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Efbcient Quantum Image Classibcation Using
Single Qubit Encoding

Philip Easom-McCaldiri, Ahmed Bouridane, Senior Member, IEEEAmmar Belatreche, Member, IEEE
Richard Jiany', and Somaya Al-Maadecd Senior Member, IEEE

Abstract—The domain of image classi cation has been seen I. INTRODUCTION
to be dominated by high-performing deep-learning (DL) archi- MAGE classibcation has seen rapid improvements over the
tectures. However, the success of this eld, as seen over the past past decade alone. The processing capability of readily
decade, has resulted in the complexity of modern methodologies g\ 5ijaple GPU units has enabled a chain of strong-performing
scaling exponentially, c_ommonly _requmng_mllllons of parame- deep-learning (DL) methodologies [1]P[8] to dominate the
ters. Quantum computing (QC) is an active area of research peld, boasting high levelsfoclassibcation accuracy that

aimed toward greatly reducing problems of complexity faced . s
in classical computing. With growing interest toward quantum Ca@n be Pne-tuned to a specibc task. The result of this is

machine learning (QML) for applications of image classi cation, that machine learning (ML) Isabeen able to become inte-
many proposed algorithms require usage of numerous qubits. grated within society for many social and industrial uses,
In the noisy intermediate-scale quantum (NISQ) era, these cir- e.g., healthcare [9]D[12], public safety [13]D[15], and assisted
cuits may not always be feasible to execute effectively; therefore, living [16]D[19].

we should aim to use each qubit as effectively and efciently as  While the current state of DL provides algorithms that
possible, _before aqldlng additional qubits. This article proposes cgn classify complex datasets to a high standard, further
a new single-qubit-based deep quantum neural network for jmnroyements are becoming more and more marginal, and are
image classi cation that mimics traditional convolutional neural often at the expense of adding many additional parameters
network (CNN) techniques, resulting in a reduced number of A le of thi th of lexity within DL ’
parameters compared with previous works. Our aim is to S an example of this growth of complexity Within » One
prove the concept of the initial proposal by demonstrating of the earliest convolutional neural network (CNN) methods,
classi cation performance of the single-qubit-based architecture, L€Net5 [20], has a total of 60 000 parameters and can reach
as well as to provide a tested foundation for further development. test-set accuracy values over 98%. In contrast to this, one of
To demonstrate this, our experiments were conducted using the top-performing methods [21] reaching an accuracy value of
various datasets including MNIST, Fashion-MNIST, and ORL 99.83% requires a mere 1 400 000 parameters, overthat

face datasets. To further our proposal in the context of the NISQ of LeNet5 for 1%D2% increase in accuracy performance.

ola, our ex_pe”me”tts were lift‘teft‘tiona”y conducted in noisy S'tr:]‘ This monumental increase in parameter counts accelerated
ulation environments. Initial test results appear promising, wi i ; ; g
classi cation accuracies of 94.6%, 89.5%, and 82.5% achieved g)s/tGlngé|gagfaggl;%Irsmr;ﬁcr;ez?ssriglzi;ge%%xg\/v(\;?eir:]tzsdglrg?o

on the subsets of MNIST, FMNIST, and ORL face datasets, ¢ d effective ML aloorith th t tradeoff
respectively. In addition, proposals for further investigation and progress toward efiective algorithms, the current tradeots

development were considered, where it is hoped that these initial Of réquiring additional parameters for marginal gains may not
results can be improved. be the most appropriate course of action. The story of DL has
shown that, by focusing on the development of methods that
have a more efpcient usage of parameters, a foundation can
be provided to build upon and progress toward the highest
performance levels of classibtion while keemg efbciency

of training and execution a primary factor.
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accepted 20 May 2022. This work was supported in part by the Qa Quantum computing (QC) has undergone a_tremendous

r A .
National Research Fund (a member of the Qatar Foundation) under Gr%]‘(el Qf development within th_e past few years, W'th quar_1tum
NPRP11SP0113D180276 and in part by thergeging and Physical Sciencesmachine learning (QML) seeing large increase in attention
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ili - i wi : :

of Computer and Information Sciencebllorthumbria University, Newcas- ﬂt'e necessary means to oyercemﬂass@catyon performance
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case results conducted on lower level image-classibcatimpplied using a set of parameters in a linear fashion over a
tasks, following the natural progression of dataset complesumber of qubits [22]D[28]. Some of these VQC algorithms
ity. These experiments are also conducted using noisy aar@ presented as a hybrid approach to computation, working
nonnoisy simulation environments, in order to provide a re@ conjunction with typical classical processes implemented as
sonable expectation of how the method will perform in thpre- or postprocessing to determine a classibcation result.
current NISQ era. Hybrid approaches of computation may provide an opportu-

The bndings from our results show that as low as siity to utilize the power of QC with predetermined methods,
parameters are enough to form a suitably complex featweq., classically extracted features fed through a QVC [29],
space, capable of classifying image data to a high degreeoofvice versa with quantum-extracted features [30]. Exper-
accuracy. Alongside this, experéental results show a factor ofimental results within [30] suggest that quantum-extracted
robustness against the phase damping noise channel to séeatures may provide a small advantage to classibcation
extent. performance over a purely classical framework. However,

The concept of single-qubit-bad neural networks has beerit was difpcult to distinguish between a third method with
presented by PZrez-Salinas al. [36] and is analogous to randomly implemented nonlingties; therefore, it may not
a simple multilayer perceptron (MLP), with only one densalways be clear to unequivocally identify the impact that
hidden layer and tests on several toy datasets. In our wogkiantum processes have on classibcation results.
we aim to expand this strategy to quantum image classibcatioiWithin classical ML, DL CNN algorithms are typically
and develop new architectures such as quantum CNNs, whehployed for image classibcation tasks. CNN algorithms tra-
are often considered as a much more complex structure thgitionally implement convolutional, nonlinear transformation
a simple MLP [54]. and pooling operations as a series of layers, prior to a fully

To bring the single-qubit strategy into quantum CNNsonnected portion to determiree classibcation result. Moti-
we propose several methods to implement our new singleted once more by the success of CNN methods, recent works
qubit quantum CNNs. Particularly: 1) we design a methduave proposed fully quantum architectures as similarly based
that maintains spatial relationships of pixels through the usealfernatives. Work presented in [31] mimics the traditional
parametrized convolutional blters and 2) we adapt this methoahvolutional-pooling layer series through the application of
to process images in their natural form, thus not requirirsyiccessive multiqubit unitary operations followed by qubit
a costly image Rattening preprocessing step. Consequentigasurement. Here, nonlinearity is introduced by utilizing
we can then easily implement the quantum CNNSs via singltie measurement result of piaular qubits as rotational
qubit-based data uploading. parameters.

When considering the contributions of this work, it is also In separate work, Kerenidist al. [32] propose a quan-
important to consider the indirect contributions that ariseim CNN that computes the forward pass of the algorithm
from the modibcations made. First, the proposed method hés quantum inner product estimation between an input and
an increased specibcity to the domain of quantum imagenvolutional kernel. Then, nonlinearity is introduced via a
classibcation in comparison with prior work shown in [36]Boolean circuit function. Rotational operations and amplitude
The proposed framework also enables modular-based arcamplibcation are then performed to enable pixels of a higher
tectures to be developed using QML techniques, therefaralue to have a higher measurement probability. Individual
allowing signibcant room for further expansion and developxperiments for the method of [31] and [32] have shown
ment. Furthermore, we extended our work to an emergipgomising results for image classibcation using MNIST data,
topic, namely quantum biometrics, and successfully testad well as for a quantum error correction task. However, these
our proposed new single-qubit quantum CNNs on faciather methods discussed rely on the entire input data to be
biometrics besides the handwriting dataset to a promisiegcoded in the amplitudes of a many-qubit superposition state,
extent. i.e., amplitude encoding.

Overall, the work presented here is an important stepWhile the work discussed throughout this section has had
that expands upon a single-qubit encoding approach towamwmising results and shows positivity toward the development
a more practical, long-term solution that is not only moref effective quantum classibers using many qubits, it is impor-
adaptable in nature but also more efpcient when scaledtamt to remain in context with the current NISQ era of quantum
larger dimensions. computation. Therefore, we should understand that minimizing

The structure of this article is organized as follows. Firsthe number of qubits required should be a primary concern
related work in the beld of QML is discussed, and derivatiomhen designing quantum algdmims. This is because qubit
of the proposed method via single-qubit encoding principle®herence is not necessarily at the desired standard yet to rely
is outlined. Then, the experimental setup is described in retea complex, multiqubit operations, where a small error could
vance to the current capabilities of QML classibers. Afterwardastly impact the states of other qubits utilized. By developing
our experimental results are shown, where an analysis witward small-scale, efbcient methods using minimal qubits,
be provided. Finally, a discussion of the results and analysissolid foundation can be built to progress in the quest for
will be conducted in relation to the scope of the beld, whegdfective QML image classibcation algorithms.
potential avenues for future work and extensions to the methodn an effort to bnd efbcient, yet effective data encoding
may apply. schemes, recent works [33]D[35] have analyzed a variety of

QVC structures to determine the ability of the encoding to
Il. RELATED WORK navigate the Bloch sphere (referred to as expressability), capa-

In its current state, many NISQ QML algorithms tend tdility of entanglement between qubits, as well as robustness
use a backbone of variational quantum circuits (VQC) ashen realized in a noisy quantum environment. Within these
their primary computational tool. VQCs typically consist ofvorks, it was identiPed that there was a strong correlation
a series of single-qubit and rtigubit unitary gate operations between expressability and classibcation accuracy. However,
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it was noted that a point of saturation exists for expressabiliyhere ; and ; are trainable weight parameters assigned to
as circuit depth is increased. Xi, the value of the input vector at dimension. Therefore,

One method in particular [36] remained consistent witthe extent of rotation, , is with respect to the weighted
these bndings, while additionally seeing promising results @alue of the input. Using the prous parameter depbnitions,

a capable classiper. This method encoded the input vea@omaximum of three input dimensions can be encoded per
as a set of weighted parameters over a series of arbitramitary operation applied.

unitary operations. Varied settings for depth could then beFrom here, the input vector will be continually cycled
initialized, where an increased depth did show a correlatidmrough, encoding a series of 3-D values at a time, until the
for improved performance on par with classical neural negntirety of the input has been encoded. This is known as a
works and support-vector machine classibers. What makes thi$ Oupload layerO of the input data. As an example, for an
proposal particularly appéag is its capability to encode aninput vector of 144 dnensions, each dimension will have an
arbitrary amount of data inta complex feature space, whileassociated and variable. Therefore, for this example, a total
requiring the use of a single qubit only. The proposal of thisf 288 parameters are requiredencode the information fully.
work was examined further in [37], where the single-qubit

classiber was still found to remain effective for a multitude d¢. Proposed Methodology

tasks, even in noisy quantum environments. With analogies to classicakéd-forward neural networks,

In summary, a qubit is an extremely powerful computationglngle-qubit encoding is an effective way of creating a highly
tool, such that the development toward quantum classiPcatissmplex feature space through repeated upload layers of input
methods should have a primary focus to maximize the usagsta. However, as information is encoded at a singular-pixel
of each qubit prior to increasing the amount of them. By doirigvel, it may be at a disadvantage for tasks where it is
so, a solid foundation can be built to progress forward in d@mportant to utilize spatial information of pixels, such as image
effort to create effective, robust quantum classibers, similardtassibcation.
the rise of state-of-the-art DL methodologies dominating many This step of incorporating local regions of pixels is a funda-
classical ML problems. mental aspect of convolutional layers used within DL, where

the typical approach is to use a blter, or Osliding window,0
I1l. METHODOLOGY that gathers a square regionfi F pixels. In classical ML,
. . . a kernel operation would be applied to result in a value for
A. Single-Qubit Encodmg . that region of pixels.
_ To preface the description of the proposed methodology,The brst step in our proposed modibcation is to adopt a
it is relevant to discuss a particular method of quantugimilar approach to this. Rather than Ratten an image into the
information encoding, known as single-qubit encoding. F@§rm of a column vector as a preprocessing step, the original
many ML tasks, data are often presented in the form ofshape of the image is maintained. A blter of sigex F
column vector. Traditionally, thisD-dimensional vector of s then passed over the image, partitioning the image into a
classical data could be encoded by initializing & Bubit jstinct grid of F x F squares. Each square region of pixels
quantum state as a binary string equivalent (basis encodifgihen encoded onto the qubit in turn row by row using the
if applicable, or through translating data dimensions into theflescribed single-qubit encoding scheme with pixel valugs (
corres_ponding prqbability amplitudes of a superposition stad@d respective blter weights as parameters ().
(amplitude encoding). . By adopting this approach, pixel information can be

‘While these data encoding schemes have been emplogedoded in such a manner where spatial relationships between
within other works or [53]D[55], they are often very costly opixels are maintained. To cidy, rather than assigning a set
impractical to implement, ancan become susceptible to errorpf trainable parameters to each squire F region of pixels,
prone quantum operations. Thenefpthese encoding schemeg, set of six weight parameters are assigned to the blter itself,
may not always be an efpcient means of minimizing the usaggich correspond to and in (2). By doing so, the same set
of qubits. . . ) of six parameters will repeatedly be applied to every series of

Single-qubit encoding, developed in [36], is a strategy @firee pixels that the blter has extracted. This method reduces
encoding a vector of classical data into a feature Hilbert SpagR number of parameters required to just six per blter.
using a succession of unitary operations acting on each inputyhile it is acknowledged that multiple unique sets of six
data dimension applied on a single qubit only. For any arbitragarameters could be localized to eagh F region, our aim
special unitary group of degree 2 SU(2) matrix operatibn js to demonstrate that it is possible to produce reasonable
(a 2x 2 unitary matrix of determinant 1), the correspondingesylts with the fewest paramesefTherefore, all experiments
operation is able to be decomposed into the following thre@ntained within this work will be conducted using a system

rotational operations [38]: setup of a single Plter with six parameters in total, as displayed
U=é R R Ro( ). 1) in Fig. 1. However, both_ setups (_jlscu_ssed _offer a slightly
()R )Rz() @) different approach toward imaglassibcation with advantages
With a global phase factor, Euler angles, , , R that and disadvantages for each. This may open various avenues

dePne the extent of each rotatioR) (around theZ-, Y-, and for future work to explore, hence why it is included in this
Z-axes, respectively. It is noted that the unitary operation dossction. More considerations toward possible future work and
not require anRy rotation. Within this method of encoding,extensions will be included later in the discussion section of
these Euler angles are parasréted further and debned as this article.

=it X C. Classibcation Pipeline and Loss Calculation

i+1F Xiv1 - i+1 So far, the proposed encoding strategy has been debned in
i+2F Xis2* 42 (2) Section I1I-B; however, the Bow from input to classibcation
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Fig. 1. Overview of the proposed methodology with both maodifons made. First, a blter is applied over an imagex(122 shown), where square region

of pixels are extracted. These regions are Rattened in turn to form mwcolactor and encoded using the segubit encoding scheme, cycling thréuthe

six weights contained in and . This process is repeated until the blter has processed over the entire image, where measurement is taken with respect to
a target state given. The number of square pixel regiorsncode and the number ofitary operations requiredl are determined by the size of the blter

F x F, as well as the stride valu® used.

output has not been made evident. To do this, a bdelity-basegiare regions of pixels at a time. Following this, unitary

approach of measurement is adopted as seen in [36], wheperations are performed to the qubit in turn using pixel values

the overall objective is to minimize the Pdelity between &tom each region with Plter weights as parameters. This is

set of data encodings and their respective target states. Fagreated until all pixels have been encoded, where Pdelity

a binary classibcation task, given a set dx®f images with measurements are taken with respect to the class states.

corresponding class values in13, a respective target state of To ensure clarity for the hardcoded variables in

[0 or|1.is assigned to each image. Any number of classéees 12 and 18, the value in line 12 relates to the three

can be incorporated using this approach, providing that thequired values per unitary gate , and , where if x is

target states are maximally distanced from each other. not a multiple of 3, then a placeholder value of 0 is applied,
From here, the proposed encoding strategy is adopted umtilich has no additional effect on qubit rotation. Line 18

all pixel values have been encoded onto the qubit. Oncerafers to the successive application of unitary operations,

this point, measurement occushere the pdelity of the qubit where the cycling of in multiples of 3 allows for the three

is extracted against each target class state in turn. In shartjtary operation values , and to be given in turn.

bdelity F is a measurement of similarity, or closeness between

two quantum states, where OF 1. The higher the bdelity IV. RESULTS

of two quantum states, the more similar they are in direction.In this section, our experiments conducted using the

The highest class bdelity value given is then considered to Pleethodology described throughout Section Il will be pre-

the result of classibcation. The following loss function is the@ented where an initial analysis will be conducted into the
applied, which is based on that utilized in [36]: results obtained. Our brst experiments will be conducted

1 b ¢ using a subset of the MNIST data, used for both binary and
— (F(Xd, , ) S Fo)?) (3) three-class classibcation tasks. The MNIST dataset [39] is
2D s often considered an initial benchmark for many ML systems

: . . . targeting image classibcation as their primary task. Due to
where D is the set size of images used,is the number of 0" cary nature of QML algorithms, we feel that using the

classes,F(xq, , ) ¢ is the measured bdelity of the curreny ST ata provides a suitable challenge to showcase the
datapoint (image within the dataset)with respect to class, é

. . Jowest performance boundary of the system using minimal
andF; is the expected bdelity value to be measured. To clari arameFt)ers y y 9
a datapoint of class 0 has a target stat¢Oof with expected i

) ; Following this, as a step up in difbculty, our experiments
Pdelity values of 1 and O for class values 0 and 1, respectivefy be cogducted using g sFl)Jbset of thg FMNISI%' dataset

If the qubit was in statd0 , then the Pdelity measuremeny,q) for hinary and three-class classiPcation tasks. FMNIST
would equal 1. If the qubit was in stajé , then the Pdelity ya15 are often considered a subsequently more challenging
measurement would equal 0. Say the qubit was in a state\Qly than MNIST data, so it poses an appropriate challenge
| = (10 +]1)/((2)7), then the bdelity measurement ig, the |ow-parameter system to tackle effectively. Third, the
given by methodology will be applied to a face identibcation task, using
FiXar ») e=1 ¢l (X4 ,) |2 (4) @custom dataset consisting of AT&T face images [41], as well
as a collection of images taken at random from the CIFAR10
Here,F(xq4, , ) = 0.5forc= 0. Expected bdelity values dataset [42]. For all sets of experiments, the classes and index
can also be found using (4) by cycling through each class vakeues of data used remained consistent. This ensured that the
with one another. experimental results obtained could be compared in a fair and
To display the classibcation process in full, algorithm justibPable manner.
showcases the classibcation process from input to outputFinally, it is important to consider the impact that environ-
In short, for each image, Plters are passed over extractimgntal noise has on the capability of the algorithm presented.
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Algorithm 1 Proposed Methodology TABLE |

. ; FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30 FOR
Input: DatasetD, lelters N¢, Class S_tateﬁ, Parameters VARIOUS FILTER S1ZES USING BINARY MNIST DaTA
. N(u = 0, <= 0.1), Array of pixel valuesx

Output: Qubit bdelitiesQ

Filter Size Train Loss Train Test Loss Test
Accuracy Accuracy
1: For imaged D: (Image of heightHd and widthW)
2. For blter f  Njy: (Filter of size FxF and strideS) jxi g‘ggifg g'zz g'gj(;zg g‘z‘s‘g
3 While pixel row d;ow < H: (Cycle Plter regions) st 0'07104 0'920 0'08148 0‘912
4: While pixel columndc < W: ) ) ) )
5: For blter row frow = 1,..., F: (Gather pixels) N
6 For Plter columnfey = 1,..., F: 050 ——
7 r= (dow *+ frow); €= (deol + fcor) ol T e decled
8 Ifr < Handc< W: g::'g: —— Filter Size: 5x5
9: X append value at pixdr,c) d 030 4
10: Else: K ﬁ;
11: x append 0 os 4
12:  If len(x) % 3 = 0: (% = modulo operation) 0.10 1
13: x append O gg;
14: dcoI dcol +S ' 5 All é z'; 1]0 1'z 1'4 1ls 1I8 z'o 2]2 2'4 2'6 z]s 3'o
15:  diow dowt S Epoch

16: For blter f  N¢: (Quantum circuit application)
17: For . C: (Cycle class states)
18:  Fori = 1:3: Xmax (Apply weights in sets of 3)

19: = ot Xi- o
20: = 1+ Xi+1- 1
21: = 2+ Xj+2+ 2
22: ApplyU(, ,)

23: Measure qubit bdelityF (Xg, , )  W.rt ¢
24: Qg appendF (X4, , ) ¢
25: End

Fig. 2. Test set loss and accuracy results of a binary classibcation task,
conducted with a single Plter of vadesize on a subset of the MNIST data

i i ; ; -with cl 0 and 1.
Given that our experiments are conducted in a simulatidfi” 25 ¥ @1

environment, our noise implementation will also be simulated th . i fvet t
but it makes appropriate use of various noise and distortigff"VEVel, tNere 1S no common practicé as of yet {o overcome

channels to produce realistic and effective results. Is problem to our knowledge; therefore, it was felt that our
To provide general details of the experimental setup aff§urse of action was appropriate for now.
implementation, the framework for these experiments was
developed using the PennyLane library [43], which also inco&. MNIST Dataset Results
porated usage of the PyTorch interface [44]. For nonnoisyFor the following results, a subset of the MNIST dataset
simulations, the Qulacs [45] qubit simulator was used aswas used. This subset consisted of 500 training images per
plugin to PennyLane. For simulations that introduce noiselass used and 250 test images per class used. For each
the PennyLane native mixed-state simulator was used. Fiperiment, 30 epochs of optimization were conducted using
reproducibility, all relevant psudorandom number generatiorthe Adam [50] optimizer with a learning rate of 10 These
seeds were set to zero. hyperparameter values were selected from a small group of
For initialization, all weights were formed using a Gaussiainitial experiments conducted in order to bnd a suitable choice
distribution with a mean of 0 and a standard deviation a@ff learning rate for the number of epochs used. Thirty epochs
0.1. As a side note in reference to the general barren plateduoptimization were also selected from initial experiments,
problem largely present in training QVC and similar quantums satisfactory convergenceutd be reached within the time-
algorithms [46], it is relevant to address the consideratidrame, while not requiring extremely long training periods.
taken toward this. While it is acknowledged that there have The results displayed in Table | show classibcation per-
been some proposals toward overcoming the problem of barfermance values from experiments conducted using binary
plateaus, namely through localized cost functions [47], usalyNIST data of classes 0 and 1, with a varied Plter size. Here,
of quantum natural gradients [48], and evaluations of initighe training set and test satcuracy achieved was 0.951 and
weight selections [49], we did not incorporate any specitc958, respectively, for a blter size o4 4. The second-best
approaches to reduce their oc&nce. Optimization of exper- performing Plter size was 8 3, followed by 5x 5 in third.
iments was conducted as normal, where if a barren plateawpon inspection of the test set loss and accuracy curves
was seen to be present, then training would be reconductisplayed in Fig. 2, it can be seen that the behavior of the
using a new distribution of weights. This is not necessarilyurve for the 3x 3 Pplter is different from that of « 4 and
an optimal method to remove the problem of barren plateadsx 5. Here, the curve for the 8 3 blter experiment begins
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TABLE Il

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30FOR
VARIOUS FILTER SIZESUSING MULTICLASS MNIST DATA

Filter Size Train Loss Train Test Loss Test
Accuracy Accuracy

3x3 0.13127 0.723 0.13337 0.721

4x4 0.18036 0.629 0.17281 0.627

5x5 0.13160 0.670 0.13181 0.659

at a more favorable standard of classibcation performance, but
any improvements occur slowly and gradually over the course
of training.
The latter experiments of blter sizesx44 and 5% 5 begin
in a more unfavorable position with lower loss and accuracy
values; however, the initial improvements to classibcation per-
formance are very sharp and gkily plateau by approximately
epoch 5. The behavior exhibited here suggests that while the
initial weight distribution for the 3 3 blter experiment may
classify the dataset to a higher standard to begin with, the
starting weight distribution may also be present in a region of
lower gradient within the loss landscape.
The slower yet fairly consistent optimization curve supports
this, as the system could be steadily attempting to maneuver
out of this lower gradient region. It is unclear whether, giveRig. 3. Train set loss and accuracy results of the experiment using three-class
enough training epochs, the experiment using a blter S@@ssgs_o, 1, and 2) MNIST data with varied Plter sizes. For clarity, the inset
of 3 x 3 will overtake the 4x 4 blter experiment. However, 50;( \éwttr)llltr;rtr;;gam set loss chart displays the 3 blter line just below the
the 3x 3 blter curve does appear to plateau at approximately
22 epochs; therefore, this would suggest that the system had
settled into a local minimum, and is unable to improve furtheunderstanding of how the emtbding capability ofthe current
Regardless of considerations toward optimal and suboptinsgkstem setup, combined with reduced class area from adding
weight distributions and barren plateau regions within the lostasses, affects classibcation performance.
landscape, the system is still able to consistently classify theHere, the clearest difference between embeddings is that
testing portion of the dataset to a high degree of accuracythe 5 x 5 blter produced a much denser embedding of
the 90% bracket within Pve epochs. all datapoints in this case. In contrast, embeddings from
Table Il shows Pnal performance values taken at epo8hx 3 and 4x 4 blters were fairly similar in that the dat-
30 from experiments conductech anulticlass (three-class) apoints are more widely distributed toward their respec-
MNIST data using classes 0, 1, and 2 and a varied Pplt@re target states overall, with the 8 3 Plter experiment
size. Within this, a Plter size of 3 3 produced the best arguably showing the most distinctive distributions of data-
classibcation performance overall, followed by the B blter points per class. However, despite these differences, the loss
and 4x 4 Pblter, respectively. value of the 3x 3 experiment is very slightly below the
While the results achieved here may not be state of the &tx 5 Plter experiment. Yet, when accuracy is considered, this
there are some points which must be considered in context®®0033 difference in loss equates to over 5% drop in accuracy.
this work. The Prst is that classibcation is being conductedThis can be justiPed by looking at the position of the color
using Pbdelity measurements of a set of maximally spacgtbups of datapoints for the § 5 experiment. Looking at
target state vectors. As only a single qubit is being examinemghich classibcations are correct (green points on the bottom
the distance between class states becomes smaller, as mm&g, it can be seen that the majority of these correspond
classes are considered. As the loss function implemented abmshe distinct clusters of blue and green datapoint groups in
to minimize the distance between embedded datapoints dhd plot given previously (equating to various image classes).
their target class state, this naturally becomes more difbcHibwever, there is a large section toward the bottom left where
to achieve with an increased number of classes, provided there is a signibcant overlap between the blue and yellow class
dataset is not easily separable. clusters. This shows that the embedding capability here was
If the dataset is not easily separable, then the low pamst strong enough to separate these clusters as effectively as
meter count implemented here may not be able to provittee 3x 3 Plter experiment, where the datapoint clusters were
an embedding capability that is complex enough to accowspgread more widely yet remained fairly compact.
for this. As charts displayingrain set loss and accuracy in While the 4 x 4 plter experiment produced the poor-
Fig. 3 show, this lower embedding complexity thus equates ¢st classibcation performance results overall, the resulting
a plateau, or extremely marginal improvements in both loesnbeddings show that this experiment struggled to form a
and accuracy over time. signibcant class cluster consisting of the yellow datapoints,
In order to demonstrate this, Fig. 4 displays embeddingad so had many incorrectly classibped images as a result. Had
of train set data during epoch 30 from each experiment e 4x 4 blter experiment been more successful in doing this,
datapoints on the Bloch sphere. This is done to assist in dben it could be argued that the Pnal embeddings of the image
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Fig. 4. Visualizations of Bloch sphe embeddings of datapoint®rcesponding to dataset images for the eipent conducted using three-class MiN1
data. Left to right: Bloch spheres show traat data embeddings taken over epoch 30 for the 3 4 x 4, and 5x 5 blter size experiments, respectively.
For the top row, point colors correspond to the imagesO respective classasvior the bottom row, green pointspresent correctly classibed dadnts,
and red points represent incorrectly classiPed datapoints. For all Bidehes, the three central arrows represent the target state vectortfooltraclass.

TABLE Ill reaching a test set accuracy @ds 90%. Unlike results using
FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30FOR binary MNIST data, classibtian accuracy regresses as the
VARIOUSFILTER SIZESUSING BINARY FMNIST DATA blter size increases.
When inspecting the train set and test set loss curves
Filter Size  Train Loss Train Test Loss Test displayed in Fig. 5, the behavior of all three experiments
Accuracy Accuracy appears to contradict one another to some extent. While the
13 0.11616 0.884 0.10844 0.895 3x 3 D_Iter size experiment initially perfprms worse than the
others, it shows a very rapid decrease in loss, followed by a
o 01292 0824 016690 0.7%0 sharp plateau. In contrast to this, thex44 experiment shows
5%5 0.17981 0.726 0.25194 0.575 PP u. 1S, Xper W

a slow and gradual decrease in loss, and the Sexperiment
displays very little convergence and plateaus close to the initial
data would act similar to the 8 3 experiment, thus producing|oss value after epoch 1.
a stronger classibcation accuracy. The charts displayed in Fig. 5 appear to suggest that the
Overall, the multiclass MNIST experimental results showmbedding capacity of the algorithm in its current state is
that the system is capable of classifying the majority qferhaps not complex enough to be able to optimize effectively
datapoints in their correct classes with just six parameteg.the training data provided. The difference in loss values at
However, perhaps this classiPcation and embedding capabiépoch 1 is likely caused from the initial weight distributions
could be improved by further experiments and analysis infer each experiment being in more advantageous starting

the system design, i.e., including additional blters. positions.
The sharp decrease in loss that follows for the
B. FMNIST Dataset Results prst 2D3 epochs could then be explained by the system

For the following results, a subset of the FMNIST datasettempting to separate the cluster of datapoints formed at the
was used. This subset consisted of 250 training images géart to their respective target states. However, the complexity
class used and 100 test images per class used. For eaiclembedding that a single blter provides is perhaps not
experiment, 30 epochs of optimization were conducted usitmp great, meaning that the datapoints which are of a fairly
the Adam optimizer with a learning rate of 30 These similar nature are unable to be separated further into two
hyperparameter values were selected as a result of conductpgosing class clusters. This results in the overall distribu-
a small group of initial experiments to bnd a suitable choid®n of datapoints on the Bloch sphere being left virtually
of learning rate for the number of epochs used. unchanged, hence a plateau in the loss value itself. In addition,

Table Il displays classibtian performance values fromthe 4x 4 Plter experiment could be in an area of lower
experiments on binary FMNIST data, using classes 0 (t-shigdadient within the loss landscape, resulting in the behavior
and 1 (trousers) with varied blter sizes. From these resulissplayed and described earlier being drawn out over a longer
a blter size of 3x 3 was the best performing Plter sizeperiod of time.
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TABLE IV

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30
USING VARIOUS FILTER SIZES FORCUSTOM FACIAL
IDENTIFICATION DATASET

Filter Size Train Loss Train Test Loss Test
Accuracy Accuracy

3x3 0.14685 0.808 0.15141 0.825

4x4 0.17433 0.763 0.17231 0.745

5x5 0.17580 0.752 0.16917 0.780

within this experiment, a test set classibcation accuracy close
to 90% was achieved. In the context of this work, this is a
promising achievement, which can only hope to be improved
upon if the embedding capabilityplfowed by the subsequent
learning capacity of the algorithm, was increased through
additional work and analysis.

C. Facial Identibcation and Facial Recognition Results

Section IV-C consists of two experimental setups. The brst
set of results consists of a bespoke dataset that was created
and consists of images from the AT&T face dataset with a
random selection of images taken from the CIFAR10 dataset.
The objective of this experiment is to determine whether a
provided image is that of a face (class 0) or nonface (class 1).

Fig. 5. Train set and test set loss curves relating to experimental resul stra‘Inlng set of 300 images per class was used, and a testing

displayed in Table Ill. The experimental data consisted of a subset of €t Of 100 images per class was used.
FMNIST dataset using image classes of 0 and 1. For each experiment, 30 epochs of optimization were con-

ducted, using the Adam optimizer with a learning rate o310
As with all experiments, hyperparameter values were selected

In order to visualize this, Fig. 6 displays various Bloclvia a small group of initial experiments in order to bnd a
sphere embeddings of train set data at epochs 1, 2, and 30 wiiftable choice of learning rate for the number of epochs used.
point color corresponding to class value. For the left-hamks before, 30 optimization epochs allowed for satisfactory
Bloch sphere plot at epoch 1, the distribution of datapoints é@nvergence without excessively lengthy training periods.
fairly dense toward the top hemisphere close to dtatethe Experimental results with loss and accuracy as classibcation
target class state for class 0. As the loss function implementaelformance metrics can be seen in Table IV. As with previous
refers to the Pbdelity, or measure of distance between timilticlass MNIST and FMNIST experimental results, the blter
datapoints and their respective target classes, the fact that msizg of 3x 3 produces the highest performance overall. When
datapoints of class 1 are far away from their target staté of viewing the graph of training set loss, displayed in the top
will cause the loss value to increase. half of Fig. 7, the loss values for ¥ 4 and 5x 5 blter size

Following a single training epoch, the second set of embeekperiments are very similar, and appear to plateau at the same
dings for epoch 2 is more evenly distributed between tlepoch. However, the loss curve for thex 33 blter experiment
two hemispheres. Visually, as the datapoints are embeddksbs not appear to plateau in this experiment over the number
closer to their target state on average, this is equated aiooptimization epochs conducted.
the prior considerable drop in loss value. However, betweenBy visualizing the associated image embeddings in the
epoch 2 and 30, the system is unable to separate the toaitom half of Fig. 7, it can be seen that, at epoch 10, the
clusters of datapoints and embed them closer toward theio class distributions are heavily overlapped at the border
respective target states. between the two classibcation regions (the two hemispheres

In particular, there is an area along the right-hand side iof the case of binary classibcation). As optimization continues
the Bloch sphere that contains an overlap of the two clalsg epoch 30, it can be seen by the right-hand Bloch sphere
clusters of datapoints. Because system is unable to separatehat while the datapoint clters are still overlapping around
the datapoints located within this area, the overall shape tbe central axis, they are being drawn away from each other
embeddings is simply shifted around equally, meaning that asipwly.
decrease in loss for a particular class is mirrored by an increas@his equates to the slow but gradual decrease in loss
for the opposing class. This causes the overall loss valuetbooughout training for the 3x 3 Plter, where datapoints
be left fairly unchanged, hence the plateau described earlere becoming closer to their respective target states, but at a
If the complexity of embedding was higher, then perhaps tiséow pace. This behavior suggeshat as many datapoints are
system could separate the daslusters of datapoints muchlocated close to the boundary between the two class regions,
more effectively, resulting in a continued convergence of logven a small separation between the two interlinked clusters
toward a lower value and a higher accuracy in time. could produce a relatively large increase in accuracy. However,

With these points considered, even with the suggestiéds unclear where the natural limit of the system is in this
lowest level of embedding complexity that the system offerathse, and a plateau could be reached at any moment.
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Fig. 6. Visualizations of Blochphere embeddings of datapointsresponding to dataset images the experiment conducted using ax33 Plter size.
Left to right: Bloch spheres show train set data echtings taken over epoch 1, epoch @dapoch 30. Point colors cosgond to the imagesO respective
class, where blue points represent class 0, and green points represent class 1.

TABLE V

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30FOR
VARIOUS FILTER SIZESUSING BINARY AT&T FACIAL IMAGE DATA

Filter Size Train Loss Train Test Loss Test
Accuracy Accuracy

3x3 0.23605 0.643 0.11310 0.833

4x4 0.23500 0.571 0.24201 0.500

5x5 0.23895 0.429 0.33594 0.500

seven images per class and a testing set of three images per
class were used, with two classes of image in total.

For the results displayed in Table V, the classibcation
accuracy for the training set of data was fairly poor for all
experiments. While the testing set accuracy was fair for the
experiment using a ¥ 3 Plter size, the other experiments
produced an even guess for each class. The unusual set of
results achieved here could suggest that there was simply a
too small scale of data to truly learn an existing representation
between the opposing classes.

This is again supported by result graphs shown in Fig. 8,
as the training loss for each experiment appears to plateau at

Fig. 7. Top: train set loss results of a facial identiPcation task, using a sing}@ry similar values, determining that the system had perhaps

blter with varied size between experiments. The dataset consisted of AT ; o ; ;
face image data, combined with a selection of images taken from the CIFA ached its natural limit with the data provided. In contrast

dataset. Bottom: Bloch sphere visualions of train set image embeddingstO this, interestingly the curve for testing set loss continues
for the 3x 3 blter experiment. The left-hdrsphere shows embeddings duringto decrease regardless of the previously mentioned plateau.
epoch 10, whereas the right-hand sghshows embeddings during epoch 30This could be explained by the initial weight distributions
Point colors correspond to the class of the embedded image, with blue Eﬂ‘fecting the end embedding result for the test set data. In other
class 0 and green for class 1. . .
words, the graph would suggest that the experiment using
a 3 x 3 blter size was initialized with a more optimal
Regardless of any speculative analysis, the results achiegetection of weight values than the others, therefore allowing
here are once again promising, and support the aims of tte subsequent embeddings of test data datapoints to be on
work by showing that a good classibcation result can laerage more in their respective class regions.
achieved with few parameters needed, providing a founda-Another point that should be considered is the nature of
tional algorithm with potential for further development andhe task itself. While the aspect of small-scale data has been
improvement. mentioned, an important step within many facial recognition
The following results are from the second experimentatethods is the feature extraction step. This step allows algo-
setup within this section. The objective of this experiment waghms to extrapolate key characteristics of an individualOs face
to perform a facial recognition task, using different individual® aid in classibcation. As a feature extraction step was not
from the AT&T dataset. Due to the small size of individuaintroduced within this methodology, then combined with the
class subsets within the dataset, it felt appropriate to inclugmall amounts of data provided, the system struggled to learn
these results as an additional small-scale experiment, followiagy representation and difference between the two individuals.
on from the previous facial identibcation experimental resulBetter results may have been achieved if a feature extraction
which contained a larger scale of data. Here, a training setmeprocessing step was introduced; however, this is beyond
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where [ 0, 1] is the probability ofqubit phase damping:

1 00
Ko="9 1—03_’K1: o - ©)

The application of Kraus operatd{, does not affect the
|0 portion of the quantum state; however, it negatively
impacts the|1 portion by reducing its amplitude. This is
the same operator that is used as part of amplitude damping
also; however, the second Kraus operakor is different.

The application ofK; affects the qubit by removing the
|0 portion of the quantum state completely, as well as
reducing the amplitude of tHel portion alongside this. More
information on the phase damping channel can also be found
in [38].

For the following results, a subset of the MNIST dataset was
used. This subset consisted of 250 training images per class
used and 100 test images per class used. For each experiment,
30 epochs of optimization were conducted using the Adam
optimizer with a learning rate of £8. These hyperparameter
values were selected, as they were used throughout previous
experiments conducted with the MNIST data, and so consis-
tency between experiments was desired.

The behavior that is expected within these groups of exper-
iments is that as the noise magnitudeis increased, the
general loss value would increase and the accuracy value

Fig. 8. Loss result curves for a binary face recognition task conducted usipuld decrease in comparisorntiveach experiment contained
AT&T face image data. within the task nature (i.e., binary or multiclass classibcation
task). However, as described previously within this work,

the scope of this work and is a topic to be explored if thiéwould be expected for a like-for-like value to produce a

: . . . o wer performance score as more classes are introduced to the
algorithm was specibcally applied to a facial recognition tas sk

Charts displayed in Fig. 9 show experimental results
obtained with the implementation of amplitude damping chan-
nels after each unitary operation, using qubit decay probabil-

In the current NISQ era of QC, it is important to consideities of 0.05 and 0.1 compared against previously gathered
the effect that environmental noise has during optimization aésults with zero noise infuea. These charts display the
guantum algorithms. There are two approaches to analyziengplution of both the train and test set loss and accuracy
the effect of environmental noise. The Prst is running thalues as training epochs are conducted, up to a maximum
algorithm directly through a quantum processing unit (QPUYf 30 epochs of optimization.
and the second is by recreating environmental noise using s can be seen throughout all curves of loss values,
noisy qubit simulator. Both approaches have advantages amérp plateaus occur very soon at the beginning of opti-
disadvantages to them, but they provide a reasonable insightation, with considerably slower loss minimalization in
into how the algorithm may perform in the NISQ era. Dugeneral taking place after epoch 3. This is similar to accu-
to the ability to monitor the effect of noise more closely, ouracy charts as well, where argharp improvements plateau
implementation was conducted using the second approachdbyroughly epoch 3, before improving at a much slower
simulating environmental noise. rate.

In order to recreate instances of environmental noise, thereThe results displayed in Fig. 9 appear to follow the behavior
are various noise channels which can be applied to simul#ibat is expected to some extent. For binary class experiments,
different effects of noise occurring on quantum informatiora sharp decrease in loss is seen when noise is introduced,
As an example, various noise simulation channels availalidefore a very slight loss once the noise magnitude is doubled.
include de-phasing, bit-Bip, and amplitude damping chamhis does not translate across to accuracy values however,
nels to name a few. For the purposes of this section, thdere the classipcation accuracy with = 0.1 is higher
environmental noise channels that will be implemented atiean that with = 0.05. This suggests that decay within
amplitude damping and phase damping. These models of ndise excitation status of the qubit affects the classibcation
were chosen, as they are realistic models of noise, and peformance somewhat. However, once the impact of this is
implemented within other relevant works in the Peld [35], [51present, further reductions in performance are not in proportion

Amplitude damping models energy relaxation within a qubib the magnitude of qubit decay.
that occurs via interactions with the environment over time. The experiments using three classes of data also support
More information on this can be found in [37] and [38]this, as there is a signibcant increase in loss and decrease in
Phase damping models environmental noise that affects #wuracy as noise is introducedowwever, these values appear
representation of quantum information, without changes beitabe very similar for = 0.05and = 0.1, at an approximate
made to the status of excitation within the qubit itself. Phasess of 0.184 and approximate accuracy of 45%. Overall, the
damping can be modeled by the following Kraus operatorsystem is affected to an extent by the introduction of qubit

D. Environmental Noise Impact
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Fig. 9. Loss and classibcation accuracy values obtained through varioary f2C) and three-class (3C) exipeents conducted in a noisy simulatio
environment using the amplitude damping channel. The experiments wedeiated using a subset of the MNIST data (classes of 0, 1, and 2), a single blte
of size 3x 3, and values of 0.05 and 0.1. For clarity, the experiment with zero noisedsect reference to the experimental result displayed in Table |
and Fig. 2.

decay via an amplitude damping channel. While initially thisetups. An explanation for this behavior is that the embedding
drop in performance is quite signibcant, the impact of noiskat the method has performed on the dataset results in
with a greater magnitude is reduced. datapoints being scattered around the borders between the
Fig. 10 displays experimental result charts obtained througiree class regions. Even if a datapoint lies just within that
implementation of a phase damping channel after each unitatgss zone, it will be classibed as such yet may still possess
operation, using qubit dampirgyobabilities of 005 and 0.1 as a larger distance between the ideal target state and itself.
a comparison against the previously obtained result with ze@wer the course of the entire dataset for that epoch, this can
noise inBuence. These charts display the evolution of both thguate to a larger value of loss for many datapoints located
train and test set loss and accuracy values as training epoclese to these boundaries; therefore, it is difbcult to label this
are conducted, up to a maximum of 30 epochs of optimizaticexperiment as an outlier and instead could be thought of as a
Similar to those in Fig. 9, sharp improvements are seen for ladifference in embedding.
and accuracy values, which appear to plateau at approximatelptarting from experiments conducted with zero noise, there
epoch 3, prior to learning at a considerably slower rate froi® a large initial increase in loss as noise is introduced to
then onward. the simulation. However, as the noise value is doubled to
From the charts displayed in Fig. 10, the expected @&10, the increase in loss does not increase proportionally.
followed for the most part. As the noise valueincreases, Interestingly, while there is a large increase in loss here, this
the loss values also increase for each task in turn. Similardoes not translate across to the classibcation accuracy values
the behavior exhibited by the 98 values, the Pnal classibPcawhere the performance is comphte overall. As before, this
tion accuracy values also follow the behavior that would beould be explained by a more optimal distribution of initial
expected somewhat. weightings for the experiments with = 0.05, embedding
Within this, the only experiment which does not follow thigdlatapoints within their correct class region more often than
pattern is where = 0.05 when using three classes (the greesith zero noise. Or, another implication suggested here is that
bar). Here, there is a spike to the loss value; however, ttle system may exhibit a small amount of robustness against
accuracy obtained is still comparable to similar experimentallower level of phase damping impact within the qubit.
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Fig. 10. Loss and classibcation accuracy values obtained through bir@raid three-class (3C) experiments conducted in a noisy simulatioroement
using the phase damping channel. These expetsneere conducted using a subset of the MNIST del@sses of 0, 1, and 2), a single Plter of size 3,
and values ranging from 0.05 to 0.1. For clarity, the experiment with zero risisedirect reference to the experintel result displayed in Table | and
Fig. 2.

Regardless of whether the loss value increases, suggestn the case of binary classibcation experiments conducted
ing that the classibcation conbdence is lower overall, thising the MNIST data, the acracy values obtained are not
accuracy is maintained until re@ magnitude is increased.necessarily as high as the leading DL methodologies. However,
To support this, the effect that phase damping has weee fact that the proposed method was able to reach test
even less for classibcation accuracy of the three-class tasdt, accuracy scores in the 90% region within Pve epochs is
where performance is comgdile within approximately 10% promising in itself. While realizing that the experiments con-
and 5% for train set and test set, respectively, asvas ducted here only contained a subset of the MNIST data, and
increased. not the full dataset, it can be expected that the classibcation

This is a promising factor to consider, as an innate robugterformance of the method will naturally drop slightly as the
ness toward any kind of environmental noise can aid mumber of classes are increased, as well as the size of the
optimization. In a case that the system was in a state capablelafaset.
achieving more than 90% classibcation accuracy on @ldss  This was noticed following experiments conducted using
task using a single qubit, then any robustness held will Iteree classes of the MNIST data, where classibcation accuracy
supportive to optimization if applied in a noisy quantunstagnated at a lower value, and was unable to reach the high
environment. accuracy levels that would be desl in an image classibcation

algorithm, such as well within more than 90% percentile. It is
V. DiscussioN to be noted that only a single blter containing six parameters

To summarize the bndings discussed in Section IV imas implemented over the course of this work; therefore,
its entirety, initial experimental results have been displayecgmplexity of the system can be increased by adding any
in order to showcase early results obtained using a varietyrafmber of blters to the experimental framework.
datasets and applications from image classibcation to faciaNoting that the MNIST dataset can sometimes be considered
recognition. Overall, promising results have been achievdghsic, or not truly representative of the classibcation capability
given the purposes of the work and the system setup conditi@isan algorithm, experiments were conducted using a subset of
posed. However, there are also key areas which would perh#ips Fashion-MNIST dataset todrease the OdifbcultyO of the
greatly benebt from further development and enable the pelassibcation task. Here, the system showed promising results,
formance of the system to be enhanced further. reaching its highest classibcatiaccuracy values very close to
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90% for a Plter size of & 3. In the context of this work, thesenumbers of Plters to determine any difference in classibcation
results are considered good, and show potential for the methgmiformance. In addition, a usage of localized weights as
to be enhanced further. As the complexity of embedding éescribed in Section Ill may also provide an advantage of
increased, these results could be improved upon, allowing foaintaining spatial relationships between pixel values, without
the plateau in loss to be reduced to a much lower value. needing to increase the overall number of implemented Plters.
In order to further demonstrate the initial capability of the Following this, a secondary route for extension could envis-
proposed method, experiments using a bespoke dataset @we considering the inclusiorf oolorized images, to match a
sisting of AT&T facial image data combined with CIFAR10traditional image classibcation task specibcation more closely
images were conducted. As with previous experiments, tliean focusing on greyscale images primarily. Within this,
results were not state of the art, but they are consideragdenues to assign color channels to individual qubits, as well
promising and good in the context of the work and thas analyzing the effect of various entanglement operations
experimental framework used. When applied to an additionaktween qubits, may allow for a better understanding of how
task of facial recognition using AT&T image data only, thehe methodology may extend to modern day tasks that include
system was unable to meet a satisfactory convergence to ldmge-scale color images.
data provided. As described previously, this is likely due to Finally, it is well noted that a signibcant limitation of a
the small-scale data provided giving a lack of representatisimgle qubit is the capability to classify many classes of data.
across the dataset, meaning that the methodology was unademore classes of data are added, the subsequent area within
to learn and optimize effectively. the Bloch sphere that corresponds to each class is reduced.
As the system was introduced to different environment@he effects of this reduction are much greater when a lower
noise channels, initial results modeled using an amplitudember of classes are used; however, the ability to embed
damping channel suggest that noise greatly inffuences thany datapoints into a very small section of the Bloch sphere
qubit and reduces classibcation performance. However, wheifl be difbcult.
modeled using a phase damping channel, initial results appeafherefore, naturally we will need to investigate the use
to suggest a lack of impact or a slight robustness against thfemultiple qubits in order to contain sufbciently sized class
effect that phase damping has by manipulating the datapdiutundaries when many classes are used. However, the point
embeddings. As noise levels were increased higher, a subsewhich a single qubit is unable to cope with the number of
guent drop in classibcation accuracy could be seen. classes used is unknown. This point will also be undoubtedly
While this could be seen as a negative point consideriaffected by factors such as the dimensionality or complexity
the current NISQ era of quantum computation, it is commasf the data, as well as by factors that affect embedding
to see this drop in classibcation performances across maaynplexity, such as re-uploading of data encodings seen in
guantum algorithms when noise is introduced [24]. Wit[86] and [37].
further development, it is hoped that any potential robustnesdt is noted that our new single-qubit CNN focuses on using
can be realized, or improved upon to enhance performaragfew qubits and parameters as possible. Here, we have pro-
when applied in noisy environments. posed using a blter-based version of the existing method where
A speculative suggestion here may be to investigate whettiee spatial relationship between data is preserved. In order to
applying additional blters may mimic the effect of data retest a Omaximally efbcientO version of our quantum network,
uploading, which is suggested to improve expressivity withiour experiments were carried out with a single convolutional
the qubit [52], and thus may provide some robustness Itdter that is applied everywhere on an image instead of many
noisy environments with additional layers, in particular thdifferent plters that would each have their own parameters,
amplitude channel [37]. Exploring modiPcations may aid iwhere the loss function was modeled using the pdelity between
the robustness of the proposed method, and perhaps decréasguantum state that is outputted by the unitaries and the pure
any drop in classibcation as seen in Fig. 9 within noisyuantum state that exists as a classibcation of an input.
environments. In each experiment with threeiffitrent types of problems
To once again put the experiments conducted into persp@eiNIST, fashion MNIST, and AT&T face database), our
tive, the classibcation performance for each set of experimergabntum network was able to create a Pblter size resulting
results was able to be achieved using just six parametersrinperformances with a commendable quality. Although it
total. As the Peld of DL has progressed from relatively shallois accepted that the leadingN®l algorithms achieve a bet-
[20] to very deep networks consisting of many thousands tdr performance accuracy, our goal was to test the method
parameters [21], it should be considered here that the warking a simple version of our QML having room for further
being shown is proposed as a foundation or starting pointitoprovement.
progress forward from. In our future work, we would like to extend our strategies
As has occurred for many modern ML algorithms, modibcae realize more complex architectures targeting higher perfor-
tions and adaptations need to occur to improve upon previauances, while the initial work in this article may serve as an
performance and meet the task at hand. To that extent, thienportant brst step for what will be an exhaustive analysis of
are a few notable ways where this work could be extendedacspecibc type of QML algorithms.
provide additional insight and analysis into the feasibility of
the algorithm as a quantum image classiber. VI. CONCLUSION
First, an aspect well noted throughout this work is that In this work, a framework for efbcient quantum image
of the low number of Plters, and subsequently paramet@lassibcation was proposed, using a minimum value of
optimized in this implementation. While the point of thissix parameters with a single qubit only. Multiple exper-
work was to showcase the potential with this few a numbéments were conducted using datasets of changing nature
it also opens a channel for further developments to remand difpculty to explore a variety of experimental results,
efbcient. Here, an analysis could be performed using additiomald depth to our analysis. Initially, the results discussed
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