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Abstract—The domain of image classi�cation has been seen
to be dominated by high-performing deep-learning (DL) archi-
tectures. However, the success of this �eld, as seen over the past
decade, has resulted in the complexity of modern methodologies
scaling exponentially, commonly requiring millions of parame-
ters. Quantum computing (QC) is an active area of research
aimed toward greatly reducing problems of complexity faced
in classical computing. With growing interest toward quantum
machine learning (QML) for applications of image classi�cation,
many proposed algorithms require usage of numerous qubits.
In the noisy intermediate-scale quantum (NISQ) era, these cir-
cuits may not always be feasible to execute effectively; therefore,
we should aim to use each qubit as effectively and ef�ciently as
possible, before adding additional qubits. This article proposes
a new single-qubit-based deep quantum neural network for
image classi�cation that mimics traditional convolutional neural
network (CNN) techniques, resulting in a reduced number of
parameters compared with previous works. Our aim is to
prove the concept of the initial proposal by demonstrating
classi�cation performance of the single-qubit-based architecture,
as well as to provide a tested foundation for further development.
To demonstrate this, our experiments were conducted using
various datasets including MNIST, Fashion-MNIST, and ORL
face datasets. To further our proposal in the context of the NISQ
era, our experiments were intentionally conducted in noisy sim-
ulation environments. Initial test results appear promising, with
classi�cation accuracies of 94.6%, 89.5%, and 82.5% achieved
on the subsets of MNIST, FMNIST, and ORL face datasets,
respectively. In addition, proposals for further investigation and
development were considered, where it is hoped that these initial
results can be improved.

Index Terms—Quantum convolutional neural networks
(CNNs), quantum deep learning (DL), quantum facial biometrics,
single-qubit encoding.
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I. I NTRODUCTION

I MAGE classiÞcation has seen rapid improvements over the
past decade alone. The processing capability of readily

available GPU units has enabled a chain of strong-performing
deep-learning (DL) methodologies [1]Ð[8] to dominate the
Þeld, boasting high levels of classiÞcation accuracy that
can be Þne-tuned to a speciÞc task. The result of this is
that machine learning (ML) has been able to become inte-
grated within society for many social and industrial uses,
e.g., healthcare [9]Ð[12], public safety [13]Ð[15], and assisted
living [16]Ð[19].

While the current state of DL provides algorithms that
can classify complex datasets to a high standard, further
improvements are becoming more and more marginal, and are
often at the expense of adding many additional parameters.
As an example of this growth of complexity within DL, one
of the earliest convolutional neural network (CNN) methods,
LeNet5 [20], has a total of� 60 000 parameters and can reach
test-set accuracy values over 98%. In contrast to this, one of
the top-performing methods [21] reaching an accuracy value of
99.83% requires a mere 1 400 000 parameters, over 23× that
of LeNet5 for 1%Ð2% increase in accuracy performance.

This monumental increase in parameter counts accelerated
by GPU capability is not necessarily a negative when the high-
est levels of performance are required. However, in order to
progress toward effective ML algorithms, the current tradeoffs
of requiring additional parameters for marginal gains may not
be the most appropriate course of action. The story of DL has
shown that, by focusing on the development of methods that
have a more efÞcient usage of parameters, a foundation can
be provided to build upon and progress toward the highest
performance levels of classiÞcation while keeping efÞciency
of training and execution a primary factor.

Quantum computing (QC) has undergone a tremendous
level of development within the past few years, with quantum
machine learning (QML) seeinga large increase in attention
and productivity. Through innate parallelism and fast execu-
tion speeds, it is supported by many that QC may provide
the necessary means to overcome classiÞcation performance
plateaus seen throughoutclassical ML, and ultimately progress
toward effective, yet efÞcient ML algorithms. Even though
QC is in its infancy, or noisy, intermediate-scale quantum
(NISQ) stage, progress has been made toward the development
of standalone QML algorithms that are capable classiÞers in
themselves [22], [24], [28].

In this work, we aim to progress the thorough work
conducted toward single-qubit classiÞers and propose an
architecture that makes efÞcient use of assigned parameters,
as well as improving scalability to higher dimensional image
classiÞcation tasks. To do this, our initial experiments show-
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case results conducted on lower level image-classiÞcation
tasks, following the natural progression of dataset complex-
ity. These experiments are also conducted using noisy and
nonnoisy simulation environments, in order to provide a rea-
sonable expectation of how the method will perform in the
current NISQ era.

The Þndings from our results show that as low as six
parameters are enough to form a suitably complex feature
space, capable of classifying image data to a high degree of
accuracy. Alongside this, experimental results show a factor of
robustness against the phase damping noise channel to some
extent.

The concept of single-qubit-based neural networks has been
presented by PŽrez-Salinaset al. [36] and is analogous to
a simple multilayer perceptron (MLP), with only one dense
hidden layer and tests on several toy datasets. In our work,
we aim to expand this strategy to quantum image classiÞcation
and develop new architectures such as quantum CNNs, which
are often considered as a much more complex structure than
a simple MLP [54].

To bring the single-qubit strategy into quantum CNNs,
we propose several methods to implement our new single-
qubit quantum CNNs. Particularly: 1) we design a method
that maintains spatial relationships of pixels through the use of
parametrized convolutional Þlters and 2) we adapt this method
to process images in their natural form, thus not requiring
a costly image ßattening preprocessing step. Consequently,
we can then easily implement the quantum CNNs via single-
qubit-based data uploading.

When considering the contributions of this work, it is also
important to consider the indirect contributions that arise
from the modiÞcations made. First, the proposed method has
an increased speciÞcity to the domain of quantum image
classiÞcation in comparison with prior work shown in [36].
The proposed framework also enables modular-based archi-
tectures to be developed using QML techniques, therefore
allowing signiÞcant room for further expansion and develop-
ment. Furthermore, we extended our work to an emerging
topic, namely quantum biometrics, and successfully tested
our proposed new single-qubit quantum CNNs on facial
biometrics besides the handwriting dataset to a promising
extent.

Overall, the work presented here is an important step
that expands upon a single-qubit encoding approach toward
a more practical, long-term solution that is not only more
adaptable in nature but also more efÞcient when scaled to
larger dimensions.

The structure of this article is organized as follows. First,
related work in the Þeld of QML is discussed, and derivation
of the proposed method via single-qubit encoding principles
is outlined. Then, the experimental setup is described in rele-
vance to the current capabilities of QML classiÞers. Afterward,
our experimental results are shown, where an analysis will
be provided. Finally, a discussion of the results and analysis
will be conducted in relation to the scope of the Þeld, where
potential avenues for future work and extensions to the method
may apply.

II. RELATED WORK

In its current state, many NISQ QML algorithms tend to
use a backbone of variational quantum circuits (VQC) as
their primary computational tool. VQCs typically consist of
a series of single-qubit and multiqubit unitary gate operations

applied using a set of parameters in a linear fashion over a
number of qubits [22]Ð[28]. Some of these VQC algorithms
are presented as a hybrid approach to computation, working
in conjunction with typical classical processes implemented as
pre- or postprocessing to determine a classiÞcation result.

Hybrid approaches of computation may provide an opportu-
nity to utilize the power of QC with predetermined methods,
e.g., classically extracted features fed through a QVC [29],
or vice versa with quantum-extracted features [30]. Exper-
imental results within [30] suggest that quantum-extracted
features may provide a small advantage to classiÞcation
performance over a purely classical framework. However,
it was difÞcult to distinguish between a third method with
randomly implemented nonlinearities; therefore, it may not
always be clear to unequivocally identify the impact that
quantum processes have on classiÞcation results.

Within classical ML, DL CNN algorithms are typically
employed for image classiÞcation tasks. CNN algorithms tra-
ditionally implement convolutional, nonlinear transformation
and pooling operations as a series of layers, prior to a fully
connected portion to determinea classiÞcation result. Moti-
vated once more by the success of CNN methods, recent works
have proposed fully quantum architectures as similarly based
alternatives. Work presented in [31] mimics the traditional
convolutional-pooling layer series through the application of
successive multiqubit unitary operations followed by qubit
measurement. Here, nonlinearity is introduced by utilizing
the measurement result of particular qubits as rotational
parameters.

In separate work, Kerenidiset al. [32] propose a quan-
tum CNN that computes the forward pass of the algorithm
via quantum inner product estimation between an input and
convolutional kernel. Then, nonlinearity is introduced via a
Boolean circuit function. Rotational operations and amplitude
ampliÞcation are then performed to enable pixels of a higher
value to have a higher measurement probability. Individual
experiments for the method of [31] and [32] have shown
promising results for image classiÞcation using MNIST data,
as well as for a quantum error correction task. However, these
other methods discussed rely on the entire input data to be
encoded in the amplitudes of a many-qubit superposition state,
i.e., amplitude encoding.

While the work discussed throughout this section has had
promising results and shows positivity toward the development
of effective quantum classiÞers using many qubits, it is impor-
tant to remain in context with the current NISQ era of quantum
computation. Therefore, we should understand that minimizing
the number of qubits required should be a primary concern
when designing quantum algorithms. This is because qubit
coherence is not necessarily at the desired standard yet to rely
on complex, multiqubit operations, where a small error could
vastly impact the states of other qubits utilized. By developing
toward small-scale, efÞcient methods using minimal qubits,
a solid foundation can be built to progress in the quest for
effective QML image classiÞcation algorithms.

In an effort to Þnd efÞcient, yet effective data encoding
schemes, recent works [33]Ð[35] have analyzed a variety of
QVC structures to determine the ability of the encoding to
navigate the Bloch sphere (referred to as expressability), capa-
bility of entanglement between qubits, as well as robustness
when realized in a noisy quantum environment. Within these
works, it was identiÞed that there was a strong correlation
between expressability and classiÞcation accuracy. However,
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it was noted that a point of saturation exists for expressability,
as circuit depth is increased.

One method in particular [36] remained consistent with
these Þndings, while additionally seeing promising results as
a capable classiÞer. This method encoded the input vector
as a set of weighted parameters over a series of arbitrary
unitary operations. Varied settings for depth could then be
initialized, where an increased depth did show a correlation
for improved performance on par with classical neural net-
works and support-vector machine classiÞers. What makes this
proposal particularly appealing is its capability to encode an
arbitrary amount of data intoa complex feature space, while
requiring the use of a single qubit only. The proposal of this
work was examined further in [37], where the single-qubit
classiÞer was still found to remain effective for a multitude of
tasks, even in noisy quantum environments.

In summary, a qubit is an extremely powerful computational
tool, such that the development toward quantum classiÞcation
methods should have a primary focus to maximize the usage
of each qubit prior to increasing the amount of them. By doing
so, a solid foundation can be built to progress forward in an
effort to create effective, robust quantum classiÞers, similar to
the rise of state-of-the-art DL methodologies dominating many
classical ML problems.

III. M ETHODOLOGY

A. Single-Qubit Encoding
To preface the description of the proposed methodology,

it is relevant to discuss a particular method of quantum
information encoding, known as single-qubit encoding. For
many ML tasks, data are often presented in the form of a
column vector. Traditionally, thisD-dimensional vector of
classical data could be encoded by initializing a 2D qubit
quantum state as a binary string equivalent (basis encoding)
if applicable, or through translating data dimensions into their
corresponding probability amplitudes of a superposition state
(amplitude encoding).

While these data encoding schemes have been employed
within other works or [53]Ð[55], they are often very costly or
impractical to implement, andcan become susceptible to error-
prone quantum operations. Therefore, these encoding schemes
may not always be an efÞcient means of minimizing the usage
of qubits.

Single-qubit encoding, developed in [36], is a strategy of
encoding a vector of classical data into a feature Hilbert space
using a succession of unitary operations acting on each input
data dimension applied on a single qubit only. For any arbitrary
special unitary group of degree 2 SU(2) matrix operationU
(a 2 × 2 unitary matrix of determinant 1), the corresponding
operation is able to be decomposed into the following three
rotational operations [38]:

U = ei � RZ(� )RY(� )RZ(� ). (1)

With a global phase factor� , Euler angles�, � , �, � R that
deÞne the extent of each rotation (R) around theZ-, Y-, and
Z-axes, respectively. It is noted that the unitary operation does
not require anRx rotation. Within this method of encoding,
these Euler angles are parameterized further and deÞned as

� = � i + xi · � i

� = � i + 1 + xi + 1 · � i + 1

� = � i + 2 + xi + 2 · � i + 2 (2)

where� i and � i are trainable weight parameters assigned to
xi , the value of the input vectorx at dimensioni . Therefore,
the extent of rotation�, � , � is with respect to the weighted
value of the input. Using the previous parameter deÞnitions,
a maximum of three input dimensions can be encoded per
unitary operation applied.

From here, the input vector will be continually cycled
through, encoding a series of 3-D values at a time, until the
entirety of the input has been encoded. This is known as a
full Òupload layerÓ of the input data. As an example, for an
input vector of 144 dimensions, each dimension will have an
associated� and� variable. Therefore, for this example, a total
of 288 parameters are required to encode the information fully.

B. Proposed Methodology
With analogies to classical feed-forward neural networks,

single-qubit encoding is an effective way of creating a highly
complex feature space through repeated upload layers of input
data. However, as information is encoded at a singular-pixel
level, it may be at a disadvantage for tasks where it is
important to utilize spatial information of pixels, such as image
classiÞcation.

This step of incorporating local regions of pixels is a funda-
mental aspect of convolutional layers used within DL, where
the typical approach is to use a Þlter, or Òsliding window,Ó
that gathers a square region ofF × F pixels. In classical ML,
a kernel operation would be applied to result in a value for
that region of pixels.

The Þrst step in our proposed modiÞcation is to adopt a
similar approach to this. Rather than ßatten an image into the
form of a column vector as a preprocessing step, the original
shape of the image is maintained. A Þlter of sizeF × F
is then passed over the image, partitioning the image into a
distinct grid of F × F squares. Each square region of pixels
is then encoded onto the qubit in turn row by row using the
described single-qubit encoding scheme with pixel values (xi )
and respective Þlter weights as parameters (� i , � i ).

By adopting this approach, pixel information can be
encoded in such a manner where spatial relationships between
pixels are maintained. To clarify, rather than assigning a set
of trainable parameters to each squareF × F region of pixels,
a set of six weight parameters are assigned to the Þlter itself,
which correspond to� and� in (2). By doing so, the same set
of six parameters will repeatedly be applied to every series of
three pixels that the Þlter has extracted. This method reduces
the number of parameters required to just six per Þlter.

While it is acknowledged that multiple unique sets of six
parameters could be localized to eachF × F region, our aim
is to demonstrate that it is possible to produce reasonable
results with the fewest parameters. Therefore, all experiments
contained within this work will be conducted using a system
setup of a single Þlter with six parameters in total, as displayed
in Fig. 1. However, both setups discussed offer a slightly
different approach toward image classiÞcation with advantages
and disadvantages for each. This may open various avenues
for future work to explore, hence why it is included in this
section. More considerations toward possible future work and
extensions will be included later in the discussion section of
this article.

C. ClassiÞcation Pipeline and Loss Calculation
So far, the proposed encoding strategy has been deÞned in

Section III-B; however, the ßow from input to classiÞcation
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Fig. 1. Overview of the proposed methodology with both modiÞcations made. First, a Þlter is applied over an image (12× 12 shown), where square region
of pixels are extracted. These regions are ßattened in turn to form a column vector and encoded using the single-qubit encoding scheme, cycling through the
six weights contained in� and � . This process is repeated until the Þlter has processed over the entire image, where measurement is taken with respect to
a target state given. The number of square pixel regionsto encode and the number ofunitary operations requiredj are determined by the size of the Þlter
F × F, as well as the stride valueS used.

output has not been made evident. To do this, a Þdelity-based
approach of measurement is adopted as seen in [36], where
the overall objective is to minimize the Þdelity between a
set of data encodings and their respective target states. For
a binary classiÞcation task, given a set sizeD of images with
corresponding class values in 0, 1}, a respective target state of
|0� or |1� . is assigned to each image. Any number of classes
can be incorporated using this approach, providing that the
target states are maximally distanced from each other.

From here, the proposed encoding strategy is adopted until
all pixel values have been encoded onto the qubit. Once at
this point, measurement occurswhere the Þdelity of the qubit
is extracted against each target class state in turn. In short,
Þdelity F is a measurement of similarity, or closeness between
two quantum states, where 0� F � 1. The higher the Þdelity
of two quantum states, the more similar they are in direction.
The highest class Þdelity value given is then considered to be
the result of classiÞcation. The following loss function is then
applied, which is based on that utilized in [36]:

1
2D

D�

m= 1

C�

c= 1

(( F(xd, � , �) c Š Fc)2) (3)

where D is the set size of images used,C is the number of
classes,F(xd, � , �) c is the measured Þdelity of the current
datapoint (image within the dataset)d with respect to classc,
andFc is the expected Þdelity value to be measured. To clarify,
a datapoint of class 0 has a target state of|0� , with expected
Þdelity values of 1 and 0 for class values 0 and 1, respectively.
If the qubit was in state|0� , then the Þdelity measurement
would equal 1. If the qubit was in state|1� , then the Þdelity
measurement would equal 0. Say the qubit was in a state of
|� � = (|0� + | 1� )/(( 2)1/ 2), then the Þdelity measurement is
given by

F(xd, � , �) c = |� � c | �( xd, � , �) �| 2. (4)

Here,F(xd, � , �) c = 0.5 for c = 0. Expected Þdelity values
can also be found using (4) by cycling through each class value
with one another.

To display the classiÞcation process in full, algorithm 1
showcases the classiÞcation process from input to output.
In short, for each image, Þlters are passed over extracting

square regions of pixels at a time. Following this, unitary
operations are performed to the qubit in turn using pixel values
from each region with Þlter weights as parameters. This is
repeated until all pixels have been encoded, where Þdelity
measurements are taken with respect to the class states.

To ensure clarity for the hardcoded variables in
lines 12 and 18, the value in line 12 relates to the three
required values per unitary gate�, � , and � , where if x is
not a multiple of 3, then a placeholder value of 0 is applied,
which has no additional effect on qubit rotation. Line 18
refers to the successive application of unitary operations,
where the cycling ofi in multiples of 3 allows for the three
unitary operation values�, � , and� to be given in turn.

IV. RESULTS

In this section, our experiments conducted using the
methodology described throughout Section III will be pre-
sented, where an initial analysis will be conducted into the
results obtained. Our Þrst experiments will be conducted
using a subset of the MNIST data, used for both binary and
three-class classiÞcation tasks. The MNIST dataset [39] is
often considered an initial benchmark for many ML systems
targeting image classiÞcation as their primary task. Due to
the early nature of QML algorithms, we feel that using the
MNIST data provides a suitable challenge to showcase the
lowest performance boundary of the system using minimal
parameters.

Following this, as a step up in difÞculty, our experiments
will be conducted using a subset of the FMNIST dataset
[40] for binary and three-class classiÞcation tasks. FMNIST
data are often considered a subsequently more challenging
task than MNIST data, so it poses an appropriate challenge
for the low-parameter system to tackle effectively. Third, the
methodology will be applied to a face identiÞcation task, using
a custom dataset consisting of AT&T face images [41], as well
as a collection of images taken at random from the CIFAR10
dataset [42]. For all sets of experiments, the classes and index
values of data used remained consistent. This ensured that the
experimental results obtained could be compared in a fair and
justiÞable manner.

Finally, it is important to consider the impact that environ-
mental noise has on the capability of the algorithm presented.
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Algorithm 1 Proposed Methodology
Input: Dataset D, Filters Nf , Class StatesC, Parameters
�, � , � � N(µ = 0, 	 2 = 0.1), Array of pixel valuesx
Output: Qubit ÞdelitiesQ

1: For imaged � D: (Image of heightH and widthW)
2: For Þlter f � N f : (Filter of size FxF and strideS)
3: While pixel row drow < H: (Cycle Þlter regions)
4: While pixel columndcol < W:
5: For Þlter row frow = 1, . . . , F: (Gather pixels)
6: For Þlter column fcol = 1, . . . , F:
7: r = (drow + frow); c = (dcol + fcol)
8: If r < H andc < W:
9: x append value at pixel(r, c) � d
10: Else:
11: x append 0
12: If len(x) % 3 != 0: (% = modulo operation)
13: x append 0
14: dcol � dcol + S
15: drow � drow + S
16: For Þlter f � N f : (Quantum circuit application)
17: For � c � C: (Cycle class states)
18: For i = 1 : 3 : xmax: (Apply weights in sets of 3)
19: � = � 0 + xi · � 0

20: � = � 1 + xi + 1 · � 1

21: � = � 2 + xi + 2 · � 2

22: Apply U(�, � , �)
23: Measure qubit ÞdelityF(xd, � , �) c w.r.t � c

24: Qd appendF(xd, � , �) c
25: End

Given that our experiments are conducted in a simulation
environment, our noise implementation will also be simulated
but it makes appropriate use of various noise and distortion
channels to produce realistic and effective results.

To provide general details of the experimental setup and
implementation, the framework for these experiments was
developed using the PennyLane library [43], which also incor-
porated usage of the PyTorch interface [44]. For nonnoisy
simulations, the Qulacs [45] qubit simulator was used as a
plugin to PennyLane. For simulations that introduce noise,
the PennyLane native mixed-state simulator was used. For
reproducibility, all relevant pseudorandom number generation
seeds were set to zero.

For initialization, all weights were formed using a Gaussian
distribution with a mean of 0 and a standard deviation of
0.1. As a side note in reference to the general barren plateau
problem largely present in training QVC and similar quantum
algorithms [46], it is relevant to address the consideration
taken toward this. While it is acknowledged that there have
been some proposals toward overcoming the problem of barren
plateaus, namely through localized cost functions [47], usage
of quantum natural gradients [48], and evaluations of initial
weight selections [49], we did not incorporate any speciÞc
approaches to reduce their occurrence. Optimization of exper-
iments was conducted as normal, where if a barren plateau
was seen to be present, then training would be reconducted
using a new distribution of weights. This is not necessarily
an optimal method to remove the problem of barren plateaus;

TABLE I

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30 FOR
VARIOUS FILTER SIZES USING BINARY MNIST DATA

Fig. 2. Test set loss and accuracy results of a binary classiÞcation task,
conducted with a single Þlter of varied size on a subset of the MNIST data
with classes 0 and 1.

however, there is no common practice as of yet to overcome
this problem to our knowledge; therefore, it was felt that our
course of action was appropriate for now.

A. MNIST Dataset Results
For the following results, a subset of the MNIST dataset

was used. This subset consisted of 500 training images per
class used and 250 test images per class used. For each
experiment, 30 epochs of optimization were conducted using
the Adam [50] optimizer with a learning rate of 10Š4. These
hyperparameter values were selected from a small group of
initial experiments conducted in order to Þnd a suitable choice
of learning rate for the number of epochs used. Thirty epochs
of optimization were also selected from initial experiments,
as satisfactory convergence could be reached within the time-
frame, while not requiring extremely long training periods.

The results displayed in Table I show classiÞcation per-
formance values from experiments conducted using binary
MNIST data of classes 0 and 1, with a varied Þlter size. Here,
the training set and test setaccuracy achieved was 0.951 and
0.958, respectively, for a Þlter size of 4× 4. The second-best
performing Þlter size was 3× 3, followed by 5× 5 in third.

Upon inspection of the test set loss and accuracy curves
displayed in Fig. 2, it can be seen that the behavior of the
curve for the 3× 3 Þlter is different from that of 4× 4 and
5 × 5. Here, the curve for the 3× 3 Þlter experiment begins
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TABLE II

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30 FOR
VARIOUS FILTER SIZES USING MULTICLASS MNIST DATA

at a more favorable standard of classiÞcation performance, but
any improvements occur slowly and gradually over the course
of training.

The latter experiments of Þlter sizes 4× 4 and 5× 5 begin
in a more unfavorable position with lower loss and accuracy
values; however, the initial improvements to classiÞcation per-
formance are very sharp and quickly plateau by approximately
epoch 5. The behavior exhibited here suggests that while the
initial weight distribution for the 3× 3 Þlter experiment may
classify the dataset to a higher standard to begin with, the
starting weight distribution may also be present in a region of
lower gradient within the loss landscape.

The slower yet fairly consistent optimization curve supports
this, as the system could be steadily attempting to maneuver
out of this lower gradient region. It is unclear whether, given
enough training epochs, the experiment using a Þlter size
of 3 × 3 will overtake the 4× 4 Þlter experiment. However,
the 3× 3 Þlter curve does appear to plateau at approximately
22 epochs; therefore, this would suggest that the system had
settled into a local minimum, and is unable to improve further.

Regardless of considerations toward optimal and suboptimal
weight distributions and barren plateau regions within the loss
landscape, the system is still able to consistently classify the
testing portion of the dataset to a high degree of accuracy in
the 90% bracket within Þve epochs.

Table II shows Þnal performance values taken at epoch
30 from experiments conducted on multiclass (three-class)
MNIST data using classes 0, 1, and 2 and a varied Þlter
size. Within this, a Þlter size of 3× 3 produced the best
classiÞcation performance overall, followed by the 5× 5 Þlter
and 4× 4 Þlter, respectively.

While the results achieved here may not be state of the art,
there are some points which must be considered in context of
this work. The Þrst is that classiÞcation is being conducted
using Þdelity measurements of a set of maximally spaced
target state vectors. As only a single qubit is being examined,
the distance between class states becomes smaller, as more
classes are considered. As the loss function implemented aims
to minimize the distance between embedded datapoints and
their target class state, this naturally becomes more difÞcult
to achieve with an increased number of classes, provided the
dataset is not easily separable.

If the dataset is not easily separable, then the low para-
meter count implemented here may not be able to provide
an embedding capability that is complex enough to account
for this. As charts displayingtrain set loss and accuracy in
Fig. 3 show, this lower embedding complexity thus equates to
a plateau, or extremely marginal improvements in both loss
and accuracy over time.

In order to demonstrate this, Fig. 4 displays embeddings
of train set data during epoch 30 from each experiment as
datapoints on the Bloch sphere. This is done to assist in our

Fig. 3. Train set loss and accuracy results of the experiment using three-class
(classes 0, 1, and 2) MNIST data with varied Þlter sizes. For clarity, the inset
box within the train set loss chart displays the 3× 3 Þlter line just below the
5 × 5 Þlter line.

understanding of how the embedding capability ofthe current
system setup, combined with reduced class area from adding
classes, affects classiÞcation performance.

Here, the clearest difference between embeddings is that
the 5 × 5 Þlter produced a much denser embedding of
all datapoints in this case. In contrast, embeddings from
3 × 3 and 4× 4 Þlters were fairly similar in that the dat-
apoints are more widely distributed toward their respec-
tive target states overall, with the 3× 3 Þlter experiment
arguably showing the most distinctive distributions of data-
points per class. However, despite these differences, the loss
value of the 3× 3 experiment is very slightly below the
5 × 5 Þlter experiment. Yet, when accuracy is considered, this
0.00033 difference in loss equates to over 5% drop in accuracy.

This can be justiÞed by looking at the position of the color
groups of datapoints for the 5× 5 experiment. Looking at
which classiÞcations are correct (green points on the bottom
row), it can be seen that the majority of these correspond
to the distinct clusters of blue and green datapoint groups in
the plot given previously (equating to various image classes).
However, there is a large section toward the bottom left where
there is a signiÞcant overlap between the blue and yellow class
clusters. This shows that the embedding capability here was
not strong enough to separate these clusters as effectively as
the 3× 3 Þlter experiment, where the datapoint clusters were
spread more widely yet remained fairly compact.

While the 4 × 4 Þlter experiment produced the poor-
est classiÞcation performance results overall, the resulting
embeddings show that this experiment struggled to form a
signiÞcant class cluster consisting of the yellow datapoints,
and so had many incorrectly classiÞed images as a result. Had
the 4× 4 Þlter experiment been more successful in doing this,
then it could be argued that the Þnal embeddings of the image
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Fig. 4. Visualizations of Bloch sphere embeddings of datapoints corresponding to dataset images for the experiment conducted using three-class MNIST
data. Left to right: Bloch spheres show trainset data embeddings taken over epoch 30 for the 3× 3, 4 × 4, and 5× 5 Þlter size experiments, respectively.
For the top row, point colors correspond to the imagesÕ respective class, whereas for the bottom row, green points represent correctly classiÞed datapoints,
and red points represent incorrectly classiÞed datapoints. For all Bloch spheres, the three central arrows represent the target state vector for that color class.

TABLE III

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30 FOR
VARIOUS FILTER SIZES USING BINARY FMNIST DATA

data would act similar to the 3× 3 experiment, thus producing
a stronger classiÞcation accuracy.

Overall, the multiclass MNIST experimental results show
that the system is capable of classifying the majority of
datapoints in their correct classes with just six parameters.
However, perhaps this classiÞcation and embedding capability
could be improved by further experiments and analysis into
the system design, i.e., including additional Þlters.

B. FMNIST Dataset Results
For the following results, a subset of the FMNIST dataset

was used. This subset consisted of 250 training images per
class used and 100 test images per class used. For each
experiment, 30 epochs of optimization were conducted using
the Adam optimizer with a learning rate of 10Š3. These
hyperparameter values were selected as a result of conducting
a small group of initial experiments to Þnd a suitable choice
of learning rate for the number of epochs used.

Table III displays classiÞcation performance values from
experiments on binary FMNIST data, using classes 0 (t-shirt)
and 1 (trousers) with varied Þlter sizes. From these results,
a Þlter size of 3× 3 was the best performing Þlter size,

reaching a test set accuracy close to 90%. Unlike results using
binary MNIST data, classiÞcation accuracy regresses as the
Þlter size increases.

When inspecting the train set and test set loss curves
displayed in Fig. 5, the behavior of all three experiments
appears to contradict one another to some extent. While the
3 × 3 Þlter size experiment initially performs worse than the
others, it shows a very rapid decrease in loss, followed by a
sharp plateau. In contrast to this, the 4× 4 experiment shows
a slow and gradual decrease in loss, and the 5× 5 experiment
displays very little convergence and plateaus close to the initial
loss value after epoch 1.

The charts displayed in Fig. 5 appear to suggest that the
embedding capacity of the algorithm in its current state is
perhaps not complex enough to be able to optimize effectively
to the training data provided. The difference in loss values at
epoch 1 is likely caused from the initial weight distributions
for each experiment being in more advantageous starting
positions.

The sharp decrease in loss that follows for the
Þrst 2Ð3 epochs could then be explained by the system
attempting to separate the cluster of datapoints formed at the
start to their respective target states. However, the complexity
of embedding that a single Þlter provides is perhaps not
too great, meaning that the datapoints which are of a fairly
similar nature are unable to be separated further into two
opposing class clusters. This results in the overall distribu-
tion of datapoints on the Bloch sphere being left virtually
unchanged, hence a plateau in the loss value itself. In addition,
the 4× 4 Þlter experiment could be in an area of lower
gradient within the loss landscape, resulting in the behavior
displayed and described earlier being drawn out over a longer
period of time.
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Fig. 5. Train set and test set loss curves relating to experimental results
displayed in Table III. The experimental data consisted of a subset of the
FMNIST dataset using image classes of 0 and 1.

In order to visualize this, Fig. 6 displays various Bloch
sphere embeddings of train set data at epochs 1, 2, and 30 with
point color corresponding to class value. For the left-hand
Bloch sphere plot at epoch 1, the distribution of datapoints is
fairly dense toward the top hemisphere close to state|0� , the
target class state for class 0. As the loss function implemented
refers to the Þdelity, or measure of distance between the
datapoints and their respective target classes, the fact that many
datapoints of class 1 are far away from their target state of|1�
will cause the loss value to increase.

Following a single training epoch, the second set of embed-
dings for epoch 2 is more evenly distributed between the
two hemispheres. Visually, as the datapoints are embedded
closer to their target state on average, this is equated to
the prior considerable drop in loss value. However, between
epoch 2 and 30, the system is unable to separate the two
clusters of datapoints and embed them closer toward their
respective target states.

In particular, there is an area along the right-hand side of
the Bloch sphere that contains an overlap of the two class
clusters of datapoints. Because the system is unable to separate
the datapoints located within this area, the overall shape of
embeddings is simply shifted around equally, meaning that any
decrease in loss for a particular class is mirrored by an increase
for the opposing class. This causes the overall loss value to
be left fairly unchanged, hence the plateau described earlier.
If the complexity of embedding was higher, then perhaps the
system could separate the class clusters of datapoints much
more effectively, resulting in a continued convergence of loss
toward a lower value and a higher accuracy in time.

With these points considered, even with the suggested
lowest level of embedding complexity that the system offered

TABLE IV

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30
USING VARIOUS FILTER SIZES FORCUSTOM FACIAL

IDENTIFICATION DATASET

within this experiment, a test set classiÞcation accuracy close
to 90% was achieved. In the context of this work, this is a
promising achievement, which can only hope to be improved
upon if the embedding capability, followed by the subsequent
learning capacity of the algorithm, was increased through
additional work and analysis.

C. Facial IdentiÞcation and Facial Recognition Results
Section IV-C consists of two experimental setups. The Þrst

set of results consists of a bespoke dataset that was created
and consists of images from the AT&T face dataset with a
random selection of images taken from the CIFAR10 dataset.
The objective of this experiment is to determine whether a
provided image is that of a face (class 0) or nonface (class 1).
A training set of 300 images per class was used, and a testing
set of 100 images per class was used.

For each experiment, 30 epochs of optimization were con-
ducted, using the Adam optimizer with a learning rate of 10Š3.
As with all experiments, hyperparameter values were selected
via a small group of initial experiments in order to Þnd a
suitable choice of learning rate for the number of epochs used.
As before, 30 optimization epochs allowed for satisfactory
convergence without excessively lengthy training periods.

Experimental results with loss and accuracy as classiÞcation
performance metrics can be seen in Table IV. As with previous
multiclass MNIST and FMNIST experimental results, the Þlter
size of 3× 3 produces the highest performance overall. When
viewing the graph of training set loss, displayed in the top
half of Fig. 7, the loss values for 4× 4 and 5× 5 Þlter size
experiments are very similar, and appear to plateau at the same
epoch. However, the loss curve for the 3× 3 Þlter experiment
does not appear to plateau in this experiment over the number
of optimization epochs conducted.

By visualizing the associated image embeddings in the
bottom half of Fig. 7, it can be seen that, at epoch 10, the
two class distributions are heavily overlapped at the border
between the two classiÞcation regions (the two hemispheres
in the case of binary classiÞcation). As optimization continues
by epoch 30, it can be seen by the right-hand Bloch sphere
that while the datapoint clusters are still overlapping around
the central axis, they are being drawn away from each other
slowly.

This equates to the slow but gradual decrease in loss
throughout training for the 3× 3 Þlter, where datapoints
are becoming closer to their respective target states, but at a
slow pace. This behavior suggests that as many datapoints are
located close to the boundary between the two class regions,
even a small separation between the two interlinked clusters
could produce a relatively large increase in accuracy. However,
it is unclear where the natural limit of the system is in this
case, and a plateau could be reached at any moment.
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Fig. 6. Visualizations of Bloch sphere embeddings of datapoints corresponding to dataset images forthe experiment conducted using a 3× 3 Þlter size.
Left to right: Bloch spheres show train set data embeddings taken over epoch 1, epoch 2, and epoch 30. Point colors correspond to the imagesÕ respective
class, where blue points represent class 0, and green points represent class 1.

Fig. 7. Top: train set loss results of a facial identiÞcation task, using a single
Þlter with varied size between experiments. The dataset consisted of AT&T
face image data, combined with a selection of images taken from the CIFAR10
dataset. Bottom: Bloch sphere visualizations of train set image embeddings
for the 3× 3 Þlter experiment. The left-hand sphere shows embeddings during
epoch 10, whereas the right-hand sphere shows embeddings during epoch 30.
Point colors correspond to the class of the embedded image, with blue for
class 0 and green for class 1.

Regardless of any speculative analysis, the results achieved
here are once again promising, and support the aims of this
work by showing that a good classiÞcation result can be
achieved with few parameters needed, providing a founda-
tional algorithm with potential for further development and
improvement.

The following results are from the second experimental
setup within this section. The objective of this experiment was
to perform a facial recognition task, using different individuals
from the AT&T dataset. Due to the small size of individual
class subsets within the dataset, it felt appropriate to include
these results as an additional small-scale experiment, following
on from the previous facial identiÞcation experimental results
which contained a larger scale of data. Here, a training set of

TABLE V

FINAL CLASSIFICATION PERFORMANCEVALUES AT EPOCH30 FOR
VARIOUS FILTER SIZES USING BINARY AT&T FACIAL IMAGE DATA

seven images per class and a testing set of three images per
class were used, with two classes of image in total.

For the results displayed in Table V, the classiÞcation
accuracy for the training set of data was fairly poor for all
experiments. While the testing set accuracy was fair for the
experiment using a 3× 3 Þlter size, the other experiments
produced an even guess for each class. The unusual set of
results achieved here could suggest that there was simply a
too small scale of data to truly learn an existing representation
between the opposing classes.

This is again supported by result graphs shown in Fig. 8,
as the training loss for each experiment appears to plateau at
very similar values, determining that the system had perhaps
reached its natural limit with the data provided. In contrast
to this, interestingly the curve for testing set loss continues
to decrease regardless of the previously mentioned plateau.
This could be explained by the initial weight distributions
affecting the end embedding result for the test set data. In other
words, the graph would suggest that the experiment using
a 3 × 3 Þlter size was initialized with a more optimal
selection of weight values than the others, therefore allowing
the subsequent embeddings of test data datapoints to be on
average more in their respective class regions.

Another point that should be considered is the nature of
the task itself. While the aspect of small-scale data has been
mentioned, an important step within many facial recognition
methods is the feature extraction step. This step allows algo-
rithms to extrapolate key characteristics of an individualÕs face
to aid in classiÞcation. As a feature extraction step was not
introduced within this methodology, then combined with the
small amounts of data provided, the system struggled to learn
any representation and difference between the two individuals.
Better results may have been achieved if a feature extraction
preprocessing step was introduced; however, this is beyond
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Fig. 8. Loss result curves for a binary face recognition task conducted using
AT&T face image data.

the scope of this work and is a topic to be explored if the
algorithm was speciÞcally applied to a facial recognition task.

D. Environmental Noise Impact

In the current NISQ era of QC, it is important to consider
the effect that environmental noise has during optimization of
quantum algorithms. There are two approaches to analyzing
the effect of environmental noise. The Þrst is running the
algorithm directly through a quantum processing unit (QPU),
and the second is by recreating environmental noise using a
noisy qubit simulator. Both approaches have advantages and
disadvantages to them, but they provide a reasonable insight
into how the algorithm may perform in the NISQ era. Due
to the ability to monitor the effect of noise more closely, our
implementation was conducted using the second approach by
simulating environmental noise.

In order to recreate instances of environmental noise, there
are various noise channels which can be applied to simulate
different effects of noise occurring on quantum information.
As an example, various noise simulation channels available
include de-phasing, bit-ßip, and amplitude damping chan-
nels to name a few. For the purposes of this section, the
environmental noise channels that will be implemented are
amplitude damping and phase damping. These models of noise
were chosen, as they are realistic models of noise, and are
implemented within other relevant works in the Þeld [35], [51].

Amplitude damping models energy relaxation within a qubit
that occurs via interactions with the environment over time.
More information on this can be found in [37] and [38].
Phase damping models environmental noise that affects the
representation of quantum information, without changes being
made to the status of excitation within the qubit itself. Phase
damping can be modeled by the following Kraus operators,

where
 � [ 0, 1] is the probability ofqubit phase damping:

K0 =
�

1 0
0

�
1 Š 


�
, K1 =

�
0 0
0

�



�
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The application of Kraus operatorK0 does not affect the
|0� portion of the quantum state; however, it negatively
impacts the|1� portion by reducing its amplitude. This is
the same operator that is used as part of amplitude damping
also; however, the second Kraus operatorK1 is different.
The application ofK1 affects the qubit by removing the
|0� portion of the quantum state completely, as well as
reducing the amplitude of the| 1� portion alongside this. More
information on the phase damping channel can also be found
in [38].

For the following results, a subset of the MNIST dataset was
used. This subset consisted of 250 training images per class
used and 100 test images per class used. For each experiment,
30 epochs of optimization were conducted using the Adam
optimizer with a learning rate of 10Š4. These hyperparameter
values were selected, as they were used throughout previous
experiments conducted with the MNIST data, and so consis-
tency between experiments was desired.

The behavior that is expected within these groups of exper-
iments is that as the noise magnitude
 is increased, the
general loss value would increase and the accuracy value
would decrease in comparison with each experiment contained
within the task nature (i.e., binary or multiclass classiÞcation
task). However, as described previously within this work,
it would be expected for a like-for-like value to produce a
lower performance score as more classes are introduced to the
task.

Charts displayed in Fig. 9 show experimental results
obtained with the implementation of amplitude damping chan-
nels after each unitary operation, using qubit decay probabil-
ities of 0.05 and 0.1 compared against previously gathered
results with zero noise inßuence. These charts display the
evolution of both the train and test set loss and accuracy
values as training epochs are conducted, up to a maximum
of 30 epochs of optimization.

As can be seen throughout all curves of loss values,
sharp plateaus occur very soon at the beginning of opti-
mization, with considerably slower loss minimalization in
general taking place after epoch 3. This is similar to accu-
racy charts as well, where anysharp improvements plateau
at roughly epoch 3, before improving at a much slower
rate.

The results displayed in Fig. 9 appear to follow the behavior
that is expected to some extent. For binary class experiments,
a sharp decrease in loss is seen when noise is introduced,
before a very slight loss once the noise magnitude is doubled.
This does not translate across to accuracy values however,
where the classiÞcation accuracy with
 = 0.1 is higher
than that with 
 = 0.05. This suggests that decay within
the excitation status of the qubit affects the classiÞcation
performance somewhat. However, once the impact of this is
present, further reductions in performance are not in proportion
to the magnitude of qubit decay.

The experiments using three classes of data also support
this, as there is a signiÞcant increase in loss and decrease in
accuracy as noise is introduced. However, these values appear
to be very similar for
 = 0.05 and
 = 0.1, at an approximate
loss of 0.184 and approximate accuracy of 45%. Overall, the
system is affected to an extent by the introduction of qubit
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Fig. 9. Loss and classiÞcation accuracy values obtained through various binary (2C) and three-class (3C) experiments conducted in a noisy simulation
environment using the amplitude damping channel. The experiments were conducted using a subset of the MNIST data (classes of 0, 1, and 2), a single Þlter
of size 3× 3, and
 values of 0.05 and 0.1. For clarity, the experiment with zero noise isa direct reference to the experimental result displayed in Table I
and Fig. 2.

decay via an amplitude damping channel. While initially this
drop in performance is quite signiÞcant, the impact of noise
with a greater magnitude is reduced.

Fig. 10 displays experimental result charts obtained through
implementation of a phase damping channel after each unitary
operation, using qubit dampingprobabilities of 0.05 and 0.1 as
a comparison against the previously obtained result with zero
noise inßuence. These charts display the evolution of both the
train and test set loss and accuracy values as training epochs
are conducted, up to a maximum of 30 epochs of optimization.
Similar to those in Fig. 9, sharp improvements are seen for loss
and accuracy values, which appear to plateau at approximately
epoch 3, prior to learning at a considerably slower rate from
then onward.

From the charts displayed in Fig. 10, the expected is
followed for the most part. As the noise value
 increases,
the loss values also increase for each task in turn. Similar to
the behavior exhibited by the loss values, the Þnal classiÞca-
tion accuracy values also follow the behavior that would be
expected somewhat.

Within this, the only experiment which does not follow this
pattern is where
 = 0.05 when using three classes (the green
bar). Here, there is a spike to the loss value; however, the
accuracy obtained is still comparable to similar experimental

setups. An explanation for this behavior is that the embedding
that the method has performed on the dataset results in
datapoints being scattered around the borders between the
three class regions. Even if a datapoint lies just within that
class zone, it will be classiÞed as such yet may still possess
a larger distance between the ideal target state and itself.
Over the course of the entire dataset for that epoch, this can
equate to a larger value of loss for many datapoints located
close to these boundaries; therefore, it is difÞcult to label this
experiment as an outlier and instead could be thought of as a
difference in embedding.

Starting from experiments conducted with zero noise, there
is a large initial increase in loss as noise is introduced to
the simulation. However, as the noise value is doubled to
0.10, the increase in loss does not increase proportionally.
Interestingly, while there is a large increase in loss here, this
does not translate across to the classiÞcation accuracy values
where the performance is comparable overall. As before, this
could be explained by a more optimal distribution of initial
weightings for the experiments with
 = 0.05, embedding
datapoints within their correct class region more often than
with zero noise. Or, another implication suggested here is that
the system may exhibit a small amount of robustness against
a lower level of phase damping impact within the qubit.
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Fig. 10. Loss and classiÞcation accuracy values obtained through binary (2C) and three-class (3C) experiments conducted in a noisy simulation environment
using the phase damping channel. These experiments were conducted using a subset of the MNIST data(classes of 0, 1, and 2), a single Þlter of size 3× 3,
and 
 values ranging from 0.05 to 0.1. For clarity, the experiment with zero noiseis a direct reference to the experimental result displayed in Table I and
Fig. 2.

Regardless of whether the loss value increases, suggest-
ing that the classiÞcation conÞdence is lower overall, the
accuracy is maintained until noise magnitude is increased.
To support this, the effect that phase damping has was
even less for classiÞcation accuracy of the three-class task,
where performance is comparable within approximately 10%
and 5% for train set and test set, respectively, as
 was
increased.

This is a promising factor to consider, as an innate robust-
ness toward any kind of environmental noise can aid in
optimization. In a case that the system was in a state capable of
achieving more than 90% classiÞcation accuracy on a 3+ class
task using a single qubit, then any robustness held will be
supportive to optimization if applied in a noisy quantum
environment.

V. DISCUSSION

To summarize the Þndings discussed in Section IV in
its entirety, initial experimental results have been displayed,
in order to showcase early results obtained using a variety of
datasets and applications from image classiÞcation to facial
recognition. Overall, promising results have been achieved,
given the purposes of the work and the system setup conditions
posed. However, there are also key areas which would perhaps
greatly beneÞt from further development and enable the per-
formance of the system to be enhanced further.

In the case of binary classiÞcation experiments conducted
using the MNIST data, the accuracy values obtained are not
necessarily as high as the leading DL methodologies. However,
the fact that the proposed method was able to reach test
set accuracy scores in the 90% region within Þve epochs is
promising in itself. While realizing that the experiments con-
ducted here only contained a subset of the MNIST data, and
not the full dataset, it can be expected that the classiÞcation
performance of the method will naturally drop slightly as the
number of classes are increased, as well as the size of the
dataset.

This was noticed following experiments conducted using
three classes of the MNIST data, where classiÞcation accuracy
stagnated at a lower value, and was unable to reach the high
accuracy levels that would be desired in an image classiÞcation
algorithm, such as well within more than 90% percentile. It is
to be noted that only a single Þlter containing six parameters
was implemented over the course of this work; therefore,
complexity of the system can be increased by adding any
number of Þlters to the experimental framework.

Noting that the MNIST dataset can sometimes be considered
basic, or not truly representative of the classiÞcation capability
of an algorithm, experiments were conducted using a subset of
the Fashion-MNIST dataset to increase the ÒdifÞcultyÓ of the
classiÞcation task. Here, the system showed promising results,
reaching its highest classiÞcation accuracy values very close to
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90% for a Þlter size of 3× 3. In the context of this work, these
results are considered good, and show potential for the method
to be enhanced further. As the complexity of embedding is
increased, these results could be improved upon, allowing for
the plateau in loss to be reduced to a much lower value.

In order to further demonstrate the initial capability of the
proposed method, experiments using a bespoke dataset con-
sisting of AT&T facial image data combined with CIFAR10
images were conducted. As with previous experiments, the
results were not state of the art, but they are considered
promising and good in the context of the work and the
experimental framework used. When applied to an additional
task of facial recognition using AT&T image data only, the
system was unable to meet a satisfactory convergence to the
data provided. As described previously, this is likely due to
the small-scale data provided giving a lack of representation
across the dataset, meaning that the methodology was unable
to learn and optimize effectively.

As the system was introduced to different environmental
noise channels, initial results modeled using an amplitude
damping channel suggest that noise greatly inßuences the
qubit and reduces classiÞcation performance. However, when
modeled using a phase damping channel, initial results appear
to suggest a lack of impact or a slight robustness against the
effect that phase damping has by manipulating the datapoint
embeddings. As noise levels were increased higher, a subse-
quent drop in classiÞcation accuracy could be seen.

While this could be seen as a negative point considering
the current NISQ era of quantum computation, it is common
to see this drop in classiÞcation performances across many
quantum algorithms when noise is introduced [24]. With
further development, it is hoped that any potential robustness
can be realized, or improved upon to enhance performance
when applied in noisy environments.

A speculative suggestion here may be to investigate whether
applying additional Þlters may mimic the effect of data re-
uploading, which is suggested to improve expressivity within
the qubit [52], and thus may provide some robustness to
noisy environments with additional layers, in particular the
amplitude channel [37]. Exploring modiÞcations may aid in
the robustness of the proposed method, and perhaps decrease
any drop in classiÞcation as seen in Fig. 9 within noisy
environments.

To once again put the experiments conducted into perspec-
tive, the classiÞcation performance for each set of experimental
results was able to be achieved using just six parameters in
total. As the Þeld of DL has progressed from relatively shallow
[20] to very deep networks consisting of many thousands of
parameters [21], it should be considered here that the work
being shown is proposed as a foundation or starting point to
progress forward from.

As has occurred for many modern ML algorithms, modiÞca-
tions and adaptations need to occur to improve upon previous
performance and meet the task at hand. To that extent, there
are a few notable ways where this work could be extended to
provide additional insight and analysis into the feasibility of
the algorithm as a quantum image classiÞer.

First, an aspect well noted throughout this work is that
of the low number of Þlters, and subsequently parameters
optimized in this implementation. While the point of this
work was to showcase the potential with this few a number,
it also opens a channel for further developments to remain
efÞcient. Here, an analysis could be performed using additional

numbers of Þlters to determine any difference in classiÞcation
performance. In addition, a usage of localized weights as
described in Section III may also provide an advantage of
maintaining spatial relationships between pixel values, without
needing to increase the overall number of implemented Þlters.

Following this, a secondary route for extension could envis-
age considering the inclusion of colorized images, to match a
traditional image classiÞcation task speciÞcation more closely
than focusing on greyscale images primarily. Within this,
avenues to assign color channels to individual qubits, as well
as analyzing the effect of various entanglement operations
between qubits, may allow for a better understanding of how
the methodology may extend to modern day tasks that include
large-scale color images.

Finally, it is well noted that a signiÞcant limitation of a
single qubit is the capability to classify many classes of data.
As more classes of data are added, the subsequent area within
the Bloch sphere that corresponds to each class is reduced.
The effects of this reduction are much greater when a lower
number of classes are used; however, the ability to embed
many datapoints into a very small section of the Bloch sphere
will be difÞcult.

Therefore, naturally we will need to investigate the use
of multiple qubits in order to contain sufÞciently sized class
boundaries when many classes are used. However, the point
at which a single qubit is unable to cope with the number of
classes used is unknown. This point will also be undoubtedly
affected by factors such as the dimensionality or complexity
of the data, as well as by factors that affect embedding
complexity, such as re-uploading of data encodings seen in
[36] and [37].

It is noted that our new single-qubit CNN focuses on using
as few qubits and parameters as possible. Here, we have pro-
posed using a Þlter-based version of the existing method where
the spatial relationship between data is preserved. In order to
test a Òmaximally efÞcientÓ version of our quantum network,
our experiments were carried out with a single convolutional
Þlter that is applied everywhere on an image instead of many
different Þlters that would each have their own parameters,
where the loss function was modeled using the Þdelity between
the quantum state that is outputted by the unitaries and the pure
quantum state that exists as a classiÞcation of an input.

In each experiment with three different types of problems
(MNIST, fashion MNIST, and AT&T face database), our
quantum network was able to create a Þlter size resulting
in performances with a commendable quality. Although it
is accepted that the leading CNN algorithms achieve a bet-
ter performance accuracy, our goal was to test the method
using a simple version of our QML having room for further
improvement.

In our future work, we would like to extend our strategies
to realize more complex architectures targeting higher perfor-
mances, while the initial work in this article may serve as an
important Þrst step for what will be an exhaustive analysis of
a speciÞc type of QML algorithms.

VI. CONCLUSION

In this work, a framework for efÞcient quantum image
classiÞcation was proposed, using a minimum value of
six parameters with a single qubit only. Multiple exper-
iments were conducted using datasets of changing nature
and difÞculty to explore a variety of experimental results,
and depth to our analysis. Initially, the results discussed
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throughout are promising, and display potential for the
methodology to perform highly using a low number of
parameters. The system was consistently able to achieve
classiÞcation accuracy values within the 80th and 90th per-
centile in a short optimization timeframe within 30 training
epochs.

However, when our experimental setup was applied to a
noisy quantum simulation using amplitude and phase damping
channels, classiÞcation accuracy was reduced greatly by the
impact of qubit decay through amplitude damping. However,
experimental results suggested a limited amount of robustness
for classiÞcation performanceagainst the impact of the phase
damping channel by changes to the phase value of the qubit.

Overall, the proposed methodology provides a solid foun-
dation to progress forward to develop and build upon the
success seen here using the bare minimum parameter and
qubit count. As outlined in Section V, considerations for future
work include an investigation into implementing additional
Þlters, to determine whether classiÞcation performance can be
improved upon and robustness similar to other works can be
achieved.

Alongside this, there are various opportunities to extend
the foundational methodology proposed here toward modern-
day image classiÞcation tasks that utilize high-resolution
color images. These opportunities could examine the use
of localized pixel weighting rather than individual Þl-
ter weights, as well as investigate the effect of applying
multiple qubits and entanglement measures to the system
framework.
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