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Abstract: This study investigates the interconnectedness among the stocks of the publicly listed
vaccine-producing companies before and after vaccine releases in 2020/21. In doing so, the study
utilizes the daily frequency equity returns of the major vaccine producers, including Moderna,
Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. First, the investigation applies the TVP-
VAR Dynamic Connectedness approach to explore the time–frequency connectedness between the
stocks of those vaccine producers. The empirical findings demonstrate that Moderna performs
as the most prominent net volatility contributor, whereas Sinopharm is the highest net volatility
receiver. Interestingly, the vaccine release significantly increases the stock market connectedness
among our sampled vaccine companies. Second, the cross-quantile dependency framework allows
for the observation of the interconnectedness under the bearish and bullish stock market conditions
by splitting any paired variables into 19 quantiles when considering short-, medium- and long-
memories. The results also show that a high level of connectivity among the vaccine producers
exists under bullish stock market conditions. Notably, Moderna transmits significant volatility
spillovers to Sinopharm, Johnson & Johnson and AstraZeneca under both the bearish and bullish
conditions, though the volatility transmission from Moderna to Pfizer is less pronounced. The policy
implication proposes that the vaccine release allows companies to increase their stock returns and
induce substantial volatility spillovers from company to company.

Keywords: vaccine release; vaccine producer; stock market; connectedness; cross-quantilogram;
TVP-VAR

MSC: 37M10; 82Cxx; 62Pxx

1. Introduction

The spread of a novel coronavirus disease across the globe has considerably elevated
the importance of the pharmaceutical industry, putting additional pressure on vaccine-
producing companies to come forward with a protection, as vaccine inoculation appeared
to be the most effective way to fight the pandemic. Therefore, the producing companies
have strived to gain substantial knowledge of the virus’s biological features and achieve
technological sophistication to successfully develop vaccine treatments and also acquire
a competitive advantage over other companies [1,2]. Moreover, due to the COVID-19
pandemic and the lockdowns, many businesses had to suspend their activities, whereas the
activities of the pharmaceutical companies, especially the vaccine producers, turned out to
be more prominent. In this paper, it is argued that the vaccine release provides positive
sentiments to investors to consider their respective companies’ stocks as safe and high yield
investments. The news about vaccine releases against the COVID-19 disease is exceptional
and expected to be a quality predictor since the impact of the COVID-19 pandemic is
tremendous and global. Hence, the motivation of this study is to reveal whether the vaccine
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releases play a significant role in changing the pattern of total connectedness and the
spillover effect among vaccine-producing companies.

Several studies [3–8] find strong evidence of increased market connectedness between
the stocks of those vaccine companies due to the high level of uncertainty about infections
and the promise of potential success during the pandemic. According to the findings
of a few investigations [9–15], investors during crisis periods, including emergencies of
uncertainty regarding infections, only consider risk seeking for safer assets, thus increasing
the connectedness among relatively safer stocks. In particular, investors are likely to invest
more in the vaccine-producing companies that are the most prosperous and safest during
the pandemic. The companies used different vaccine processes and required different
numbers of doses. Therefore, increased investments in the different vaccine companies
could cause changes in the time-dynamic connectedness among them.

The literature primarily focuses on stock market connectedness under various external
shocks. For example, the connectedness of major stock markets has increased after the
global financial crisis in 2008 [16–18].

Stock market volatilities can be induced by such exogenous factors as critical political
decisions, referendums, economic crises, stock and bond market uncertainty, high inflation,
and crude oil and natural gas price fluctuations [19–21]. Developed stock markets transmit
a spillover effect to emerging stock markets [22]. At the same time, emerging markets
lack the power to transmit volatility to other markets. The interconnectedness between
emerging and developed markets is also conditional on external shocks. For instance,
during the global emerging market crisis, the U.S. stock market had less power to influence
emerging African countries both in the short-run and long-run [23]. More recently, several
studies have investigated the stock market connectedness in terms of the influence of the
COVID-19 pandemic. The COVID-19 pandemic created a high level of uncertainty, leading
to increased volatility and connectedness of various stock markets [24–29]. Moreover, the
COVID-19 outbreak may change the direction of volatility spillovers from one stock market
to another [30–32]. Interestingly, Chen [33] reveals that the stock market connectedness
depends on markets’ economic integration. However, these studies utilize stock indices
instead of particular companies’ equity returns in the same industry, as we do in this
current study.

The literature suggests several channels for increasing stock market connectedness
during crisis times. For example, Trevino [34] distinguishes between two informational
channels of financial contagion: the fundamental and the social learning. The fundamental
channel pertains to financial interaction among economic agents and economies. In contrast,
the social learning channel means that economic agents make their decisions by observing
the behaviour of other agents. Moreover, Trevino [34] documents that economic agents
tend to underestimate the power of the fundamental channel and overvalue the social
channel, thus weakening the fundamental correlation and enhancing the channel of social
learning. Pritsker [35] describes several rational or fundamental channels of financial
contagion, including financial market linkages, the real sector linkages, the interaction
of financial institutions and markets, and financial institution linkages. When analyzing
the financial contagion, US credit default swaps and TED spreads reduce the dynamic
conditional correlation among the stock returns of emerging markets [17]. Baur [36] reveals
that the main channels of financial contagion during the 2008 GFC include the contagion of
aggregate stock market indices, the contagion of financial sector stocks across countries
and the contagion of the real economy sectors. Notably, some sectors such as healthcare
and technologies were least affected by the crisis. Horta et al. [37] argue that the behaviour
of investors plays a crucial role in determining volatility transmission through wealth
constraints [38,39] or portfolio rebalancing [40,41]. Portfolio rebalancing implies that
investors reduce risks by switching to safer assets. Horta et al. [37] find that portfolio
rebalancing was a more prominent factor during the GFC than wealth constraints.

Many studies emphasize that investors’ behavior is crucially important in determining
stock market co-movements. The influence of irrational behavior is transmitted through
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different perspectives. For example, sentiment-based factors significantly influence co-
movements, stock returns and volatility spillovers [11,42–44]. Interestingly, during crisis
periods, investors only consider risk-seeking for safer assets. Lee [45] documents that
investors’ expectations regarding future economic uncertainty intensify the stock and
Treasury bond markets’ co-movement in Europe. Moreover, COVID-19 cases and stock
returns of the G7 countries demonstrate a strong co-movement [14]. Moreover, their study
argues that during COVID-19, the pandemic investors are especially inclined to be risk
averse. López-Cabarcos et al. [46] find that sentimental factors highly influence Bitcoin
volatility. Pasquariello [47], by using a model of multi-asset trading, finds that financial
contagion can still be an equilibrium result if speculators receive heterogeneous private
information. Veldkamp [48] documents that stocks demonstrate a high price covariance
due to the high cost of information.

In comparison with the existing literature, this study provides several contributions.
First, the existing literature on market connectedness primarily utilizes stock indices instead
of the equity returns of a particular industry, whereas this study analyzes the dynamics
of vaccine-producing companies, and their high importance during the COVID-19 virus.
Second, most other studies argue that stock market connectedness is induced by various
exogenous shocks such as a financial crisis or the COVID-19 outbreak. However, this study
suggests a more novel idea since we aim to examine if the vaccine release has induced
the stock market connectedness of vaccine-producing companies. Third, the application
of sophisticated econometric techniques allows us to overcome the high frequency and
extreme volatility of the data. For instance, the TVP-VAR dynamic connectedness allows
for measuring the volatility transmission from one vaccine producer to another, thereby
identifying net volatility contributors and receivers. Moreover, the cross-quantilogram is
not sensitive to an abnormal distribution, and the problems of high-frequency series in
the presence of outliers enable splitting the relations of both dependent and independent
variables into quantile coefficients. In addition, the cross-quantilogram approach provides
a statistical significance level under each quantile, apart from the advantages above.

Fourth, the unique findings of this study approve the hypothesis that the vaccine
release significantly increases the stock market connectedness among the major vaccine-
producing companies. For example, the increase in the total connectedness index (TCI) from
the second quarter of 2021 is induced by the vaccine release at the end of 2020–the beginning
of 2021. Interestingly, Moderna appears as the most prominent net volatility transmitter,
whereas Sinopharm is the highest net volatility receiver, transmitting no net volatility.
The cross-quantilogram analysis consistently shows that Moderna transmits significant
volatility spillovers to all companies, except Pfizer. Moreover, the results demonstrate a
high level of connectivity under bullish market conditions. Moreover, all short and long
terms are considered by taking 1-day, 5-day, 22-day and 66-day lags.

The structure of the remainder of the study is organized as follows. Section 2 explains
the methods and data. Section 3 provides the results. Section 4 represents a discussion of
the results. Section 5 concludes the study, highlighting policy implications.

2. Methodology and Data
2.1. TVP-VAR Dynamic Connectedness

To estimate the volatility spillover among the stock prices of Moderna, Pfizer, Johnson
& Johnson, Sinopharm and AstraZeneca, this study applies the time–frequency connect-
edness namely the time-varying parameter vector autoregression (TVP-VAR) method
proposed by Antonakakis and Gabauer [49]. The framework possesses a few advantages.
First, it permits the variance to change over time horizon by using a stochastic volatil-
ity Kalman filter estimation as well as forgetting factors [50]. Therefore, this approach
addresses the bias estimation problem by selecting the size of rolling window randomly.
Second, the TVP-VAR dynamic connectedness is suitable for relatively less frequent series
with small spans of time.
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The TVP-VAR method is determined as follows:

Yt = βtYt−1 + εt εt|Ft−1 ∼ N(0, St) (1)

βt = βt−1 + νt νt|Ft−1 ∼ N(0, Rt) (2)

where Yt represents an N × 1 conditional volatility vector, Yt−1 denotes the lagged con-
ditional vector of Yt with a Np × 1 dimension. Further, βt signifies the time-varying
parameters matrix with the N × Np order. Additionally, ∈t represents the vector of errors
with an N× 1 order along with the N× N time-varying covariance matrix St. The vector of
the parameter matrix, βt, depends on the respective coefficient of βt−1 following an N× Np
error matrix along with an Np × Np variance–covariance matrix. The TVP-VAR dynamic
connectedness estimates the generalized connectedness [51] and incorporating the time-
varying parameters and the error covariance. The current method allows one to estimate
the volatility spillovers by utilizing the generalized impulse response functions (GIRF) [52]
and the generalized forecast error variance decompositions (GFEVD) [53]. Therefore, the
transformation of the VAR to a vector moving average (VMA) provides a representation
for GIRF and GFEVD estimation based on the Wold theorem as follows:

Yt = βtYt−1 + εt (3)

Yt = Atεt (4)

A0,t = I (5)

Ai,t = β1,t Ai−1,t + · · ·+ βp,t Ai−p,t (6)

where βt =
[
β1,t, β2,t, . . . , βp,t

]′ and At =
[
A1,t, A2,t, . . . , Ap,t

]′, consequently, βi,t and Ai,t
are dimensional parameter matrices ordered as N × N.

The GIRFs show the response of all respective variables to a shock in a variable, i.
The approach implies testing the differences between a J − step− ahead forecast both

when variable i is under and out of a shock as the model employed does not follow a
structural modelling.

Equation (7) below shows the estimation of the difference to the shock in variable i.

GIRt
(

J, δj,t,Ft−1
)
= E

(
εj,t = δj,t,Ft−1

)
− E(Ft−1) (7)

Ψ
g
j,t(J) =

AJ,tStεj,t√
Sjj,t

δj,t√
Sjj,t

δj,t =
√

Sjj,t (8)

Ψ
g
j,t(J) = S−

1
2

jj,t AJ,tStεj,t (9)

where Ψ
g
j,t(J) is the forecast value of the time horizon J, and S−

1
2

jj,t AJ,tStεj,t is a one standard
error shock. In our study, we consider the stock returns of the major vaccine producing
companies including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca
in rotation as variables i and j. Note that δj,t indicates the vector of selection and Ft−1
characterizes the set of information until t− 1. After that, the GFEVD is calculated, namely
by dividing one variable’s variance share on the sum of other variables. Further, merging
rows into one provides a normalization of the examined variances, and represents that the
variable’s forecast error is described by all variables. Consequently, the abovementioned
estimation is defined as follows:

φ̃
g
ij,t(J) =

ΣJ−1
t=1 Ψ

2,g
ij,t

ΣN
j=1ΣJ−1

t=1 Ψ
2,g
ij,t

(10)
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where, φ̃
g
ij,t(J) is the summation of total variance share of all variables or total connectedness,

Ψ
2,g
ij,t is variance with ∑N

j=1 φ̃N
ij,t(J) = 1 and ∑N

i,j=1 φ̃N
ij,t(J) = N. Equations (11) and (12)

represent the calculation of the total connectedness index (TCI) considering GFEVD:

Cg
t (J) =

ΣN
i,j=1,i 6=jφ̃

g
ij,t(J)

ΣN
i,j=1φ̃

g
ij,t(J)

∗ 100. (11)

=
ΣN

i,j=1, i 6=jφ̃
g
ij,t(J)

N
∗ 100 (12)

First, the TVP-VAR measures the influence of a shock in a variable spillover on other
variables. Equation (13) demonstrates how the shock variable i influences other variables j:

Cg
i→j,t(J) =

ΣN
j=1,i 6=jφ̃

g
ji,t(J)

ΣN
j=1φ̃

g
ji,t(J)

∗ 100 (13)

Second, Equation (14) shows the calculation of the total directional connectedness
from others, demonstrating a spillover effect received from other variables:

Cg
i←j,t(J) =

ΣN
j=1,i 6=jφ̃

g
ij,t(J)

ΣN
i=1φ̃

g
ij,t(J)

∗ 100 (14)

Eventually, the total directional connectedness to others is subtracted from the total di-
rectional connectedness from others. Consequently, the net total directional connectedness
is calculated, measuring the magnitude of the impact of variable i on the variables’ network.
Equation (15) demonstrates the estimation of the net total directional connectedness

Cg
i,t(J) = Cg

i→j,t(J)− Cg
i←j,t(J) (15)

In the case when Cg
i,t(J) is positive, the magnitude of the impact of variable i is more

pronounced than the impact of another variable on variable i, implying that variable i
affects all other variables. On the contrary, if Cg

i,t(J) is negative, the impact of variable
j on variable i is more pronounced than the impact of variable i on variable j or all the
other variables.

2.2. Cross-Quantilogram

To estimate a bivariate co-movement between two time-series, this study applies the
cross-quantilogram (CQ) method proposed by Han et al. [54]. CQ is applied due to a
few distinct features of this approach. First, this approach is appropriate to measure the
bivariate implied volatility between two series in the case of non-normal distribution and
outliers [55]. Second, the CQ approach measures the strength of the volatility spillover
shock transmitted from one market to another when considering various quantiles. Third,
the CQ approach allows the assumption of moment conditions. Therefore, this approach
is appropriate when considering distributions with fat tails. In addition, this technique
permits the use of longer lags, allowing estimation of how strongly two variables are
interconnected when considering duration and direction concurrently.

Equation (16), below, demonstrates the cross-quantilogram between two return series
{(yt, xt) : t ∈ Z} comprising yt = (y1t, y2t)

ᵀ ∈ R2 and xt = (x1t, x2t) ∈ Rd1 ×Rd2, where

xit =
[

x1
it, . . . , xdi

it

]ᵀ
∈ Rdi with di ∈ N. The function Fyi |xi

(.
∣∣∣xit) is followed by the con-

ditional distribution implying the stock return of a vaccine producer given the stock re-
turn of another vaccine producer, corresponding to qi,t(τi) = inf

{
υ : Fyi |xi

(υ
∣∣∣xit) ≥ τi

}
for

τi ∈ (0, 1), f or i = 1, 2. This approach uses T in the form of a Cartesian product of two closed
intervals within (0, 1), where, T ≡ T1 × T2, where Ti = [τi, τi] f or some 0 < τi < τi < 1.
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The CQ framework incorporates serial dependence between two shocks, {y1t ≤ q1, t(τ1)}
and

{
y2,t−k ≤ q2, t− k(τ2)

}
, for a particular pair of (τ1, τ2)

ᵀ ∈ T when considering a lag
order equal to k. Equation (16) shows the estimation of cross-quantilogram:

ρτ(k) =
E[Ψτ1(y1t ≤ q1t(τ1))Ψτ2(y2t−k ≤ q2t−k(τ2))]√

E
[
Ψ2

τ1(y1t ≤ q1t(τ1))
]√

E
[
Ψ2

τ2(y2t−k ≤ q2t−k(τ2))
] (16)

where yi,t denotes the return series, i is represented as 1, 2, 3, 4 or 5 and demonstrates the
stock returns of Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. Moreover,
t indicates time (t = 1, 2, . . . , T), whereas the functions Fi (·) and fi (·) consider the distribution
and density functions of yit, i = 1, 2, accordingly. Besides, qit(τi) = in f {v : Fi(v) ≥ τi} denotes
the respective quantile function for τi ∈ (0, 1), whereas Ψa(u) = 1[u < 0]− a represents the
quantile-hit process.

The estimation process of ρτ(k)′s variation with a lag length equal to k allows the
identification of cross-quantile dependency’s variation between the variables over time,
thus calculating the dependence strength and duration. The length of the considered lags
is as follows: k is equal to 1, 5, 22 and 66 indicating daily, weekly, monthly and quarterly
lags, accordingly.

Subsequently, by employing the Ljung–Box type test the statistical significance of ρτ(k)
is considered, so that the test statistic is computed in accordance with Equation (17):

Q∗τ(p) = T(T + 2)∑p
k=1 ρ̂2

τ(k)/(T − k) (17)

where ρ̂τ(k) represents the cross-quantilogram calculated as follows:

ρ̂τ(k) =
∑T

t−k+1 Ψτ1(y1t − q̂1t(τ1))Ψτ2(y2t−k − q̂2t−k(τ2))√
∑T

t−k+1 Ψ2
τ1(y1t − q̂1t(τ1)

√
∑T

t−k+1 Ψ2
τ2(y2t−k − q̂2t−k(τ2))

(18)

where ρ̂τ(k) represents the measured partial cross-quantilogram.
Afterwards, stationary bootstrap allows approximation of the cross-quantilogram’s null

distribution, which is reflected in Equation (18) as well as the Q-statistics in Equation (17).
The approach further implies the calculation of the partial cross-quantilogram (PCQ)

between the variables in order to consider the effect of uncertainties. Precisely,
zt = [Ψτ3(y3t − q3t(τ3)), . . . , Ψτl (ylt − qlt(τl))] is the following vector (l − 2)× 1 for l ≥ 3
of the control variables. Hence, Equation (19) represents the quantile-hit process, and its
inverse matrix correlation matrix as follows:

Rτ = E
[

ht(τ)ht(τ)
T
]
; Pτ = R−1

τ (19)

where ht(τ) = Ψτ1(y1t − q1t(τ1)), . . . , Ψτl (ylt − qlt(τl)) is the vector of the quantile hit process
with matrix order l × 1. Besides, rτij and pτij represent the i-th element of Rτ (which is the
quantile-hit correlation matrix) and Pτ (which denotes the coefficient considering each quantile)
for i, j ∈ [1, . . . , l]. The cross-quantilogram is defined as rτ12/

√
rτ11rτ22. Then the partial cross-

quantilogram is represented as follows:

ρτ|z = −
pτ12√

pτ11 pτ22
(20)

where ρτ|z is the cross-quantilogram between two variables, y1t and y2t can be regarded as
the cross-quantilogram between y1t and y2t dependent on the control variable z.

2.3. Quantile-on-Quantile

The study applies the quantile-on-quantile (QQ) approach for the robustness check of
the results obtained from the TVP-VAR and CQ techniques. This framework has several
distinct features. Firstly, the QQ framework combines two approaches, namely, the standard
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quantile regression and the local linear regression which were proposed by Sim and
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by
splitting both variables into different quantiles [57,58]. Secondly, the framework overcomes
the issue of reverse causality by providing the quantiles’ slope coefficients of the various
quantiles of independent variables on different quantiles of dependent variables. Moreover,
this method allows the abnormal distribution of the high-frequency data. DEt denotes the
stock returns of one of the vaccine-producing companies’ returns, whereas IEi signifies the
stock price of another vaccine-producing company. DEt signifies the dependent variable,
whereas IEi indicates the independent variable. We take the equity returns of the different
vaccine companies one by one as functions of each other.

Therefore, we introduce our empirical model as follows:

DEt = α
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sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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2.3. Quantile-on-Quantile 
The study applies the quantile-on-quantile (QQ) approach for the robustness check 

of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
distinct features. Firstly, the QQ framework combines two approaches, namely, the stand-
ard quantile regression and the local linear regression which were proposed by Sim and 
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by split-
ting both variables into different quantiles [57,58]. Secondly, the framework overcomes 
the issue of reverse causality by providing the quantiles’ slope coefficients of the various 
quantiles of independent variables on different quantiles of dependent variables. Moreo-
ver, this method allows the abnormal distribution of the high-frequency data. 𝐷𝐸  de-
notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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2.3. Quantile-on-Quantile 
The study applies the quantile-on-quantile (QQ) approach for the robustness check 

of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
distinct features. Firstly, the QQ framework combines two approaches, namely, the stand-
ard quantile regression and the local linear regression which were proposed by Sim and 
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by split-
ting both variables into different quantiles [57,58]. Secondly, the framework overcomes 
the issue of reverse causality by providing the quantiles’ slope coefficients of the various 
quantiles of independent variables on different quantiles of dependent variables. Moreo-
ver, this method allows the abnormal distribution of the high-frequency data. 𝐷𝐸  de-
notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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ble z. 

2.3. Quantile-on-Quantile 
The study applies the quantile-on-quantile (QQ) approach for the robustness check 

of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
distinct features. Firstly, the QQ framework combines two approaches, namely, the stand-
ard quantile regression and the local linear regression which were proposed by Sim and 
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by split-
ting both variables into different quantiles [57,58]. Secondly, the framework overcomes 
the issue of reverse causality by providing the quantiles’ slope coefficients of the various 
quantiles of independent variables on different quantiles of dependent variables. Moreo-
ver, this method allows the abnormal distribution of the high-frequency data. 𝐷𝐸  de-
notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 

  

′
(DEτ)(DEt − DEτ) (22)

The double indexing of β
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2.3. Quantile-on-Quantile 
The study applies the quantile-on-quantile (QQ) approach for the robustness check 

of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
distinct features. Firstly, the QQ framework combines two approaches, namely, the stand-
ard quantile regression and the local linear regression which were proposed by Sim and 
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by split-
ting both variables into different quantiles [57,58]. Secondly, the framework overcomes 
the issue of reverse causality by providing the quantiles’ slope coefficients of the various 
quantiles of independent variables on different quantiles of dependent variables. Moreo-
ver, this method allows the abnormal distribution of the high-frequency data. 𝐷𝐸  de-
notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
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notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
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sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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where 𝜌 |  is the cross-quantilogram between two variables, 𝑦  and 𝑦  can be re-
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ble z. 

2.3. Quantile-on-Quantile 
The study applies the quantile-on-quantile (QQ) approach for the robustness check 

of the results obtained from the TVP-VAR and CQ techniques. This framework has several 
distinct features. Firstly, the QQ framework combines two approaches, namely, the stand-
ard quantile regression and the local linear regression which were proposed by Sim and 
Zhou [56]. The QQ technique considers the flaws of the aforementioned methods by split-
ting both variables into different quantiles [57,58]. Secondly, the framework overcomes 
the issue of reverse causality by providing the quantiles’ slope coefficients of the various 
quantiles of independent variables on different quantiles of dependent variables. Moreo-
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notes the stock returns of one of the vaccine-producing companies’ returns, whereas 𝐼𝐸  
signifies the stock price of another vaccine-producing company. 𝐷𝐸  signifies the de-
pendent variable, whereas 𝐼𝐸  indicates the independent variable. We take the equity re-
turns of the different vaccine companies one by one as functions of each other.  

Therefore, we introduce our empirical model as follows: 𝐷𝐸 =  𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐼𝐸 ) + 𝜀Ԏ (21)

The slope, 𝛽Ԏ(. ), which captures the relationship between the stock returns of two 
different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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Substituting Equation (23) into the original QQ equation provides the following equation:

DEt = β0(
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different vaccine-producing companies is thus unknown. Additionally, 𝜇Ԏ  represents 
the error term when Ԏ is zero. Afterwards, the first order Taylor expansion is defined by 
transforming Equation (10), namely by considering the first-order Taylor expansion of 𝛽Ԏ(. ), around 𝐼𝐸 : 𝛽Ԏ (𝐷𝐸 ) ≈ 𝛽Ԏ(𝐷𝐸 ) + 𝛼Ԏ 𝐷𝐸 + 𝛽Ԏ (𝐷𝐸 )(𝐷𝐸 − 𝐷𝐸 ) (22)

The double indexing of 𝛽Ԏ(𝐷𝐸 )  and 𝛽Ԏ (𝐷𝐸 )  in Ԏ and 𝜏  means that both 𝛽Ԏ(𝐷𝐸 ) and 𝛽Ԏ (𝐷𝐸 ) denote the functions of Ԏ as well as 𝜏. Equation (22) is repre-
sented as follows: 𝛽Ԏ (𝐷𝐸 )  ≈ 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 +  𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐷𝐸 ) (23)

Substituting Equation (23) into the original QQ equation provides the following equation: 𝐷𝐸 = 𝛽 (Ԏ, 𝜏) + 𝛼Ԏ 𝐷𝐸 + 𝛽 (Ԏ, 𝜏)(𝐷𝐸 − 𝐼𝐸 ) + 𝜇Ԏ (24)

Subsequently, the stock returns of the respective vaccine-producing companies are 
substituted as dependent and independent variables in order to confirm the interconnect-
edness among those companies. 

2.4. Data and Sources 
In this study the equity prices of several vaccine-producing companies are consid-

ered, including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The 
sample time frame ranges from 7 December 2018 to 20 September 2021 due to the maxi-
mum data availability and by determining a common starting date for all considered com-
panies. The data frequency is daily, precisely 5 days in a week. Table 1 provides the vari-
able names, descriptions, units and respective sources. 
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Subsequently, the stock returns of the respective vaccine-producing companies are sub-
stituted as dependent and independent variables in order to confirm the interconnectedness
among those companies.

2.4. Data and Sources

In this study the equity prices of several vaccine-producing companies are considered,
including Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. The sample
time frame ranges from 7 December 2018 to 20 September 2021 due to the maximum data
availability and by determining a common starting date for all considered companies. The
data frequency is daily, precisely 5 days in a week. Table 1 provides the variable names,
descriptions, units and respective sources.

Table 1. Description of variables.

Variable Description Vaccine First Authorization Source

Sinopharm Stock return of Sinopharm company. The data is
transformed by taking the natural log. 25 February 2021 in China. Refinitiv Eikon

Astrazeneca Stock return of Astrazeneca company. The data
is transformed by taking the natural log.

30 December 2020 in Britain
29 January 2021 in EU
10 February 2021 in WHO.

Refinitiv Eikon

Moderna Stock return of Moderna company. The data is
transformed by taking the natural log.

18 December 2020 in the US,
6 January 2021 in the EU. Refinitiv Eikon
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Table 1. Cont.

Variable Description Vaccine First Authorization Source

Pfizer Stock return of Pfizer company. The data is
transformed by taking the natural log.

2 December 2020 in Britain,
21 December 2020 in the US,
31 December 2020 in WHO.

Refinitiv Eikon

Johnson & Johnson Stock return of Johnson & Johnson company. The
data is transformed by taking the natural log.

27 February 2021 in the US,
11 March 2021 in the EU. Refinitiv Eikon

3. Results
3.1. Dynamic Connectedness among the Vaccine-Producing Companies

In order to measure the dynamic connectedness among the vaccine-producing compa-
nies, TVP-VAR dynamic connectedness was conducted in the R software. Table 2 represents
the results of the TVP-VAR dynamic connectedness, which is the first step to analyze the
frequency connectedness among the companies’ stocks. The total connectivity index (TCI)
demonstrates a relatively high degree of total market connectivity, in the magnitude of
47.32%. The rows of Table 2 stands for the volatility receivers, whereas the columns stand
for the contributors. AstraZeneca receives 51.00% from the other markets. On the other
hand, AstraZeneca overall transmits 51.53% to the other markets, specifically a 13.01%
spillover to Sinopharm, 12.11% to Moderna, 7.75% to Pfizer and 18.66% to Johnson &
Johnson. AstraZeneca is marginally a net volatility contributor in the magnitude of 0.53%.
Besides, Johnson & Johnson receives a volatility spillover of 55.64%, whereas it contributes
60.56% to other companies. Therefore, Johnson & Johnson is a net volatility transmitter,
overall contributing net 4.92% to other respective markets.

Table 2. Market volatility spillovers.

AstraZeneca Johnson & Johnson Moderna Pfizer Sinopharm FROM Others

AstraZeneca 49.00 20.10 16.60 6.82 7.48 51.00
Johnson & Johnson 18.66 44.36 19.33 13.98 3.66 55.64
Moderna 12.11 16.56 58.32 8.62 4.40 41.68
Pfizer 7.75 15.80 20.74 50.78 4.93 49.22
Sinopharm 13.01 8.11 12.26 5.69 60.93 39.07

TO others 51.53 60.56 68.93 35.11 20.48 236.61
Inc. own 100.53 104.92 127.25 85.89 81.41 TCI
NET 0.53 4.92 27.25 −14.11 −18.59 47.32

Notes: NET is calculated by deducting volatility received from volatility contribution.

Regarding Moderna, its stock return receives 41.68% volatility from the other markets.
Interestingly, Moderna contributes the highest volatility spillovers as compared with the
other companies. In doing so, Moderna transmits 12.26% to Sinopharm, 16.60% to As-
traZeneca, 20.74% to Pfizer and 19.33% to Johnson & Johnson, thus contributing 68.93%
in total volatility spillover. Moreover, Moderna appears as the highest net volatility con-
tributor, contributing 27.25%. Pfizer’s stock return receives 49.22%, whereas it contributes
35.11% of the volatility spillover to other respective markets, turning it into a net receiver
of −14.11%. Finally, Sinopharm receives a volatility spillover of 39.07% from the other
vaccine-producing companies. The second column indicates the magnitude of spillover
from Sinopharm to the other respective companies.

Interestingly, the results represent Sinopharm as a weak spillover transmitter. Table 2
shows that Sinopharm is the least volatility contributor, at a total of 20.48% to the other
markets. Therefore, Sinopharm turns into a net volatility receiver (−18.59%) from the stock
returns of the other vaccine producers.

Figure 1 is a volatility transmission diagram, representing our previous findings in
an illustrative graph. For example, the graph affirms that Moderna is the most powerful
transmitter. In particular, Moderna transmits the highest volatility spillover to Pfizer, a
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slightly lower volatility spillover to Sinopharm and has the smallest spillover to Johnson
& Johnson. Interestingly, the only company that manages to transmit volatility spillover
to Moderna is AstraZeneca. At the same time, AstraZeneca transmits a small volatility
spillover to Sinopharm and receives volatility spillover from Pfizer and Johnson & Johnson.
Notably, Sinopharm receives volatility spillover from Moderna, Pfizer, AstraZeneca, and
Johnson & Johnson, while transmitting no volatility to other markets. Hence, Sinopharm is
the highest volatility receiver. Pfizer transmits volatility to AstraZeneca and Sinopharm,
while receiving volatility from Moderna and Johnson & Johnson. Finally, Johnson &
Johnson contributes to Sinopharm, Pfizer and AstraZeneca’s stock volatilities and receives
volatility from Moderna.
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Figure 1. Volatility transmission diagram. Note: The brownish yellow color indicates a net volatility
receiver, whereas the darkish blue color shows a volatility contributor. The thickness of the lines
indicates the magnitude of the volatility transmission.

Figure 2 represents the dynamic total connectivity index. The degree of connectivity
was the highest during the fourth quarter of 2018 and the third quarter of 2019. Afterwards,
a significant decline in total connectivity is observed. Nevertheless, the TCI rises in the
second and third quarters of 2021 due to the COVID-19 pandemic. More particularly, the
increased connectedness is likely to be induced by the vaccine release. For example, Pfizer
and AstraZeneca released their vaccines in December 2020, whereas Johnson & Johnson,
Moderna and Sinopharm achieved first authorization in the first quarter of 2021. This
study argues that the stock market connectedness increased through the fundamental
channel of foreign investment, for example, via foreign purchases of vaccines by other
countries, which is also in line with Hwang et al. [17]. Moreover, investors’ behaviour can
induce an increase in the stock market connectedness. Due to the COVID-19 pandemic, the
vaccine-producing companies are thriving. In addition, the pandemic has created a high
level of uncertainty.
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Figure 3 demonstrates the bi-directional volatility spillover between one stock return
against the sum of other return series. The volatility transmission of AstraZeneca oscillates
from the receiver to the contributor over the whole period. Specifically, AstraZeneca was
a net volatility contributor during the February–June 2019 and February 2020–May 2021
periods. Johnson & Johnson was a profound net volatility transmitter during the period
December 2018–February 2019. Notably, Moderna appears to be the most prominent net
volatility contributor over time. Moderna receives a minor magnitude of spillover in the
second quarter of 2020 and the second quarter of 2021. Conceivably, Moderna turns into a
net volatility receiver due to the influence of AstraZeneca. Figure 3 shows that AstraZeneca
is the only company that transmits volatility to Moderna.

Pfizer received a large spillover effect during the period from December 2018 to Febru-
ary 2020. Notably, in February 2021 Pfizer turns into a net volatility contributor, though the
magnitude of spillover is minor. Moreover, AstraZeneca released the vaccine in February
2021; therefore, the transmission effect is likely to be conditional on the AstraZeneca vaccine
authorization. Interestingly, Sinopharm is consistently a net volatility receiver over the
sample period. Thus, Figure 3 affirms the previous findings that Sinopharm is the highest
net volatility receiver, whereas Moderna is the most prominent net volatility transmitter.

Figure 3 demonstrates the volatility transmission from one company to another company.
Figure 4 shows the bi-directional frequency connectedness between two stock returns.

AstraZeneca appears as a net volatility transmitter to Sinopharm. Expectedly, most of the
time Moderna significantly contributes to the volatility of AstraZeneca and Sinopharm.
However, Moderna turns into a net volatility receiver from AstraZeneca in the period from
the second quarter of 2020 to the second of quarter 2021. Notably, Pfizer is highly influenced
by Moderna over the whole sample period. Additionally, Appendix A confirms these
findings by demonstrating volatility spillovers transmission from and to every vaccine-
producing company.
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3.2. Cross-Quantile Dependence 
This section represents the results of the cross-quantile dependence conducted in the 

Python software in the form of a heatmap matrix, considering the short and long term. 
Due to the long period of high-frequency and highly volatile observation, a 5% quantile 
is considered. The heatmap consists of white and black squares as shown in the cross-
dependence figures, where the white squares indicate lower or negative degrees, whereas 
the black squares signify the highest degrees of dependence or positive correlation. In 
addition, the star sign indicates a 10% significance level.  

Figure 5 demonstrates the cross-quantilogram dependence from AstraZeneca to Si-
nopharm. The lower quantiles are interpreted as bearish conditions and the higher quan-
tiles as bullish conditions. As for the heatmap matrix with a 1-day lag, the results show a 
few significant squares under the higher quantiles of AstraZeneca and middle quantiles 
of Sinopharm. As per the heatmap matrix with a 5-day lag, more significant squares are 
observed compared with the one-day lag heatmap matrix. The volatility spillover from 
AstraZeneca to Sinopharm is pronounced under the bullish market conditions. Astra-
Zeneca under the lower quantiles transmits a strong negative spillover to Sinopharm un-
der the highest quantiles. In both the 1-day and 5-day lags, we observe a negative associ-
ation, thus implying that AstraZeneca transmits a negative spillover to Sinopharm. 
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3.2. Cross-Quantile Dependence

This section represents the results of the cross-quantile dependence conducted in the
Python software in the form of a heatmap matrix, considering the short and long term.
Due to the long period of high-frequency and highly volatile observation, a 5% quantile
is considered. The heatmap consists of white and black squares as shown in the cross-
dependence figures, where the white squares indicate lower or negative degrees, whereas
the black squares signify the highest degrees of dependence or positive correlation. In
addition, the star sign indicates a 10% significance level.

Figure 5 demonstrates the cross-quantilogram dependence from AstraZeneca to
Sinopharm. The lower quantiles are interpreted as bearish conditions and the higher
quantiles as bullish conditions. As for the heatmap matrix with a 1-day lag, the results
show a few significant squares under the higher quantiles of AstraZeneca and middle quan-
tiles of Sinopharm. As per the heatmap matrix with a 5-day lag, more significant squares
are observed compared with the one-day lag heatmap matrix. The volatility spillover from
AstraZeneca to Sinopharm is pronounced under the bullish market conditions. AstraZeneca
under the lower quantiles transmits a strong negative spillover to Sinopharm under the
highest quantiles. In both the 1-day and 5-day lags, we observe a negative association, thus
implying that AstraZeneca transmits a negative spillover to Sinopharm.
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Figure 6 demonstrate the cross-quantile dependence from Sinopharm to AstraZeneca.
The heatmap matrix demonstrates that Sinopharm under the middle and higher quantiles
transmits a negative volatility spillover to AstraZeneca under the lower quantiles. It is also
noteworthy that Sinopharm under the lowest and middle quantiles transmits a significant
negative volatility spillover to AstraZeneca under the middle and higher quantiles. The
impact turns out to be more pronounced when longer lags are considered.
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Figure 6. Cross-quantilogram dependence from Sinopharm to AstraZeneca. Notes: The vertical
axis indicates the quantile distribution of Sinopharm’s stock return, whereas the horizontal axis
indicates the quantile distribution of AstraZeneca’s stock return. The white-to-black intensity in the
bar indicates negative to positive associations.

Figure 7 demonstrates the cross-quantile dependence from Johnson & Johnson to Pfizer.
Mainly a positive correlation between these two companies is observed. The heatmap
matrix with a 1-day lag has no significant squares, whereas the 5-day lag heatmap matrix
shows one significant square under bullish market conditions and indicates a substantial
positive spillover. Figure 7 shows a larger number of significant squares under the highest
quantiles when considering the longer term.
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Figure 7. Cross-quantile dependence from Johnson & Johnson to Pfizer. Notes: The vertical axis
indicates the quantile distribution of Johnson & Johnson’s stock return, whereas the horizontal axis
indicates the quantile distribution of Pfizer’s stock return. The white-to-black intensity in the bar
indicates negative to positive associations.

Figure 8 demonstrates the volatility spillover from Moderna to Pfizer. The volatility of
this spillover is only significant under the highest quantiles of both variables, underscoring
the significance during bullish market conditions. Moreover, the significant squares mostly
indicate a strong positive correlation, thus implying that the magnitude of the positive
spillover from Moderna to Pfizer is substantial. The number of significant squares increases
when considering longer lags.

Figure 9 shows the cross-quantile dependence from Moderna to AstraZeneca. This
spillover becomes more profound when considering longer memories. In the short term
(the 1-day and 5-day lags), Figure 9 demonstrates that Moderna under the middle and
higher quantiles transmits volatility spillover to AstraZeneca under almost all quantiles. In
the long term, a larger number of significant squares with a positive correlation is observed.
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Figure 10 demonstrates the volatility spillover transmission from Moderna to Johnson
& Johnson. When considering longer memories, more significant squares are observed. The
results for the short term (the 1 day and 5 days) show a positive correlation under bullish
market conditions, whereas the results for the long term show a positive correlation under
both the bullish and bearish market conditions. Moderna transmits the most profound
effect in the long term.
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Figure 10. Cross-quantile dependency from Moderna to Johnson & Johnson. Notes: The vertical axis
indicates the quantile distribution of Moderna’s stock return, whereas the horizontal axis indicates
quantile distribution of Johnson & Johnson’s stock return. The white-to-black intensity in the bar
indicates negative to positive associations.

Figure 11 underscores the volatility transmission from Moderna to Sinopharm. The
heatmap matrix in the short term (1 day and 5 days) reveals a negative volatility spillover
transmitting from Moderna to Sinopharm under the middle quantiles. In the long term
(the 22- and 66-day lags), the influence of Moderna is highly profound. Interestingly, we
observe a few positive correlations in the long term, whereas only a negative correlation
exists in the short term.
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Figure 11. Cross-quantile dependency from Moderna to Sinopharm. Notes: The vertical axis indicates
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Figure 12 demonstrates the volatility spillover from Pfizer to Moderna. All the heatmap
matrices indicate a significant linkage of Pfizer and Moderna under bullish market condi-
tions. Pfizer consistently transmits a positive volatility spillover to Moderna in both the
short and long term. The influence of Pfizer is also more pronounced in the long term.

Figure 13 demonstrates the cross-quantile dependency from Johnson & Johnson to
Moderna. Johnson & Johnson under the higher quantiles transmits positive volatility
spillovers to Moderna under the middle quantiles in the short term. In the long term, a
pronounced impact of Johnson & Johnson is observed under bullish conditions.
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Figure 13. Cross-quantile dependency from Johnson & Johnson to Moderna. Notes: The vertical axis
indicates the quantile distribution of Johnson & Johnson’s stock return, whereas the horizontal axis
indicates the quantile distribution of Moderna’s stock return. The white to black intensity in the bar
indicates negative to positive associations.
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3.3. Quantile-on-Quantile

This subsection describes the results of the quantile-on-quantile approach, which
was conducted in the R and MatLab softwares. For example, Figure 14 demonstrates
the influence of Moderna on the other respective markets, including Pfizer, Sinopharm,
AstraZeneca and Johnson & Johnson. Our series are split into nine quantiles by a size
of 10%. Yellow refers to a positive relationship, blue stands for negative and the green
represents zero correlation between the markets. Moderna, under all quantiles, has a
negative or almost a neutral impact on Pfizer under the lower and middle quantiles.
Interestingly, Moderna transmits a positive volatility spillover to Pfizer under the highest
quantiles, which corresponds to bullish market conditions. Considering the influence of
Moderna on Sinopharm, the diagram shows that Moderna under all quantiles transmits
a positive volatility spillover to Sinopharm under the quantiles 0.1 and 0.3. At the same
time, Moderna under all quintiles transmits a negative volatility spillover to Sinopharm
under the 0.4 quantiles. Moderna influences AstraZeneca negatively under the quantiles
0.1–0.5 and 0.8. At the same time a strong positive association is observed under bullish
market conditions, namely all quantiles of Moderna and the 0.6, 0.7 and 0.9 quantiles
of AstraZeneca. Finally, Moderna, under all quantiles, negatively influences Johnson &
Johnson under the 0.1–0.5 quantiles. At the same time, it has a positive impact on Johnson
& Johnson under the higher quantiles, indicating that the stock market connectedness rises
under bullish market conditions.
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Figure 15 demonstrates the influence of Pfizer on the other respective markets, in-
cluding Moderna, Sinopharm, AstraZeneca and Johnson & Johnson. Interestingly, Pfizer
has little power to transmit volatility to Moderna since most correlations are neutral.
Pfizer mainly influences Johnson & Johnson negatively, except for the highest (0.8–0.9) and
the lowest (0.1–0.2) quantiles of Johnson & Johnson. Pfizer under the 0.5–0.9 quantiles
marginally transmits a positive volatility to Moderna under the 0.1 quantile and a negative
volatility under the 0.2 quantiles. In contrast, Pfizer mainly transmits a positive volatility
spillover to AstraZeneca, except for the 0.2–0.3 quantiles of AstraZeneca and all quantiles of
Pfizer. When considering Pfizer and Sinopharm, the diagram shows a neutral relationship
under the higher quantiles and a positive relationship under Pfizer’s higher quantiles and
the lower quantiles of Sinopharm.
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Figure 15. From Pfizer to the other respective markets.

Figure 16 demonstrates the influence of Johnson & Johnson on the other respective
markets, including Moderna, Sinopharm, AstraZeneca and Pfizer. It is noteworthy that
Johnson & Johnson under all quantiles transmits a negative spillover effect to Moderna
under the quantiles 0.15, 0.2, 0.35, 0.4, 0.45, 0.55, 0.6, 0.9 and 0.95. Under the rest of
the quantiles, Moderna has either a neutral or a slightly positive spillover effect from
Johnson & Johnson. Johnson & Johnson under all quantiles transmits a significant negative
spillover effect to Pfizer under the quantiles 0.2–0.7. In contrast, Johnson & Johnson under
all quantiles transmits a positive volatility spillover to Pfizer under the quantiles 0.1, 0.8
and 0.9.
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4. Discussion

The findings of TVP-VAR represent that overall stock market connectedness among
vaccine-producing companies has increased in the second and third quarters of 2021 due
to the COVID-19 outbreak. More specifically, the vaccine release induced an increase in
total stock market connectedness. This study argues that the stock market connectedness
increased through the fundamental channel of foreign investment, for example, via foreign
purchases of vaccines by other countries, which is also in line with Hwang et al. [17].
Moreover, investors’ behavior can induce an increase in the stock market connectedness.
Due to the COVID-19 pandemic, the vaccine-producing companies are thriving. In addition,
the pandemic has created a high level of uncertainty.

Given that investors seek safer assets during crisis periods [9–15] this study argues that
risk-averse agents invest more in vaccine-producing companies, thus increasing their stock
returns and connectedness. This finding is in line with Trevino [34], who argues that apart
from the fundamental factors, the social channel is crucially important in determining stock
market dynamics. It is noteworthy that the increased fluctuations of TCI are conditional
on the vaccine release dates. Therefore, the current study expands the findings of several
studies [3,5–7] who report that the stock market connectedness increased as a response to
the COVID-19 pandemic.

The results of TVP-VAR also demonstrate that Moderna, Johnson & Johnson and
AstraZeneca perform as net volatility spillover contributors, whereas Pfizer and Sinopharm
are net volatility spillover receivers. Notably, Moderna is the most prominent net volatility
spillover contributor, whereas Sinopharm is the highest net volatility spillover receiver. In
the second quarter of 2021, Moderna appears as a net volatility spillover receiver mainly
from AstraZeneca and Pfizer. Such an effect is likely conditional on AstraZeneca and Pfizer
vaccine developments and the first authorization in December 2020. However, after the
release of the Moderna vaccine, this company turns into a strong net volatility transmitter.

The results of the cross-quantilogram are consistent with the previous findings that
Moderna is the most prominent volatility transmitter. Moderna transmits significant
volatility spillovers under both bearish and bullish conditions to Sinopharm, Johnson &
Johnson and AstraZeneca, though the volatility transmission from Moderna to Pfizer is
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minor. Overall, the spillover effect is more pronounced in the long run than in the short run.
In general, the interconnectedness is more substantial under the bullish market conditions.
This finding is in line with several studies [16–18,33,44,59,60] who report that stock market
connectedness increases during crisis times.

5. Conclusions

The vaccine-producing companies that developed vaccines have thrived during the
pandemic period and this is reflected in their stock dynamics. The companies under
consideration are: Moderna, Pfizer, Johnson & Johnson, Sinopharm and AstraZeneca. This
study investigates how the time-dynamic connectedness among the prominent vaccine-
producing companies’ stock returns changes due to the COVID-19 pandemic. Specifically,
the study explores how vaccine releases change the pattern of total connectedness and
the spillover effects among those companies. Moreover, this investigation explains the
interconnectedness among those vaccine-producing companies under bearish and bullish
market conditions. Given the high frequency of the time series with high fluctuations,
several advanced econometric techniques are applied. Therefore, the significance of this
article lies in several aspects: proposition of a novel idea, contribution to the existing
literature by utilizing equity returns instead of stock indices, application of sophisticated
econometric techniques and obtaining unique findings.

First, TVP-VAR dynamic connectedness is applied in order to determine the net
volatility spillover receivers and contributors, considering the time dimension. Notably,
the total connectivity among the markets is 47.32%. The TVP-VAR results demonstrate that
Moderna performs as the most prominent net volatility contributor, whereas Sinopharm is
the highest net volatility receiver. Interestingly, the volatility transmission diagram shows
that AstraZeneca is the only company that transmits a spillover to Moderna. Exploring
the net volatility transmission diagram, it is observed that Moderna turned into a net
volatility receiver in the second quarter of 2021, whereas AstraZeneca and Pfizer were
net volatility transmitters. Such an effect is likely conditional on AstraZeneca and Pfizer
vaccine developments and the first authorization in December 2020. However, after the
release of the Moderna vaccine, this company turns into a strong net volatility transmitter.

Moreover, this study reveals that the total connectedness index rises in the second
and third quarters of 2021 after the vaccine release. The study argues that the stock market
connectedness has increased through the fundamental channel of foreign investment, for
example, via foreign purchases of vaccine by other countries. Moreover, risk aversive
agents invest more in vaccine-producing companies, thus increasing their stock returns
and connectedness.

Second, a cross-quantile dependency is applied to reveal the interconnectedness among
different markets under bullish and bearish market conditions and consider short memory
(the 1-day and 5-day lags) and long memory (the 22-day and 66-days lags). The spillover
effect is more pronounced in the long run than in the short run. Consistent with the
previous findings, Moderna transmits significant volatility spillovers under both bearish
and bullish conditions to Sinopharm, Johnson & Johnson and AstraZeneca. However, the
volatility transmission from Moderna to Pfizer is less pronounced. We generally observe
a higher interconnectedness under the bullish market conditions that correspond to the
COVID-19 pandemic circumstances.

The empirical findings of this study provide several policy implications from the
investors’ point of view since the findings show that the vaccine-producing companies
under consideration are successful in terms of achieving higher stock returns. The total
connectivity among the stock returns of the respective companies is found to be consider-
ably high, reaching 80% in 2019 and implying that the stock return of each company can be
a good hedge against the stock returns of another company. Moreover, Moderna turns out
to be the most prominent net volatility spillover transmitter, providing an opportunity for
a rational investment. Moderna and Johnson & Johnson can predict the stock returns of
other vaccine producers’ stock returns in quarterly lags at the extreme quantiles, indicating
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their directional prediction follows long memory. Therefore, the findings of this study are
useful for portfolio managers in terms of improving their revenues by portfolio diversi-
fication. Finally, it is important to highlight a policy implication for the medications and
vaccine-producing companies. The empirical finding shows that vaccine development and
release allows companies to enhance their stock returns but induced substantial volatility
spillovers from company to company. For instance, after the vaccine release, Moderna
and Pfizer enjoyed higher stock prices and a better prediction of the stock returns of the
respective companies.

One of the limitations of the current study is that it considers only a few vaccine-
producing companies, while state-owned vaccine producers are excluded (e.g., Sputnik V).
Moreover, vaccine release may spur the stock market overall, which has been overlooked.
Thus, future study may incorporate those issues to fill up the literature loophole.
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