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learning (ML) has been able to become integrated within
Abstract? The domain of imageclassification hasbeenseen to  society for many social and industrial uses, e.g., health®are [
be dominated by highperforming deep learning (DL)  12], pubic-safety [13-15] and assistediving [16-19].
architectures. However, the successf this field as seen over the Whilst the current state of DL provides algorithms that can
past decade has resulted in the complexity of modern classify complex datasets to a high standard, further

methodologies scaling exponentially, commonly requing millions | . .
of parameters. Quantum computing (QC) is an active area of improvements are becoming more and more marginal, and are

research aimed towards greatly reducing problems of complexity Often at the expense of adding mamgditional parameteré\s
faced in classical computing. With growing interest towards an example of this growth of complexity within DL, one of the
quantum machine learning (QML) for applications of image earliestconvolutional neural network (CNN) methods, LeNet5
classfication, many proposed algorithms require usage of 2] has a total of ~60,000 parameters and can reacheest
numerous q_ublt_s.ln the noisy mtermedlate_scale guantum (NIS_Q) accuracy values over 98%. In contrast to, thige of the top
era, these circuits may not always be feasible to execute effectively, : .

therefore we should aim to use each qubit as effectively and Performing methods[21] reaching an accuracy value of
efficiently as possible, before adding additionajubits. This paper ~ 99.83%, requires a mere 1,400,000 parameters, over 23x that of
proposesa new singlequbit based deep quantum neural network LeNet5for 1-2% increase in accuracy performance

for image classification that mimics traditional convolutional This monumental increase in parameter counts accelerated
neural network techniques rgsulting in a redgce_d number of by GPU capabity is not necessarily a negative when the
parameters compared to previous works. Our aim is o prove the - pjopasievels of performance are requirddowever in order
concept of the initial proposal by demonstrating classification . .

performance of the singlequbit based architecture, as well asto to progress towards eff_e_ctlve ML algorithms, the_ curre_nt
provide a tested foundation for further development. To tradeoffs of requiring additional parameters for marginal gains
demonstate this, our experiments were conducted using various may not be the most appropriateurse of action. fie story of
datasets including MNIST, FashionMNIST and ORL face deep learning has shown thiay, focusing orthe development
datasets. To further our proposal inthe context of the NISQ era,  of methods which have a more efficient usage of parameters,
our experiments were intentionally conducted in noisy simulation foundationcan be providetb build uponandprogress towards

environments. Initial test results appear promising, with . . . .
classification accuracies of 94.6%, 89.5%, and 82.5% achieved on the highesperformance levels of clagisation whilst keeping

subsets of MNIST, FMNIST and ORL face datasets, respectively €fficiencyof training and executioa primary factor

In addition, proposals for further investigation and development Quantum computing (QC) has undergone a tremendous level
were considered, whee it is hoped these initial results can be of development within the past few years, with quantum
improved. machine learning (QML) seeing a large increase in attention

Index Terms 2 OQuantum Deep Learning, Quantum and prodggtwﬂy.‘l’hrough innate parallelism and fast gxecutmn
Convolutional Neural Networks, Single-Qubit Encoding, speeds, itis supporéd by many that_Q_C may provide the
Quantum Facial Biometrics necessary means to overconmassification performance

plateaus seen throughout classical ML, and ultimately progress
towards effectiveyet efficientML algorithms. Even though
. INTRODUCTION QC is inits infancy, or noisy, intermediag-scale quantum
HgISQ) stageprogress has been made towards development of
standalone QMLalgorithmsthat are capable classifiein
themselve$22,24,28]

In this work, we aim to progress théhorough work
conducted towards singbpubit classifiersand propose ra
architecturghat makes efficienise of assigned parametas,
well as improving scalalility to higher-dimensional image

This paper was submitted for review @1/102021 This work was A. Bouridaneis with the Centre for Data Analyticand Cybersecurity
supported by the Qatar National Research Fund under grant # NPRP (CDAC), University of Sharjah, Sharjah, UAE (email:
0113 £180276 and in part by EPSRC under Grant EP/P009727/1. abouridane@sharjah.ac.ae)
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ammar.belatreche@northumbria.ac.uk) Qatar University, Doha, ar (email: s_alali@qu.edu.qa)

Image classification has seen rapid improvements over t
past decade aloneThe processing capability of readily
available GPU units has enabladhain ofstrongperforming
deeplearning(DL) methodologie$1-8] to dominate the field
boasting high levels of classification accurdiegt can be fine
tuned to a specific taskihe result of this is that machine
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classification tasks.To do this, our initial experiments Il. RELATED WORK

showcase re_sults conducted on onrmfel imageclassification _In its current statenanyNISQ QML algorithmstend touse
tasks, foIIowmg the natural progression of dgtaset 'complexné{. backbone of variationalugntum circuits(VQC) as their
These experiments are also conducted using noisy and NgAmary computational tool. VQCs typically consistaogeries
noisy 3|mulat|on environments, mder to provide a reasonable singlequbit and multiqubit unitary gate operatiorepplied
expectation of how the method will perform in the Currengising a set of parameteirsa linear fashiorover a number of
NISQ era. qubits [2228]. Some of these VQC algorithms aresented as
The findings from our results show that as low as 63 pyprid approach to computation, working in conjunction with
parameters is en'oggh'to form a sunably'complex feature SPaGRical classical processesnplemented as pre or pest
capable of classifying image data to a hilglyreeof accuracy. processingo deermine a classification result.
Alongside thisexperimental results show a factor of robustness Hybrid approaches of computaton may provide an
against the phase damping noise channel to some extent.  opnortunityto utilize the power of quantum computing with
The concept of singigubit based neural networksieeen  pre determined methods, e.g., classicalitracted features fed
presented byJe and is analogous ta simple multlayer ihrough a QVC [29], or vicwersa with quanturextracted
perceptron (MLP)with only one dense hidden layer aests  features [30].Experimental results within [30] suggest that
on several toy datasets. In our work, we aim to expand th{gantumextracted features may provide a #naalvantage to
strategy to quantum image classificatiand develop new  cjassification performance over a purely classical framework.
architectures such as quantum convolulareural networks, - However,it was difficult to distinguish between a third method
which areoften considered as a much more complex structugip randomly implemented nelinearities, therefordt may
than a simple MLP [54]. _ . not always be clear tanequivocallyidentify the impat that
To bring the singlgubit strategy into quantum quanturrprocesses have mtassification results.
convolutional neural networks, we propose several methods towithin classical ML, deeplearning convolutional neural
implement our new singlqubit qu.antum convolutional n'eurgl network (CNN) algorithms aréypically employed for image
networks. Partiglarly, 1) we design a method that maintaingjassification tasksCNN algorithms traditionally implement
spatial relationships of pixels through the use of parametrizggnyolutional, nonlinear transformation and pooling operations
gonvqluhonal filters; 2) we adapt.t.hls method to process imagdgs a series of layers, prior to a futlgnnected portion to
in their natu_ral formthus not requiring a costly mageflattenmgdetermme a classification resuMlotivated once more by the
pre-processing step. Consequently, we can then easilgccess of CNN methods, recemirks have propsed fully:
implement the quantum convolutional neural networks Vigyantum architectures as similathgsed alternatives. Work
singlequbit based data uploading. . o presented in [31] mimicthe traditional conelutionatpooling
When considering the contributions of this work, it is als@ayer series through the application of successive fqubit
important to consider the indirect contributions that arise frorﬁlhitary operations folloed by qubit measuneent Here, non
the modifications made. Firstly, the proposed method has ffearity is introduced by utilizing the measurement result of
increased - specificity to the domain of quantum imaggarticular qubits as rotational parameters
classification in comparison to prior wogkhownin [3§]. The In separate work [32], the authors propose a quantum CNN
proposed framework also enables modiiased architectures that computes the forward pass of the algorithm via quantum
to be developed usin@ML techniques, therefore allowing jnner product emation between an input and convolutional
significant room for further expansion and developmeniernel. Then, norlinearity is introduced via a Boolean circuit
Furthermore, we extended our work to an emerging {opigynction. Rotational operations and amplitude amplification is
namely quantum biometrics, and successfully tested Ofjfen performed to enable pixels of a higher value to have a
proposed new singigubit quantum  convolutional neura pigher measurement probitity. Individual experiments for the
networks on facial biometrics besides the handwriting datas@kihod of [31, 32have shown promising results for image
to a promising extent _ _ classificatiorusing MNIST data, as well as fogaantum error
Overall, the work presented here is an important step thajrrectiontask However these other methods discussed rely
expands upon a singiibit encoding approach towards a morg, theentire input datdo be encdedin the amplitudes of a

practical, longterm solution that is not only me adaptable in - anyqubit superposition state, i.e. amplitude encoding.
nature, but more efficient when scaled to larger dimensions.  \wnilst thework discussed throughout this sectioave had
~ The structure of this paper is as follows. Firstgfated work  romising results anshow positivity towards development of
in the field of QML is discussed, anlerivation of the proposed effective quantum classifiers using many qubités important
methodw_a smglequb@ encod|_ng3r|r_1C|pIeS|s outlined. Then, 5 remain in context with the current NISera of quantum
the experimental setus described in relevance to the currentompytation. Therefore, we shouldderstand that minimizing
capabilities of QML classifiers. Aﬁemgrds, our _experlnjenta{he number of qubits requireshould be a primary concern
resm_JItsare_shown, where an anaIyS|s_ W|II_ be provided. F'n'_"‘”ywhen designing quantum algorithmsThis is because qubit
a discussion of the resulgd anatsis will be conducted in coperege is not necessarily at the desired standard yet to rely
relation to the scope of the field, whegetential avenues for o, complex, multiqubit operations, where a small error could
future work and extensions to the method may apply. vastly impact the states of other qubits utilized. By developing
towards smallescale, efficient methods using minimal qubits,
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a solid foundation can be built to progress from in the quest for
effective QML image classification algthims. [ll. METHODOLOGY

In an effort to find efficient, yet effectivelata encoding . . .
schemes, recent works [&5] have analyzed a variety of QVC A._SingleQubit E”"Od_'”g_’ .
structures to determine the ability of the encoding to navigate! © Préface the description of the proposed methodology, it is
the Bloch sphergreferred to as expressabilityjapability of '€levant to discuss a particular method of quantunnngtion
entanglement between qubits, as well as robustness wHEHCding, known as singtgubit encodingFormany ML tasks,

realized in a noisy quantum environmentithin these works, data. ?S often presented .in the form of a .column vector.
it was identified that there was a strong correlatietween Traditionally, this &dimensional vector of classical data could

expressability anctlassification accuracyHowever, it was Peencoadby initializing a t*qubitquantum state as a binary
noted thata point of saturationexists for exgessability as Stfing equivalent (basis encoding) applicable or through
circuit depth isncreased translating data dimensions into their corresponding probability

One method in particular [382mained consistent with these@MPlitudes of a superposition state (amplitude encoding)
findings, whilst additionally seeingromising esults as a  Whilst these data encoding schemieave been employed

capable classifier. This methedcoded the input vector asea s Within other worls or [5355], they are often very costly or

of weighted parameters over a series ofiteaty unitary impractical to |mplemept, anchn become susceptlible to error
operationsVaried settings for depth could then be initializedPron€ quantum operatiorigherefore, these encoding schemes
where an increased depth did show a datien for improved may not alwaysbe an efficient meansf minimizing theusage
performance on par with classical neumatworks angupport ~ ©f qubis. _ . .

vector machine classifiersWhat makes this proposal Singlequbit encoding, developed ir8q], is a strategy of
particularly appealing is its capability to encode an arbitra@”?Od'”g a vecter of Claselcal data |n_t0 a fea'_[ure Hilbert space
amount of data into aomplexfeature spacewhilst requiring USINg @ succession of unitary operations acting on each input
the useof a single qubit onlyThe proposal of this work was data .dlme-nS|oappI|ed on a single qubit onlyor any erbnrary
examinel furtherin [37], where the singleubit classifier was SPecal unitary group of degree 2U(2) matrix operation7 (&

still found to remain effective for a multitude of tasks, even i§X2 unitary matrix of determinant 1), the corresponding
noisy quantum environments. operation is able to be decomposed into the following three

In summary, a qubit is an extremely powerful computation&ptational operations3g]:
tool, such that the development towards qunar_n:llessification 7L AU 4 U: 4y O ¢ Ur (1)
methods should have a primary focus to maximize the usage of . o
each qubit prior to increasing the amount of them. By doing so\Vith a globalphase factor) Euler anglesUddJs 9 that
a solid foundation can be built to progress forwards from in afefine the extent of each rotati¢R) around the Z, Y and Z
effort to create effective, robust quantum clasesf similarly —axes respectivelyt is noted that the unitary operation does not
to the rise of statef-the-art DL methodologies dominating require anRy rotation. Within this method of encoding, these
many classical ML problems. Eulerangles are parameterized further and defined as:

UL ayE Tu®by

UL &ps5 E Tys ®ps 2)
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UL 36 E Type ®ipg advantages and disadvantages for e&bis may opervarious
avenues for future work to exploteence why it isncludedin

. A " this sectionMore considerations towards polsk future work
Tythe value of the input vectdrat dimensionETherefore, the 54 extensions will be included later in the discussion section
extent of rotationUddUis with respect to theveightedvalue ¢ yis paper.

of the input. Using the previous parameter definitions, a
maximum of three input dimensions can be encoded per unitéry Classification Pipeline & Loss Calculation
operation applied. So far, the proposed encoding strategy has been defined in

From here the input vector will becontinually cycled subsection B, howevethe flow from input to classification
through, encoding a series tifreedimensionalvalues at a output has not been made evidéra.do this, a fidelitybased
time, until the entirety of the input has been encoded. This &pproach of measurement is adopsdeen in36], where the
NQRZQ DV D IXOO pXSORD @sankixahtie] RovevilKdhjdciys MMmiGimiye Ehe fidelity between a set of
for an input vector of 14dimensionseach dimension will have data encodings and their respive target stategor a binary
an associatechand 0 variable. Therefore, for this exampde classification task, given a set size D of imageih
total of 288 parameters are required to encode the informatianrresponding class valugs < &3 arespectivdarget statef
fully. ror sgsassignedo eachimage. Any number of classes can
B. ProposecdVethodology be incorporateq usin.g this approach,yidong that the target

. ) i states are maximalglistancedrom each other.

_Wlth an_aloglestp cl_asswalfeec%forward neural _networ!<s, From here, the proposed encoding strategy is adopted until
single-qubit encoding is an effective way of creating a highly, pixel values have been encodetto the qubitOnce at this
complex feature space through repeated upload layers of inBytns  measurement occurs where the fidelity of the qubit is
data. However, amformation isencodel at a singulapixel  oyyractedagainst eactarget class state in turim short, fidelity
level, it may be at a disgantagdor tasks wherét is important s 3 measurement of similarity, or closeness between two
to u'tillize. spatial information of pixelssuch as image quantum states, where Q ( Q s The higher the fidelity of
classification. two quantum states, the more similar they are in direcflore

This step of incorporatingocgl regionsof pixels _is_ a highest class fidelity value given is then considered to be the
fundamental a;pect of convolgﬂonal Iaygrs used within DLresult of classificationThe following loss functionis then
where the typical approacts ito use afilter, or pVOL G&paiéd which is based on that tgéd in [3]:

Z L Q G Riaflgathers a square regioof (x ( pixels In

Where agand 6gare trainable weight parameterssigned to

classical ML, a kernel operation would be appliedesult ina s © .
valuefor that region of pixels. ! | Hk&@dioF (67 3
The first step in ourproposed modification is to adopt a a @ &

similar approactio this. Rather than flatten an image into the \yhere &is the set size of images use¥is the number of
form of a column vector as a ppeocessing step, theriginal  cjasses, (: T, &4 ;pis the measured fidelity of the current
shape of theémage is maintainedA filter of size (x (isthen  gatapoint(image within the datasetfwith respect to clas®
passed over the imaggrtitioning the image intadistinctgrid  gnq (¢is the expected fidelity value to be measufeaiclarify,

of (x ( squaresEachsquareregionof pixels is then encoded 4 datapoint of class 0 has a target stdter ¢ with expected
onto the qubiin turnrow by rowusingthe described single figelity values of 1 and 0 for class values 0 andegpectively
qubit encoding schemeith pixel values(T) andrespective |t the qubitwas in state r¢ then the fidelity measurement
filter weights as parametefs20,). would equal 1If the qubitwas in state s¢ then the fidelity

By adopting this approach, pixel information can be encodefleasurement would equal Say the qubit was in a state of
[ nner wher ial relationshi ween pisel L L
in such a manne ere spatial relationships between pixels oclL e 5? thenthe fidelity measurement is given by:

maintained To clarify, rather than assigning a set of trainable 9B

parameters to eacbquare (X ( region of pixels a set of6 T ANA 1 AL AT AVAS (4)

weight parametersare assigned to the filter itselfwhich

correspond todand 6in equation 2By doing sothe same set [N which (: T, ;s L ravfor ?L r. Expected fidelity

of 6 parametersiill repeatedly beapplied to every series of 3 values can also be found using equatdny cycling through

pixels that the filter has extractedhis method reducethe €ach class value with one another.

number of peameters requireth just 6 per filter. To display the classification process in full, algoritdm
Whilst it is acknowledged thamultiple unique set of 6 Showcases the classification process from input to oulput.

parameters could be localized to edeh( region our aim isto short, for each imagdilters arepassed over extractirgfjuare

demonstrate thait is possible to produce reasonable resultéegiors of pixels at a time. Following this, unitary operations

with the fewest parametersTherefore all experimeng are performed to the qubit in turn using pixel values fronheac

contained within this workwill be conducted using a systemregion with filter weights as parametef&is is repeatedntil

setupof a single filter withé parameteri total, as displayed all pixels have been encodeshere fidelity measurements are

in figure 1 However both seups discussedffer a slightly taken with respect to the class states

different approach towards image classificatiowith
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To ensure clarity fothe hardcoded variablds lines 12 and binary and 3class classification task&MNIST datais often
18, the value in line 12elates to the three required values peconsidered a subsequently more challenging ek MNIST
unitary gateUdJand U where if Tis not a multiple of 3, then a data so possan appropriate challenge for the kparameter

placeholder value of 0 is applied, which hasadditionaleffect

systemto tackle effectively Thirdly, the methodologywill be

on qubit rotationLine 18 refers to the successive application adipplied to aface idenftiication task usinga custom dataset

unitary opeations, where the cycling ofin multiples of 3
allows for the 3 unitary operation valugsdJand Uto be given

in turn.

Algorithm 1: Proposed Methodology

Input: Dataset&, Filters Oy Class State§pParameters
Ud)Do0:aL ré L ra; Array of pixel valuesT
Output: Qubit fidelities 3

consisting ofAT&T face imageg41], as well as a collection of
images taken at random from the CIFAR10 datg&@t For all
sets of experimentshe classes and index values adtaused
remaired consistentThis ensired that the experimental results
obtained could be compared in a fair and justifiable manner.
Finally, it is important to consider the impact that
environmental noise has on the capability of the algorithm
presented.Given that our experiments are conducted in a
simulation environment, our noise implementation will also be
simulated, but makes ampriate use of various noise and

1: For image @b & (Image of height* and width 9) ) X - - )
9 For filter BB 0 (Filter of size (x ( and stride5 distortion ghannels to produ.oeahsnc andeffeguve results
) L . . . To provide general details of the experimental setup and
3: While pixelrow @3¢ O *: (Cycle filter regiois) . : :
: L . implementation, the framework for these experiments was
4: While pixel column @ ;0 9: . : :
) . 2 2 . developed using the PennyLane librar§3][ which also
5: For filter row Bss L sé& &: (Gather pixed) . : .
6 For filt | ' A incorporated usage of the PyTorch interf8. Fornon-noisy
7: Olr\lli (.ar co uEmn %adj)iaa & . simulations, the Qulacs4%] qubit simulator was used as a
8: i Nb@;aé 4 %aoeg @ak Bas plugin to PennyLane. For simulatiotisat introduce noisehe
: ar(;/ I . (NG PennyLane native mixed-state simulator was usedFor
9 ITa.tppen alue apixel (N2, @ reprodudbility, all relevant pseudoandom numbegeneration
10: Else: seeds were set to zero
11: .Ta'lgpen'olr o , For initialization, all weights were formed using a Gaussian
12: If HAJ,% 3 != 0:(% = modilo operatioh distribution with a mean of 0, and standard deviation of&s1.
13: Tappendr a sidenote in reference to the general bafpdateau problem
14: @an @af>S largely present in training QVC and similar quantum algorithms
15: @ae\ @aeES [46], it is relevant to addreshe consideration taken towards
] o o this. Whilst it is acknowledged that there have been some
16:  For filter BB 0 (Quantum circuit application) proposals towards overcoming theblem of barreplateaus
17: For 8¢ B %(Cycle class states) namely through localized cefiinctions }7], usage of quantum
18: For EL saudl, o4 (Apply weighs in sets of B natural gradients 4B], and evaluationsof initial weight
19: UL & E Ty, 04 selectiong49], we did not incorporate any specific approaches
20: UL & E Tip5 ., 05 to reducetheir occurrence Optimization of experiments was
21: UL & E 'T@p .,366 conducted as normal, where if a barren plateau was seen to be
22: Apply 7:UdA; resent, then training would be reconducted using a new
p g g
23: Measure qubit fidelity( : T, &8 ;gw.r.t d¢g distribution of weights.This is not necessarily an optimal
24 3. append( : T, && ;s method to remove the problem of barren plateaus, however
25: End there is naommon pacticeas of yet to overcome this problem

IV. RESULTS

to our knowledge, therefore it was felt that our course of action
was appropriate for now.

In this section, ourexperiments conducted using thea MNIST Dataset Results

methodology described throughout sectBowill be presented For the following results, a subset of the MNIST dat

where a initial analysis will be conducted into the reSUItSthed This subset consisted &0 trairing images per class
obtainedOur first experiments will be cono!ucted using asubsel..y and 250 test images per class used. For each experiment,
of th_e_ M.I\”ST data used for both lylary and 30'353 30 epochs of optimizatiomereconducted using the Adars(]
classification tasksThe MNIST datasgB9] isoften considered optimizer with a learning rate of I’® These hyperparameter

aln |n_|ft-|al penchr;:a_r I{or_ many MLk S%Stens targetlnlg image Xalues were selectdtbm a smallgroup ofinitial experiments
classificationas their primary task. Due to the early nature of (e in order to find a suitable choice of learning rate for

QML algorithms, we feel that usirnhe MNIST data provides the number of epochs us&® epochs of optimization was also

a suitable challenge to showcase the lowest performargcaected from initial experiments as satisfactory convergence

bognltljary of t::.e system using _ml(;l.lfrfnallparameters._ i ould be reached within the timeframe, whilst not reng
ollowing this, as a step up in difficulty our experiments wi xtremely long training periods.

be conducted using a subset of the FMNIST data€}tfor
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TABLE 1
FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 th
FOR VARIOUS FILTER SIZES USING BINARY MNIST DATA of
Filter Size  Train Loss Train Test Loss Test
Accuracy Accuracy
3x3 0.062® 0.932 0.0609D 0.946
4x4 0.05012 0.951 0.04739 0.958 th
5x5 0.07104 0.9 0.08148 0.912 lo

The resuls displayed in Table 1 show classification W

MNIST data of classes 0 and 1, with a varied filter .dikere ¢

the trainset and testet accuracy achieved was 0.951 and®.9
respectively for a filter size of4t. Thesecondbestperforming
filter size was 3x3, followed by 5x5 in third.

6

The slower yet fairly consistent optimization curve supports
is, as the systenouldbesteadilyattemptingo maneuver out
this lowergradient region.lt is unclear whether, given

enough training epochs, the experiment using a filter $i2gd
will overtake the 4x4 filter experiment. However, the 3x3 filter
curve does appear to plateau at approximately 22 epochs,

erefore this would suggest that the system had settled into a
cal minimum, and is unable to improve further.

Regardless of considerations towards optimal and

suboptimal weight distributions and barren plateau regions

. ; . within the loss landscape, the system is still able to consistently
performance values from experiments conducted using blnarpé1

ssify the testing portion of the dataset to a high degree of

5accuracy'n the 90% bracket whin 5 epochs.

TABLE 2
FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30
FOR VARIOUS FILTER SIZES USING MULTICLASS MNIST DATA

Test Set Loss

0.50 = g P Filter Size  Train Loss Train Test Loss Test
:::; | —— Filter Size: 4x4 Accuracy Accuracy
! = Filter Size: 5x5
035 4 3x3 0.13127 0.723 0.13337 0.721
2 e ] 4x4 0.18036 0.629 0.17281 0.627
- 5x5 0.13160 0.670 0.13181 0.659

0.20 H

0.15
0.10
0.05

i

L L L L L L L L L
10 12 14 16 18 20 22 24 26 28 30

Epoch

0.00 ———T
2 4 6 8

Test Set Accuracy a

i;/__-——

T T T T T T T T T T T T T

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Epoch

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40

Accuracy

= Filter Size: 3x3
=== Filter Size: 4x4

— Filter Size: 5x5

Upon inspection of the test set loss and accuracy curves

displayed in figure2, it can be seethe behaviour of the curve
for the 3x3 filteris different to that of 4x4 and 5x5. Here, the
curve for the 3x3 filter experiment begins at a more favorable
standard of classification performance, bay improvements
occur slowly and gradually over the course of training.

The latterexperiments of filter sizes 4x4 and 5x5 begin in a
more unfavorable position with lower loss and accuracy values
however the initial improvements to classification performance
are very sharp and quickly plateau by approximately epoch 5
The behaviour exbited here suggests that whilst the initial
weight distribution for the 3x3 filter experiment may classify

Table 2 showsfinal performance values taken at epoch 30

from experiments conducted on multiclassc(&ss) MNIST
data using classes 0, 1 and 2 and a varied filter\8lizRin this,

filter siz of 3x3 produced the bedassificationperformance

overall, followed by the 5x5 filter and 4x4 filter respectively.

Train Set Loss

0.30 4 = Filter Size: 3x3 == Filter Size: 5x5
0.25 4 = Filter Size: 4x4
0.20 4
2 015 - L f
[
0.10 401355
0.130 - -
0.05 40125 4 : ; ; :
24 26 28 30
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the dataset to a higher standard to begin with, the starting weight

distribution may alsde present in a region of lower gradient
within the loss ladscape.
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Fig. 4. Visualizations of Bloch sphere embeddings of datapoints comdsmpto dataset images for the experiment conducted usttas8 MNIST data. Le
to right Bloch spheres show train set data embeddings taken over epoch 30 for the 3x3, 4x4 and 5x5 filter size exEgaures/rd-or the top row, po
colourscoHVSRQG WR WKH LPDJHVY UHVSHFWLYH FODVV ZKHUHDV IRU WKH E RWINBIRS k&Rese
incorrectly classified datapoints. For all Bloch spheres, the three central arrows represent the éavgetatdor that colour class.

Whilst the results achieved here may not be sifithe-art, distributed towards their respective target statesrall, with
there are some points which must be considered in contexttiogé 3x3 filter experiment arguably showing the most distinctive
this work. The first is that classification is being conductedistributions of datapoints per clagsowever, despite these
using fidelity measurements of a set of maximalhaced target differencesthe loss value of the 3x3 experiment is very slightly
state vectors. As only a single quis being examined, the below the 5x5 filter experiment. Yet, when accuracy is
distance between class states becomes smaller as more classesidered, this 0.00033 difference in loss equates to over 5%
are considered. As the loss function implemented aims ¢wop in accuracy
minimize the distance between embedded datapoints to theifThis can be justified by looking at the position of the colour
target class state, this naturally becomes morecdiffito groups of datapoints for the 5x5 experimdrgoking at which
achieve with an increased number of classes, providing tblassifications are correct (green points on the bottom row), it
dataset is not easily separable. can be seen that the majority of these correspond to the distinct
If the dataset is not easily separable, then the low parametérsters ofblue and green datapoint groups in piet above
count implemented here may not be able to provide dequating to various image classeldpwever, there is a large
embedding capability that is complex egb to account for section towards the bottom left where there is a significant
this. As charts displaying train set loss and accuracy in figureo8erlap between the blue and yellow class clustérs shows
show, this lower embedding complexity thus equates to that the embedding capability here was not strong enough to
plateau, or extremely marginal improvements in both loss asdparate thse clusters as effectively as the 3x3 filter
accuracy over time. experiment, where the datapoint clusters were spread more
In order to demonstrate this, fige 4 displays embeddings of widely yet remained fairly compact.
train set data during epoch 30 from each experiment asWhilst the 4x4 filter experiment produced the poorest
datapoints on the Bloch sphere. This is done to assist in alassification performance resultgverall the resulting
understanding of how the embedding capability of the curreambeldings show that this experiment struggled to form a
system setup, combined with reduced class ama fdding significant class cluster consistingtb&yellow datapointsand
classes affects classification performance. so ha many incorrectly classified images as a result. Had the
Here, the clearest difference between embeddings is that thel filter experiment been more successful in doing this, then
5x5 filter produced a muctienserembedding of all datapoints it could ke argued that the final embeddings of the image data
in this caseln contrast, embeddings from a 3x3 and 4x4 filtewould act similarly to the 3x3 experiment, thus producing a
were fairly similar in that the datapoints are more widelystronger classification accusac
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Fig. 6. Visualizations of Bloch sphere embeddings of datapoints corresponding to dataset images for the experiment conda&edl filsingize. Left toight
Bloch spheres show train set data embeddings taken over epoch 1, epoch 2 and epoch 30. Point colours correspond % thleHwagesFW LY H |
points represent class &d green points represetdss 1.

Overall, the multiclass MNIST gxerimental results show very little convergence and plateaus close to the initial loss
that the system is capable ofassifying the majority of value after epoch 1.
datapoints in their correct classes with just 6 parameters.
However, perhaps this classification and embedding capability
could beimproved by further experiments and anayisio the
system designi.e., including additional filters.

B. FMNIST Dataset Results

For the following results, a subset of the FMNI8ataset
was used. This subset consisted of 250 training images per class
used and 100 test images per class used. Fareegeriment,
30 epochs of optimizatiomvere conducted using the Adam
optimizer with a learning rate o r’”. These hyperparameter
values were selected as a result of conducting a small group of
initial experiments to find a suitable choice of learning rfat
the number of epochs used.

TABLE 3
FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30
FOR VARIOUS FILTER SIZES USING BINARY FMNIST DATA

Filter Size  Train Loss Train Test Loss Test
Accuracy Accuracy

3x3 0.11616 0.884 0.10844 0.895

4x4 0.1292 0.824 0.16690 0.790

5x5 0.1794 0.726 0.25194 0.575

Table 3 displays classification performance valugem
experimentson blharyFMNIST dat_a; using classes Q-shirt) Fig. 5. Train set and test set loss curves relating to experimental
and 1(trousers)with varied filter sizesFrom these results, a gisplayed in table 3. The expmental data consisted of a subset of
filter size of 3x3wasthe best performinglter size reaching a FMNIST dataset using image classes of 0 and 1.

test set accuracglose to90%. Unlike results using binary  tha charts displayed indiure 5 appear to suggest theite
MNIST data, classification accuracy regresses as the filter Siéﬁ]beddingcapacity of thealgorithm in its current state is
Increass. perhaps notomplexenough to be able to optimize effectively

_When inspecting the train seind test set l0SS CUIVeSy, the training data providedhe difference in loss values at
displayed in figures, the behaviour of all three experiments gqch 1 js likelycausedrom the initial weight distributionfor

appears to contradict one another to some extent. Whilst the h experimeriteing in more advantageous starting positions

filter size experiment initially performs worse than the others, Thesharp decrease in loss that follows for the fietébochs

it shows a very rapid decrease in lotsllowed by a sharp 44 then be explained by tisgstem attempting to separate
plateau. In contrast to this, the 4x4 experiment shows a slgug ¢|yster of datapoinfsrmedat the starto their respective
and gradual decrease in loss, and the 5x5 experiment dlsplfy@et states. However, the complexity of embedding that a
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single filter provides is perhaps not too great, meaning that theFor each experiment, 30 epochs of optimizatieere
datapointsvhich are of a fairly inilar natureare unable to be conductedusing the Adam optimizer with a learning rate of
separated further into two opposialgssclusters This results s r’’. As with all experimentshyperparameter values were
in the overall distribution of datapoints on the Bloch spherselected/ia asmall group ofnitial experiments in order to find
being left virtually unchanged, hence a plateau in the loss valasuitabé choice of learning rate for the number of epochs used.
itself. In addition, the 4x4 fter experiment could be in an areaAs before, 30 optimization epochs allowed for satisfactory
of lower gradient within the loss landscape, resulting in theonvergence without excessively lengthy training periods.
behaviour displayed and described earlier being drawn out over

a longer period of time. TABLE 4

In order to \(lsuallze .thIS, figuré displaysvarious Bloich F'NA'[Jgl';\IAGS\S/EQ?QSSL\IIL';EEFF{{FSEE"SAESE \éLAJLSL%I(E)SMA,:TAE;TA?_CH 30
sphereembeddings ofrain setdataat epoch 1, 2 and 30ith IDENTIEICATION DATASET
point colour corresponding to class value. For theHaftd
Bloch sphereplot at epoch 1, the distribution of datapoiigs  Filter Size  TrainLoss  Train Test Loss Test
fairly dense towardshe top hemisphere close to stateg the Accuracy Accuracy
target class state for classAk the loss function implemented 3x3 0.14685 0.808 0.15141 0.825
refers to the fidelity, or measure of distance between the 4x4 0.17433 0.763 0.17231 0.745
datapoints and their respective target classes, the fact that many 5x5 0.17580 0.752 0.16917 0.70
datapoints of class 1 are far away from their target stats ©f
will cause the loss value to increase. Experimental resultwith loss and accuracysclassification

Following a single training epoch, the second set of yerformance metrics can be seen in tablés with previous
embeddingsdr epoch 2 are more evenly distributed betweef,jticlass MNIST and FMNIST experimental results, the filter
the two hemisphere¥isually, as thedatapints are embedded gj,0 of 3x3 produces the highest performance oveféiien
closer tatheir target staten average, this is equatedheprior viewing the gaph of training set loss, displayedtive top half
considerable drop iless value. However, between epoch 2 angs figure 7, the loss values for 4x4 and 5x5 filter size

30 the system is unable to separa';e the two_clusters of datapo@)&?eriments are very similaand appear to plateau at the same
and embed them clostawards their respectivarget states.  gpoch However, the loss curve for the 3x3 filter experiment
In particular, there is an aredongthe righthand side of the

Bloch sphere that contains an overlap of the two class clusters
of datapoints Because the system is unable to separate the
datapoints dcated within this area, the overall shape of
embeddingsis simply shifted around equallyneaningany
decrease in loss for a particular clessirrored by an increase

for the opposing clas3 his causes the overall loss value to be
left fairly unchangegdhence the plateau described earlier. If the
complexity of embedding was higher, then perhaps the system
could separate the class clusters of datapoints much more
effectively, resulting in a continued convergence of loss
towards a lower valuand a higheaccuracy in time.

With these points consideresl/en with the suggested lowest
level of embedding complexity that the system offered within
this experiment, a test set classification accuracy close to 90%
was achievedin the context of this work, this & promising
achievement, which can only hope to be improved upon if the
embedding capability, followed by the subsequent learning
capacity of the algorithm was increased thtowudditional
work and analysis.

C. Fadial Identification& Facial RecognitiorReslts

The following subsection consists of two experimental
setups Thefirst set ofresultsconsists of bespoke datastitat
was createdndconsissof images from thé&T&T face dataset _ _ o .

. . . Fig. 7. Top £Train set loss results of a facial identification task, using a
with a random selection ofnages taken from th€IFAR10 filter with varied size between experiments. The dataset consisted of
dataset The objective of this experiment is to determineface image data, combined with a selection of images taken from the Cl
whether a provided image is that of a face (class 0), ofaum dataset. BottomtBloch sphere visualizations of train set image embed

.. . for the 3x3 filter experiment. The ldfiand sphere shows embeddings dt

(class_ 1)' A traimg S_et of 300 Images per class was used, anepoch 10, whereas the rigind sphere shows embeddings during epoc

a testing set of 100 Images per class used. Point colours correspond to the class of the emigdahage, with blue fi
class 0 and green for class 1.
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does not appear to plateau in this experiment over the number
of optimization epochs conducted.
By visualizing the associated image embeddings in the
bottom half offigure 7, it can be seen that at epoch 10, the two
class distributions are heavily overlapped at the border between
the two classification regions (the two hemispheres in the case
of binary classification)As optimization continues by epoch 30
it can beseen by the righhand Bloch sphere that whilst the
datapoint clusters are still overlapping around the central axis,
they are being drawn away from each other slowly.
This equates to the slow but gradual decrease in loss
throughout training for the 3x3Ifier, where datapoints are
becoming closer to their respective target stdtasat a slow
pace. This behaviour suggests that many datapoints are
located close to the boundary between the two class regions,
evena small separation between the two iliéed clusters
could produce a relatively large increase in accurdoyever,
it is unclear where the natural limit of the system is in this case,
and a plateau could be reached at any moment.
Regardless of any speculative analysis, the results achieved
here are once again promising, and support the aims of this
work by showing that a good classification result can be
achieved with few parameters needed, providing a foundational
algorithm with potential for further development and
improvement. Fig.8. Loss result curves foa binary face recognition task conducted u
Thefollowing results are from the second experimental setT&T face image data.
within this subsection. The objective of this experiment was fts natural limit with the data providedn contrast to this,
perform a facial recognition task, using different individualénterestingly the curve for testing set loss continues to decrease
from the AT&T dataseDue to the small size of individual classregardless of the previously mentioned platéhis could be
subsetswithin the dataset, it felt appropriate to include thesexplained by the initial weight distributions affecting the end
resultsas a additionalsmaltscale experimentiollowing on  embedding result for the test set dateother words, the graph
from the previous fdal identification experimental results would suggest that the experiment using a 3x3 filter size was
which contained larger scale adata.Here, a training set of 7 initialized with a more optimal selection of weight values than
images peclass and a testing set of 3 images per class was udbé, others, therefore allowing the subsequent embeddings of
with two classes of image in total. test data datapoints to be on average motbéir respective
TABLE 5 class regions.

FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 Another point that should be considered is the nature of the
FOR VARIOUS FILTER SIZES USING BINARY AT&T FACIAL

IMAGE DATA task itself. Whilst the aspect of smaliale data has been
_ ' _ _ mentioned,an important step within many facial recognition
Filter Size  Train Loss  Train Test Loss Test methods isthe feature extraction stepThis step allows
Accuracy Accuracy . . L
algorithms to extrapolate key characteristics of an individuals
3x3 0.23605 0.643 0.11310 0.833 face to aid in classificatiom\s a feature extraction step was not
4x4 0.23500 0.571 0.24201 0.500 introduced within this methodology, then combined with the
5x5 0.23895 0.429 0.33594 0.500 small amounts of data provided, the sysmggkedto learn

any representation and difference between the two individuals.
For the results displayed in tab® the classification Better results may have been achieved if a feature extraction

accuracy for theraining set of data was fairly poor for all pre-processing step was introduced, however this is beyond the

experiments. Whilst the testing set accuracy was fair for t$6°P€ ©f this work and is a topic to be explored ifegerithm
experiment using a 3x3 filter size, the other experimeanas specifically applied to a facial recogpnition task.

produced an even guess for each cld$® unusual set of D, Environmental Noise Impact
results achieved here could sugg#hat there was simply a too In the current NISQ era of quantum computing, it is

small scale of data to truly learn an existing representatiqn,,rant to consider the effect that environmental noise has
between the opposing classes. during optimization of quantunalgorithms. There are two

This_is_ again supported by _result graphs shown in figuze approaches to analyzing the effect of environmental ndise
the training loss foeachexperiment appears to plateau at very; ; is running the algorithm directly through a quantum

similar valuesdetermining that the system had perhaps reaChEPocessing unit (QPU)and the second idy recreating
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Fig. 9.Lossand classification accuracy valuesaibed through various binary (2C) andlass (3C) experiments conducted in a noisy simulation environmen
the amplitude damping channel. The experiments were conducted using a subset of the MNIST data (classes of 0, 1gledil®r afssize3x3, andavalues o
0.05 and 0.1. For clarity, the experiment with zero noise is a direct reference to the experimental result display&dimdtfiglere 2

environmental noise using a noisy qubit simulator. Both damping can be modelled by the following Kraus operators
approaches have advantages and disadvantages tp lihem where & B > & s the probability ofjubit phase damping
eitherprovide a reasonable insight into how the algorithm may

) - . r . r
performin the NISQ eraDue to theability to monitor the effect -4 L d? th a -sL o{ %—éh (5)
of noise more closely, our implementation wasducted using

the second approadly simulaing environmentahoise. The application of Kraus operatar, does not affect ther ¢

In order to recreate instances of environmental noise, thgrertion of the quantum state, however negatively impacts the
are various noise channels which can be applied to simulatggoortion by reducing its amplitude. This is the same operator
differenteffects ofnoise occurring on quantum informatigks  that is used as part of amplitude damping also, however the
an example various noise simulation channels availabléecond Kraus operators is different. The application of 5
includede-phasing, bifflip andamplitude dampinghannelso  affectsthe qubit by removing ther ¢portion of the quantum
name a few For the purposes of thisulsection, the state completely, as well as reducing the amplitude of $ige
environmental noise channels that will be implemented apmrtion alongside this. More information on the phase damping
amplitude damping and ptegamping. These models of noisechannel can also be found irg]3
were chosen as they are realistic models of noise, and ardor the following results, a subset of the MNIST dataset was
implemented within other relevant works in the fie38,[51]. used. This subset consisted 280 training images per class

Amplitude damping models energy relaxatigithin a qubit used andL00 test images per class used. For each experiment,
that occursvia interactions with the envdnment over time. 30 epochs of optimizatiomere conductedusing the Adam
More information onthis can be found in 37,38]. Phase optimizer with alearning rate ofs 1’8 These hyperparameter
damping modek environmental noise that affects thevalues wereselected as they were used throughout previous
representatiof quantum information, without changes beingexperiments conductedvith the MNIST data, and so
made to the status of excitation within the qubit itseliase consistency between experiments was desired.
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Fig. 10.Loss and classification accuracy values aledithrough binary (2C) andcdass (3C) experiments conducted in a noisy simulation environment us
phase damping channel. These experiments were conducted using a subset of the MNIST data (classes of 0, 1 andt2Y), af sizgl8xi3, andivalues rangin
from 0.05 to 0.1. For clarity, the experiment with zero noise is a direct reference to the experimental result displaiget amd figure 2.

The behaviour that is expected within theg®ups of The results displayed in figur® appear to follow the
experiments ighatas the noise magniiie ais increased, the behaviour that is expected smmeextent. For binary class
general loss value would increase and the accuracy value woeilgheriments, a sharp decrease in loss is seen when noise is
decrease in comparison to each experiment contained within thizoduced, before a very slight loss once the noise magnitude
task nature (i.e., binary or multiclass classification task)s doubled.This does not translate across to accuracy values
However, as described previously within this watkvould be  however, where the classification accuracy wath.1 is higher
expected for a likdor-like value to produce a lower than that with &0.05. This suggests that decay within the
performance score as more classes are introduced to the taskxcitation status of the qubit affects the classification

Charts displayed in figur® show experimental results performance somewhat.oiever, once the impact of this is
obtained with the implementation of amplitude damping@resent, further reductions in performance are not in proportion
channe$ after eeh unitary operation using qubit decay to the magnitude of qubit decay.
probabilities of 0.05 and 0.tompared against previously The experiments using 3 classes of data also support this, as
gathered results with zero noise influentleese charts display there is a significant increase in loss and decrease in accuracy
the evolution ofboth the train and test set loss aadcuracy as noise is introduced. However, these values appear to be very
values as training epochs are conducted, up to a maximumsirhilar for &0.05 and&0.1, at an approximate loss of 0.184
30 epochf optimization and approximate accuracy of 45%verall, the system is

As can be seen throughout all cunadsloss valuessharp affected to an extent by the introduction of qubit decay via an
plateaus occur very soon to optimization beginning with  amplitude damping channel. Whilst initially this drop in
considerably slower lossinimalizaion in generataking place performance is quite significanthe impact of noise with a
after epoch 3This is simila for accuracy charts as wellhere greater magnitudesireduced.
any sharp mprovemerg plateauat roughly epoch3, before Figure 10 displays experimental result charts obtained
improving at a much slower rate. through implementation of a phase damping chaaftet each
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unitary operationusing qubit damping probabilities of 0.05 and V. DISCUSSION

0.1 as a co_mparison against the previously obtaine_d result withrg summarize the findinggliscussedin section4 in its

zero noise influencelhese charts display the evolutiorbofth — eptirety, initial experimental results have beelisplayed in

the train and test set loss aamturacyalues as training epochs grder to showcase early results obtainesing a varietyof

are conducted, up to a maximum of&ibchsof optimization  gataset and applications from imagelassification to facial
Similarly to those in figure 9, sharqmprovements are seen for recognition Overall, promising results have been achieved,
loss and accuracy values, i appear to piteau at giventhe purposes of the work and the system setup conditions
approximately epoch ,3prior to leaning at a considerably posed However, there are also key areas which would perhaps

slower rate from then onwards. ~ greatly benefit from further development andakele the
From the charts displayed in figur, the expectedis  performance of the system to be enhanced further.
followed for the most part. As the noise valéécreasesthe | the case obinary classification experiments conducted

loss values also increase for each task in Bmmilar tothe sjngthe MNIST data, the accuracy values obtained are not
behaviour exhibited by the loss values, the final classificatiqpcessarilyas high as the leading deep learning methodologies.
accuracy values also follow the behaviour that would bgowever, the fact thahe proposed method was able to reach
expected somewhat. _ _ _test set accuracy scores in the 90% region within 5 epochs is
Within this, the only experiment which does not follow thigyromising in itself. Whilst realizing that the experiments
pattern is where&=0.05 when using 3 classes (tpeen bar). conducted here only otained a subset tieMNIST data,and
Here there is a spike to the loss value, however the accurg@y the full dataset, it can be expected that the classification
obtained is still comparable to similar experimental setups. Aferformance of the method witiaturally drop slightly as the
explanation for this behaviour is that the embedding that thgymper of classes are increased, as well as the size of the
method has performed on the dataset results in datafi@ing  §ataset.
scattered around the borders between the three class regionshis was noticed fédwing experiments conducted using 3
Even if a datapointlies just within that class zone, it will be ¢jasses ofthe MNIST data, where classification accuracy
classified as such yet may still possess a larger distance bet""ﬁ%@nated at a lower value, and was unable to reach the high
the ideal target state and itself. Over the coursthefentire accyracy levelthat would belesired in an image classification
dataset for that epoch, this can equate to a larger value of |9Fg$orithm such as well within the®8% percentilelt is to be
for many datapoints located close to these boundaries, therefgggeg thatonly a single filtercontaining 6 parametensas
it is difficult to label this experiment as an outlier and inSteaH‘nplemented over the course of this wahereforecomplexity
could be thought of as a difference in embeddin of the system can be increased by adding any number of filters
Starting from experiments conducted with zero noise, thefg the experimental framework.
is a large initial increase in loss as noise is introduced to theNotingthatthe MNIST dataset can sometimes be considered
simulation. However, as the noise value is doubled to 0.10, thgsig or nottruly representative dhe classification capability
increase in loss does not increase propaatlgninterestingly  of an algorithmexperiments were conducted using a subset of
whilst there is a large increase in loss here, this does RRE Fashion01,67 GDWDVHW WR LQFUtH®VH Wt
translate across to the classification accuracy values where ghgssificationtask Here, the systershowedpromising results,
performance is comparable overall. As before, this could hgachingits highest classificatioaccuracy values very close to
explained by a more optimal distribution of initial weightingsggos for a filter size of 3x3 In the context of this work these
for the experiments witté=0.05, embedding datapoints within regyits are considered goahd show potential for the method
their correct class region more often than with zero noise. Qf pe enhanced further.sAthe complexity of embedding is
another implication suggested here is that the system mgyreasedthese resultsauld be improved upon, allowing for
exhibit a small amount of robustness agamsbwerlevel of he plateau in loss to bedecedto a much lower value.
phase dampingmpact within the qubit In order to further demonstrate the initial capability of the
Regardless of whether the loss value increases, suggesmgposed methqd experiments using a bespoke dataset
the classification confidence is lower overall, the accuracy Bonsisting of AT&T facial image data combined with CIFAR10
maintained until noise magnitude is increased. To support thiﬁ1ages were conducted. As with previous experimeths,
the effect thatphase dampinghas was even $s for results were not stat-the-art, but considered promising and
classification accuracy of the@ass task, where performancegood in the context of the work and the experimental framework
is comparable within approximately 10% and 5% for train se{sed.\When applied to an additiontdsk of facal recognition
and test set respectively dsvas increased. using AT&T image data only, the system was unable to meet a
This is a promising factor to consider, as an innate robustnegisfactory convergence to the data provided. As described
towards any kind of environmental noise can aid inpreviously, this is likely due to the smaltale data provided
optimization. In a case that the system was in a state capablgigfng a lack of representation across the dataset, meaning the
aChieVing 90+% C|aSSificati0n aCCUFacy ona3+ CIaSS ta.Sk Usimthodok)gy was unable to learn and Optimize effective|y.
a single qubit, then any robustness held will be supportive toas the syste was introduced to different environmental
optimization if applied ira noisy quantum environment. noise channels, initial results modelled using an amplitude
damping channel suggest that noise greatly influences the qubit
and reduces classification performance. However, when
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modelled using a phase damping mheal, initial results appear sphere that corresponds to each class is redlitedefects of

to suggest a lack dmpactor a slight robustness agairtee  this reduction arenuchgreater when a lowerumber of classes
effect that phase damping has by manipulating the datapoawe wsedhowever the ability to embed many datapoints into a
embeddings As noise levelswere increased higher,a very small sectioof the Bloch sphere will bdifficult.
subsequent drop in classification accuracy coulddsm Therefore, naturally we wilheed toinvestigate the use of

Whilst this could be seen as a negative point considering thmiltiple qubitsin order to contain sufficiently sized class
current NISQ era of quantum computation, it is common to séeundaries when many classes usedHowever, the point at
this drop in classification performarscacross many quantum which a single qubit is unable to cope with the number of
algorithms when noise is introduced[24]. With further classeasedis unknown.This point will also be undoubtedly
development, it is hoped that any potential robustcasde affectedby factors such as the dimeasality or complexity of
realized, or improved upon to enhance performawben the data, as well as by factors that affect embedding complexity,
appliedin noisy environments. such as raiploading of data encodings seen i6,[37].

A speculative suggestion here may bet@stigatewhether It is noted that our new singbpubit convolutional neural
applying additional filters may miim the effect of data re network focuses on using as few qubits and pat@mmeas
uploading which is suggested tionprove expressivity within possible. Here, wieaveproposel using a filter based version of
the qubit[52], andthus mayprovide somerobustness to noisy the existing method where the spatial relationship between data
environments with additional layers, in particular the amplitude preserved. In order to test a "maximally efficient” version of
channe[37]. Exploring modificationsnay ad in the robustness our quantum network, our experiments were carriedhatitt a
of the proposed method, and perhaps decraagedrop in single convolutional filter that is applied everywhere on an
classification aseen in figure 9 within noisy environments. image instead of many different filters that would each have

To once again put the experiments conducted into their own parameters, where the loss function was modelled
perspective, the classification performance for each set wfing the fidelity between the quantum state that is outputted by
experimental results was able to be achieved using justtt& unitaries and the pure quantum state that exists as a
parameters in total. As the field of deep learning has progressgaissification of an input.
from relatively shallow[20] to very deep ngvorks consisting In eachexperimentwith three different types of problems
of many thousands of parametg24], it should be considered (MNIST, fashion MNIST, and AT&T face databdseour
here that the work being shown is proposed as a foundationquantum networkvas able to create a filter sizesultingin
starting point to progress forwards from. performances with @&ommendable qualityAlthough, t is

As has occurred for many modern ML algorithmsacceptedthat the leading CNN algorithmachieve better
modifications and adaptahs need to occur to improve uponperformanceaccuracyour goal was to test the method using a
previous performance and meet the task at hBmthat extent, simple version of our QML having room for further
there are a few notable ways where this work could be extendetbrovement.
to provide additional insight and analysis into the feasibility of In our future wok, we would like to extend our strategies to
the algorithm as guantum image classifier. realize moe compéx architectures targeting higher

Firstly, an aspect well noted throughout this work is that gferformancesvhile theinitial work in this paper may servesa
the low number of filters, and subsequently parametess important first step for what will be an exhaustive analysis
optimized in this implementatiofVhilst the point of this work of a specific type of QMlalgorithms.
was to showcase the potential with this fawumber, it also
opens a channel for further developments to remain efficient. VI. CONCLUSION
Here,ananalysis could be performed using additional numbers | this work, a framework for efficient quantum image

of filters to determine any difference in classification,assification was proposed, using a minimum value of 6
performance.In addition, a usage of localized weights a,arameters with a single qubit only. Multiple experiments were
descibed in section3 may also provide r advantage of onqucted using datasets of changing nature and difficalty t
maintaining spatial relationships between pixel valugthout explore a variety of experimental results, and depth to our
needing Fo incrgase the ovenalimberof implemented_ filters. analysis. Initially, the results dscussed throughoutre
Following this, a secondary route for extensicould promising, and display potential for the methodology to
envisageconsidering te inclusion of colorized imagego perform highly using a lomumberof parametersThe system
match a traditional image classification task specification mo{gas consistently ablto achieve classification accuracy values
closely than focusing on greyscale images primaithin  \yithin the 84" and 90" percentile in a short optimization
this, avenues to assign colour channels to individual quisits, {jmeframe within 3Qrainingepochs.
well as analyzing the effecf warious entanglement operations However, wien our experimental setup was applied to a
between qubits may allow for a better understandir’lgmfthe noisy quantum siulation using amplitudand phase damping
methodology may extend to modern day tasks that includgannels, classification accuracy was reduced greatly by the
large-scale, colour images o S ~ impact of qubit decayhrough amplitude damping. However,
Finally, it is well noted that a significant limitation of a singléayperimental resultsuggested a limited amount of robustness
qubit is the capability to classify many classes of dasamore  fr c|assification performancagainstthe impact of the phase
classes of data are added, the subsequent area within the BMping chanrévy changes to the phase value of the qubit
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Overall, the proposed methodology provides solid [13] B. Wang, D. Zhang, D. Zhang, P. J. Brantingham, and ABdtrtozzi,

- : 3'HHS /HDUQLQJ IRU 5HDO 7LPH &ULPH )RUHFDV!
foundation to progres§ forwarts devglc_)mnd build upon the . Sep. 16, 2021. [Online]. Availabjbttp:/arxiv.org/abs/1707.03340
success seen here using the bare minimum parameter and quijits <pGDY 3'HHS /HDUQLQJ EDVHG 6DIH 6RFLDO

count.As outlined in sectio®, considerations for future work Detection in Public Areas for COVID 6DIHW\ *XLGHOLQHV $GK

include an investigation into implementing additional filters, to '2”5'28' 50‘?_5"1@22'2'57;1.}:51%'Zggghs“‘c‘)‘écgbg' no. 7, pp. 1368375, Jul.

determine whetherlassificationperformance can be improvedis) m.wu : ;LH : 6KL 3 6KDR MDQeGirone dekectiod 5HD O

upon and robustness similar to other works can be achieved. XVLQJ GHHS OH D UldttQNotds IristU Rdpik. Sci. Soc.
Alongside this, there are varioupgortunities to extend the ;_ec;gg%”gg‘?”é E3”9- LNICSTol. 251, pp. 2282, 2018, doi: 10.1007/978

foundational methodology proposed here towards medayn [16] | psychouletal. *$ 'HHS /HAPRI@thdal Privacy Preservation

image classification tasks that utilize higgsolution, colour LQ $VVLVWR®S/IEFH IexJConf. Pervasive Comput. Commun.

images. These opportunities could examine the use of localized Work. PerCom Work. 2018 pp. 710715, Feb. 2018, doi:
; o > L 10.1109/PERCOMW.2018.8480247.
pixel weighting rather than individual filtaveights, as well as 117 "o HUGLYDQ 2$PELHQW $VVLVWHG /LYLQJ ZLW

investigate the effect of applying multiple qubits an Accessed: Sep. 16, 2021. [Online]. Availab[étips:/ftel.archives

entanglement measures to the system framework. ouvertes.fr/tel0292778
[18] 0 $ 4XUHVKL . 1 4XUHVKL * -HRQ DQG ) 3L
based ambient assisted livingrfselfmanagement of cardiovascular
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