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Abstract15

We hereby report on the incorporation of negative stiffness oscillators realized through Euler16

buckled beams within vibrating multilayered sandwich structures. Such devices have been17

extensively investigated as single degree of freedom isolation mechanisms when mechanical18

grounding is available. It is worth exploring the influences of implementing such mechanisms19

within continuous multilayered vibrating structures given their interesting nonlinear vibra-20

tion isolation characteristics. A numerical investigation is presented in this work with the21

computed performance being compared against the one of linear oscillators of equal mass and22

damping properties. Despite the fact that the negative stiffness nonlinear (NSN) oscillators23

were not properly optimized for the specific application due to the implied computational24

cost, they exhibited superior performance to their linear counterparts in a broadband sense.25

Considering the dependence of the linear resonators’ performance to manufacturing preci-26

sion and narrowband excitation, the NSN concept is an excellent candidate for attenuating27

structural vibration across a wide spectrum.28

Keywords: Nonlinear resonators, Vibration absorption, Mechanical metamaterials,29

Negative stiffness, Multilayered sandwich structure30

1. Introduction31

Installing oscillators in vibrating structures is an effective method to improve their vibra-32

tion absorption capacity. The popular vibrational metamaterials are essentially structures33
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consisting of host components and periodically/nonperiodically attached oscillators. For34

instance, Liu et al. [1] first fabricated crystals with periodically distributed oscillators made35

of hard cores and soft rubber coatings. Zhang et al. [2], Huang et al. [3], Langfeldt et al. [4],36

Chen et al. [5] and Peng and Pai [6] developed metamaterial beams, plates and sandwich37

structures with membrane or mass spring oscillators. Meng et al. [7–10] studied metama-38

terial beams with spatially varying cantilever-mass oscillators. Barnhart et al. [11], Peng et39

al. [12], Pai et al. [13], Xiao et al. [14] investigated metamaterials with multiple resonators40

with the purpose of broadening vibration absorption band. Xiao et al. [15] created metama-41

terial rods with coaxial rubber rings and metal rings oscillators. Li et al. [16] investigated42

the vibration suppression performances of metamaterial structures constituted of double43

sides stepped oscillators deposited on plates. Most of the existing metamaterials contain44

linear oscillators. The vibration energy can be greatly absorbed by the resonance of linear45

oscillators, the stop bands of metamaterials hence occur at the vicinity of the resonance46

frequencies of the linear oscillators. Broadband vibration absorption is hard to achieve by47

metamaterials with linear oscillators. Besides, the resonant frequencies of linear oscillators48

are proportional to their stiffness and reversely proportional to their mass. The mass of49

oscillators is generally restricted in applications to avoid adding extra burden to vibrating50

structures, the stiffness of oscillator therefore needs to be minimized to realize low frequency51

vibration absorption.52

Negative stiffness mechanisms (NSMs) are structures that can exhibit a reversal of usual53

displacement to force ratio in some region. NSMs have been realized by different configura-54

tions. For instance, Carrella et al. [17, 18], Kovacic et al. [19], Tang and Brennan [20], Liu et55

al. [21] and Hao and Cao [22] proposed NSMs created with two oblique or horizontal springs56

connected at one end. These NSMs were connected with vertical springs to form the so called57

quasi-zero-stiffness structures. Yao et al. [23], Zhou et al. [24] and Wang et al. [25] developed58

vibration isolation platforms with cam-roller-spring mechanisms. Zhang and Zhao. [26], Sun59

and Jing [27], and Sun et al. [28] investigated nonlinear vibration isolation obtained by scis-60

sor like structures.Wu et al. [29], Dai et al. [30] and Bian and Jing [31] developed nonlinear61

vibration isolation systems with bio-inspired structures. Rigid bars were also used for the62

construction of NSMs. Platus [32], Yang et al. [33] and Wang et al. [34] studied the dynamic63

and power flow behaviors [21] of NSMs consisting of rigid bars hinged at the center with64

the other ends moving freely in horizontal guideway. Zhang et al. [35] and Le and Ahn [36]65

designed vibration isolation systems with rigid bar NSMs for high precision instruments and66

vehicle seat applications. Besides, bistable structures such as buckled beams were widely67

applied in the NSMs. Fulcher et al. [37], Kashdan et al. [38], Haberman [39] investigated68

the load-deformation response of buckled beams which displayed negative stiffness behav-69

iors in the transition between two stable states. Virgin and Davis [40], and Lee et al. [41]70

used the buckled struts to design negative stiffness spring component for vibration isolation71

systems. Wooderd and Houserman [42] configured negative stiffness suspension system with72

two compressed beams. Liu et al. [43] and Huang et al. [44, 45] developed negative stiffness73

connectors formed by two compressed Euler beams hinged at both ends. Apart from the74

mechanical structures, magnetic and electromagnets were also adopted to construct NSMs.75

Xu et al. [46], Zheng et al. [47], and Wu et al. [48] proposed negative stiffness springs by76
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virtue of the repulsive forces between a pair of fixed and freely sliding magnets, coaxial ring77

magnets and cuboidal magnets respectively. Robertson et al. [49] and Carrella et al. [50] and78

Dong et al. [51] investigated NSMs composed of a center floating magnet and two magnets79

at different sides which exerted attraction forces on the center magnet. These NSMs were80

combined with mechanical springs to form high-static–low-dynamic stiffness isolator. Tun-81

able [52] electromagnet NSMs could be realized by replacing some magnet components with82

electromagnets. Zhou and Liu [53, 54] constructed an electromagnet NSM in which a center83

permanent magnet was placed between a pair of electromagnets. Pu et al. [55] proposed84

negative stiffness springs with coils and coaxial magnets. The stiffness of these NSMs was85

tuned by controlling the current.86

The NSMs have found wide applications in vibration isolation systems. A popular appli-87

cation is the nonlinear energy sink, which is a local attachment with nonlinear typically cubic88

and negative stiffness that could effectively absorb vibration within a broader spectrum of89

frequency compared with linear attachments [56–59]. The NSMs were mostly implemented in90

vibration isolation systems that were connected to mechanical grounding, only a few studies91

were conducted regarding continuous vibrating structures with NSMs. Zhou et al. [60–62],92

Casalotti et al. [63] and Wang et al. [64, 65] proposed metamaterial beams, rods and plates93

that achieved low frequency band by using NSMs. Kani et al. [66] investigated the energy94

transfer from a simple supported continuous beam to the nonlinear energy sink. The semi-95

nal work presented in [64] is the first one to exhibit the advantages of incorporating NSMs96

within 2D continuous vibrating structures. The authors focused on extracting the band97

structure of the structural unit cell using a plane-wave expansion method and considering98

the linearized stiffness of the oscillators. We hereby expand the above analysis to NSMs99

comprising Euler buckled beams and also through employing finite element modelling to100

capture the full effects of nonlinearity on the structural response.101

Multilayered sandwich structures are widely employed within the transport and energy102

industries thanks to their high stiffness over mass performance indices. Despite their ad-103

vantages, the low mass and high stiffness of such structures implies high vibrational and104

acoustic transmissibility with low frequency vibration absorption being an important open105

technological issue. Inspired by the designing ideas of metamaterial structures and NSMs, we106

analyzed the structural responses of negative stiffness nonlinear (NSN) oscillators consisting107

of hinged buckled Euler beam NSMs and oscillating mass incorporated in a vibrating unit,108

and implemented for the first time the NSN oscillators in the cores of multilayered sandwich109

structures to improve their structural vibration absorption performance. The multilayered110

sandwich structures with NSN oscillators were modeled through a 3D finite element (FE)111

approach which can accurately estimate the structural responses in wide frequency ranges112

as well as in time domain. In addition, we compared the frequency responses between sand-113

wich structures with NSN oscillators and linear resonators of the same mass while tuned for114

different frequency bands to give out a further insight of the influences of the NSN oscillators.115

This paper is structured as follows: Section 2 presents the employed NSN oscillators,116

analyzes the structural responses of a vibrating unit with the NSN oscillator, and searches117

for designs that are able to perform interwell vibration. Section 3 investigates the vibration118

absorption performances of multilayered sandwich structures that incorporate the above-119
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mentioned NSN oscillators. Design optimization and necessary future developments of NSN120

structures are pointed out in Section 4. Concluding remarks are finally drawn in Section 5.121

2. Analysis of the considered negative stiffness nonlinear oscillator122

The NSN oscillator design is shown in Fig. 1(a). It should be noted that the function123

of the oscillator is rather different compared to previous work [43, 67] which were aiming at124

vibration isolation for a single degree of freedom system and for which a positive stiffness125

was also required to support the weight of the oscillating mass.126

Figure 1: (a) The employed NSN oscillator depicted enclosed within the master structure (not to scale). The
upper stable, as well as the snap-through (unstable equilibrium) states are shown along with the considered
design variables of the oscillator, (b) The three expected vibration modes of the oscillator: I. Intrawell stable
oscillation, II. Chaotic interwell oscillation and III. High amplitude interwell oscillation.

In this work the NSN comprises a small mass mosc which is destined to oscillate with127

a significant amplitude to maximize the absorbed vibrational energy. The kernel idea to128

explore in this work is employing an unstable spring which will push mosc away from its129

equilibrium position to maximize vibration amplitude. There are typically three oscillation130
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modes for the NSN oscillator, i.e. intrawell vibration which is the low amplitude oscilla-131

tion that cannot cross the equilibrium state, chaotic interwell vibraiton which has medium132

amplitude that is able to cross the equilibrium state and interwell vibration with largest133

oscillation amplitude as shown in Fig. 1(b).134

The considered values for mosc will be relatively low (5-10%) compared to the master135

structure thus the inertial forces applied on mosc due to acceleration are expected to be much136

larger than weight. This is in contrast to previous works [18, 41, 43, 45, 67, 68] where a large137

mass is supported by a positive stiffness spring and the vibration of which is to be abated138

in order to minimize transmissibility. Such transmissibility isolation devices incorporating139

Euler buckled beams have been employed for increasing driver seat comfort, as well as140

satellite vibration isolation bases. In this work the authors adopt this design concept and141

aimed at adapting its design variables to transform it into a vibration absorption oscillator.142

Fig. 2 illustrates this major difference in the two designs (vibration isolation and vibration143

absorption), stressing the fact that optimal operation range for transmissibility isolation is144

focused around the equilibrium point of the Euler beams, while in this work the authors are145

attempting full interwell vibration for mosc in order to maximize the amount of absorbed146

energy.
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Figure 2: Representative force-displacement and stiffness-displacement curves are presented next to the
corresponding positions of the oscillating mass. The targeted operating zones are also presented, highlighting
the difference between operation of a single degree of freedom transmissibility isolator connected to a heavy
mass [43] (dark grey) and the structural vibration absorption configuration (light grey) proposed in this
work.

147

Another major difference between this work and previous ones is that the NSN oscillators148

are hereby not designed for improved functionality close to zero frequency but for activation149

close to structural resonances around which vibration amplitude becomes maximum. The150

optimal design is therefore not necessarily the one providing zero stiffness formosc but the one151

that maximizes energy absorption close to resonances thanks to sufficient inertial restoring152

force which allows for mosc to perform interwell vibration. This is typically attained at153

frequencies higher than 0, as well as high structural vibration amplitudes.154

2.1. Derivation of the frequency response curve expression for the proposed NSN oscillator155

under a master structure displacement excitation156

The perpendicular normalized force transmitted from the axially loaded slender beam to157

the oscillating mass can be provided by the solution of the Euler beam expression [40, 69]158
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as159

F

Pe
=

1 − πq0
L

((πq0
L

)2
+ 4

(
1 −

√(u
L

)2
+ (cos θ)2

))−1/2×

√(u
L

)2
+ (cos θ)2 −

12 +
(πq0
L

)2
4


 u

L

√(u
L

)2
+ (cos θ)2


(1)

with q0 being the initial imperfection of the beam, L its initial length before buckling,160

Pe = EI
π2

L2
(2)

E being the Young’s modulus of the beam material and I the second moment of area for161

the beam’s cross-section. It is worth noting that when the two endpoints of the beam lay162

on a horizontal line (u=0) it is implied that the vertical restoring force the two beams are163

providing is zero with the corresponding restoring stiffness also being minimum at that state164

of unstable equilibrium (see also Fig. 2). The vertical restoring force is symmetric about165

that point.166

A Taylor Series expansion of the restoring force determined by Eq.(1) can be formulated167

around the unstable equilibrium point (u=0), as168

F

Pe
= −k′1

(u
L

)
+ k′3

(u
L

)3
, (3)

which can be reduced to the following system of equations169

F = −
(
k′1Pe
L

)
u+

(
k′3Pe
L3

)
u3 = −k1u+ k3u

3, (4)

with170

k′1 = (
a− b

2aγ
)(
b2

2
− 2γ + 6)

k′3 =
a− b

2aγ2
+ (

a− b

4γ3a
+

b

2γ2a3
)(
b2

2
− 2γ + 6)

a =

√(πq0
L

)2
− 4 cos θ + 4

b =
πq0
L

γ =
a

L
= cos θ

(5a)

(5b)

(5c)

(5d)

(5e)

171
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Following Figs.1 and 2, the mass may be balanced at u = +u0 or u = −u0, which is172

determined by the characteristics of the Euler beam and the ones of the oscillating mass173

−k1u0 + k3u
3
0 = mg (6)

where u = +u0 can be solved by Cardano method. The balanced position as well as the num-174

ber of solutions are determined by whether ∆=

(
−mgL

3

2k′3Pe

)2

+

(
−k

′
1L

2

3k′3

)3

=175 (
mg

2Pe
+
k′1
3

√
k′1
3k′3

)(
mg

2Pe
− k′1

3

√
k′1
3k′3

)
is larger, equal to or smaller than zero.176

The equation of motion for the single degree of freedom system is therefore expressed as177

m
d2y

dt2
+ c

dy

dt
− k1 (y+u0) + k3 (y+u0)

3 = mZ0ω
2 cosωt+mg, (7)

with y = u−z being the relative displacement and Z0 the vibration amplitude of the master178

structure. Then according to Eq. (6) and (7), the equation of motion becomes179

m
d2y

dt2
+ c

dy

dt
+
(
−k1 + 3k3u

2
0

)
y + 3k3u0y

2 + k3y
3 = mZ0ω

2 cosωt, (8)

or180

d2y

dt2
+

c

m

dy

dt
+

(−k1 + 3k3u
2
0)

m
y +

3k3u0
m

y2 +
k3
m
y3 = Z0ω

2 cosωt. (9)

The above equation is written in a general way as181

ÿ + 2βẏ + α1y+α2y
2 + α3y

3 = Z0ω
2 cosωt (10)

where

β =
c

m

α1 =
−k1 + 3k3u

2
0

m

α2 =
3k3u0
m

α3 =
k3
m

(11a)

(11b)

(11c)

(11d)

The harmonic balance method [70] is employed to get the steady solution for the re-
sponse of the system. The steady-state solution to Eq. (10) is assumed to be y (t) =
A0 + A1 cos (ωt+ ϕ) and by setting the coefficients of the same harmonics to be equal
and ignoring the higher harmonics leads to

b1A0 + b3A
3
0 +

3

2
b3A0A

2
1 = b0

−ω2A1 + b1A1 + 3b3A
2
0A1 +

3

4
b3A

3
1 = Z0ω

2 cosϕ

−2βωA1 = Z0ω
2 sinϕ

(12a)

(12b)

(12c)
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where

b0 =
α1α2

3α3

− 2α3
2

27α2
3

b1 = α1 −
α2
2

3α3

b3 = α3.

(13a)

(13b)

(13c)

Then combining Eqs.(12) to give the implicit equation for the amplitude of the constant182

term A0 we get183

25b33A
9
0 +

(
35b1b

2
3 − 20ω2b23

)
A7

0 − 15b0b
2
3A

6
0 +

(
11b21b3 + 4ω4b3 + 16ζ2ω2b3 − 24b1b3ω

2
)
A5

0

+
(
2b0b1b3 + 16ω2b0b3

)
A4

0 +
(
b31 − 4b21ω

2 + 4ω4b1 + 16β2ω2b1 − 9b20b3 + 6b3Z
2
0ω

4
)
A3

0

+
(
b0b

2
1 − 4ω4b0 − 16β2ω2b0

)
A2

0 +
(
4b20ω

2 − b20b1
)
A0 − b30 = 0.

(14)

According to Eq.(14), A0 can be obtained for a given value of b0, b1, b3, Z 0 and β.
Then the harmonic term A1 is obtained by Eq.(12a). The variation of the bias term A0 as
a function of frequency ω is solved by employing Eqs.(12).

8β2 (b0 − b1A0 − b3A
3
0)

3b3A0

ω2 + A1

(
−ω2 +

b1
2

+
5

2
b3A

2
0+

b0
2A0

)2

= Z2
0ω

4

A1 =
2 (b0 − b1A0 − b3A

3
0)

3b3A0

.

(15a)

(15b)

The frequency response curves (FRCs) of A1 are solved by Eq.(12a) after A0 is obtained as184

a function of frequency ω. The locus of the peak amplitudes of the bias term A0p is obtained185

by the fact that it happens at φ=π/2, thus186

ω2
0 =

b1
2

+
5

2
b3A

2
0+

b0
2A0

. (16)

The peak response of the bias term, named as A0p, is determined through187

(80β2b23 + 75Z2
0b

3
3)A

6
0p + (96β2b1b3 + 30Z2

0b1b
2
3)A

4
0p − (64β2b0b3 − 30Z2

0b0b
2
3)A

3
0p

+ (16β2b21 + 3Z2
0b

2
1b3)A

2
0p + 6Z2

0b0b1b3A0p − 16β2b20 + 3Z2
0b

2
0b3 = 0.

(17)

After solving Eq.(17) for A0p, the value is substituted in Eq.(16) to obtain the peak188

frequency, and then the peak response of the harmonic term A1p is obtained by Eq.(12).189

According to Descartes’s rules of signs [71], the number of positive roots of the real190

algebraic equation, i.e. Eq.(14), is either equal to the number of sign changes in the sequence191

of the coefficients of the polynomial, or less than that number by a positive even integer.192

By considering this theorem, the system of Eq.(14) can have a maximum number of one,193

three or five steady-state values. It should be pointed out that, although the number of194

sign changes in the sequence of the coefficients of the polynomial is only three for counting195

the ‘positive’ and ‘negative’ signs, the actual number of sign changes is dependent on the196

outcome of the coefficients, which are functions of b0, b1, b3, Z 0 and β. The multivaluedness197

implies the occurrence of a multiple jump phenomenon.198
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2.2. Stability of the approximate harmonic balance solution199

In the case where there are several stationary values, it is necessary to analyze the200

stability of the approximate harmonic balance solution due to the fact that not all of them201

will correspond to stable motion. To perform this stability analysis, a small perturbation202

χ(τ) is introduced to the assumed solution203

y∗ (t) = A0 + A1 cos (ωt+ ϕ) + χ(τ). (18)

Substituting Eq.(18) in Eq.(10), we obtain the corresponding linearized variational ex-204

pression205

d2χ

dτ 2
+ 2β

dχ

dτ
+ b1χ+ 3b3 (A0 + A1 cos (ωt+ ϕ))2 χ = 0. (19)

Using the substitution χ (τ) = e−υτη (τ), Eq.(10) is transformed into Hill’s equation206

written as207

d2η

dτ 2
+

((
−β2 + b1 + 3b3A

2
0 +

3

2
b3A

2
1

)
+ 2

[
3b3A0A1 cos (ωt+ ϕ) +

3

4
b3A

2
1 cos (2 (ωt+ ϕ))

])
= 0.

(20)
Taking σ0 = −β2 + b1 + 3b3A

2
0 + 3

2
b3A

2
1, σ1 = 3b3A0A1, σ2 = 3

4
b3A

2
1, and following the208

procedures available in the literature [72] and based on the Floquet theory, the stability209

condition follows as210

σ0σ
2
2 − 2σ2

1σ2 + 2σ2
1(σ0 − Ω2) − σ0(σ0 − Ω2)2 > 0. (21)

When three steady states occur in the system for a single frequency two of them are stable211

and one unstable. Moreover, where five steady states occur then three of them are stable212

and two unstable.213
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Figure 3: Frequency response curves for the considered NSN oscillator having mosc=0.004kg, h=0.015m,
q0=0.001, L=0.021m, EI=4×10−6GPam4. In the left column subfigures (a), (c) and (e) present results
for increasing vibration amplitude of the master structure from Z0=1mm then Z0=5mm and eventually
Z0=10mm for a constant damping coefficient c=0.01kg/sec. In the right column subfigures (b), (d) and
(f) present results for increasing vibration amplitude of the master structure from Z0=1mm then Z0=5mm
and eventually Z0=10mm for a constant damping coefficient c=0.05kg/sec. Unstable part of the frequency
response curves in (−−) and red line style and colour. Subfigure (g) presents a comparison between the
approximated force-displacement relation implemented in Eq.(9) (−−) against the complete analytical ex-
pression of the restoring force in Eq.(1) (-) for the design presented in the above subfigures.
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Fig. 3 depicts the frequency response curves for a variety of designs of the single degree214

of freedom NSN oscillator. For the nonlinear system under investigation it is known that the215

excitation amplitude and damping are primary candidates to affect its response [73] and are216

therefore hereby investigated. Results are presented for three levels of master structure’s217

excitation, as well as for two level of damping values for the viscous element connected218

to mosc. In Fig. 3 the dotted parts represent the unstable regions. When there are three219

steady states occurring in the system for a single frequency, two of them are stable and one220

unstable. The results are in good agreement with intuitionally expected behaviour (interwell221

oscillation branch moving to lower frequencies with increase of basis oscillation amplitude222

and with decrease of damping), as well as with the explicit transient calculations exhibited223

in Sec.2.2.224

It is observed that an increase of the damping coefficient c results in decrease of the225

oscillation amplitude for mosc. Simultaneously, the frequency at which mosc enters interwell226

vibration increases which is disadvantageous for absorbing energy at low frequency spec-227

tra. The designer should therefore balance the decreased oscillation amplitude against the228

benefits of increasing c before determining the optimal level of damping for the oscillator.229

When Z0 varies with c remaining constant, it is also observed that increasing the vibration230

amplitude of the master structure results in an increased oscillation amplitude for mosc. The231

activation frequency for interwell vibration also shows to decrease with an increase of Z0232

which suggests that large vibration amplitudes should be beneficial for harvesting energy out233

of the master structure. An issue however later identified (see Sec.3.4) is that as the master234

structure obtains large quantities of vibrating energy, the portion of the energy damped by235

the interwell oscillation actually reduces with simultaneous reduction of the effective global236

dissipation factors.237

In the same Fig. 3 a comparison is presented between the approximated buckled beam238

restoring force implemented in Eq.(9) against the complete analytical expression of the force239

in Eq.(1). It is shown that the Taylor expansion provides an overall good approximation,240

however due to the large oscillation amplitudes of mosc deviations are to be expected between241

the solution of Eq.(9) and the explicit transient solution taking the full Eq.(1) into account.242

The above presented analytical tool can therefore be employed as an efficient preliminary243

design optimization tool for providing satisfactory approximations on the amplitude of os-244

cillation and the interwell activation frequencies of specific designs. Such efficient tools are245

essential for performing fast searches on the design space given that seven design variables246

are to be considered for the oscillator.247

2.3. Analysis of the NSN oscillator through an explicit time integration scheme248

It is reminded that interwell vibration is desired for the NSN oscillator. Unfortunately,249

while a Taylor expansion is generally adequate for capturing the response of the system250

close to its unstable equilibrium position [43], its predictions for an intensely fluctuating251

force (such as the one presented in Fig. 2) can deviate away from u = 0 with a consequent252

impact on the accuracy of the approximated expressions derived in Sec.2.1. As a subsequent253

step, the fundamental force-displacement equation for an Euler buckled beam in Eq. (1)254

describing the oscillator in Fig. 1 is explicitly solved through a time integration scheme in255
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order to investigate the transient behaviour of the system. A basis excitation is imposed256

and the displacement of the mass is computed in the time domain.257
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Figure 4: Response of the oscillating mass (shown in red) for an input base excitation (shown in black). All
results are computed with a resolution of 0.0001sec to ensure adequate discretization in the time domain.
Clockwise from upper left: (a) Response of a NSN oscillator tuned to operate after 30Hz to a linear chirp
base excitation having Z0=0.006m scanning a frequency range of fmin=0.1Hz to fmax=100Hz in 10 seconds.
(b) Response of a mistuned oscillator having excessive beam stiffness not allowing for interwell motion. The
excitation is a linear chirp having Z0=0.006m scanning a frequency range of fmin=0.1Hz to fmax=100Hz
in 10 seconds.(c) Response of an oscillator tuned to operate after 30Hz to a linear chirp base excitation
having Z0=0.015m scanning a frequency range of fmin=0.1Hz to fmax=100Hz in 10 seconds. (d) Typical
steady-state response of an oscillator tuned to operate after 30Hz to a sinusoidal base excitation having
Z0=0.006m and a constant frequency of 40Hz.

The principal goal of this subsection is to investigate the designs that are able to perform258

interwell oscillation. As observed in Fig. 3, the increase of the master structure vibration259

amplitude, as well as the decrease of damping are expected to facilitate interwell oscillation.260

It is however hereby stressed that the goal of vibration absorption devices is dissipating the261

largest portion of energy, that is achieving a maximum dissipated energy ratio defined as262

η =
Ediss
Estruc

(22)

with Ediss the amount of energy dissipated by the mechanism and Estruc the vibrational263

energy of the master structure. Given that the increase of c could simultaneously facilitate264

the increase of Ediss and impede interwell vibration of mosc it is evident that a proper design265
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optimization of the NSN oscillator design would be required to achieve optimal absorption266

performance. Another point to consider is that the maximum oscillation amplitude for mosc267

is constrained by the design of the master structure with typical composite sandwiches hav-268

ing thicknesses of the order of a few centimeters. The maximum value of Ediss is therefore269

following a similar constraint. While an important Z0 is desired to activate interwell oscil-270

lation for mosc, a very large value for Z0 would increase Estruc and therefore result in a low271

η for the NSN absorption design. For very high Z0 values of the master structure vibration,272

vibroimpact effects may take place (between mosc and structural facesheets) necessitating273

dedicated analysis techniques [74–76] and further complicating response predictions.274

Results from the explicit time integration scheme are exhibited in Fig. 4 for a variety275

of designs. The ode45 MATLAB function is employed which is based on a fourth-order276

accurate explicit Runge-Kutta method. The choice of time step was made such that at277

least 100 points are calculated per cycle. It is observed in Fig. 4(a) that the system can278

be designed to perform interwell oscillation for a broadband frequency range. Results are279

shown for design variables: mosc=0.004kg, c=0.05kg/sec, h=0.015m, q0=0.001, L=0.021m,280

EI=4×10−6GPam4. As expected, an increase of vibration amplitude increases the interwell281

vibration spectrum. It was found particularly challenging to come up with a design that282

induces interwell vibration close to zero frequency due to the need for a substantial iner-283

tial force to overcome the snap-through threshold. The frequency scan from fmin=0.1Hz to284

fmax=100Hz showed that interwell vibration above about 30Hz can be attained in a straight-285

forward manner given the aforementioned dimension constraints. For the same design, the286

steady state response to a monotonic sinusoidal excitation of 40Hz is provided for the sake287

of completeness in Fig. 4(d). It is observed that the motion of mosc quickly converges to a288

steady-state response of the same frequency as the one of the master structure within a few289

cycles.290

2.4. Performance of a mistuned mechanism291

In Fig. 4(b) results for a mistuned design are presented havingmosc=0.004kg, c=0.05kg/sec,292

h=0.015m, q0=0.001, L=0.021m, EI=4×10−3GPam4. By ’mistuning’ we imply any design293

conditions that impede interwell oscillations of mosc. Mistuning can result either from ex-294

cessive damping or excessive stiffness of the employed beam structures which will not allow295

mosc to perform full interwell oscillation. The result clearly shows mosc moving from the296

initial unstable equilibrium state to one of the extreme positions and performing intrawell297

vibration around that position for the entire scanned spectrum. Such a mode of vibration298

implied reduced energy absorption.299

In Fig. 4(c) it is observed that increasing the oscillation amplitude close to the design300

value h implies interwell vibration for the oscillating mass starting at a very low frequency301

range (in this case at less than 5Hz). Results are shown for mosc=0.004kg, c=0.05kg/sec,302

h=0.015m, q0=0.001, L=0.021m, EI=4×10−6GPam4 and a structural vibrating amplitude303

of Z0=15mm. The increase of the vibrating amplitude of the oscillating mass y0 however304

is not proportional to the increase of Z0. This fact implies reduced normalised energy305

absorption η which suggests that such a design would be considered to be underperforming.306

It is therefore clear that the thickness of the sandwich and therefore the available maximum307
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vibration amplitude for mosc has major impact on the overall performance of the absorption308

system. This is nothing surprising, also being an important limitation for linear oscillator309

designs. The impact of vibration amplitude on the damping performance of the employed310

oscillators is investigated further in Sec.3.4.311

3. Implementation of NSN oscillators within a vibrating multilayered sandwich312

structure313

In this section the NSN oscillators will be numerically implemented within a vibrating314

sandwich master structure to evaluate their performance as an energy absoprtion system315

focusing around the two first structural resonances.316

The sandwich structure is made up by a periodic unit cell. A total of 8×8 repetitions317

of the unit cell in the x and y directions form the full sandwich panel. The unit cell has318

dimensions Lx=0.09m, Ly=0.06m, while hc=0.035m is the core thickness and hf=0.001m is319

the thickness of each facesheet. As shown in Fig.5 a void is implemented within each unit cell320

equal to one third of the corresponding dimensions in the x and y directions within which321

the NSN oscillator is implemented. The material characteristics for the master structure are322

Ef=70GPa for the facesheets, Ec=0.07GPa for the core material, vf=0.1 for the facesheets,323

vc=0.3 for the core, ρf=3000kg/m3 for the facesheets, ρc=50kg/m3 for the core, while both324

the core and the facesheet materials have a structural damping loss factor equal to 1%.325

The implemented NSN oscillators have mosc=0.004kg, c=0.05kg/sec, h=0.015m, q0=0.001,326

L=0.021m and EI=4×10−6GPam4. This NSN design was selected after an extensive para-327

metric study thanks to its capacity to start performing interwell vibration at a frequency328

below the first structural resonance (below 35Hz).329

Figure 5: Caption of the sandwich structure and its unit cell incorporating the negative stiffness oscillator.
Upper facesheet of the sandwich panel is omitted for clarity.

The sandwich structure is modelled through solid, linear brick finite elements (FEs)330

with nonlinear spring-mass dampers being implemented to simulate the behaviour of the331

NSN oscillators within each unit cell. The coincident nodes of the nonlinear spring mass332
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elements are merged to the ones of the master structure. The structural response is computed333

through an explicit time domain solution employing the ANSYS FE platform. A chirp334

displacement function scanning a frequency range between fmin=0.1Hz to fmax=100Hz with335

a force amplitude equal to 150N is injected at position x=0.18m, y=0.12m of the sandwich336

structure. The four corners of the panel are clamped to have zero displacement boundary337

conditions.338

3.1. Dynamic response of the master sandwich structure339

Two approaches are employed to extract the response of the nonlinear system. To provide340

results in an efficient manner, the FRF of the structure is initially determined through an341

H1 estimate by Welch’s method applied on the chirp signal results. Moreover, the steady-342

state response is computed under a signal containing 10 cycles of a chirp function from343

fmin=0.1Hz to the targeted frequency, followed by 90 cycles of monotonic sinusoidal excita-344

tion. The initial chirp was implemented in order to avoid impact effects in the beginning345

of the simulation. The steady-state response function is evaluated by applying a spectral346

density estimation on the last 30 cycles of the computed response. Results under both ex-347

citation types are presented in Fig. 6. The outcome of the Welch’s method is in excellent348

agreement with the steady-state sinusoidal excitations which are considered more reliable349

as an index and will be employed in the remainder of the work. Results obtained through350

the Welch’s method show intense fluctuations towards the end of the analysed spectrum,351

suggesting that the excited harmonics start having important effect on the obtained chirp352

signal after about 80Hz. Computational effort for this 29,558 degree of freedom FE problem353

were rather intensive with about 330 minutes required for each sinusoidal steady-state result354

(�) and 1390 minutes required for the evaluation of the chirp output on a standard 2.2GHz355

processor having 8GB of RAM memory.356

The equivalent linear systems having the same multilayered sandwich structure, as well357

as the same mosc are subsequently considered as references. It is well known that such358

mechanical metastructures with linear oscillators [77, 78] have excellent vibration absorption359

properties around targeted, narrow frequency spectra, widely known as stopbands. The same360

transient linear chirp signal and the same Welch’s approach were employed to obtained the361

frequency response functions of the linear structures. Three scenarios are considered as362

follows: i) the linear resonators being tuned at a frequency of 170Hz (higher than the first363

two structural resonances and outside the displayed range of interest), ii) tuned on the 1st364

structural resonance and iii) tuned on the 2nd structural resonance. In Fig. 7(a) results are365

exhibited for the system comprising linear oscillators tuned at a frequency above the two366

first modes. It is observed that the sandwich structure with NSN oscillators has smaller367

fluctuations in the FRF curve than that with linear oscillators. The NSN system hence368

outperforms its linear counterpart in a broadband sense with differences of over an order369

of magnitude being observed with regard to induced displacement amplitudes close to the370

excitation point.371

To add more interest to the comparison, results are exhibited in Figs. 7(b),(c) for the372

linear oscillators being tuned on the 1st and 2nd structural resonances respectively. The373

internally oscillating mass has been kept constant in all cases in order to render the designs374
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Figure 6: Structural response at x=0.54m, y=0.12m. Red lines exhibit results for a linear chirp excitation
scanning a range between fmin=0.1Hz to fmax=100Hz. Steady-state response to monotonic sinusoidal
excitations are also presented in �.

comparable to each other. The stiffness of the spring has been altered for the linear tuned375

mass dampers in order to target the desired resonance frequency of the panel. As expected,376

the locally resonant linear sandwich structures are exhibiting stopbands at the correspond-377

ing tuning frequencies. Structural response turns much lower within these narrow ranges,378

implying that for monotonic excitations a linear oscillator design would be most appropri-379

ate. Due to the well known emerging side resonances [79, 80] however the performance of380

the linear design is highly compromised with the maximum response in the region exceeding381

the one for the NSN design. It is widely known that ’erasing’ these side resonances high382

damping values for the linear oscillators (typically a damping ratio over 20%) or special383

active treatments need to be implemented. This need further compromises the practicality384

of the linear design.385

On the other hand, the NSN design presents an improved performance in a broadband386

sense. A single periodic oscillator type with a low amount of damping induces reduction387

of structural vibration by more than an order of magnitude, both around the 1st and 2nd388

structural resonances. The response is also lower than the side resonances induced by the389

stopbands of the linear design.390

3.2. Dynamic response of the internal mechanism391

To provide further insight into the response of the system comprising NSN oscillators,392

steady-state responses of the system under a sinusoidal monotonic excitation are provided393

in Fig. 8. Two cases, below and above 30Hz are distinguished with the NSN oscillators394

performing intrawell (f=10Hz) and interwell (f=35Hz) oscillation respectively. Going back395

to the frequency response functions of the system in Fig. 7 it is now clearly observed that396

interwell oscillation increases the apparent structural damping in comparison to the equiv-397
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Figure 7: Structural response at x=0.54m, y=0.12m. (a) Comparison between the NSN design � and the
linear design with oscillators tuned higher than 100Hz. (b) Comparison between the NSN design � and the
linear design with linear oscillators tuned at the first structural resonance. (c) Comparison between the
NSN design � and the linear design with oscillators tuned at the second structural resonance.

alent linear system and has beneficial desired effects conjectured in the beginning of this398

manuscript.399

It should be stressed that the time resolution in Fig. 8 is equal to 20 instants per cycle,400

therefore the intense dynamics observed during the interwell oscillation of mosc are by no401

means related to noise. Further increasing the time resolution would provide a slightly402

smoother time domain response, without altering the impact of the NSN mechanisms on403

global structural damping.404
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Figure 8: Typical waveforms obtained through an explicit transient FE solution. Response at x =
0.54m, y = 0.12m. The NSN design has mres=0.004kg, c=0.05kg/sec, h=0.015m, q0=0.001, L=0.021m,
EI=4×10−6GPam4. Red curves represent the displacement of the oscillating mass, while black curves rep-
resent the master structure response at the same position. Left: Response for 10 cycles of a chirp function
from fmin=0.1Hz to ftarget=10Hz, followed by 90 cycles of monotonic sinusoidal excitation at ftarget. It
is observed that the oscillator is still operating at intrawell motion. Right: Response for 10 cycles of a
chirp function from fmin=0.1Hz to ftarget=35Hz, followed by 90 cycles of monotonic sinusoidal excitation
at ftarget. The interwell motion of the NSN oscillator has been activated at that frequency.

3.3. Parametric study on the performance of the structural system with respect to the mech-405

anism’s damping coefficient406

It is important to investigate the performance of the implemented oscillators vis-à-vis407

the level of added viscous damping c. For the master structure’s components, it is reminded408

that both the core and the facesheet materials have a structural damping loss factor equal409

to 1%. As discussed in Sec.2, increase of damping is expected to reduce the amplitude410

of the oscillation of mosc, while on the other hand it would facilitate the absorption of411

additional energy by the oscillators. In Fig. 9 a parametric study is exhibited, investigating412

the structural response level at the first natural frequency of the master structure. Response413

at x = 0.54m, y = 0.12m of the master structure is depicted with other nodal coordinates414

of the structure presenting a very similar behaviour. The same forcing input as above is415

employed.416
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Figure 9: Parametric study of the structural response at the first natural frequency of the sandwich panel
with respect to the oscillators damping coefficient c. The oscillator has mres=0.004kg, h=0.015m, q0=0.001,
L=0.021m, EI=4×10−6GPam4: (a) The response in the frequency domain shown at 36Hz for c=0.005kg/sec
(�), c=0.01kg/sec (x), c=0.025kg/sec (+), c=0.05kg/sec (�) and c=0.15kg/sec (o). (b) Typical transient
waveform for mosc when c=0.005kg/sec, (c) Typical transient waveform for mosc when c=0.05kg/sec, (d)
Typical transient waveform for mosc when c=0.15kg/sec.

Having a look at the waveform signatures for mosc, it can be observed that for a very417

low viscous damping value, the oscillator enters interwell vibration after a few cycles and418

oscillates at a high amplitude within the cavity. Despite the high amount of energy stored419

in mosc, as seen in Fig. 9(a) the overall performance of the design is not optimal since a420

minimum amount of that energy is damped by the viscous element. Increasing damping421

at the area of c=0.01-0.05kg/sec seems to optimise the structural performance. Moreover,422

observing the waveform in Fig. 9(d) it can be concluded that a very high value of damping423

will impede interwell vibration. Still, it can be observed that the performance of the panel424

for c=0.15kg/sec is much ameliorated compared to the reference design, concluding that425

even for a non-optimal damping value (lower or higher than the optimal range) the NSN426

oscillators can absorb a large amount of structural vibration close to resonances.427

3.4. Parametric study on the performance of the structural system with respect to the am-428

plitude of vibration429

The dynamics of the NSN is expected to display three different types of behaviours with430

increasing basis oscillation amplitude. In the low amplitude range intrawell oscillations are431

expected as observed in Figs. 4b and 8a. In the medium amplitude range, interwell chaotic432
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oscillations are expected, while for very large amplitudes the negative stiffness and the two433

wells do not have a substantial effect on the global dynamics anymore as observed in Fig.434

4c.435

In order to further understand the performance of the implemented set of oscillators436

the response is investigated vis-à-vis the structural vibration level. For this purpose and437

excitation amplitude is imposed at x = 0.18m, y = 0.12m in order to evaluate the induced438

additional damping. The frequency response at the first resonance of the master struc-439

ture, as well as typical oscillatory waveforms are presented in Fig. 10. The oscillator has440

mres=0.004kg, h=0.015m, c=0.05kg/sec, q0=0.001, L=0.021m, EI=4×10−6GPam4 for all441

cases. As discussed in Sec.2.3, increase of vibration amplitude is expected to push mosc into442

interwell vibration facilitating energy absorption. On the other hand, there is a maximum443

amount of energy that can be damped by the mechanism, therefore when structural energy444

increases the dissipated energy ratio η is inevitably expected to decrease.445
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Figure 10: Parametric study of the structural response at the first natural frequency of the sandwich panel
with respect to structural vibration amplitude Aexc imposed at x = 0.18m, y = 0.12m: (a) The response
in the frequency domain shown at 36Hz for Aexc=0.3mm (x), Aexc=3mm (�), Aexc=5mm (o), Aexc=7mm
(�), Aexc=15mm (+). (b) Typical transient waveform for mosc when Aexc=0.3mm, (c) Typical transient
waveform for mosc when Aexc=5mm, (d) Typical transient waveform for mosc when Aexc=15mm.

The response of the panel shown in Fig. 10(a) demonstrates some important trends446

related to the excitation amplitude. Unsurprisingly, a very low excitation amplitude (see447

Fig. 10(b)) impedes mosc from entering an interwell vibration mode therefore resulting in448

poor damping performance. On the other hand, imposing a very high excitation amplitude449
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close to the thickness of the panel (see Fig. 10(d)) helps mosc to go into interwell vibration450

with a large amplitude, however simultaneously reduced the portion of structural energy451

damped by the oscillators and results once again in non-optimal performance. Excitation452

amplitudes in the range Aexc=3-7mm seem to be most beneficial for maximising the effects453

of the NSN oscillators.454

It can be concluded that in Fig. 10 the three expected ranges of oscillations are observed455

accompanied with the corresponding anticipated impact on the dissipation level. In the low456

amplitude range the response is generally similar to Fig. 10(b) with oscillators mainly moving457

in an intrawell mode. Minimum impact on the global response levels of the structure should458

be expected in that range. In the medium amplitude range, interwell chaotic oscillations are459

expected with the time domain signatures resembling Fig. 10(c). This is the range where460

maximum impact on the dissipated energy ratio should be expected since the dissipated461

energy is closer to the vibrational energy of the master structure. For very large basis462

amplitudes, signatures resemble Fig. 10(d). The oscillation amplitude for mosc increases463

slightly, however its impact on the dissipated energy ratio diminishes given the increase of464

the vibrational energy stored in the master structure.465

It should be noted that the above observations also provide insight on why the beneficial466

effects of the oscillators only become apparent close to the master structure’s resonances467

(see Fig. 7). It is close to these resonances that a concentrated forcing or amplitude can468

induce high levels of vibration over the entire surface of the panel. This high level of469

vibration activates a maximum number of oscillators (obviously oscillators laying close to470

vibration nodes with no motion are still not activated). In contrast to what happens close471

to resonances, away from them a concentrated forcing or amplitude cannot efficiently spread472

over the entire surface of the structure, implying a minimum amount of resonators being473

activated.474

3.5. Discussion on the broadband beneficial effects and on the dissipated energy ratio475

In order to further investigate the advantages and limitations of the NSN oscillators476

additional computations are hereby performed. The fist seven out-of-plane (all of flexural477

nature) global resonances of the panel are taking place at 36Hz, 75Hz, 90Hz, 142Hz, 145Hz,478

192Hz and 206Hz. The broadband nature of the beneficial effects is initially explored,479

expanding the frequency range of the calculations. The results are presented in Fig. 11 for the480

oscillator design used throughout this manuscript (mres=0.004kg, h=0.015m, c=0.05kg/sec,481

q0=0.001, L=0.021m, EI=4×10−6GPam4) and for Aexc=3mm at at x = 0.18m, y = 0.12m.482

Steady-state sinusoidal excitations are imposed and the response is measured at frequencies483

close to structural resonances.484
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Figure 11: Structural response at x=0.54m, y=0.12m. Comparison between the NSN design � and the linear
design with oscillators tuned higher than 300Hz.

It is demonstrated that the first six flexural resonances are successfully dissipated all the485

way up to 250Hz. At this point it should be stressed that inducing this type of broadband486

dissipation with linear resonators would demand at least six different designs of resonators487

implemented within the panel. Spatial optimisation of the distribution of these resonators488

would by itself be a complex problem to solve. Moreover, having only one sixth of the489

resonators tuned at a specific frequency would weaken the damping effect of the linear design490

and results would look very different than the ones presented in Fig. 7 for a periodic structure.491

On the downside, it should be noted that having high vibration amplitudes (Aexc=3mm492

imposed for Fig. 7) above the first one or two natural frequencies is not always the case493

in mechanical applications. Having a much lower vibration amplitude as demonstrated in494

Fig. 10 can result in low power absorption by the NSN design.495

The dissipated energy ratio η is computed and presented in Fig. 12. It is reminded that496

this is defined as η = Ediss/Estruc with the Estruc being computed as twice the sum of kinetic497

energies over the nodes of the master structure and Ediss being the energy absorbed by the498

viscous element during one cycle. The presented values are averaged over ten cycles.499
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Figure 12: The dissipated energy ratio calculated from 5Hz to 100 Hz for the design presented in Fig. 7.

It is evident that η increases close to structural resonances. Indeed, close to resonances500
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the flexural mode shapes of the panel are activated and a concentrated forcing or amplitude501

can induce high levels of vibration over the entire surface of the panel, thus activating502

a maximum number of oscillators and inducing high levels of effective damping as also503

demonstrated in Fig. 7.504

4. Critical outlook on design optimization, manufacturing aspects and necessary505

future developments506

The NSN design has exhibited promising capabilities for providing tunable and broad-507

band vibration isolation. A sophisticated design optimization exercise is the natural next508

step to explore the full potential of the proposed approach. The optimization should include509

the effects on NSN performance by varying the key design parameters, such as NSN mass,510

dimensions and material properties. It is important to establish a thorough understanding511

as to why the NSN is acting as an energy absorbing mechanism in a rather broadband sense512

by exploring the vibration modes near resonance between the primary system and the NSN.513

Key questions to answer are (i) How does the energy input affect the NSN activation in the514

above vibration modes and (ii) How does the NSN damping influences its ability to absorb515

vibration energy. Stability characterisation of the system equilibria and basins of attraction516

would be useful tools to map the expected behaviour of the system. Considering that NSN517

oscillators are classically employed as a tool for absorbing vibration energy at very low am-518

plitudes and frequencies, the proposed work attempts to shift this standard regard towards519

negative stiffness systems and expand their application towards higher frequency ranges and520

distributed vibrating structural ensembles. The optimum number and distribution strategy521

of the NSNs on the primary structure should be investigated, as well as the maximum NSN522

vibration amplitude permittable by the geometric constraints as additional design criteria.523

Experimental validation is also the major focus of the following work, given it is hard to524

fabricate such structures by traditional conventional manufacturing methods, additive man-525

ufacturing technologies, which are widely used for the metamaterial and sandwich structure526

fabrication [7, 81–83],, are planned to manufacture the sandwich structures and nonlinear527

mechanisms.528

5. Concluding remarks529

This paper investigated the vibration absorption performance of continuous multilay-530

ered structures incorporating NSN oscillators. The NSN oscillators were composed of a531

small damped mass supported by two buckled beams which were hinged at the ends. The532

dynamic responses of a single NSN oscillator mounted in a vibrating unit were first analyzed533

by an analytical model to explore designs that are able to perform interwell oscillation. The534

NSN oscillators were subsequently implemented in a vibrating multilayered sandwich struc-535

ture for energy absorption. The structural responses of composite sandwich structures were536

estimated by FE methods with NSN oscillators simulated by nonlinear spring-mass dampers.537

An equivalent linear system consisting of the same master structure and linear oscillators538

was also simulated for comparison. It was found that the sandwich structures with NSN539

23



oscillators exhibited broader vibration absorption. When the excitation is of broadband na-540

ture and of high amplitude then the suggested NSN oscillators outperform their equivalent541

linear counterparts. As a contrast, structures with linear resonators have strong vibration542

suppression within narrow tuned stopbands. If the excitation frequency is narrow and deter-543

ministically defined then a linear resonant structure would outperform the presented system544

comprising NSN oscillators. This paper provides a numerical proof of concept for structures545

incorporating NSN oscillators, which show great potential to construct tunable broadband546

vibration absorption configurations. Optimization, experimental validation and durability547

and reliability assessments are the major next steps for the proposed NSN design.548
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