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An efficient synthesis of 2,3-dihydropyrans starting 

from different terminal alkynes was developed. The 

2,3-dihydropyrans were obtained in a few minutes 

through a microwave assisted multicomponent enyne 

cross-metathesis/heteroDiels-Alder reaction. Starting 

from C-ethynyl-ribofuranose a new multicomponent 

approach to furanose-pyranose 1,3-C-C-linked 

disaccharides was also developed. 
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Multicomponent reactions (MCRs) have attracted 
considerable attention since their initial report in 1850 by 
Strecker,

1a
 who introduced a novel method for the synthesis 

of amino acids. In particular, multicomponent reactions that 
provide functionalized heterocyclic scaffolds in a single 
operation and in a stereodefined manner are of enormous 
importance in synthetic organic and medicinal chemistry.

1,2
 

Among heterocyclic compounds, 2,3-dihydropyrans 
represent an attractive challenge in organic synthesis being 
the key intermediates for the synthesis of many natural 
products.

3
 Their olefin function particularly has great 

synthetic value for further functionalization to obtain 
polysubstituted tetrahydropyrans,

4
 which constitute the 

structural core of most carbohydrates as well as many 
biologically important natural products and potential 
pharmaceutical agents.

5
 Despite their potential importance 

to construct structurally complex molecules, the synthesis 
of dihydropyrans remains underutilized. Due to our 
previous experience in the field of enyne cross-metathesis 
(CM),

6
 we reported herein a novel synthesis of 2,3-

dihydropyrans having general structure A (Figure 1) 
starting from different terminal alkynes through a 
microwave assisted multicomponent enyne-CM/Hetero-
Diels-Alder (HDA) reaction. These 2,3-dihydropyrans 
represent an attractive scaffold due to the presence of the 
ethoxy moiety at C1-anomeric centre which makes them 
the direct precursors of glycosides. As a consequence, we 
reasoned that, starting from C-ethynyl-ribofuranose as the 
appropriate alkyne substrate, this multicomponent reaction 
could be a pratical and efficent approach in the synthesis of 
furanose-pyranose 1,3-C-C-linked-disaccharides having 
general structure C (Figure 1). The furanose-pyranose C-
disaccharides are compounds such B in which a methylene 
group replaces the exocyclic oxygen of the O-

disaccharides. This substitution makes the C-disaccharides 
able to withstand enzymatic hydrolysis and thus serve as a 
stable mimetic of the O-disaccharides.

7
 There is evidence 

that they are capable of binding to proteins such as glycosyl 
hydrolases, glycosyl transferases, and lectins. Many routes 
to C-glycosides have been developed and the applications 
to C-disaccharides and C-oligosaccharides are important 
extensions. However only few routes to the synthesis of C-
disaccharides such C having the two rings directly 
connected were reported so far.

8
 The direct C-

interglycosidic bond provides a unique structural motif 
which may prove to be useful in controlling localized 
conformations and in affecting conformational properties, 
resulting also in compounds with new potential biological 
activities. In this work an efficent synthesis of 
disaccharides having general structure C via the 
multicomponent enyne-CM/HDA reaction is presented. 
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Different alkynes 1a-h were mixed together with ethyl 
vinyl ether (EVE) 2 and ethyl glyoxalate 3 in degassed 
toluene and in  
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Scheme 1. 

Table 1. 

a) Determined by 1H-NMR . b) Isolated yields were reported. c) Elimination of HCl was observed in the course of the reaction; hence in compound 5h 

substituent R is CH2=CCH3. 

 

the presence of Grubbs’ catalyst 2
nd

 generation 4 and 
irradiated under microwaves at 80 °C for 20 minutes 
affording the desired 2,3-dihydropyrans 5 as a mixture of 
cis/trans diastereoisomers (Scheme 1). The results are 
summarized in Table 1. All the dihydropyrans 5 were then 
equilibrated in the presence of ZnCl2. The presence of a 
Lewis acid led to the formation in quantitative yield of 
trans-5 compounds as the only products. The relative 
stereochemistry was assigned by NOESY experiments. 
When TMS-acetylene 1a was reacted with EVE and 
glyoxalate (Entry 1) a mixture of diastereoisomers 5a was 
isloated in high yield in 2/1 trans/cis ratio. Alkynes 1b 
and 1c were also converted into adducts 5b and 5c in 
lower yields but in the same trans/cis 2:1 ratio (Entries 2-
3). Compounds 1d-e and 1g were reacted with 2 and 3 
under the same reaction conditions and led to products 
5d-e and 5g in good yields (Entries 4-5 and 7). On the 
other hand bromo-derivative 5f was obtained only in 40% 
yield (Entry 6). Attemps to improve the yield of 5f failed. 
Finally, when alkyne 1h was reacted with 2 and 3 under 
the same reaction condition, only the compound 5h 
derived from the elimination of HCl was obtained 
(Scheme 2). It was supposed that derivative 5’h was first  

 

formed from alkyne 1h and then converted into 
compound 5h by elimination of HCl. The formation of the 
new conjugated double bond is the driving force for this 
elimination step. 
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Scheme 2. 

The stereoselectivity results were unexpected and are in 
contrast with data reported in the literature.

9
 In fact the 

hetero Diels Alder reactions generally proceed respecting 
the Alder rule and affording the cis isomer (namely the 
endo product) as the major compound. In our case the 
trans isomer was obtained as the major one and its 
formation can be explained only if an exo attack is 

Entry Alkyne R Product Trans / Cis
a
 Yield (%)

b
 

1 1a TMS 5a 2 : 1 71 

2 1b PMBOCH2 5b 2 : 1 51 

3 1c TMSOCH2 5c 2 : 1 54 

4 1d Ph 5d 2 : 1 75 

5 1e BocNHCH2 5e 2 : 1 62 

6 1f BrCH2 5f 2 : 1 40 

7 1g (EtO)2CH 5g 2 : 1 69 

8 1h Cl(CH3)2C
c
 5h

c
 2 : 1 45 
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supposed. In fact, the first step of the reaction, the cross 
metathesis of alkyne 1 with EVE 2, led always to a 
mixture of E/Z-diene 6 in a 2/1 ratio as previously 
described by us.

6b
 Hence, if an endo attack happened on 

both E/Z-dienes 6, a 2:1 cis/trans mixture of products 5 
should have been expected. On the contrary only an exo 
attack can explain the observed 2:1 trans/cis 
regioselectivity as illustrated in  Scheme 3.  
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Scheme 3. 

To confirm these assumptions, diene 6a was synthesised 
separately as a 2:1 E/Z mixture

6b
 and reacted with ethyl 

glyoxalate 3 under standard conditions (rt for 12 hours) 
affording also in this case 5a as a 2/1 trans/cis mixture. 
The preference for the formation of trans isomer could be 
explained if two factors are considered, namely the 
anomeric effect and the 1,3-diaxial interactions. It is 
known that dihydropyrans exist in rapidly inverting half-
chair forms.  
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Scheme 4. 

The anomeric effect favours the forms D and F over 
respectly E and G for both isomers (Scheme 4). However, 
form D is destabilized also by the additional 1,3-diaxal 
interactions between –OEt and –COOEt moieties which 
should led cis-isomer to prefer a E form counterbalancing 

the anomeric effect. On the other hand trans isomer form 
F is the most stable since it is favoured by both factors, 
the anomeric effect and the pseudo-equatorial position of 
the ethylcarboxylate moiety which does not suffer of the 
1,3-diaxal interactions.

10
 Hence, these two factors can 

explain the stereoselectivity data observed for 5a-h.
11

 

We finally applied our multicomponent CM/HDA 
reaction to the synthesis of 1,3-C-C-linked furanose-
pyranose disaccharides. We first focused on the synthesis 
of the precursor C-ethynyl-ribofuranose.  

OAc

BzO OBz

O
BzO

BzO OBz

O
BzO

TMS

BzO OBz

O
BzO

BzO OBz

O
BzO

O

EtOOC

OEt

BzO OBz

O
BzO

O

EtOOC

OEt

TMS

BuLi, EtAlCl2,  
DCM, 0 °C         
(76%)

   TBAF, 
THF, -78 °C    
(quant.)

OEt

O COOEt

4, Toluen, 

W, 80 °C 

  (64 %)
 ZnCl2,
 DCM 
(quant.)

H2, Pd/C

 EtOH (quant.)

7 8

910

11a

BzO OBz

O
BzO

OEtO
COOEt

12a

BzO OBz

O
BzO

12c

O

OEt

EtOOC

BzO OBz

O
BzO

12d

O
COOEt

OEt

Traces Traces

BzO OBz

O
BzO

O

COOEt

12b

EtO

BzO OBz

O
BzO

O

EtOOC

OEt

11b

+

 

Scheme 5. 

The D-ribofuranose 7 was reacted with 
trimethylsilylacetylene in the presence of EtAlCl2 
affording alkyne 8 as a 7:1 / mixture of 
diastereoisomers as revealed by 

1
H-NMR. Alkyne 8 was 

converted by TBAF desilylation
12 

into precursor 9,
 
which 

was in turn reacted with EVE 2 and ethylglyoxalate 3 in 
the presence of 4 under microwave irradiation affording 
desired C-linked furanose-dihydropyrane 10 as a mixture 
of four diastereoisomers. Equilibration of 10 in the 
presence of ZnCl2 led to a 1:1 mixture of two 
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diasteroisomers 11a and 11b (61% yield over two steps) 
as revealed by HPLC-MS analysis.

13-14
 Finally, 

hydrogenation of 11 led to desired 1,3-C-C-linked 
furanose-pyranose disaccharide 12 which was obtained as 
a mixture of the two diasteroisomers 12a and 12b having 
the furanose ring linked at the equatorial C3 position of 
pyranose as revealed by NMR and HPLC-MS analyses.

 

(Scheme 5). Only traces of the two diastereoisomers 12c 
and 12d were detected by HPLC-MS analysis. Since the 
ethoxy moiety of 12a-d is in the favoured-configuration 
due to the anomeric effect, the formation of 12c and 12d 
was disfavoured by the 1,3-diaxal interactions of furanose 
ring and the ethoxy moiety itself. 

 In conclusion, an efficent synthesis of 2,3-
dihydropyrans through a multicomponent enyne 
CM/HDA reaction was developed. Dihydropyrans 5 were 
obtained in high yields as mixture of trans/cis 
diastereoisomers.

13
 Mechanistic explanation revealed that 

the cycloaddition step proceeds through an unusal exo 
attack. Finally the multicomponent reaction was applied 
to the synthesis of furanose-pyranose C-C linked 
disaccharide 12, proving to be a very effective and 
versatile approach in the preparation of biological 
interesting scaffolds as well as building blocks in 
carbohydrate chemistry. Synthetic application of this 
novel reaction are under investigation. 
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