in model performance,
with the relative improvement at individual sites ranging
from 7 % to 55 %. For λE, the improvement ranged from 2 %
to 49 %, with a mean of 20 %. This is reflective of the gen-
erally higher predictability of the λE flux compared to NEE,
with more of the variance in the flux explained by current
climate only. This improvement in model performance for
both fluxes indicates that exploring the role of environmental
memory could further substantially improve our understand-
ing of site functioning.

While the EM model results provide a direct indication of
the role of antecedent climate, we further modelled the flux
residuals with an autoregressive lag-1 model (the AR model).
The ensuing R2 value obtained was interpreted as a lower
bound on overall site predictability based on prior condi-
tions, contingent on the structural assumption of a lag of one
time step. This is because the AR model captures remaining
predictability from the previous day’s fluxes without iden-
tifying the source of this influence. For instance, this depen-
dence on prior-day flux may be affected by seasonal leaf area,
delays between photosynthesis and respiration (Mencuccini
and Hölttä, 2010), or potential site disturbances. It could also
be representing environmental drivers that we have not ex-

plicitly accounted for, lagged allocation, or more unique im-
pacts such as insect infestation.

Although eddy covariance analysis is a mature field, rel-
atively little work has been done on quantifying environ-
mental memory. Instead, the focus has been on immediate
site responses to disturbance events and meteorological ex-
tremes (Ciais et al., 2005; von Buttlar et al., 2018; Teuling
et al., 2010; Flach et al., 2018). At the site level, further ex-
amination of other controls on carbon and water fluxes (e.g.
variability in leaf area, root zone soil moisture, the contribu-
tion of non-transpiration components, and the role of non-
structural carbohydrates) may unlock explanations for why
environmental memory varies both across the precipitation
gradients and amongst similar geographic sites. For example,
we found that our capacity to simulate NEE fluxes at AU-
Cum was seemingly poorly explained by current climate. It
is notable that Peters et al. (2021) recently highlighted the
high tolerance of drought stress (xylem embolism resistance;
p50: −4.07 to −5.82 MPa) of species at AU-Cum, which
may explain an apparent decoupling between carbon fluxes
and current meteorological conditions. Pinning down the ex-
act mechanistic explanation will remain for future work, but
our results motivate the search for hypotheses to explain dif-
ferences in site behaviour. By characterising the extent of
individual-site memory statistically, we hope to stimulate fu-
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Figure 4. Cumulative mean weights from the λE EM model for (a) air temperature and (b) long-term precipitation. Sites are split into the
(i) NATT and (ii) SAWS groups for each climate predictor. Within each group, sites are ordered by mean annual precipitation, with darker
colours indicating higher MAP. Only sites where the climate variable is significant in Fig. 2b are included. The dashed line at a cumulative
weight of 0.5 indicates the threshold for the critical lag period. Where the cumulative weights cross this line is considered the timescale of
the environmental memory effect for each site for the climatic driver in question.

ture site measurement campaigns and hypothesis develop-
ment that examines what drives memory variability and ulti-
mately guide model development. As for which TBM mod-
ules would need to be adjusted to fully capture environmen-
tal memory, this approach needs to be applied at many more
individual sites. This would allow us to identify functional
relationships to a greater extent. However, such application
needs to be carefully pursued, using not just SAM but other
machine learning approaches (such as the k-means clustering
plus regression as we have demonstrated) to ensure that any
results are process-based and not just structural assumptions
from the use of a single modelling approach. By combin-
ing multiple empirical studies of environmental memory, we
can understand the key lags that aid prediction of ecosystem
fluxes and how these vary across site characteristics.

4.2 The benefits of stochastic antecedent modelling

Through the application of stochastic antecedent modelling,
we have been able to identify the importance of environ-
mental memory in ecosystem fluxes at a diverse range of
Australian sites. Unlike traditional methods of exploring an-
tecedent effects, SAM makes few prior assumptions about
critical lag lengths beyond a prescribed maximum lag of
interest (i.e. the 14 d window we assigned to the short-

term variables). The Bayesian framework also yields the full
(joint) posterior distribution for the parameters of interest,
from which we can compute summaries such as credible in-
tervals, allowing a critical assessment of the relative signifi-
cance of various memory drivers. However, the SAM method
is computationally intensive and requires long data records,
which may reduce its potential applications. In this paper, we
also perform similar analysis using the basic machine learn-
ing approach of k-means clustering plus regression. The re-
sults from the k-means modelling were broadly consistent
with those from the SAM approach. Both modelling method-
ologies produced predictions with similar R2 values (Fig. 5)
and saw improved performance when lagged climate effects
were introduced. The k-means modelling in this study has
provided a novel, independent check on the suitability and
performance of the SAM approach. The consistent results
increase our confidence in the findings from the SAM model
and reduce the likelihood that our findings are influenced by
the structural assumptions of the SAM model. Importantly,
while computation of k means was significantly faster than
SAM, the k-means approach lacks the inherent interpretabil-
ity of SAM. While SAM is explicitly designed to infer the
sensitivity to predictors and the timescales at which lags ex-
ist, the approach of k-means clustering plus regression would
require further work and modelling to fully explore these as-
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Figure 5. R2 values for seven different models of k-means clustering plus regression predicting NEE at the flux sites, split by the two
vegetation groups. “Current climate” is the k-means model that only considers concurrent environmental observations for predicting NEE.
Each of the five lagged environmental predictors are then introduced separately; “+ all climate lags” is the model where every lagged
environmental variable is included and hence utilises exactly the same predictors as the EM SAM model. Boxplots indicate the distribution
of the R2 values when these models are run for between two and eight clusters each. The EM SAM model R2 value is indicated by a red
cross, and the R2 for a PFT-parameterised TBM (CABLE) is shown with a blue cross. Note that AU-Wom had no available CABLE output.
Sites are ordered from left to right by ascending mean annual precipitation within each vegetation group.

pects of flux responses, which is beyond the scope of this
study. Since the k-means clustering plus regression often out-
performed the SAM model, we have identified that the SAM
approach does not provide an upper bound on the informa-
tion available from the flux data. As such, our results high-
light the need to explore the role of environmental memory
using different approaches, including use of alternative ma-
chine learning techniques.

This study also showed how the relative influence of dif-
ferent drivers of NEE and λE fluxes can be discerned. By
normalising the sensitivity parameters for each environmen-
tal driver, we further the work of Liu et al. (2019), allow-
ing the individual climate predictors to be compared between
variables and across sites. This increases the information pro-
vided by the SAM approach regarding the site behaviour and
is a further argument for its use to explore the timescales of
ecosystem response. Liu et al. (2019) provided a strong ar-
gument that including the influence of environmental mem-
ory is key for predicting ecosystem fluxes. Our results sug-
gest that more careful site evaluation is likely to be required
to truly understand the impact and source of these memory
effects. Fortunately, the SAM approach, together with other

machine learning techniques, is well positioned to provide
the necessary insights to shine a new light on site dynamics
and memory influence.

4.3 The importance of across-site heterogeneity

One of the key conclusions from Liu et al. (2019) was that
as sites become more arid, the importance of antecedent ef-
fects increases. However, Liu et al. (2019) considered 42
sites from across the globe, incorporating a wide range of
biomes and species. As such, there is potential for confound-
ing factors to be influencing the importance of environmental
memory at each site. This study reduces some of this un-
certainty by limiting its scope to 12 sites, all located within
Australia. This means that, as well as limiting the diversity
of species and climates studied, a greater understanding of
each individual site is possible. Similarly to Liu et al. (2019),
these sites were grouped by biome, although we only had
two groups: savannahs and grasslands within the NATT and
woodlands in the SAWS group. Each biome group contains
sites with a range of MAP and WI values. When these sites
are viewed together, the importance of memory is strongly
correlated with site aridity (improvement in R2 between CC
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and EM models; ρ =−0.85, p value< 0.01), consistent with
the conclusions of Liu et al. (2019). However, when the sites
are split by our vegetation groupings, this significant cor-
relation is only seen for the SAWS group (ρ =−0.86, p
value< 0.05), again noting that total sample size is reduced
when we split by vegetation group. The NATT sites had no
correlation between site memory and aridity (ρ =−0.7, p
value= 0.23), despite having a very strong rainfall gradient.
Note that both groups have ranges of aridity that include sites
spanning from “arid” to “humid”, with the WI at NATT sites
between 0.12 and 0.75 and at SAWS sites between 0.11 and
1.2 (Trabucco and Zomer, 2018). This result indicates that
grouping many sites together to explore relationships based
on a single metric can obscure more nuanced understanding
of the processes involved or the key site characteristics driv-
ing such relationships. For instance, at the savannah sites,
we found that NEE sensitivity to short-term precipitation in-
creases as site MAP increases. We hypothesise that this in-
creased sensitivity is driven by the monsoonal nature of rain-
fall at the NATT sites with greater MAP. Our results also
show that the relationship between short-wave radiation and
site aridity is only seen in the SAWS grouping, not at the
NATT sites. This is potentially due to the greater proportion
of woody vegetation at SAWS sites, resulting in a greater
rooting depth and less frequent water stress. As such, these
sites are likely to be energy-limited, and hence transpiration
is linked to days of high photosynthetically active radiation.

We have also found an inverse response of λE to tem-
perature and VPD at AU-Wom to all other sites. It is not
clear what the driver is here, and it is unlikely to be related
to the correlation between temperature and VPD as this is
higher at the other sites which did not exhibit this behaviour
(ρ = 0.85 at AU-Wom; five other sites have higher ρ values,
up to 0.91). One possible cause is that AU-Wom generally
has the lowest VPD observations across all sites, with only
AU-Tum showing similar but greater values (median VPD
= 0.20 kPa; other sites range from 0.31 to 1.94 kPa). While
other sites may tend to close their stomata, limiting transpi-
ration as VPD increases, AU-Wom is potentially below the
VPD threshold at which stomata begin to limit transpiration.
Similarly, Griebel et al. (2020) found that AU-Wom does not
limit transpiration during hot temperatures and heatwaves,
potentially due to access to deep water reserves. However,
the inverse response could also be due to the vegetation com-
position at AU-Wom, with the potential for this effect to have
been caused by photosynthetic inhibition at high tempera-
tures (and high VPD), which would further explain why this
opposite response is not seen in the NEE flux. The prevailing
wind direction, which is seasonally dependent, heavily influ-
ences the flux tower footprint and affects the climate condi-
tions at AU-Wom (Griebel et al., 2016). This could poten-
tially contribute to the inverse behaviour seen if changes in
VPD are correlated with significant changes in the vegetated
area being measured by the tower. Additional exploration of

the lags experienced at the AU-Wom site is probably neces-
sary if this response is to be more precisely attributed.

Many studies have also highlighted how global relation-
ships do not hold at regional, local, or even site level (Knapp
and Smith, 2001; Knapp et al., 2017; Lauenroth and Sala,
1992; Ukkola et al., 2021; Wilcox et al., 2016). Such non-
transferability is related to the issue of spatial versus tem-
poral relationships and particularly the “vegetation structure
constraint” (Lauenroth and Sala, 1992). This is where, due to
the slow timescales at which species composition and plant
function respond to changes in climate, individual sites are
unable to fully utilise any inter-annual variability in climate
conditions (Lauenroth and Sala, 1992). Here, we have shown
that, within the range of Australian ecosystems analysed, en-
vironmental memory is not clearly related to site aridity for
savannah sites. In comparison, among woodland sites, the
link between environmental memory and site aridity appears
to be stronger. Our results point to a need to better understand
the role of individual-site characteristics (i.e. root zone wa-
ter access) in determining predictability of carbon and water
fluxes.

4.4 Implications for TBM evaluations

Flux data are routinely used to benchmark and improve TBM
performance (Abramowitz, 2012; Abramowitz et al., 2008;
Best et al., 2015; Haughton et al., 2016, 2018b; Nearing
et al., 2018). In spite of this, relatively few studies have pro-
posed that assessments of TBM performance at flux sites
should also consider the underlying site predictability (but
see Haughton et al., 2018a). Here, we argue that the con-
founding effect of baseline predictability is essential when
comparing models that may have been tested at different
sites and also in determining which ecosystems a model can
best represent. Our results indicate that process-based TBMs
tested at sites that exhibit greater predictability from simple
empirical models, such as SAM or k means, as used in this
paper, might be expected to perform better than TBMs tested
at those sites which exhibit a lower baseline predictability of
fluxes. For instance, Whitley et al. (2016) found that, when
modelling gross primary productivity (GPP) and λE fluxes,
the performance of a suite of TBMs improved slightly across
the NATT sites as the MAP decreased. This is consistent with
our findings of higher predictability at more arid sites. Im-
portantly, this performance could be reinterpreted given the
baseline predictability calculated using the SAM approach.
Across the sites included in both this paper and Whitley
et al. (2016), they found that model-averaged correlation co-
efficients for λE predictions had a maximum difference be-
tween sites of 0.08, ranging from 0.56 (AU-Dry) to 0.64
(AU-Stp). Our analysis found a similar difference between
correlation coefficients of 0.06 (0.85 at AU-How and 0.91 at
AU-Stp). This might show that both empirical models and
TBMs perform better at drier sites. However, when we con-
sider the TBM performance relative to the empirical SAM
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performance, AU-How actually performs better (TBMs cap-
ture 70 % of the expected predictability assumed from the
SAM model) than the drier AU-Stp site (where TBMs cap-
ture 66 %).

Similarly, Barraza et al. (2017) modelled λE across the
NATT using various indices of surface conductance and
found that the sites with greater Eucalyptus occurrence (i.e.
the wetter sites: AU-How, AU-DaS, and AU-Dry) were better
represented by their model. However, if the reported R2 val-
ues from this study are considered relative to the values found
in this study, then their models perform even better at the wet
sites compared to the dry. The Eucalyptus-dominated sites
have R2 values very similar to those from this study, while at
AU-Stp and AU-ASM (the drier sites), the R2 values found
in Barraza et al. (2017) are substantially lower.

Additionally, the CABLE model results in Fig. 5 illustrate
how the results from empirical models can be used as a base-
line for TBM performance. At AU-Cum, AU-Dry, AU-Gin,
and AU-Whr, the R2 from CABLE is close to 0.1. However,
from the SAM and k-means approaches, it is apparent that
AU-Whr is more predictable than the other three sites. The
performance of CABLE at AU-Whr is only around 18 % of
the empirical models. At AU-Cum, the R2 of CABLE is ap-
proximately 25 % and 37 % of the R2 of k means and SAM,
respectively. Hence, while initially CABLE appears to per-
form similarly well at both sites, it can be seen that the TBM
is capturing more of the expected predictability at AU-Cum
than at AU-Whr. As such, the baseline predictability of sites
as calculated from detailed empirical models such as ours
clearly provides a framework by which we can reinterpret
the predictability of ecosystems and hence how well TBMs
are performing.

Our results add to a growing body of research (for ex-
ample, see Bastos et al., 2020; Ciais et al., 2005; Feldman
et al., 2021; Liu et al., 2018; and Ogle et al., 2015) that iden-
tifies an important role of ecosystem “memory” in the ter-
restrial fluxes. This first step, including the characterisation
of the timescale of influence, the processes affected (e.g. λE
vs. NEE), the controlling environmental driver and site-to-
site variability, is critical to improving TBMs. It is widely
acknowledged that capturing legacy processes in TBMs is
important (e.g. acclimation, recovery from climate extremes,
link between carbon uptake and growth, canopy defoliation),
but to develop the theory, we first need a strong evidence base
against which we can probe model predictions. The chal-
lenge now is to link the statistical findings to mechanisms and
then demonstrate that capturing these processes in models
leads to improvements in site predictions. This second step
will require applications of our approach (or similar) to both
field and targeted experimental data, with progress likely to
be made by linking directly to model–hypothesis testing (e.g.
Katul et al., 2001; Mahecha et al., 2010).

5 Conclusions

Accurate prediction of carbon and water fluxes is key to un-
derstanding the role that terrestrial ecosystems will play in
a changing climate. This study builds on previous work util-
ising stochastic antecedent modelling to provide further ev-
idence that environmental memory is a key component of
both net ecosystem exchange and latent heat fluxes. In gen-
eral, the role of this memory effect increases as sites be-
come more arid, yet we have shown that this relationship is
confounded by individual-site characteristics and behaviour.
By separating the influence of various predictors on NEE
and λE fluxes, it becomes clear that despite this broad-scale
relationship with aridity, very different mechanisms are at
play across sites. The differences we report in site behaviour
should motivate a range of new hypotheses in future research
to understand the controls on variability in predictability of
site fluxes. Finally, we argue that a consideration of both site
predictability and environmental memory should form a key
part of terrestrial biosphere model evaluation and future pro-
cess development.
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