# Northumbria Research Link

Citation: Easom-McCaldin, Philip, Bouridane, Ahmed, Belatreche, Ammar, Jiang, Richard and Almaadeed, Sumaya (2022) Efficient Quantum Image Classification Using Single Qubit Encoding. IEEE Transactions on Neural Networks and Learning Systems. ISSN 2162-237X (In Press)

Published by: IEEE

URL: https://doi.org/10.1109/tnnls.2022.3179354 <https://doi.org/10.1109/tnnls.2022.3179354>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/49176/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: <a href="http://nrl.northumbria.ac.uk/policies.html">http://nrl.northumbria.ac.uk/policies.html</a>

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)





# Efficient Quantum Image Classification Using Single Qubit Encoding

Philip Easom-McCaldin, Ahmed Bouridane, Senior Member, IEEE, Ammar Belatreche, Richard Jiang and Somaya Al-Maadeed

Abstract— The domain of image classification has been seen to be dominated by high-performing deep learning (DL) architectures. However, the success of this field as seen over the past decade has resulted in the complexity of modern methodologies scaling exponentially, commonly requiring millions of parameters. Quantum computing (QC) is an active area of research aimed towards greatly reducing problems of complexity faced in classical computing. With growing interest towards quantum machine learning (QML) for applications of image classification, many proposed algorithms require usage of numerous gubits. In the noisy intermediate-scale quantum (NISO) era, these circuits may not always be feasible to execute effectively, therefore we should aim to use each qubit as effectively and efficiently as possible, before adding additional qubits. This paper proposes a new single-qubit based deep quantum neural network for image classification that mimics traditional convolutional neural network techniques, resulting in a reduced number of parameters compared to previous works. Our aim is to prove the concept of the initial proposal by demonstrating classification performance of the single-qubit based architecture, as well as to provide a tested foundation for further development. To demonstrate this, our experiments were conducted using various datasets including MNIST, Fashion-MNIST and ORL face datasets. To further our proposal in the context of the NISO era, our experiments were intentionally conducted in noisy simulation environments. Initial test results appear promising, with classification accuracies of 94.6%, 89.5%, and 82.5% achieved on subsets of MNIST, FMNIST and ORL face datasets, respectively. In addition, proposals for further investigation and development were considered, where it is hoped these initial results can be improved.

Index Terms — Quantum Deep Learning, Quantum Convolutional Neural Networks, Single-Qubit Encoding, Quantum Facial Biometrics.

#### I. INTRODUCTION

Image classification has seen rapid improvements over the past decade alone. The processing capability of readilyavailable GPU units has enabled a chain of strong-performing deep-learning (DL) methodologies [1-8] to dominate the field, boasting high levels of classification accuracy that can be finetuned to a specific task. The result of this is that machine learning (ML) has been able to become integrated within society for many social and industrial uses, e.g., healthcare [9-12], public-safety [13-15] and assisted-living [16-19].

Whilst the current state of DL provides algorithms that can classify complex datasets to a high standard, further improvements are becoming more and more marginal, and are often at the expense of adding many additional parameters. As an example of this growth of complexity within DL, one of the earliest convolutional neural network (CNN) methods, LeNet5 [20], has a total of ~60,000 parameters and can reach test-set accuracy values over 98%. In contrast to this, one of the top-performing methods [21] reaching an accuracy value of 99.83%, requires a mere 1,400,000 parameters, over 23x that of LeNet5 for 1-2% increase in accuracy performance.

This monumental increase in parameter counts accelerated by GPU capability is not necessarily a negative when the highest-levels of performance are required. However, in order to progress towards effective ML algorithms, the current tradeoffs of requiring additional parameters for marginal gains may not be the most appropriate course of action. The story of deep learning has shown that, by focusing on the development of methods which have a more efficient usage of parameters, a foundation can be provided to build upon and progress towards the highest-performance levels of classification whilst keeping efficiency of training and execution a primary factor.

Quantum computing (QC) has undergone a tremendous level of development within the past few years, with quantum machine learning (QML) seeing a large increase in attention and productivity. Through innate parallelism and fast execution speeds, it is supported by many that QC may provide the necessary means to overcome classification performance plateaus seen throughout classical ML, and ultimately progress towards effective, yet efficient ML algorithms. Even though QC is in its infancy, or noisy, intermediate-scale quantum (NISQ) stage, progress has been made towards development of standalone QML algorithms that are capable classifiers in themselves [22,24,28].

In this work, we aim to progress the thorough work conducted towards single-qubit classifiers and propose an architecture that makes efficient use of assigned parameters, as well as improving scalability to higher-dimensional image

R. Jiang is with the Dept. of Computing and Communications, Lancaster University, Lancaster, United Kingdom. (email: r.jiang2@lancaster.ac.uk)

S. Al-Maadeed is with the Dept. of Computer Science and Engineering, Qatar University, Doha, Qatar (email: s\_alali@qu.edu.qa)

This paper was submitted for review on 01/10/2021. This work was supported by the Qatar National Research Fund under grant # NPRP11S – 0113 - 180276, and in part by EPSRC under Grant EP/P009727/1.

P. Easom-McCaldin and A. Belatreche are with the Dept. of Computer and Information Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom. (email: philip.easom@northumbria.ac.uk, ammar.belatreche@northumbria.ac.uk)

A. Bouridane is with the Centre for Data Analytics and Cybersecurity (CDAC), University of Sharjah, Sharjah, UAE (email: abouridane@sharjah.ac.ae).

classification tasks. To do this, our initial experiments showcase results conducted on lower-level image-classification tasks, following the natural progression of dataset complexity. These experiments are also conducted using noisy and nonnoisy simulation environments, in order to provide a reasonable expectation of how the method will perform in the current NISQ era.

The findings from our results show that as low as 6 parameters is enough to form a suitably complex feature space, capable of classifying image data to a high degree of accuracy. Alongside this, experimental results show a factor of robustness against the phase damping noise channel to some extent.

The concept of single-qubit based neural networks have been presented by [36] and is analogous to a simple multi-layer perceptron (MLP), with only one dense hidden layer and tests on several toy datasets. In our work, we aim to expand this strategy to quantum image classification and develop new architectures such as quantum convolutional neural networks, which are often considered as a much more complex structure than a simple MLP [54].

To bring the single-qubit strategy into quantum convolutional neural networks, we propose several methods to implement our new single-qubit quantum convolutional neural networks. Particularly, 1) we design a method that maintains spatial relationships of pixels through the use of parametrized convolutional filters; 2) we adapt this method to process images in their natural form, thus not requiring a costly image flattening pre-processing step. Consequently, we can then easily implement the quantum convolutional neural networks via single-qubit based data uploading.

When considering the contributions of this work, it is also important to consider the indirect contributions that arise from the modifications made. Firstly, the proposed method has an increased specificity to the domain of quantum image classification in comparison to prior work shown in [36]. The proposed framework also enables modular-based architectures to be developed using QML techniques, therefore allowing significant room for further expansion and development. Furthermore, we extended our work to an emerging topic, namely quantum biometrics, and successfully tested our proposed new single-qubit quantum convolutional neural networks on facial biometrics besides the handwriting dataset to a promising extent.

Overall, the work presented here is an important step that expands upon a single-qubit encoding approach towards a more practical, long-term solution that is not only more adaptable in nature, but more efficient when scaled to larger dimensions.

The structure of this paper is as follows. Firstly, related work in the field of QML is discussed, and derivation of the proposed method via single-qubit encoding principles is outlined. Then, the experimental setup is described in relevance to the current capabilities of QML classifiers. Afterwards, our experimental results are shown, where an analysis will be provided. Finally, a discussion of the results and analysis will be conducted in relation to the scope of the field, where potential avenues for future work and extensions to the method may apply.

## II. RELATED WORK

In its current state, many NISQ QML algorithms tend to use a backbone of variational quantum circuits (VQC) as their primary computational tool. VQCs typically consist of a series of single-qubit and multi-qubit unitary gate operations applied using a set of parameters in a linear fashion over a number of qubits [22-28]. Some of these VQC algorithms are presented as a hybrid approach to computation, working in conjunction with typical classical processes implemented as pre or postprocessing to determine a classification result.

Hybrid approaches of computation may provide an opportunity to utilize the power of quantum computing with pre-determined methods, e.g., classically-extracted features fed through a QVC [29], or vice-versa with quantum-extracted features [30]. Experimental results within [30] suggest that quantum-extracted features may provide a small advantage to classification performance over a purely classical framework. However, it was difficult to distinguish between a third method with randomly implemented non-linearities, therefore it may not always be clear to unequivocally identify the impact that quantum processes have on classification results.

Within classical ML, deep-learning convolutional neural network (CNN) algorithms are typically employed for image classification tasks. CNN algorithms traditionally implement convolutional, nonlinear transformation and pooling operations as a series of layers, prior to a fully-connected portion to determine a classification result. Motivated once more by the success of CNN methods, recent works have proposed fully-quantum architectures as similarly-based alternatives. Work presented in [31] mimics the traditional convolutional-pooling layer series through the application of successive multi-qubit unitary operations followed by qubit measurement. Here, non-linearity is introduced by utilizing the measurement result of particular qubits as rotational parameters.

In separate work [32], the authors propose a quantum CNN that computes the forward pass of the algorithm via quantum inner product estimation between an input and convolutional kernel. Then, non-linearity is introduced via a Boolean circuit function. Rotational operations and amplitude amplification is then performed to enable pixels of a higher value to have a higher measurement probability. Individual experiments for the method of [31, 32] have shown promising results for image classification using MNIST data, as well as for a quantum error correction task. However, these other methods discussed rely on the entire input data to be encoded in the amplitudes of a many-qubit superposition state, i.e. amplitude encoding.

Whilst the work discussed throughout this section have had promising results and show positivity towards development of effective quantum classifiers using many qubits, it is important to remain in context with the current NISQ era of quantum computation. Therefore, we should understand that minimizing the number of qubits required should be a primary concern when designing quantum algorithms. This is because qubit coherence is not necessarily at the desired standard yet to rely on complex, multi-qubit operations, where a small error could vastly impact the states of other qubits utilized. By developing towards smaller-scale, efficient methods using minimal qubits,

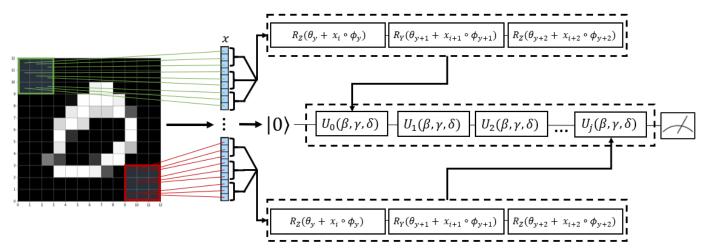


Fig. 1. Overview of the proposed methodology with both modifications made. Firstly, a filter is applied over an image (12x12 shown), where square region of pixels are extracted. These regions are flattened in turn to form a column vector and encoded using the single-qubit encoding scheme, cycling through the 6 weights contained in  $\theta$  and  $\phi$ . This process is repeated until the filter has processed over the entire image, where measurement is taken with respect to a target state given. The number of square pixel regions to encode and the number of unitary operations required *j* is determined by the size of the filter *FxF*, as well as the stride value *S* used.

a solid foundation can be built to progress from in the quest for effective QML image classification algorithms.

In an effort to find efficient, yet effective data encoding schemes, recent works [33-35] have analyzed a variety of QVC structures to determine the ability of the encoding to navigate the Bloch sphere (referred to as expressability), capability of entanglement between qubits, as well as robustness when realized in a noisy quantum environment. Within these works, it was identified that there was a strong correlation between expressability and classification accuracy. However, it was noted that a point of saturation exists for expressability as circuit depth is increased.

One method in particular [36] remained consistent with these findings, whilst additionally seeing promising results as a capable classifier. This method encoded the input vector as a set of weighted parameters over a series of arbitrary unitary operations. Varied settings for depth could then be initialized, where an increased depth did show a correlation for improved performance on par with classical neural-networks and supportvector machine classifiers. What makes this proposal particularly appealing is its capability to encode an arbitrary amount of data into a complex feature space, whilst requiring the use of a single qubit only. The proposal of this work was examined further in [37], where the single-qubit classifier was still found to remain effective for a multitude of tasks, even in noisy quantum environments.

In summary, a qubit is an extremely powerful computational tool, such that the development towards quantum classification methods should have a primary focus to maximize the usage of each qubit prior to increasing the amount of them. By doing so, a solid foundation can be built to progress forwards from in an effort to create effective, robust quantum classifiers, similarly to the rise of state-of-the-art DL methodologies dominating many classical ML problems.

#### III. METHODOLOGY

3

#### A. Single-Qubit Encoding

To preface the description of the proposed methodology, it is relevant to discuss a particular method of quantum information encoding, known as single-qubit encoding. For many ML tasks, data is often presented in the form of a column vector. Traditionally, this *D* dimensional vector of classical data could be encoded by initializing a  $2^D$  qubit quantum state as a binary string equivalent (basis encoding) if applicable, or through translating data dimensions into their corresponding probability amplitudes of a superposition state (amplitude encoding).

Whilst these data encoding schemes have been employed within other works or [53-55], they are often very costly or impractical to implement, and can become susceptible to errorprone quantum operations. Therefore, these encoding schemes may not always be an efficient means of minimizing the usage of qubits.

Single-qubit encoding, developed in [36], is a strategy of encoding a vector of classical data into a feature Hilbert space using a succession of unitary operations acting on each input data dimension applied on a single qubit only. For any arbitrary special unitary group of degree 2 SU(2) matrix operation U (a 2x2 unitary matrix of determinant 1), the corresponding operation is able to be decomposed into the following three rotational operations [38]:

$$U = e^{i\alpha} R_Z(\beta) R_Y(\gamma) R_Z(\delta)$$
(1)

With a global phase factor  $\alpha$ , Euler angles  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\in \mathbb{R}$  that define the extent of each rotation (R) around the Z, Y and Z axes respectively. It is noted that the unitary operation does not require an  $R_x$  rotation. Within this method of encoding, these Euler angles are parameterized further and defined as:

$$\beta = \theta_i + x_i \cdot \phi_i$$
  

$$\gamma = \theta_{i+1} + x_{i+1} \cdot \phi_{i+1}$$
(2)

$$\delta = \theta_{i+2} + x_{i+2} \cdot \phi_{i+2}$$

Where  $\theta_i$  and  $\phi_i$  are trainable weight parameters assigned to  $x_i$ , the value of the input vector x at dimension i. Therefore, the extent of rotation  $\beta, \gamma, \delta$  is with respect to the weighted value of the input. Using the previous parameter definitions, a maximum of three input dimensions can be encoded per unitary operation applied.

From here, the input vector will be continually cycled through, encoding a series of three-dimensional values at a time, until the entirety of the input has been encoded. This is known as a full 'upload layer' of the input data. As an example, for an input vector of 144 dimensions, each dimension will have an associated  $\theta$  and  $\phi$  variable. Therefore, for this example a total of 288 parameters are required to encode the information fully.

#### B. Proposed Methodology

With analogies to classical feed-forward neural networks, single-qubit encoding is an effective way of creating a highlycomplex feature space through repeated upload layers of input data. However, as information is encoded at a singular-pixel level, it may be at a disadvantage for tasks where it is important to utilize spatial information of pixels, such as image classification.

This step of incorporating local regions of pixels is a fundamental aspect of convolutional layers used within DL, where the typical approach is to use a filter, or 'sliding window', that gathers a square region of FxF pixels. In classical ML, a kernel operation would be applied to result in a value for that region of pixels.

The first step in our proposed modification is to adopt a similar approach to this. Rather than flatten an image into the form of a column vector as a pre-processing step, the original shape of the image is maintained. A filter of size FxF is then passed over the image, partitioning the image into a distinct grid of FxF squares. Each square region of pixels is then encoded onto the qubit in turn row by row using the described single-qubit encoding scheme with pixel values  $(x_i)$  and respective filter weights as parameters  $(\theta_i, \phi_i)$ .

By adopting this approach, pixel information can be encoded in such a manner where spatial relationships between pixels are maintained. To clarify, rather than assigning a set of trainable parameters to each square FxF region of pixels, a set of 6 weight parameters are assigned to the filter itself, which correspond to  $\theta$  and  $\phi$  in equation 2. By doing so, the same set of 6 parameters will repeatedly be applied to every series of 3 pixels that the filter has extracted. This method reduces the number of parameters required to just 6 per filter.

Whilst it is acknowledged that multiple unique sets of 6 parameters could be localized to each FxF region, our aim is to demonstrate that it is possible to produce reasonable results with the fewest parameters. Therefore, all experiments contained within this work will be conducted using a system setup of a single filter with 6 parameters in total, as displayed in figure 1. However, both setups discussed offer a slightly different approach towards image classification with

advantages and disadvantages for each. This may open various avenues for future work to explore, hence why it is included in this section. More considerations towards possible future work and extensions will be included later in the discussion section of this paper.

#### C. Classification Pipeline & Loss Calculation

So far, the proposed encoding strategy has been defined in subsection B, however the flow from input to classification output has not been made evident. To do this, a fidelity-based approach of measurement is adopted as seen in [36], where the overall objective is to minimize the fidelity between a set of data encodings and their respective target states. For a binary classification task, given a set size D of images with corresponding class values in  $\{0,1\}$ , a respective target state of  $|0\rangle$  or  $|1\rangle$  is assigned to each image. Any number of classes can be incorporated using this approach, providing that the target states are maximally-distanced from each other.

From here, the proposed encoding strategy is adopted until all pixel values have been encoded onto the qubit. Once at this point, measurement occurs where the fidelity of the qubit is extracted against each target class state in turn. In short, fidelity F is a measurement of similarity, or closeness between two quantum states, where  $0 \le F \le 1$ . The higher the fidelity of two quantum states, the more similar they are in direction. The highest class fidelity value given is then considered to be the result of classification. The following loss function is then applied, which is based on that utilized in [36]:

$$\frac{1}{2D} \sum_{m=1}^{D} \sum_{c=1}^{C} ((F(x_d, \theta, \phi)_c - F_c)^2)$$
(3)

where *D* is the set size of images used, *C* is the number of classes,  $F(x_d, \theta, \phi)_c$  is the measured fidelity of the current datapoint (image within the dataset) *d* with respect to class *c* and  $F_c$  is the expected fidelity value to be measured. To clarify, a datapoint of class 0 has a target state of  $|0\rangle$ , with expected fidelity values of 1 and 0 for class values 0 and 1, respectively. If the qubit was in state  $|0\rangle$ , then the fidelity measurement would equal 1. If the qubit was in state  $|1\rangle$ , then the fidelity measurement would equal 0. Say the qubit was in a state of  $|\psi\rangle = \frac{|0\rangle+|1\rangle}{\sqrt{2}}$ , then the fidelity measurement is given by:

2

$$F(x_d, \theta, \phi)_c = |\langle \psi_c | \psi(x_d, \theta, \phi) \rangle|^2$$
(4)

In which  $F(x_d, \theta, \phi)_c = 0.5$  for c = 0. Expected fidelity values can also be found using equation 4 by cycling through each class value with one another.

To display the classification process in full, algorithm 1 showcases the classification process from input to output. In short, for each image, filters are passed over extracting square regions of pixels at a time. Following this, unitary operations are performed to the qubit in turn using pixel values from each region with filter weights as parameters. This is repeated until all pixels have been encoded, where fidelity measurements are taken with respect to the class states.

To ensure clarity for the hardcoded variables in lines 12 and 18, the value in line 12 relates to the three required values per unitary gate  $\beta$ ,  $\gamma$  and  $\delta$ , where if x is not a multiple of 3, then a placeholder value of 0 is applied, which has no additional effect on qubit rotation. Line 18 refers to the successive application of unitary operations, where the cycling of i in multiples of 3 allows for the 3 unitary operation values  $\beta$ ,  $\gamma$  and  $\delta$  to be given in turn.

| Algorithm 1: Proposed Methodology                                                |  |  |  |
|----------------------------------------------------------------------------------|--|--|--|
| <b>Input:</b> Dataset D, Filters $N_f$ , Class States C, Parameters              |  |  |  |
| $\beta, \gamma, \delta \in N(\mu = 0, \sigma^2 = 0.1)$ , Array of pixel values x |  |  |  |
| Output: Qubit fidelities Q                                                       |  |  |  |
| <b>1:</b> For image $d \in D$ : (Image of height <i>H</i> and width <i>W</i> )   |  |  |  |
| <b>2:</b> For filter $f \in N_f$ : (Filter of size $F \times F$ and stride $S$ ) |  |  |  |
| <b>3:</b> While pixel row $d_{row} < H$ : (Cycle filter regions)                 |  |  |  |
| 4: While pixel column $d_{col} < W$ :                                            |  |  |  |
| <b>5:</b> For filter row $f_{row} = 1,, F$ : (Gather pixels)                     |  |  |  |
| <b>6:</b> For filter column $f_{col} = 1,, F$ :                                  |  |  |  |
| 7: $r = (d_{row} + f_{row}); c = (d_{col} + f_{col})$                            |  |  |  |
| 8: If $r < H$ and $c < W$ :                                                      |  |  |  |
| 9: $x \text{ append value at pixel } (r, c) \in d$                               |  |  |  |
| 10: Else:                                                                        |  |  |  |
| 11: $x \text{ append } 0$                                                        |  |  |  |
| <b>12:</b> If $len(x) \% 3 != 0$ : (% = modulo operation)                        |  |  |  |
| 13: x append 0                                                                   |  |  |  |
| $14: \qquad d_{col} \to d_{col} + S$                                             |  |  |  |
| $15:  d_{row} \to d_{row} + S$                                                   |  |  |  |
| <b>16:</b> For filter $f \in N_f$ : (Quantum circuit application)                |  |  |  |
| <b>17:</b> For $\psi_c \in C$ : (Cycle class states)                             |  |  |  |
| <b>18:</b> For $i = 1: 3: x_{max}$ : (Apply weights in sets of 3)                |  |  |  |
| $\beta = \theta_0 + x_i \cdot \phi_0$                                            |  |  |  |
| $20: \qquad \gamma = \theta_1 + x_{i+1} \cdot \phi_1$                            |  |  |  |
| $\delta = \theta_2 + x_{i+2} \cdot \phi_2$                                       |  |  |  |
| <b>22:</b> Apply $U(\beta, \gamma, \delta)$                                      |  |  |  |
| <b>23:</b> Measure qubit fidelity $F(x_d, \theta, \phi)_c$ w.r.t $\psi_c$        |  |  |  |
| <b>24:</b> $Q_d$ append $F(x_d, \theta, \phi)_c$                                 |  |  |  |
| 25: End                                                                          |  |  |  |

#### IV. RESULTS

In this section, our experiments conducted using the methodology described throughout section 3 will be presented, where an initial analysis will be conducted into the results obtained. Our first experiments will be conducted using a subset of the MNIST data, used for both binary and 3-class classification tasks. The MNIST dataset [39] is often considered an initial benchmark for many ML systems targeting image classification as their primary task. Due to the early nature of QML algorithms, we feel that using the MNIST data provides a suitable challenge to showcase the lowest performance boundary of the system using minimal parameters.

Following this, as a step up in difficulty our experiments will be conducted using a subset of the FMNIST dataset [40] for binary and 3-class classification tasks. FMNIST data is often considered a subsequently more challenging task than MNIST data, so poses an appropriate challenge for the low-parameter system to tackle effectively. Thirdly, the methodology will be applied to a face identification task, using a custom dataset consisting of AT&T face images [41], as well as a collection of images taken at random from the CIFAR10 dataset [42]. For all sets of experiments, the classes and index values of data used remained consistent. This ensured that the experimental results obtained could be compared in a fair and justifiable manner.

Finally, it is important to consider the impact that environmental noise has on the capability of the algorithm presented. Given that our experiments are conducted in a simulation environment, our noise implementation will also be simulated, but makes appropriate use of various noise and distortion channels to produce realistic and effective results.

To provide general details of the experimental setup and implementation, the framework for these experiments was developed using the PennyLane library [43], which also incorporated usage of the PyTorch interface [44]. For non-noisy simulations, the Qulacs [45] qubit simulator was used as a plugin to PennyLane. For simulations that introduce noise, the PennyLane native mixed-state simulator was used. For reproducibility, all relevant pseudo-random number generation seeds were set to zero.

For initialization, all weights were formed using a Gaussian distribution with a mean of 0, and standard deviation of 0.1. As a side-note in reference to the general barren-plateau problem largely present in training QVC and similar quantum algorithms [46], it is relevant to address the consideration taken towards this. Whilst it is acknowledged that there have been some proposals towards overcoming the problem of barren-plateaus, namely through localized cost-functions [47], usage of quantum natural gradients [48], and evaluations of initial weight selections [49], we did not incorporate any specific approaches to reduce their occurrence. Optimization of experiments was conducted as normal, where if a barren plateau was seen to be present, then training would be reconducted using a new distribution of weights. This is not necessarily an optimal method to remove the problem of barren plateaus, however there is no common practice as of yet to overcome this problem to our knowledge, therefore it was felt that our course of action was appropriate for now.

#### A. MNIST Dataset Results

For the following results, a subset of the MNIST dataset was used. This subset consisted of 500 training images per class used and 250 test images per class used. For each experiment, 30 epochs of optimization were conducted using the Adam [50] optimizer with a learning rate of  $10^{-4}$ . These hyperparameter values were selected from a small group of initial experiments conducted in order to find a suitable choice of learning rate for the number of epochs used. 30 epochs of optimization was also selected from initial experiments as satisfactory convergence could be reached within the timeframe, whilst not requiring extremely long training periods.

TABLE 1 FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 FOR VARIOUS FILTER SIZES USING BINARY MNIST DATA

| Filter Size | Train Loss | Train<br>Accuracy | Test Loss | Test<br>Accuracy |
|-------------|------------|-------------------|-----------|------------------|
| 3x3         | 0.06280    | 0.932             | 0.06090   | 0.946            |
| 4x4         | 0.05012    | 0.951             | 0.04739   | 0.958            |
| 5x5         | 0.07104    | 0.920             | 0.08148   | 0.912            |

The results displayed in Table 1 show classification performance values from experiments conducted using binary MNIST data of classes 0 and 1, with a varied filter size. Here, the train set and test set accuracy achieved was 0.951 and 0.958 respectively for a filter size of  $4 \times 4$ . The second-best performing filter size was 3x3, followed by 5x5 in third.

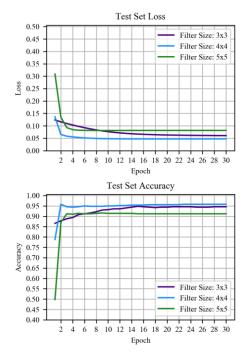


Fig. 2. Test set loss and accuracy results of a binary classification task, conducted with a single filter of varied size on a subset of the MNIST data with classes 0 and 1.

Upon inspection of the test set loss and accuracy curves displayed in figure 2, it can be seen the behaviour of the curve for the 3x3 filter is different to that of 4x4 and 5x5. Here, the curve for the 3x3 filter experiment begins at a more favorable standard of classification performance, but any improvements occur slowly and gradually over the course of training.

The latter experiments of filter sizes 4x4 and 5x5 begin in a more unfavorable position with lower loss and accuracy values, however the initial improvements to classification performance are very sharp and quickly plateau by approximately epoch 5. The behaviour exhibited here suggests that whilst the initial weight distribution for the 3x3 filter experiment may classify the dataset to a higher standard to begin with, the starting weight distribution may also be present in a region of lower gradient within the loss landscape. The slower yet fairly consistent optimization curve supports this, as the system could be steadily attempting to maneuver out of this lower-gradient region. It is unclear whether, given enough training epochs, the experiment using a filter size of 3x3 will overtake the 4x4 filter experiment. However, the 3x3 filter curve does appear to plateau at approximately 22 epochs, therefore this would suggest that the system had settled into a local minimum, and is unable to improve further.

6

Regardless of considerations towards optimal and suboptimal weight distributions and barren plateau regions within the loss landscape, the system is still able to consistently classify the testing portion of the dataset to a high degree of accuracy in the 90% bracket within 5 epochs.

 TABLE 2

 FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30

 FOR VARIOUS FILTER SIZES USING MULTICLASS MNIST DATA

| Filter Size | Train Loss | Train<br>Accuracy | Test Loss | Test<br>Accuracy |
|-------------|------------|-------------------|-----------|------------------|
| 3x3         | 0.13127    | 0.723             | 0.13337   | 0.721            |
| 4x4         | 0.18036    | 0.629             | 0.17281   | 0.627            |
| 5x5         | 0.13160    | 0.670             | 0.13181   | 0.659            |

Table 2 shows final performance values taken at epoch 30 from experiments conducted on multiclass (3-class) MNIST data using classes 0, 1 and 2 and a varied filter size. Within this, a filter size of 3x3 produced the best classification performance overall, followed by the 5x5 filter and 4x4 filter respectively.

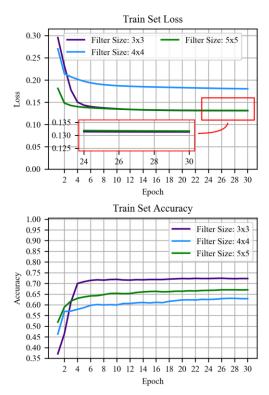


Fig. 3 Train set loss and accuracy results of the experiment using 3-class (classes 0, 1 and 2) MNIST data with varied filter sizes. For clarity, the inset box within the train set loss chart displays the 3x3 filter line just below the 5x5 filter line.

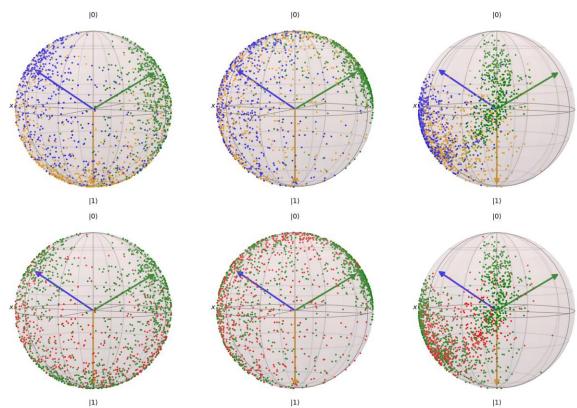


Fig. 4. Visualizations of Bloch sphere embeddings of datapoints corresponding to dataset images for the experiment conducted using 3-class MNIST data. Left to right Bloch spheres show train set data embeddings taken over epoch 30 for the 3x3, 4x4 and 5x5 filter size experiments respectively. For the top row, point colours correspond to the images' respective class, whereas for the bottom row, green points represent correctly classified datapoints and red points represent incorrectly classified datapoints. For all Bloch spheres, the three central arrows represent the target state vector for that colour class.

Whilst the results achieved here may not be state-of-the-art, there are some points which must be considered in context of this work. The first is that classification is being conducted using fidelity measurements of a set of maximally-spaced target state vectors. As only a single qubit is being examined, the distance between class states becomes smaller as more classes are considered. As the loss function implemented aims to minimize the distance between embedded datapoints to their target class state, this naturally becomes more difficult to achieve with an increased number of classes, providing the dataset is not easily separable.

If the dataset is not easily separable, then the low parameter count implemented here may not be able to provide an embedding capability that is complex enough to account for this. As charts displaying train set loss and accuracy in figure 3 show, this lower embedding complexity thus equates to a plateau, or extremely marginal improvements in both loss and accuracy over time.

In order to demonstrate this, figure 4 displays embeddings of train set data during epoch 30 from each experiment as datapoints on the Bloch sphere. This is done to assist in our understanding of how the embedding capability of the current system setup, combined with reduced class area from adding classes affects classification performance.

Here, the clearest difference between embeddings is that the 5x5 filter produced a much denser embedding of all datapoints in this case. In contrast, embeddings from a 3x3 and 4x4 filter were fairly similar in that the datapoints are more widely

distributed towards their respective target states overall, with the 3x3 filter experiment arguably showing the most distinctive distributions of datapoints per class. However, despite these differences, the loss value of the 3x3 experiment is very slightly below the 5x5 filter experiment. Yet, when accuracy is considered, this 0.00033 difference in loss equates to over 5% drop in accuracy.

7

This can be justified by looking at the position of the colour groups of datapoints for the 5x5 experiment. Looking at which classifications are correct (green points on the bottom row), it can be seen that the majority of these correspond to the distinct clusters of blue and green datapoint groups in the plot above (equating to various image classes). However, there is a large section towards the bottom left where there is a significant overlap between the blue and yellow class clusters. This shows that the embedding capability here was not strong enough to separate these clusters as effectively as the 3x3 filter experiment, where the datapoint clusters were spread more widely yet remained fairly compact.

Whilst the 4x4 filter experiment produced the poorest classification performance results overall, the resulting embeddings show that this experiment struggled to form a significant class cluster consisting of the yellow datapoints, and so had many incorrectly classified images as a result. Had the 4x4 filter experiment been more successful in doing this, then it could be argued that the final embeddings of the image data would act similarly to the 3x3 experiment, thus producing a stronger classification accuracy.

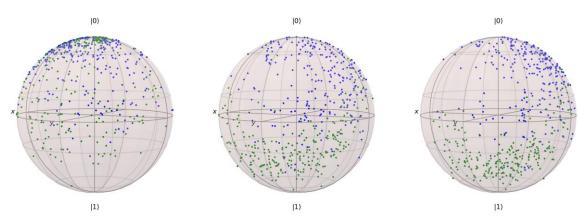


Fig. 6. Visualizations of Bloch sphere embeddings of datapoints corresponding to dataset images for the experiment conducted using a 3x3 filter size. Left to right Bloch spheres show train set data embeddings taken over epoch 1, epoch 2 and epoch 30. Point colours correspond to the images' respective class, where blue points represent class 0, and green points represent class 1.

Overall, the multiclass MNIST experimental results show that the system is capable of classifying the majority of datapoints in their correct classes with just 6 parameters. However, perhaps this classification and embedding capability could be improved by further experiments and analysis into the system design, i.e., including additional filters.

# B. FMNIST Dataset Results

For the following results, a subset of the FMNIST dataset was used. This subset consisted of 250 training images per class used and 100 test images per class used. For each experiment, 30 epochs of optimization were conducted using the Adam optimizer with a learning rate of  $10^{-3}$ . These hyperparameter values were selected as a result of conducting a small group of initial experiments to find a suitable choice of learning rate for the number of epochs used.

TABLE 3 FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 FOR VARIOUS FILTER SIZES USING BINARY FMNIST DATA

| Filter Size | Train Loss | Train<br>Accuracy | Test Loss | Test<br>Accuracy |
|-------------|------------|-------------------|-----------|------------------|
| 3x3         | 0.11616    | 0.884             | 0.10844   | 0.895            |
| 4x4         | 0.12952    | 0.824             | 0.16690   | 0.790            |
| 5x5         | 0.17981    | 0.726             | 0.25194   | 0.575            |

Table 3 displays classification performance values from experiments on binary FMNIST data, using classes 0 (t-shirt) and 1 (trousers) with varied filter sizes. From these results, a filter size of 3x3 was the best performing filter size, reaching a test set accuracy close to 90%. Unlike results using binary MNIST data, classification accuracy regresses as the filter size increases.

When inspecting the train set and test set loss curves displayed in figure 5, the behaviour of all three experiments appears to contradict one another to some extent. Whilst the 3x3 filter size experiment initially performs worse than the others, it shows a very rapid decrease in loss, followed by a sharp plateau. In contrast to this, the 4x4 experiment shows a slow and gradual decrease in loss, and the 5x5 experiment displays very little convergence and plateaus close to the initial loss value after epoch 1.

8

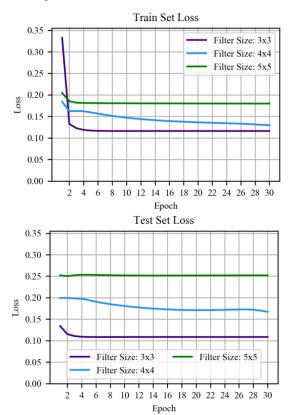


Fig. 5. Train set and test set loss curves relating to experimental results displayed in table 3. The experimental data consisted of a subset of the FMNIST dataset using image classes of 0 and 1.

The charts displayed in figure 5 appear to suggest that the embedding capacity of the algorithm in its current state is perhaps not complex enough to be able to optimize effectively to the training data provided. The difference in loss values at epoch 1 is likely caused from the initial weight distributions for each experiment being in more advantageous starting positions.

The sharp decrease in loss that follows for the first 2-3 epochs could then be explained by the system attempting to separate the cluster of datapoints formed at the start to their respective target states. However, the complexity of embedding that a In order to visualize this, figure 6 displays various Bloch sphere embeddings of train set data at epoch 1, 2 and 30 with point colour corresponding to class value. For the left-hand Bloch sphere plot at epoch 1, the distribution of datapoints is fairly dense towards the top hemisphere close to state  $|0\rangle$ , the target class state for class 0. As the loss function implemented refers to the fidelity, or measure of distance between the datapoints and their respective target classes, the fact that many datapoints of class 1 are far away from their target state of  $|1\rangle$  will cause the loss value to increase.

Following a single training epoch, the second set of embeddings for epoch 2 are more evenly distributed between the two hemispheres. Visually, as the datapoints are embedded closer to their target state on average, this is equated to the prior considerable drop in loss value. However, between epoch 2 and 30 the system is unable to separate the two clusters of datapoints and embed them closer towards their respective target states.

In particular, there is an area along the right-hand side of the Bloch sphere that contains an overlap of the two class clusters of datapoints. Because the system is unable to separate the datapoints located within this area, the overall shape of embeddings is simply shifted around equally, meaning any decrease in loss for a particular class is mirrored by an increase for the opposing class. This causes the overall loss value to be left fairly unchanged, hence the plateau described earlier. If the complexity of embedding was higher, then perhaps the system could separate the class clusters of datapoints much more effectively, resulting in a continued convergence of loss towards a lower value and a higher accuracy in time.

With these points considered, even with the suggested lowest level of embedding complexity that the system offered within this experiment, a test set classification accuracy close to 90% was achieved. In the context of this work, this is a promising achievement, which can only hope to be improved upon if the embedding capability, followed by the subsequent learning capacity of the algorithm was increased through additional work and analysis.

# C. Facial Identification & Facial Recognition Results

The following subsection consists of two experimental setups. The first set of results consists of a bespoke dataset that was created and consists of images from the AT&T face dataset with a random selection of images taken from the CIFAR10 dataset. The objective of this experiment is to determine whether a provided image is that of a face (class 0), or non-face (class 1). A training set of 300 images per class was used, and a testing set of 100 images per class was used.

For each experiment, 30 epochs of optimization were conducted, using the Adam optimizer with a learning rate of  $10^{-3}$ . As with all experiments, hyperparameter values were selected via a small group of initial experiments in order to find a suitable choice of learning rate for the number of epochs used. As before, 30 optimization epochs allowed for satisfactory convergence without excessively lengthy training periods.

TABLE 4 FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 USING VARIOUS FILTER SIZES FOR CUSTOM FACIAL IDENTIFICATION DATASET

| Filter Size | Train Loss | Train<br>Accuracy | Test Loss | Test<br>Accuracy |
|-------------|------------|-------------------|-----------|------------------|
| 3x3         | 0.14685    | 0.808             | 0.15141   | 0.825            |
| 4x4         | 0.17433    | 0.763             | 0.17231   | 0.745            |
| 5x5         | 0.17580    | 0.752             | 0.16917   | 0.780            |

Experimental results with loss and accuracy as classification performance metrics can be seen in table 4. As with previous multiclass MNIST and FMNIST experimental results, the filter size of 3x3 produces the highest performance overall. When viewing the graph of training set loss, displayed in the top half of figure 7, the loss values for 4x4 and 5x5 filter size experiments are very similar, and appear to plateau at the same epoch. However, the loss curve for the 3x3 filter experiment

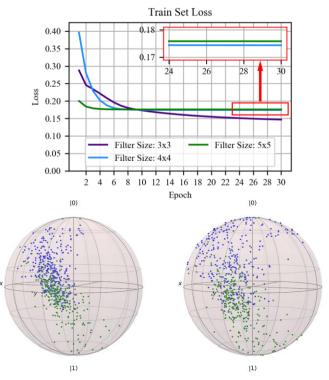


Fig. 7. Top – Train set loss results of a facial identification task, using a single filter with varied size between experiments. The dataset consisted of AT&T face image data, combined with a selection of images taken from the CIFAR10 dataset. Bottom – Bloch sphere visualizations of train set image embeddings for the 3x3 filter experiment. The left-hand sphere shows embeddings during epoch 10, whereas the right-hand sphere shows embeddings during epoch 30. Point colours correspond to the class of the embedded image, with blue for class 0 and green for class 1.

does not appear to plateau in this experiment over the number of optimization epochs conducted.

By visualizing the associated image embeddings in the bottom half of figure 7, it can be seen that at epoch 10, the two class distributions are heavily overlapped at the border between the two classification regions (the two hemispheres in the case of binary classification). As optimization continues by epoch 30 it can be seen by the right-hand Bloch sphere that whilst the datapoint clusters are still overlapping around the central axis, they are being drawn away from each other slowly.

This equates to the slow but gradual decrease in loss throughout training for the 3x3 filter, where datapoints are becoming closer to their respective target states, but at a slow pace. This behaviour suggests that as many datapoints are located close to the boundary between the two class regions, even a small separation between the two interlinked clusters could produce a relatively large increase in accuracy. However, it is unclear where the natural limit of the system is in this case, and a plateau could be reached at any moment.

Regardless of any speculative analysis, the results achieved here are once again promising, and support the aims of this work by showing that a good classification result can be achieved with few parameters needed, providing a foundational algorithm with potential for further development and improvement.

The following results are from the second experimental setup within this subsection. The objective of this experiment was to perform a facial recognition task, using different individuals from the AT&T dataset. Due to the small size of individual class subsets within the dataset, it felt appropriate to include these results as an additional small-scale experiment, following on from the previous facial identification experimental results which contained a larger scale of data. Here, a training set of 7 images per class and a testing set of 3 images per class was used, with two classes of image in total.

TABLE 5

FINAL CLASSIFICATION PERFORMANCE VALUES AT EPOCH 30 FOR VARIOUS FILTER SIZES USING BINARY AT&T FACIAL IMAGE DATA

| Filter Size | Train Loss | Train<br>Accuracy | Test Loss | Test<br>Accuracy |
|-------------|------------|-------------------|-----------|------------------|
| 3x3         | 0.23605    | 0.643             | 0.11310   | 0.833            |
| 4x4         | 0.23500    | 0.571             | 0.24201   | 0.500            |
| 5x5         | 0.23895    | 0.429             | 0.33594   | 0.500            |

For the results displayed in table 5, the classification accuracy for the training set of data was fairly poor for all experiments. Whilst the testing set accuracy was fair for the experiment using a 3x3 filter size, the other experiments produced an even guess for each class. The unusual set of results achieved here could suggest that there was simply a too small scale of data to truly learn an existing representation between the opposing classes.

This is again supported by result graphs shown in figure 8, as the training loss for each experiment appears to plateau at very similar values, determining that the system had perhaps reached

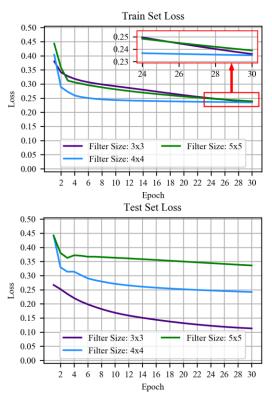


Fig.8. Loss result curves for a binary face recognition task conducted using AT&T face image data.

its natural limit with the data provided. In contrast to this, interestingly the curve for testing set loss continues to decrease regardless of the previously mentioned plateau. This could be explained by the initial weight distributions affecting the end embedding result for the test set data. In other words, the graph would suggest that the experiment using a 3x3 filter size was initialized with a more optimal selection of weight values than the others, therefore allowing the subsequent embeddings of test data datapoints to be on average more in their respective class regions.

Another point that should be considered is the nature of the task itself. Whilst the aspect of small-scale data has been mentioned, an important step within many facial recognition methods is the feature extraction step. This step allows algorithms to extrapolate key characteristics of an individuals face to aid in classification. As a feature extraction step was not introduced within this methodology, then combined with the small amounts of data provided, the system struggled to learn any representation and difference between the two individuals. Better results may have been achieved if a feature extraction pre-processing step was introduced, however this is beyond the scope of this work and is a topic to be explored if the algorithm was specifically applied to a facial recognition task.

#### D. Environmental Noise Impact

In the current NISQ era of quantum computing, it is important to consider the effect that environmental noise has during optimization of quantum algorithms. There are two approaches to analyzing the effect of environmental noise. The first is running the algorithm directly through a quantum processing unit (QPU), and the second is by recreating

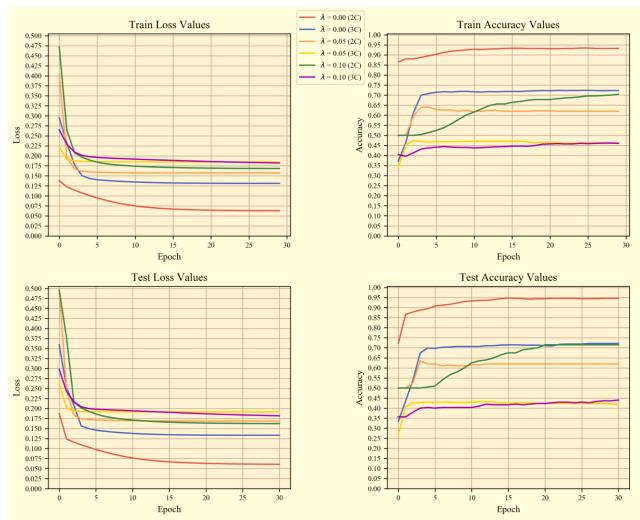


Fig. 9. Loss and classification accuracy values obtained through various binary (2C) and 3-class (3C) experiments conducted in a noisy simulation environment using the amplitude damping channel. The experiments were conducted using a subset of the MNIST data (classes of 0, 1 and 2), a single filter of size 3x3, and  $\lambda$  values of 0.05 and 0.1. For clarity, the experiment with zero noise is a direct reference to the experimental result displayed in table 1 and figure 2.

environmental noise using a noisy qubit simulator. Both approaches have advantages and disadvantages to them, but either provide a reasonable insight into how the algorithm may perform in the NISQ era. Due to the ability to monitor the effect of noise more closely, our implementation was conducted using the second approach by simulating environmental noise.

In order to recreate instances of environmental noise, there are various noise channels which can be applied to simulate different effects of noise occurring on quantum information. As an example, various noise simulation channels available include de-phasing, bit-flip and amplitude damping channels to name a few. For the purposes of this subsection, the environmental noise channels that will be implemented are amplitude damping and phase damping. These models of noise were chosen as they are realistic models of noise, and are implemented within other relevant works in the field [35, 51].

Amplitude damping models energy relaxation within a qubit that occurs via interactions with the environment over time. More information on this can be found in [37,38]. Phase damping models environmental noise that affects the representation of quantum information, without changes being made to the status of excitation within the qubit itself. Phase damping can be modelled by the following Kraus operators, where  $\lambda \in [0, 1]$  is the probability of qubit phase damping:

$$K_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\lambda} \end{bmatrix} \quad , \quad K_1 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{\lambda} \end{bmatrix} \tag{5}$$

The application of Kraus operator  $K_0$  does not affect the  $|0\rangle$  portion of the quantum state, however negatively impacts the  $|1\rangle$  portion by reducing its amplitude. This is the same operator that is used as part of amplitude damping also, however the second Kraus operator  $K_1$  is different. The application of  $K_1$  affects the qubit by removing the  $|0\rangle$  portion of the quantum state completely, as well as reducing the amplitude of the  $|1\rangle$  portion alongside this. More information on the phase damping channel can also be found in [38].

For the following results, a subset of the MNIST dataset was used. This subset consisted of 250 training images per class used and 100 test images per class used. For each experiment, 30 epochs of optimization were conducted using the Adam optimizer with a learning rate of  $10^{-4}$ . These hyperparameter values were selected as they were used throughout previous experiments conducted with the MNIST data, and so consistency between experiments was desired.

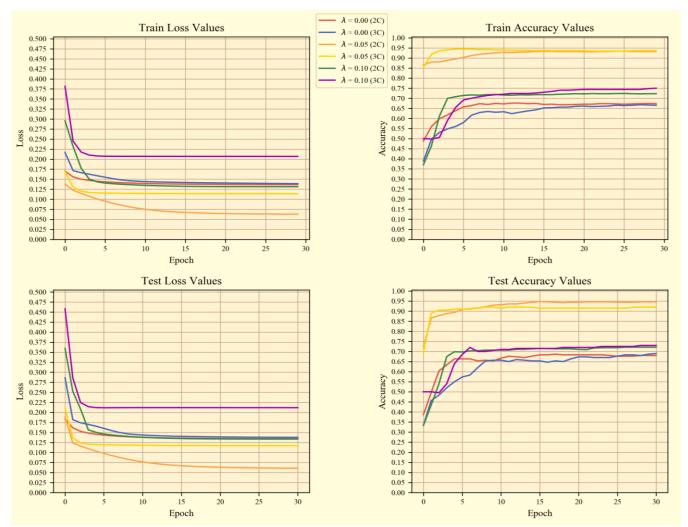


Fig. 10. Loss and classification accuracy values obtained through binary (2C) and 3-class (3C) experiments conducted in a noisy simulation environment using the phase damping channel. These experiments were conducted using a subset of the MNIST data (classes of 0, 1 and 2), a single filter of size 3x3, and  $\lambda$  values ranging from 0.05 to 0.1. For clarity, the experiment with zero noise is a direct reference to the experimental result displayed in table 1 and figure 2.

The behaviour that is expected within these groups of experiments is that as the noise magnitude  $\lambda$  is increased, the general loss value would increase and the accuracy value would decrease in comparison to each experiment contained within the task nature (i.e., binary or multiclass classification task). However, as described previously within this work, it would be expected for a like-for-like value to produce a lower performance score as more classes are introduced to the task.

Charts displayed in figure 9 show experimental results obtained with the implementation of amplitude damping channels after each unitary operation, using qubit decay probabilities of 0.05 and 0.1 compared against previously gathered results with zero noise influence. These charts display the evolution of both the train and test set loss and accuracy values as training epochs are conducted, up to a maximum of 30 epochs of optimization.

As can be seen throughout all curves of loss values, sharp plateaus occur very soon to optimization beginning, with considerably slower loss minimalization in general taking place after epoch 3. This is similar for accuracy charts as well, where any sharp improvements plateau at roughly epoch 3, before improving at a much slower rate. The results displayed in figure 9 appear to follow the behaviour that is expected to some extent. For binary class experiments, a sharp decrease in loss is seen when noise is introduced, before a very slight loss once the noise magnitude is doubled. This does not translate across to accuracy values however, where the classification accuracy with  $\lambda$ =0.1 is higher than that with  $\lambda$ =0.05. This suggests that decay within the excitation status of the qubit affects the classification performance somewhat. However, once the impact of this is present, further reductions in performance are not in proportion to the magnitude of qubit decay.

The experiments using 3 classes of data also support this, as there is a significant increase in loss and decrease in accuracy as noise is introduced. However, these values appear to be very similar for  $\lambda$ =0.05 and  $\lambda$ =0.1, at an approximate loss of 0.184 and approximate accuracy of 45%. Overall, the system is affected to an extent by the introduction of qubit decay via an amplitude damping channel. Whilst initially this drop in performance is quite significant, the impact of noise with a greater magnitude is reduced.

Figure 10 displays experimental result charts obtained through implementation of a phase damping channel after each

unitary operation, using qubit damping probabilities of 0.05 and 0.1 as a comparison against the previously obtained result with zero noise influence. These charts display the evolution of both the train and test set loss and accuracy values as training epochs are conducted, up to a maximum of 30 epochs of optimization. Similarly to those in figure 9, sharp improvements are seen for loss and accuracy values, which appear to plateau at approximately epoch 3, prior to learning at a considerably slower rate from then onwards.

From the charts displayed in figure 10, the expected is followed for the most part. As the noise value  $\lambda$  increases, the loss values also increase for each task in turn. Similar to the behaviour exhibited by the loss values, the final classification accuracy values also follow the behaviour that would be expected somewhat.

Within this, the only experiment which does not follow this pattern is where  $\lambda$ =0.05 when using 3 classes (the green bar). Here there is a spike to the loss value, however the accuracy obtained is still comparable to similar experimental setups. An explanation for this behaviour is that the embedding that the method has performed on the dataset results in datapoints being scattered around the borders between the three class regions. Even if a datapoint lies just within that class zone, it will be classified as such yet may still possess a larger distance between the ideal target state and itself. Over the course of the entire dataset for that epoch, this can equate to a larger value of loss for many datapoints located close to these boundaries, therefore it is difficult to label this experiment as an outlier and instead could be thought of as a difference in embedding.

Starting from experiments conducted with zero noise, there is a large initial increase in loss as noise is introduced to the simulation. However, as the noise value is doubled to 0.10, the increase in loss does not increase proportionally. Interestingly, whilst there is a large increase in loss here, this does not translate across to the classification accuracy values where the performance is comparable overall. As before, this could be explained by a more optimal distribution of initial weightings for the experiments with  $\lambda$ =0.05, embedding datapoints within their correct class region more often than with zero noise. Or, another implication suggested here is that the system may exhibit a small amount of robustness against a lower-level of phase damping impact within the qubit.

Regardless of whether the loss value increases, suggesting the classification confidence is lower overall, the accuracy is maintained until noise magnitude is increased. To support this, the effect that phase damping has was even less for classification accuracy of the 3-class task, where performance is comparable within approximately 10% and 5% for train set and test set respectively as  $\lambda$  was increased.

This is a promising factor to consider, as an innate robustness towards any kind of environmental noise can aid in optimization. In a case that the system was in a state capable of achieving 90+% classification accuracy on a 3+ class task using a single qubit, then any robustness held will be supportive to optimization if applied in a noisy quantum environment.

### V. DISCUSSION

To summarize the findings discussed in section 4 in its entirety, initial experimental results have been displayed, in order to showcase early results obtained using a variety of datasets and applications from image classification to facial recognition. Overall, promising results have been achieved, given the purposes of the work and the system setup conditions posed. However, there are also key areas which would perhaps greatly benefit from further development and enable the performance of the system to be enhanced further.

In the case of binary classification experiments conducted using the MNIST data, the accuracy values obtained are not necessarily as high as the leading deep learning methodologies. However, the fact that the proposed method was able to reach test set accuracy scores in the 90% region within 5 epochs is promising in itself. Whilst realizing that the experiments conducted here only contained a subset of the MNIST data, and not the full dataset, it can be expected that the classification performance of the method will naturally drop slightly as the number of classes are increased, as well as the size of the dataset.

This was noticed following experiments conducted using 3 classes of the MNIST data, where classification accuracy stagnated at a lower value, and was unable to reach the high accuracy levels that would be desired in an image classification algorithm, such as well within the 90+% percentile. It is to be noted that only a single filter containing 6 parameters was implemented over the course of this work, therefore complexity of the system can be increased by adding any number of filters to the experimental framework.

Noting that the MNIST dataset can sometimes be considered basic, or not truly representative of the classification capability of an algorithm, experiments were conducted using a subset of the Fashion-MNIST dataset to increase the 'difficulty' of the classification task. Here, the system showed promising results, reaching its highest classification accuracy values very close to 90% for a filter size of 3x3. In the context of this work these results are considered good, and show potential for the method to be enhanced further. As the complexity of embedding is increased, these results could be improved upon, allowing for the plateau in loss to be reduced to a much lower value.

In order to further demonstrate the initial capability of the proposed method, experiments using a bespoke dataset consisting of AT&T facial image data combined with CIFAR10 images were conducted. As with previous experiments, the results were not state-of-the-art, but considered promising and good in the context of the work and the experimental framework used. When applied to an additional task of facial recognition using AT&T image data only, the system was unable to meet a satisfactory convergence to the data provided. As described previously, this is likely due to the small-scale data provided giving a lack of representation across the dataset, meaning the methodology was unable to learn and optimize effectively.

As the system was introduced to different environmental noise channels, initial results modelled using an amplitude damping channel suggest that noise greatly influences the qubit and reduces classification performance. However, when modelled using a phase damping channel, initial results appear to suggest a lack of impact or a slight robustness against the effect that phase damping has by manipulating the datapoint embeddings. As noise levels were increased higher, a subsequent drop in classification accuracy could be seen.

Whilst this could be seen as a negative point considering the current NISQ era of quantum computation, it is common to see this drop in classification performances across many quantum algorithms when noise is introduced [24]. With further development, it is hoped that any potential robustness can be realized, or improved upon to enhance performance when applied in noisy environments.

A speculative suggestion here may be to investigate whether applying additional filters may mimic the effect of data reuploading, which is suggested to improve expressivity within the qubit [52], and thus may provide some robustness to noisy environments with additional layers, in particular the amplitude channel [37]. Exploring modifications may aid in the robustness of the proposed method, and perhaps decrease any drop in classification as seen in figure 9 within noisy environments.

To once again put the experiments conducted into perspective, the classification performance for each set of experimental results was able to be achieved using just 6 parameters in total. As the field of deep learning has progressed from relatively shallow [20] to very deep networks consisting of many thousands of parameters [21], it should be considered here that the work being shown is proposed as a foundation or starting point to progress forwards from.

As has occurred for many modern ML algorithms, modifications and adaptations need to occur to improve upon previous performance and meet the task at hand. To that extent, there are a few notable ways where this work could be extended to provide additional insight and analysis into the feasibility of the algorithm as a quantum image classifier.

Firstly, an aspect well noted throughout this work is that of the low number of filters, and subsequently parameters optimized in this implementation. Whilst the point of this work was to showcase the potential with this few a number, it also opens a channel for further developments to remain efficient. Here, an analysis could be performed using additional numbers of filters to determine any difference in classification performance. In addition, a usage of localized weights as described in section 3 may also provide an advantage of maintaining spatial relationships between pixel values, without needing to increase the overall number of implemented filters.

Following this, a secondary route for extension could envisage considering the inclusion of colorized images, to match a traditional image classification task specification more closely than focusing on greyscale images primarily. Within this, avenues to assign colour channels to individual qubits, as well as analyzing the effect of various entanglement operations between qubits may allow for a better understanding of how the methodology may extend to modern day tasks that include large-scale, colour images.

Finally, it is well noted that a significant limitation of a single qubit is the capability to classify many classes of data. As more classes of data are added, the subsequent area within the Bloch sphere that corresponds to each class is reduced. The effects of this reduction are much greater when a lower number of classes are used however the ability to embed many datapoints into a very small section of the Bloch sphere will be difficult.

Therefore, naturally we will need to investigate the use of multiple qubits in order to contain sufficiently sized class boundaries when many classes are used. However, the point at which a single qubit is unable to cope with the number of classes used is unknown. This point will also be undoubtedly affected by factors such as the dimensionality or complexity of the data, as well as by factors that affect embedding complexity, such as re-uploading of data encodings seen in [36, 37].

It is noted that our new single-qubit convolutional neural network focuses on using as few qubits and parameters as possible. Here, we have proposed using a filter based version of the existing method where the spatial relationship between data is preserved. In order to test a "maximally efficient" version of our quantum network, our experiments were carried out with a single convolutional filter that is applied everywhere on an image instead of many different filters that would each have their own parameters, where the loss function was modelled using the fidelity between the quantum state that is outputted by the unitaries and the pure quantum state that exists as a classification of an input.

In each experiment with three different types of problems (MNIST, fashion MNIST, and AT&T face database), our quantum network was able to create a filter size resulting in performances with a commendable quality. Although, it is accepted that the leading CNN algorithms achieve better performance accuracy, our goal was to test the method using a simple version of our QML having room for further improvement.

In our future work, we would like to extend our strategies to realize more complex architectures targeting higher performances while the initial work in this paper may serve as an important first step for what will be an exhaustive analysis of a specific type of QML algorithms.

#### VI. CONCLUSION

In this work, a framework for efficient quantum image classification was proposed, using a minimum value of 6 parameters with a single qubit only. Multiple experiments were conducted using datasets of changing nature and difficulty to explore a variety of experimental results, and depth to our analysis. Initially, the results discussed throughout are promising, and display potential for the methodology to perform highly using a low number of parameters. The system was consistently able to achieve classification accuracy values within the 80<sup>th</sup> and 90<sup>th</sup> percentile in a short optimization timeframe within 30 training epochs.

However, when our experimental setup was applied to a noisy quantum simulation using amplitude and phase damping channels, classification accuracy was reduced greatly by the impact of qubit decay through amplitude damping. However, experimental results suggested a limited amount of robustness for classification performance against the impact of the phase damping channel by changes to the phase value of the qubit. Overall, the proposed methodology provides a solid foundation to progress forwards to develop and build upon the success seen here using the bare minimum parameter and qubit count. As outlined in section 5, considerations for future work include an investigation into implementing additional filters, to determine whether classification performance can be improved upon and robustness similar to other works can be achieved.

Alongside this, there are various opportunities to extend the foundational methodology proposed here towards modern-day image classification tasks that utilize high-resolution, colour images. These opportunities could examine the use of localized pixel weighting rather than individual filter weights, as well as investigate the effect of applying multiple qubits and entanglement measures to the system framework.

#### ACKNOWLEDGMENT

This publication was made by NPRP grant # NPRP11S - 0113 - 180276 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. In addition the publication was also supported by EPSRC under Grant EP/P009727/1.

#### REFERENCES

- L. Alzubaidi *et al.*, "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," *J Big Data*, vol. 8, p. 53, 2021, doi: 10.1186/s40537-021-00444-8.
- [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," *Commun. ACM*, vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386.
- [3] G. Li, M. Zhang, J. Li, F. Lv, and G. Tong, "Efficient densely connected convolutional neural networks," *Pattern Recognit.*, vol. 109, p. 107610, Jan. 2021, doi: 10.1016/j.patcog.2020.107610.
- [4] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:1409.1556.
- [5] K. He, X. Zhang, S. Ren and J. Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016. (pp. 770-778).
- [6] G. Huang, Z. Liu, L. Van Der Maaten and K.Q. Weinberger. "Densely connected convolutional networks". In *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017. (pp. 4700-4708).
- [7] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated Residual Transformations for Deep Neural Networks," *Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017*, vol. 2017-Janua, pp. 5987–5995, Nov. 2016, Accessed: Sep. 16, 2021. [Online]. Available: https://arxiv.org/abs/1611.05431v2.
- [8] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," Apr. 2018, Accessed: Sep. 16, 2021. [Online]. Available: http://arxiv.org/abs/1804.02767.
- [9] H. HA et al., "Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists," Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., vol. 29, no. 8, pp. 1836–1842, Aug. 2018, doi: 10.1093/ANNONC/MDY166.
- [10] A. Esteva *et al.*, "Dermatologist-level classification of skin cancer with deep neural networks," *Nature*, vol. 542, no. 7639, pp. 115–118, Jan. 2017, doi: 10.1038/nature21056.
- [11] M. Cicero *et al.*, "Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs," *Invest. Radiol.*, vol. 52, no. 5, pp. 281–287, May 2017, doi: 10.1097/RLI.00000000000341.
- [12] J. Z. Cheng *et al.*, "Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans," *Sci. Rep.*, vol. 6, Apr. 2016, doi: 10.1038/srep24454.

- [13] B. Wang, D. Zhang, D. Zhang, P. J. Brantingham, and A. L. Bertozzi, "Deep Learning for Real Time Crime Forecasting," Jul. 2017, Accessed: Sep. 16, 2021. [Online]. Available: http://arxiv.org/abs/1707.03340.
- [14] S. Yadav, "Deep Learning based Safe Social Distancing and Face Mask Detection in Public Areas for COVID-19 Safety Guidelines Adherence," *Int. J. Res. Appl. Sci. Eng. Technol.*, vol. 8, no. 7, pp. 1368–1375, Jul. 2020, doi: 10.22214/ijraset.2020.30560.
- [15] M. Wu, W. Xie, X. Shi, P. Shao, and Z. Shi, "Real-time drone detection using deep learning approach," *Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST*, vol. 251, pp. 22–32, 2018, doi: 10.1007/978-3-030-00557-3\_3.
- [16] I. Psychoula et al., "A Deep Learning Approach for Privacy Preservation in Assisted Living," 2018 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2018, pp. 710–715, Feb. 2018, doi: 10.1109/PERCOMW.2018.8480247.
- [17] E. Merdivan, "Ambient Assisted Living with Deep Learning," 2019, Accessed: Sep. 16, 2021. [Online]. Available: <u>https://tel.archives-ouvertes.fr/tel-02927785/</u>.
- [18] M. A. Qureshi, K. N. Qureshi, G. Jeon, and F. Piccialli, "Deep learningbased ambient assisted living for self-management of cardiovascular conditions," *Neural Comput. Appl.*, pp. 1–19, Jan. 2021, doi: 10.1007/s00521-020-05678-w.
- [19] U. Malūkas, R. Maskeliūnas, R. Damaševičius, and M. Woźniak, "Real time path finding for assisted living using deep learning," J. Univers. Comput. Sci., vol. 24, no. 4, pp. 475–487, 2018.
- [20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proc. IEEE*, vol. 86, no. 11, pp. 2278– 2323, 1998, doi: 10.1109/5.726791.
- [21] Y. Assiri, "Stochastic Optimization of Plain Convolutional Neural Networks with Simple methods," 2020, Accessed: Aug. 26, 2021. [Online]. Available: <u>http://arxiv.org/abs/2001.08856</u>.
- [22] E. Farhi and H. Neven, "Classification with Quantum Neural Networks on Near Term Processors," 2018. Accessed: May 30, 2020. [Online]. Available: <u>http://arxiv.org/abs/1802.06002</u>.
- [23] C. M. Wilson *et al.*, "Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers," 2018. Accessed: May 13, 2020. [Online]. Available: <u>http://arxiv.org/abs/1806.08321</u>.
- [24] W. Cappelletti, R. Erbanni, and J. Keller, "Polyadic Quantum Classifier," 2020. Accessed: Sep. 28, 2020. [Online]. Available: <u>http://arxiv.org/abs/2007.14044</u>.
- [25] J. Bausch, "Recurrent quantum neural networks," Advances in neural information processing systems. 2020. Vol: December 2020
- [26] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan, "Variational Quantum Circuits for Deep Reinforcement Learning," 2019. Accessed: May 21, 2020. [Online]. Available: http://arxiv.org/abs/1907.00397.
- [27] J. M. Liang, S. Q. Shen, M. Li, and L. Li, "Variational quantum algorithms for dimensionality reduction and classification," 2020. doi: 10.1103/PhysRevA.101.032323.
- [28] V. Havlíček et al., "Supervised learning with quantum-enhanced feature spaces," 2019. doi: 10.1038/s41586-019-0980-2.
- [29] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran, "Transfer learning in hybrid classical-quantum neural networks," Dec. 2019, Accessed: Apr. 28, 2020. [Online]. Available: http://arxiv.org/abs/1912.08278.
- [30] M. Henderson, S. Shakya, S. Pradhan, and T. Cook, "Quanvolutional neural networks: powering image recognition with quantum circuits," 2020. doi: 10.1007/s42484-020-00012-y.
- [31] I. Cong, S. Choi, and M. D. Lukin, "Quantum convolutional neural networks," 2019. doi: 10.1038/s41567-019-0648-8.
- [32] I. Kerenidis, J. Landman, and A. Prakash, "Quantum Algorithms for Deep Convolutional Neural Networks," 2019. Accessed: May 18, 2020. [Online]. Available: <u>http://arxiv.org/abs/1911.01117</u>.
- [33] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, "Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms," 2019. doi: 10.1002/qute.201900070.
- [34] T. Hubregtsen, P. Josef, J. Pichlmeier, · Patrick Stecher, and · Koen Bertels, "Evaluation of Parameterized Quantum Circuits: on the relation between classification accuracy, expressibility and entangling capability." Accessed: Sep. 28, 2020. [Online]. Available: <u>https://www.researchgate.net/publication/340115185.</u>
- [35] R. LaRose and B. Coyle, "Robust data encodings for quantum classifiers," 2020. Accessed: Sep. 28, 2020. [Online]. Available: <u>http://arxiv.org/abs/2003.01695</u>.

- [36] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, "Data re-uploading for a universal quantum classifier," *Quantum*, vol. 4, p. 226, Jul. 2020, doi: 10.22331/q-2020-02-06-226.
- [37] P. Easom-Mccaldin, A. Bouridane, A. Belatreche, and R. Jiang, "On Depth, Robustness and Performance Using the Data Re-Uploading Single-Qubit Classifier," *IEEE Access*, vol. 9, pp. 65127–65139, 2021, doi: 10.1109/ACCESS.2021.3075492.
- [38] M. A. Nielsen and I. L. Chuang. "Quantum Computation and Quantum Information." 2012. vol. 27, no. 3.
- [39] L. Deng, "The MNIST database of handwritten digit images for machine learning research," *IEEE Signal Process. Mag.*, vol. 29, no. 6, pp. 141– 142, 2012, doi: 10.1109/MSP.2012.2211477.
- [40] H. Xiao, K. Rasul, and R. Vollgraf, "Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms," Aug. 2017, Accessed: Sep. 16, 2021. [Online]. Available: <u>http://arxiv.org/abs/1708.07747.</u>
- [41] F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human face identification," *IEEE Work. Appl. Comput. Vis. - Proc.*, pp. 138–142, 1994, doi: 10.1109/acv.1994.341300.
- [42] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," *Cs.Toronto.Edu*, pp. 1–58, 2009, Accessed: Sep. 16, 2021. [Online]. Available: <u>http://www.cs.toronto.edu/~kriz/cifar.html</u>.
- [43] V. Bergholm *et al.*, "PennyLane: Automatic differentiation of hybrid quantum classical computations," *arXiv*, Nov. 2018, Accessed: Apr. 30, 2021. [Online]. Available: <u>http://arxiv.org/abs/1811.04968</u>.
- [44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, and ..., "Automatic differentiation in pytorch," 2017, Accessed: Sep. 16, 2021. [Online]. Available: <u>https://openreview.net/forum?id=BJJsrmfCZ</u>.
- [45] Y. Suzuki *et al.*, "Qulacs: a fast and versatile quantum circuit simulator for research purpose," 2020. Accessed: Jan. 04, 2021. [Online]. Available: http://arxiv.org/abs/2011.13524.
- [46] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, "Barren plateaus in quantum neural network training landscapes," *Nat. Commun.*, vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-07090-4.
- [47] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, "Cost function dependent barren plateaus in shallow parametrized quantum circuits," 2021. doi: 10.1038/s41467-021-21728-w.
- [48] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, "Quantum Natural Gradient," 2020. doi: 10.22331/Q-2020-05-25-269.
- [49] E. Grant, M. Ostaszewski, L. Wossnig, and M. Benedetti, "AN initialization strategy for addressing barren plateaus in parametrized quantum circuits," 2019. doi: 10.22331/q-2019-12-09-214.
- [50] D. P. Kingma and J. L. Ba, "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Dec. 2015, Accessed: Jan. 27, 2021. [Online]. Available: <u>https://arxiv.org/abs/1412.6980v9</u>.
- [51] C. Ciliberto et al., "Quantum machine learning: A classical perspective," Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 474, no. 2209, 2018, doi: 10.1098/rspa.2017.0551.
- [52] M. Schuld, R. Sweke, and J. J. Meyer, "The effect of data encoding on the expressive power of variational quantum-machine-learning models," *Phys. Rev. A*, vol. 103, no. 3, 2021, doi: 10.1103/PhysRevA.103.032430.
- [53] P. Rebentrost, M. Mohseni, and S. Lloyd, "Quantum support vector machine for big data classification," 2014. doi: 10.1103/PhysRevLett.113.130503.
- [54] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, "Quantum machine learning," 2017. doi: 10.1038/nature23474.
- [55] N. Wiebe, D. Braun, and S. Lloyd, "Quantum algorithm for data fitting," *Phys. Rev. Lett.*, vol. 109, no. 5, p. 050505, Aug. 2012, doi: 10.1103/PhysRevLett.109.050505.



**Philip Easom-McCaldin** received his BSc degree (honours) in Computer Science from Northumbria University, UK in 2018. He is currently a PhD candidate within the dept. of computer and information sciences at Northumbria University, UK since 2018 under the supervision of Prof. Ahmed Bouridane.

His research focus includes machine learning, quantum computing and their combined applications.



Ahmed Bouridane received an "Ingenieur d'Etat" degree in electronics from "Ecole Nationale Polytechnique" of Algiers (ENPA), Algeria, in 1982, an M.Phil. degree in electrical engineering (VLSI design for signal processing) from the University of Newcastle-Upon-Tyne, U.K., in 1988, and an Ph.D. degree in electrical engineering (computer vision)

from the University of Nottingham, U.K., in 1992.

From 1992 to 1994, he worked as a Research Developer in telesurveillance and access control applications. In 1994, he joined Queen's University Belfast, Belfast, U.K., initially as Lecturer in computer architecture and image processing and later on he was promoted to Reader in Computer Science.

He is now a full Professor as part of the Department of Computer Engineering, University of Sharjah, Sharjah, UAE, and his research interests are in imaging for forensics and security, biometrics, homeland security, image/video watermarking, medical engineering, cryptography and mobile and visual computing. He has authored and co-authored more than 350 publications and one research book on imaging for forensics and security.

Prof. Bouridane is a Senior Member of IEEE.



Ammar Belatreche (M'09) received the Ph.D. degree in Computer Science from Ulster University, UK. He joined Northumbria University in May 2016. He is currently an Associate Professor in Computer Science and Programme Leader

for the MSc Advanced Computer Science in the Department of Computer and Information Sciences. He is a member of the. He is a member of the Intelligent Systems Research Group (ISRG). Previously he worked as a Research Associate in the Intelligent Systems Research Centre (ISRC), then as a Lecturer in Computer Science in the School of Computing and Intelligent Systems, Ulster University, Derry, UK.

He has extensive experience across academic and R&D in the areas of machine learning and AI, bio-inspired intelligent systems, structured and unstructured data analytics, capital markets engineering, image processing and understanding. He has led a number of research and consultancy projects and has successfully supervised/co-supervised 10 PhD students to completion. He is a fellow of the Higher Education Academy, an Associate Editor of Elsevier Neurocomputing and has served as a Program Committee Member and a reviewer for several international conferences and journals.



**Richard Jiang** is currently a Senior Lecturer (Associate Professor) in the School of Computing & Communications at Lancaster University, UK. He is a Fellow of HEA, an Associate Member of EPSRC College, and an EPSRC RISE Connector.

Dr Jiang's research interest mainly resides in the fields of Artificial Intelligence, XAI, Neural Computation, Biomedical Image Analysis, Intelligent Systems, and Biometrics & Privacy. His recent research has been supported by grants from EPSRC , Leverhulme Trust, Qatar Science Foundation and other industry funders. He has supervised and co-supervised over 10 PhD students. He authored over 80 publications and was the lead editor of two Springer books.

**Somaya Al-Maadeed** (Senior Member, IEEE) received the Ph.D. degree in computer science from Nottingham, U.K., in 2004. She is the Coordinator of the Computer Vision and AI Research Group. She enjoys excellent collaboration with national and international institutions and industry. She is a Principal Investigator of several funded research projects generating approximately five million. She has published extensively in the field of pattern recognition and delivered workshops on teaching programming for undergraduate students. She attended workshops related to higher education strategy, assessment methods, and interactive teaching. In 2015, she was elected as the IEEE Chair for the Qatar Section.