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Abstract: Gaze estimation, which is a method to determine where a person is looking at given the
person’s full face, is a valuable clue for understanding human intention. Similarly to other domains of
computer vision, deep learning (DL) methods have gained recognition in the gaze estimation domain.
However, there are still gaze calibration problems in the gaze estimation domain, thus preventing
existing methods from further improving the performances. An effective solution is to directly
predict the difference information of two human eyes, such as the differential network (Diff-Nn).
However, this solution results in a loss of accuracy when using only one inference image. We propose
a differential residual model (DRNet) combined with a new loss function to make use of the difference
information of two eye images. We treat the difference information as auxiliary information. We
assess the proposed model (DRNet) mainly using two public datasets (1) MpiiGaze and (2) Eyediap.
Considering only the eye features, DRNet outperforms the state-of-the-art gaze estimation methods
with angular-error of 4.57 and 6.14 using MpiiGaze and Eyediap datasets, respectively. Furthermore,
the experimental results also demonstrate that DRNet is extremely robust to noise images.

Keywords: gaze estimation; gaze calibration; noise image; differential residual network

1. Introduction

Eye gaze is an important nonverbal communication technology. It contains rich
information about human features, allowing researchers and users to tap more about human
patterns [1,2] and action [3,4]. It is widely recommended in many topics, e.g., human–robot
interaction (HRI) [5–8]. Most common gaze estimation tasks are categorized into three
types: (1) three-dimensional (3D)-based gaze estimation [9], (2) target estimation [10,11]
and (3) tracking estimation [12]. Figure 1 shows examples of gaze estimation task types.
However, our study focuses on 3D gaze estimation.

Three-dimensional gaze estimation can be classified into two methods, as illustrated
in (Figure 2). Model-based methods [13–16] generally consider geometric features such as
eyeball shape, pupil center position, and pupil membrane edge. These methods require
specific equipment such as infrared camera and have low robustness when illumination
and head pose change. However, appearance-based methods have higher performance
due to the training of a deep network using a large amount of data. Specifically, the deep
network has the ability to extract features from eye images under various illumination
conditions and head positions. Only a laptop with a web camera is required to collect the
data set (e.g., MpiiGaze [17]).
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(a) (b)

(c)

Figure 1. Examples of common tasks of gaze estimation: (a) three-dimensional (3D)-based estima-
tion [9], (b) target estimation [10,11] and (c) tracking [12].
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Figure 2. Example of two 3D gaze estimation techniques, (a) model-based and (b) appearance-
based methods.

The first appearance-based method [18] uses convolutional neural networks (CNN)
inherited from LeNet [19] for gaze estimation. One factor that limits CNN success is the
noise in the eye images. Figure 3 shows the noise images caused by the extreme head
position and the blink response in Eyediap [20]. The left eye image in (a) is not completely
captured due to the extreme head position. The left and right eye images missed the pupil
information in (b) due to the blink response. We aim to avoid the limitation of the noisy
eye images using the proposed DRNet model (i.e., more details are given in Section 4.2).
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(a) (b)

left eye in (a) right eye in (a) left eye in (b) right eye in (b)

Figure 3. Example of noise images in Eyediap [20]. (a,b) are two example frames of the dataset.
(Top) Original RGB frames. (Bottom) Left- and right-eye images are captured from the original
RGB frames.

Gaze calibration problem also limits the performances of CNNs. An effective and
simple solution proposed by many publications to solve this problem is to adjust the weight
of the model after training [11,21–24]. However, this solution requires many inference
images with the label. Liu et al. [25] propose a differential network (Diff-Nn) to address
the gaze calibration problem by directly predicting the difference information between
two images of the eyes. Gu et al. [26] developed Diff-Nn for the gaze estimation using
the left and right eye patch of one face simultaneously. Several other works mention that
the performance based on the methods considering the difference information is directly
affected by the number and the specific label of the inference image [25,26].

We firstly treated the difference information as auxiliary information in the proposed
DRNet. We combined the original gaze direction and the difference information through
the shortcut-connection in DRNet. In addition, we proposed a new loss function for the
gaze estimation. For example, the original loss function evaluates the gap between the
quantity of the predicted vector and its ground truth, such as pitch and yaw. The new loss
function evaluates the intersection angle between the predicted and its ground truth vector
in 3D space directly.

To the best of our knowledge, this is the first study that applies the shortcut-connection
by combining the difference information to address gaze calibration. Our contributions can
be summarized as follows.

• We propose the DRNet model, which applies the shortcut connection, to address the
gaze calibration problem and hence improve the robustness-to-noise image in the
eye images. DRNet outperforms the state-of-the-art gaze estimation methods only
using eye features, and is also highly competitive among the gaze estimation methods
combining facial feature.

• We propose a new loss function for gaze estimation. It provides a certain boost to
existing appearance-based methods.

The remainder of this paper is structured as follows. The related works are presented
in Section 2. Section 3 describes the proposed pipeline-based DRnet. We present the
experimental results in Section 4. Finally, Section 5 concludes the key contributions of
our work.

2. Related Work

In previous years, appearance-based methods have been considered as the most
commonly methods in gaze estimation. For example, Zhang et al. [18] proposed the
first appearance-base method (i.e., LeNet [19]) that uses eye features for gaze estimation.
They expanded three convolution layers to sixteen convolution layers in their work [17] to
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achieve higher performance metrics. Fischer et al. [27] presented a two-stream network;
left and right eye images are fed into VGG-16 [28] separately. Some studies directly used
face images as input or/and applied CNN to automatically extract deep facial features.
For example, Zhang et al. [29] used a spatial weighting mechanism to efficiently encode
the face location using CNN. This method decreases noise impact and improved the
contribution of highly activated regions. Cheng et al. [30] assigned weights for two eye
features under the guidance of facial features. Furthermore, Chen et al. [31] considered
dilated convolution to extract deep facial features. This effectively improves the perceptual
field while reducing the image resolution [31]. In addition, gaze estimation in outdoor
environments was investigated using eye and face features derived from near-infrared
camera [32,33]. Bao et al. [34] studied a self-attention mechanism to combine two eye
features with the guidance of facial features. In [35], CNN with long short-term memory
(LSTM) network is introduced to be able to capture spatial and temporal features from
video frames. In [36], the generative adversarial network is used to enhance the eye image
captured under low and dark light conditions. Despite all the advantages of gaze estimation
techniques, there are still some challenges that need to be addressed.

In order to avoid the challenges of previous gaze estimation techniques, we developed
DRNet to treat the difference information as auxiliary information and designed the model
based on the residual concept. It is worth noting that the residual network concept was
first proposed by He et al. [37] to avoid the model degradation problem of deep neural
networks. For example, in residual networks, increasing the depth of the network does
not result in decreasing the accuracy due to the shortcut connection. Thus, we apply the
shortcut connection in DRNet to improve the robustness of the differential network.

3. Methodology

This paper proposes a DRNet model with a new loss function to optimize the perfor-
mance of gaze estimation. Specifically, the difference information is used as an auxiliary
information in DRNet model. A brief overview of the DRNet model with the proposed loss
function are detailed as follows.

3.1. Proposed DRNet

Figure 4 shows the proposed DRNet pipeline. It consists of a feature extractor, differ-
ential (DIFF), adjustment (AD), and shortcut (SC) modules. Specifically, DRnet receives
two eye images (i.e., test and guidance images), and one of these eye images (i.e., guidance
image) represents the calibration image. Furthermore, two eye input images are required
to be derived from the same person.

3.1.1. Feature Extractor

Instead of one single eye image, both test and guidance eye images are adopted as
raw input for DRNet. The feature extractor is stacked by the convolution layer (Conv), the
batch normalization layer (BN) and the rectified linear unit (ReLU). The features are then
used as derived from the fully connected layers.

3.1.2. Residual Branch

The three other components (i.e., DIFF, AD, and SC modules) construct the resid-
ual branch of the proposed DRNet architecture. More specifically, the DIFF module is
responsible for providing the difference information between the test and guidance images.
The AD module converts the difference information to the auxiliary information. The SC
module provides the gaze-estimation-based information of the test image. Finally, the gaze
direction represents the summation of SC and AD outputs.
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Figure 4. The proposed DRNet pipeline. Test and guidance images used as input to the DRNet
model. DRNet provides the difference information and the gaze direction, which are described by
three-dimensional vectors.

3.2. The Residual Structure in DRNet

Figure 5 shows a block diagram of residual structure process. Guidance and test image
features are extracted by the feature extractor. These features are the input of the DIFF
Module. In addition, test image feature is transferred into SC Module separately.

It is worth noting that the residual structure of our DRNet model is designed based on
the ResNet architecture [37]. Referring to the idea of a shortcut connection in ResNet [37],
DRNet combined the difference information and gaze direction through the shortcut
connection. The residual structure in DRNet is constructed by the fully-connected layer,
while the residual structure in the ResNet is constructed based on the convolutional layers.
Therefore, the residual structure of ResNet is an operation on the feature map, and the final
output is the sum of two feature maps. Thus, the residual structure of DRNet operates on a
one-dimensional vector, while the final output is the sum of two one-dimensional vectors.

Gaze directionGuidance image feature

Test image feature

DIFF AD +

SC

Figure 5. DRNet residual structure. The guidance image and the test image features are extracted
from the raw inputs. The sum of SC and AD outputs provides the gaze direction.

3.3. Loss Function

We propose a new and original loss function as follows:

Lnew =
|gDRNet||ĝtest|√

gDRNet
√

ĝtest
, (1)

Loriginal = |gDRNet − ĝtest|, (2)

where gDRNet is the DRNet output, gtest is the test image (e.g., the ground truth).
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The loss functions Lnew and Loriginal measure the angle and difference between the
predicted vector and the ground truth vector, respectively. It is noted that the Lnew loss
function uses approximate global information to optimize the output. Another loss function
(named LB) based on a combined loss function Lnew and Loriginal. LB can be expressed
as follows:

LB = α*
|gDRNet||ĝtest|√

gDRNet
√

ĝtest
+ (1− α) ∗ |gDRNet − ĝtest|, (3)

where α is the hyperparameter tuning Lnew and Loriginal.
We note that LB plays the role of optimization in DRNet.We also optimized the DIFF

module using the following loss function LA.

LA = |
|gdi f f ||ĝguidance|
√gdi f f

√
ĝguidance

−
|ĝtest||ĝguidance|√

ĝtest
√

ĝguidance
|, (4)

where gdi f f and ĝguidance is the DIFF output and guidance image (i.e., ground-truth), re-
spectively. We use the loss function LA to measure the difference information of the
DIFF module.

Compared to the loss function described in Di f f − Nn [25], LA also optimizes pre-
diction by measuring difference information. In other words, LA tunes the prediction to a
reasonable scale. The process advantage of LA is that the guidance image label will not be
involved in the testing stage, while in Di f f − Nn some label information is needed.

The general loss function L combined LA and LB as follows:

L = (1−β) ∗ LA + β ∗ LB , (5)

where β is a hyperparameter tuning of LA and LB.

3.4. Training Model

Figure 6 shows the pipeline of the training model. (1) Initialization: Test image is fixed
and guidance image randomly selected. (2) Forward propagation: Calculate the output of
each unit, and the deviation between the target value and the actual output. (3) Backward
propagation: compute the gradient and update the weight parameters. When the iteration
reaches the maximum epoch, the DRNet parameters considered and fixed for the prediction.
We implement DRNet using PyTorch (https://pytorch.org/, accessed on 2 February 2020)
that runs on TITAN RTX GPUs. We considered Adam optimizer with an initial learning
rate of 0.01 (decayed by 0.1 every 5 epochs) and batch size of 128 and 1 in training and
testing, respectively.

Calculate Loss LB

Calculate Loss LA

Update weight 

parameters 

Calculate 

gradient

Deep differential residual network

Gaze directionDifference information

SC

AD

Feature 

extractor

DIFF

Gaze directionDifference information

SC
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Feature 

extractor

DIFF
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Gaze directionDifference information
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         L = (1- ) * LA +  * LB

Figure 6. Flow chart of the training stage.
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4. Experiments

To validate our proposed architecture, two public datasets have been used in the
experimentation process: (i) MpiiGaze dataset and (ii) Eyediap dataset. An example of
sample eye images in Eyediap and MpiiGaze is shown in Figure 7.

(a) (b)

Figure 7. Sample images from MpiiGaze (a) and Eyediap (b).

(1) MpiiGaze dataset consists of 1500 left and right eye images derived from 15 subjects [17].
These images are obtained in real-life scenarios with a variation of the illumination con-
ditions, head pose and subjects with glasses. Specifically, the images are grayscale with a
resolution of 36× 60 pixels with corresponding information related to head pose.

(2) Eyediap dataset consists of 94 videos taken from 16 subjects [20]. The data set is
obtained in a laboratory setting with the corresponding head pose and gaze. Data sets were
pre-processed following the pre-processing procedures described in [38], and cropping
approximately 21K images of the eyes, which are also grayscale images with a size of
36 × 60 pixels. Note that since two subjects lack the videos in the screen target session, we
obtained the images of 14 subjects in our experiments.

We used angular-error as a measurement which is generally used to measure the
accuracy of the 3D gaze target method as follows:

angle_error =
|gtest||ĝtest|√

gtest
√

ĝtest
. (6)

where ĝtest and gtest is the true and predicted test image for gaze direction, respectively.

4.1. Appearance-Base Methods

Table 1 reports the angular-error of the appearance-based methods using eye features.
Compared to baseline methods (Mnist [18], GazeNet [17], RT-Gen [27], DenseNet101-
Diff-Nn [25]), our proposed DenseNet101-DRNet delivers the best performance using the
features of the eye image of two public datasets (Figure 7). It is worth noting that the loss
function used in DRNet is based on Equation (5), where α = β = 0.75.

We also compared the performance of the proposed DRNet with the baseline methods
using eye and facial features (i.e., Dilated-Net [31], Full Face [29], Gaze360 [39], AFF-
Net [34], CA-Net [30]). We note that DRNet model uses only eye features. In related works,
the performance of methods using eye and facial features show higher performance than
the methods using only the eye features. Table 2 reports the performance of angular-error. It
can be seen that the proposed DenseNet101-DRNet is highly competitive among the gaze
estimation methods (Figure 8). DRNet model is better than Dilated-Net [31], FullFace [29],
AFF-Net [39] using Eyediap dataset. In addition, DRNet shows a better performance than
FullFace [29] using MpiiGaze dataset.
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Table 1. Performance summary (angular-error) and comparison with recent works using eye features.

Method MpiiGaze Eyediap

Mnist [18] 6.27 7.6
GazeNet [17] 5.7 7.13
RT-Gene [27] 4.61 6.3

DenseNet101-Diff-Nn [25] 6.33 7.96
DenseNet101-DRNet (ours) 4.57 6.14

Table 2. Performance summary (angular-error) and comparison with recent works using eye and
facial features.

Method MpiiGaze Eyediap

Dilated-Net [31] 4.39 6.57
Gaze360 [39] 4.07 5.58
FullFace [29] 4.96 6.76
AFF-Net [34] 3.69 6.75
CA-Net [30] 4.27 5.63

In addition, we assess DenseNet101-DRNet using the Columbia gaze dataset (CAVE-
DB) [40]. We found that the DenseNet101-DRNet using CAVE-DB shows the lowest
angular-error of 3.70 compared to 4.57 and 6.14 using MpiiGaze and Eyediap datasets,
respectively.
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Figure 8. Performance (angular-error) of methods that use (a) eye features or (b) combined eye and
facial features. The horizontal axis records the error in the MpiiGaze dataset and the vertical axis
records the error in the Eyediap dataset. The model closest to the upper right corner represents
better performance.

4.2. Noise Impact on DRNet Model

To study the impact of noise impact on the proposed DRNet architecture, we have
adopted RT-Gene (RT-Gene [27] is a model using two eye images where the left and right
eye patches are fed separately to VGG-16 networks [28] allowing us to perform feature
extraction) as a two-stream model. This scenario is used with an input using two images
of the eye [27]. Figure 9 shows an example of a two-stream model. It consists of a feature
extractor (e.g., convolution layers) and a regression (e.g., fully connected layers) modules.
Two eyes images (i.e., test and guidance images) are used as raw input. The resulting
output is a one-dimension vector that represents the gaze direction. Likewise, the loss
function used in DRNet is based on Equation (5), where α = β = 0.75. While, the loss
function based on Equation (3) used in the two-stream model, where α = 0.75.
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Gaze direction

FC

FC

FC

RegressionFeature extractor

Conv-BN-ReLU

Block

Figure 9. Example of a two-stream model. The feature extractor module is based on convolution
layers. Regression module is represented by fully connected layers.

Again, we trained the two models using the two public datasets (i.e., MpiiGaze and
Eyediap). In the validation step, the noise image was set as the guidance image.

Table 3 reports the performance metrics (angular-error and the absolute distance) using
the two—stream model and DRNet, respectively. Additionally, we computed the absolute
distance of difference angular-error for each person between the normal and noisy image.
When the distance is larger, the influence of the noise image is greater. It was observed
that the average angular-error and the absolute distance of the DRNet architecture were
observed to be lower than the two−stream model using the MpiiGaze (i.e., normal image:
two−stream model versus (vs) DRNet = 6.18 vs. 5.98; noisy image: two−stream model
vs. DRNet = 6.39 vs. 5.99; distance (two−stream model vs. DRNet) = 0.34− 0.16) and
Eyediap (i.e., normal image: two−stream model vs. DRNet = 7.07 vs. 6.71; noisy image:
two−stream model vs. DRNet = 7.58 vs. 6.96; distance (two−stream model vs. DRNet)
= 0.73− 0.41) datasets. Figure 10 shows the distance metrics using the box plot function.
From the results, we conclude that the DRNet architecture provides higher performance, as
shown by a lower influence of the noise image compared to the two−stream model.

  

Two-stream model DRNet 

↑

(a)

 

DRNet Two-stream model 

↑

(b)

Figure 10. Box plots of the absolute distance of angular-error between the normal and noisy image
using the two-stream model and DRNet in MpiiGaze (a) and Eyediap (b).

4.3. Assessing the Impact of the Loss Functions

We conducted an experiment based on the Mnist network [17] using the loss function
of LB (Equation (3)) with the MpiiGaze and Eyediap datasets. Specifically, the Mnist model
uses the original loss function (Equation (2)) where α = 0 and the new loss function where
α = 1.

Table 4 reports the angular-error of the Mnist model. From the results, it was found
that the MNIST model achieved the best performance with 7.27 in Eyediap and 6.07 in
MpiiGaze when α in the range of [0.75, 1]. We have also observed that the loss function LB
provides much more optimized performance metrics.
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Table 3. Summary of angular-error and absolute distance for robustness evaluation in the two-stream
and DRNet model.

Two Stream Model versus DRNet
MpiiGaze No_Invalid_Image Fixed_Invalid_Image Distance

P00 4.72-4.46 5.09-4.48 0.37-0.02
p01 5.98-5.99 6.11-6.02 0.13-0.03
p02 5.29-5.02 5.41-4.85 0.12-0.17
p03 6.65-6.61 6.43-6.41 0.22-0.20
p04 6.78-6.70 6.79-6.18 0.01-0.52
p05 6.20-6.27 7.32-6.39 1.12-0.12
p06 6.15-5.94 6.61-5.94 0.46-0.00
p07 7.44-7.19 7.11-7.07 0.33-0.12
p08 6.51-6.46 6.84-6.41 0.33-0.05
p09 7.98-7.07 7.91-7.09 0.07-0.02
p10 5.41-5.38 5.88-5.33 0.47-0.05
p11 5.26-4.88 5.26-5.36 0.00-0.48
p12 5.87-5.33 6.70-5.78 0.83-0.45
p13 6.39-6.11 6.68-6.20 0.29-0.09
p14 6.01-6.22 5.65-6.34 0.36-0.12

Average 6.18-5.98 6.39-5.99 0.34-0.16
Eyediap No_Invalid_Image Fixed_Invalid_Image Distance

p1 7.35-6.86 7.27-7.14 0.08-0.28
p2 7.43-7.33 6.87-7.66 0.56-0.33
p3 5.78-6.01 6.41-6.05 0.63-0.04
p4 7.66-5.29 7.92-5.58 0.26-0.29
p5 8.08-6.06 8.67-7.07 0.59-1.01
p6 7.14-5.84 7.40-6.21 0.26-0.37
p7 7.64-6.96 9.63-7.58 1.99-0.62
p8 8.23-5.44 9.17-5.61 0.94-0.17
p9 8.10-7.37 7.56-7.77 0.54-0.40
p10 7.24-7.87 8.86-8.32 1.62-0.45
p11 6.46-6.93 6.12-7.54 0.34-0.61
p14 5.35-7.78 5.30-7.56 0.05-0.22
p15 6.11-7.26 7.84-6.78 1.73-0.48
p16 6.46-7.00 7.06-6.58 0.60-0.42

Average 7.07-6.71 7.58-6.96 0.73-0.41
No_Invalid_Image and Fixed_Invalid_Image represent the normal and noisy image, respectively. Distance
represents the absolute value of difference angular-error for each person between No_Invalid_Image and
Fixed_Invalid_Image. (-): versus.

Table 4. The performance of Mnist [5] with different α.

α Eyediap MpiiGaze

1 7.31 6.07
0.75 7.27 6.12
0.5 7.38 6.25

0.25 7.59 6.53
0 7.6 6.3
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We also studied the impact of α and β in DRNet architecture. The loss function used in
DRNet with LA and LB is shown in Equation (5), Equation (4) and Equation (3), respectively.
We set β and α to 0.25, 0.5, 0.75, 1. Table 5 reports the angular-error of DRNet in function
of β and α. We found the best angular-error of 5.88 and 6.71 achieved when α = 0.75 and β
in the range of [0.75, 1] using the MpiiGaze and Eyediap datasets, respectively. Figure 11
illustrates the surface of angular-error as a function with β and α. As a trade-off, we set the
hyperparameters to 0.75 for both α and β.

Table 5. The performance of DRNet in MpiiGaze/Eyediap with different α and β.

α

β
0.25 0.5 0.75 1

0 7.17/8.4 7.09/8,5 7.01/8.14 6.81/8.07
0.25 6.35/7.13 6.43/7.13 6.36/6.93 6.28/6.94
0.5 6.28/6.87 6.17/6.87 6.15/7.01 6.17/6.88
0.75 6.08/7.13 5.96/7.06 5.97/6.71 5.88/6.77
1 6.05/7.33 6.07/7.26 6.02/7.18 6.06/7.04
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Figure 11. Surface plots the angular-error in function with α and β using MpiiGaze (a) and Eyediap
(b). The red dot represents the best performance.

4.4. Ablation Study of DRNet

We studied the impact of AD, SC and DIFF modules in the proposed DRNet architecture.
To do this, we replaced AD with a new module called DRNet_NoAD and used a

parameter γ to combine DIFF and SC outputs. We have formulated the new module using
Equation (7) as follows:

gDRNet_NoAD = γ ∗ gsc + (1− γ) ∗ gdi f f . (7)

where γ is a parameter to combine gsc and gdi f f , gsc and gdi f f is the output of SC and DIFF
modules, gDRNet_NoAD is the DRNet_NoAD output.

DRNet_NoAD used the loss function (i.e., Equation (5)) with α and β values of 0.75.
Table 6, reports the angular-error of DRNet_NoAD. It is noted that the value of γ is automat-
ically learned. The results showed that the performance of DRNet in terms of angular-error
of 5.98 (MpiiGaze) and 6.71 (Eyediap) outperforms DRNet_NoAD with 6.05 (MpiiGaze)
and 7.16 (Eyediap). Therefore, the AD module has demonstrated a feasible impact on the
DRNet model.

Table 6. The performance of DRNet_NoAD.

Dataset Angular − Error γ

MpiiGaze 6.05 0.89
Eyediap 7.16 0.88
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A similar scenario was also considered for the SC module which was replaced by a
new model, DRNet_NoSC.

We trained and tested DRNet_NoSC with the left, right, and entire eyes. Here, it is
noted that the Eyediap consists of the entire left images due to the preprocessing step. Using
MpiiGaze/Eyediap datasets, DRNet achieves a better performance in terms of angular-error
of 5.98/6.71 compared to DRNet_NoSC with 6.97/7.72 and Mnist model with 6.27/7.6. The
result can be shown in Table 7.

Table 7. The performance of Diff-Nn in common environment.

Method MpiiGaze (L/R/All) Eyediap (L/R/All)

DRNet 6.15/6.29/5.98 6.71/-/-
Diff-Nn [25] 10.73/10.92/10.83 11.82/-/-

DRNet_NoSC 6.59/6.32/6.97 7.72/-/-
DRNet_NoAD 6.11/6.25/6.05 7.16/-/-

DRNet_NoDIFF 6.22/6.32/6.07 6.97/-/-

We also studied the case of replacing the DIFF module by DRNet_NoDIFF. The
DRNet_NoDIFF represents the gaze direction by summing AD and SC outputs. The results
in Table 7 have shown that the DRNet architecture yields better performance in terms of
angular-error achieving 5.98/6.71 when compared to DRNet_NoDIFF with 6.07/6.97.

It is worth noting that Diff-Nn [25] achieves the lowest performance. This is due
to inference related to the selection of images. This suggests that the use of a residual
structure such the proposed DRNet based auxiliary information is an attractive solution.
Furthermore, directly predicting difference information is not a good choice in a com-
mon environment.

5. Conclusions

This paper presents a novel appearance-based method (DRNet) architecture that
uses the shortcut connection to combine the original gaze direction and the difference
information. A new loss function is proposed to evaluate the loss in 3D space. DRNet
outperforms the state-of-the-art in robustness to a noisy data set. The experimental results
demonstrate that DRNet can obtain the lowest angular-error in MpiiGaze and Eyediap
datasets by using eye features only, compared with the state-of-the-art gaze estimation
methods. This paper provides a feasible solution to address the gaze calibration problem
and enhance the robustness of noise images. In future work, we will consider more factors
in our DRNet model to improve the performance metrics, in particular, when we use facial
and eye features.
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