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Abstract 

Transparent Insulation Materials (TIMs) have been developed for application to building facades to reduce heating 

energy demands of a building. This research investigates the feasibility of TI-applications for high-rise and low-rise 

office buildings in London, UK, to reduce heating energy demands in winter and reduce overheating problems in 

summer. The energy performance of these office building models was simulated using an energy simulation package, 

Environmental Systems Performance-research (ESP-r), for a full calendar year. The simulations were initially 

performed for the buildings with conventional wall elements, prior to those with TI-systems (TI-walls and TI-glazing) 

used to replace the conventional wall elements. Surface temperatures of the conventional wall elements and TI-systems, 

air temperature inside the 20mm wide air gaps in the TI-wall, dry-bulb zone temperature and energy demands required 

for the office zones were predicted. Peak temperatures of between 50 and 70C were predicted for the internal surface 

of the TI-systems, which clearly demonstrated the large effect of absorption of solar energy flux by the brick wall mass 

with an absorptivity of 90% behind the TIM layer. In the office zones, the magnitude of temperature swings during 

daytime was reduced, as demonstrated by a 10 to 12 hours delay in heat transmission from the external façade to the 

office zones. Such reduction indicates the overheating problems could be reduced potentially by TI-applications. This 

research presents the scale and scope of design optimisation of TI-systems with ESP-r simulations, which is a critical 

process prior to applications to real buildings. 

Keywords: Transparent Insulation System; temperature profiles; energy simulation; building façades; London climate; 

energy demand 

1 Introduction 

The installation of opaque insulation with thickness of up to 50cm to building façades to reduce heat loss has been an 

issue for many building designers due to the resulting reduction of occupied space. The development of Transparent 

Insulation Materials (TIMs) for application to building façades not only responds to this issue, but also reduces heating 

energy demands of buildings. TIMs are small-celled honeycomb structures, made of highly transparent films, such as, 
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polypropylene, polycarbonate, polymethylmethacrylate (PMMA), translucent foam, and aerogels. Depending on the 

geometrical layout of the materials, TIMS can be classified into four generic types, such as, absorber-parallel, absorber-

perpendicular, cavity and quasi-homogeneous structures (Wong et al., 2007). Each has a unique pattern of solar 

transmission and physical behaviour. Absorber-parallel and absorber-perpendicular structures, which comprise of 

multiple glazing elements or transparent plastic films parallel or perpendicular to the absorber surface, result in an 

increase in optical reflection or transmission. Cavity structures are the combination of absorber-parallel and absorber-

perpendicular structures. Quasi-homogeneous structures include TIMs made of glass fibre or aerogel and are 

characterised by both scattering and absorption of incident radiation within the TIM. Examples of quasi-homogeneous 

structures are translucent plastic PTFE film (Chevalier et al., 1998) and translucent silica aerogels with 25-80% optical 

transparency for window application (Ackerman et al., 2001). TIMs can be applied to the building facades as TI-wall 

(wall) and TI-glazing (window) (see Figure 1). A TI-glazing system can be introduced when a layer of TIM is 

encapsulated between two glass panels; whilst, a TI-wall system requires a massive wall to be in place behind a TI-

glazing as a thermal storage. For more than 20 years, TIMs have been used extensively for a range of building 

applications in mostly cold climatic regions to reduce building heating and lighting loads. TI-systems when used to 

replace standard opaque insulation materials, not only perform similar functions to opaque insulation, reducing heat 

losses and making indoor temperatures easier to control, but can allow solar transmittance of more than 50%. With a 

thickness of less than 20cm, it can provide a financial return to building occupants particularly, in urban areas, when it 

is applied to building facades, by maximising the occupiable and sell-able spaces, without compromising thermal 

comfort within buildings. 

- insert Figure 1- 

2 Research Background 

For more than 20 years, TIMs have been used for various applications (Wong et al., 2005; Wong et al., 2007; Platzer, 

2001). The earliest references relate to both theoretical and experimental work on the use of TIMs as aperture covers for 

flat-plate solar collectors (Hollands, 1965; Tabor, 1969; Symons, 1984; Hollands and Iynkaran, 1985; Platzer, 1987; 

1992a; 1992b; Goetzberger, 1991; Goetzberger et al., 1992;  Nordgaard and Beckman, 1992; Rommel and Wagner, 

1992; Ghoneim, 2005). Later work introduce TIMs integrated into building façades to provide natural lighting and solar 

space heating to reduce lighting and heating energy demands in buildings (Voss et al., 1996; Wallner et al., 2004). 

TIMs can be used to replace conventional windows to provide TI-glazing; when TIMs are used to replace opaque 

insulation materials on a building exterior with the support of metal or wooden frames, a TI-wall can be formed (IEA, 
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1997). TIMs combine the advantages of opaque insulation and solar energy collection, the conductive heat losses 

through a building wall are reduced and solar radiation transmitted through the TIM can be converted into useful heat in 

the room or at the dark painted wall surfaces in TI-walls (Goetzberger, 1991). In 1982, the first real outdoor TI-wall 

experiments were undertaken by the Fraunhofer Institute for Solar Energy System (FISES) (Braun et al., 1992). Since 

then, a range of both experimental and theoretical studies on TIMs for building applications have been undertaken 

(Wallner et al., 2004; Wilke and Schmid, 1991; Twidell et al., 1994; Dalenback, 1996; IEA, 1997; Lien et al., 1997; 

Voss, 2000; Wong, 2007). 

Computer simulation programs have been developed that predict the thermal and optical implications of integrating TI-

systems to building façades before real systems are manufactured and installed (Braun et al., 1992; Wilke and Schmid, 

1991; Sick and Kummer, 1992; Strachan and Johnstone, 1994; Manz et al., 1997; Matuska, 2000). In comparison to 

using scale-models, it is economic both in terms of time and finance to conduct simulations which permit parametric 

changes to TI-systems to be readily undertaken, enabling design optimisation guidance to be developed (Wong, 2007; 

Strachan and Johnstone, 1994). The daylighting and heating performance of buildings are strongly influenced by the 

employed TI-system parameters. The installation of an excessive quantity of TIMs is not only uneconomical, but can 

also cause problems of overheating. Many building simulation programs and modelling approaches have been adapted 

and employed to simulate TI-applications, particularly, WANDSIM (Wilke and Schmid, 1991), TRNSYS (Sick and 

Kummer, 1992), HAUSSIM (Braun et al., 1992), and Environmental Systems Performance – research (ESP-r) (Wong, 

2007; Strachan and Johnstone, 1994; Matuska, 2000; Heim, 2004). From all the available software, ESP-r (ESRU, 

2002) has been widely used and is available to undertake simulations of various types of building with complex zones 

and thermal control systems (Wong et al., 2008; Jenkins et al., 2009a; Jenkins et al., 2009b; Spindler and Norford, 

2009; Høseggen et al., 2009).  

3 Energy Simulations of Office Buildings with TI-façades 

This research aims to investigate the suitability of applying TI-wall and TI-glazing to the high-rise and low-rise office 

buildings in London, UK, to reduce heating energy demands during winter and to study the potential of reducing 

overheating during summer. Simulations were initially performed to assess the energy performance of the office 

buildings with conventional building facades. The simulations were repeated with the use of transparent insulated 

building façades used to replace the conventional facades. Due to its ability to simulate the energy performance of 

complex building models with integrated TIMs and perform detailed airflow analysis (Wong et al., 2007), ESP-r was 

selected to undertake the building energy simulations. To reduce the complexity of the simulations, only zones on 
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ground, middle and top floors were modeled for high-rise building; whilst for low-rise building, ground and top floors 

were simulated (Figure 2Figure 2). London climatic data (hourly values) available from the ESP-r database was used. 

Using ESP-r, different patterns of heating and cooling in the buildings were defined; whilst, occupancy patterns, 

infiltration and ventilation rates were assumed to meet standard requirement for office buildings in the UK. Sensible 

and latent heat emitted from occupants and electrical appliances in the buildings were defined. In ESP-r, the integration 

of a TIM into a building facade can be simulated by creating a separate thermal zone as an air gap between the brick 

wall mass and the TI-system. Surface temperatures of different layers of building façades and the south facing office 

zone temperature were predicted; and the energy demands required to maintain the comfort temperature within the 

office buildings were also predicted. 

3.1 Generic Types of Office Buildings 

Energy performance simulations were performed for two generic types of high-rise and low-rise office building (Figure 

2) using London climatic data. As indicated in Table 1, the 15-storey high-rise office building chosen had a rectangular 

cross-section 35m x 15m and a gross floor area (GFA) of 7875m
2
. It was stand-alone, with none of the surrounding 

buildings connected to it and most of the north and south facing façades were external windows. The total areas of 

external wall and windows were set to be 2943 m
2
 and 1536 m

2
. The low-rise, 15m x 10m, rectangular 4-storey office 

building had two office rooms, a store room, and a lavatory on each floor. It has a GFA of 600m
2
, external wall and 

window areas of 510m
2
 and 85m

2
. Its west and east sides were attached to the surrounding buildings which were of 

similar height, thus external façades and windows are only available in two directions. Both types of building had 3m 

floor to floor height. The footprints of these two types of office building were chosen because most office buildings in 

UK urban areas are of similar dimensions. The stand alone high-rise office building model can be used to represent 

office block in the UK cities, particularly, London. The low-rise office building model (terrace building) is a common 

sight in most UK urban and sub-urban areas. The internal layout and types of building services used in these buildings 

were also assumed to be similar to those used in the standard office buildings in the UK.  

-insert Figure 2- 

-insert Table 1- 

Simulation domains were created for both types of the office buildings as illustrated in Figure 3Figure 3 and Figure 

4Figure 4, which indicate the layout plans of the simulated building zones on different floors and the building 

parameters. Simulated building zones are defined in Table 2. The building dimensions were entered into ESP-r as grid 

points, which consist of vertices (x, y, z) to represent building length, width and height. The high-rise and low-rise 

Formatted: Font: Not Italic
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office buildings had a grid of 35.0 x 15.0 and 15.0 x 10.0 points, respectively, which were used to reflect the building 

dimensions. Each grid point was unique and was  required for accurate calculations to avoid confusion, particularly, for 

the calculations of small dimensions. 

-insert Figure 3- 

-insert Figure 4- 

-insert Table 2- 

3.2 Types of Building Facades 

Two types of conventional building façades considered were cavity wall with opaque insulation (U-value: 0.35W/m
2
K) 

and double-glazed windows (U-value: 2.78W/m
2
K), as indicated in Figure 5 (i & ii). These building materials were 

assumed to be the original building facades of the buildings. Brickwork was chosen for the base case building facade 

construction because it is a commonly used building material that is used in many countries for many types of 

buildings. Despite no official statistical data showing the percentage of office buildings constructed with external brick 

walls in the UK, most post-war buildings in the UK were built using bricks (Campbell, 2003).  

-insert Figure 5- 

For the simulations, the buildings were retrofitted, with TI-wall and TI-glazing (Figure 5v & vi) used to replace the 

conventional façades on the south facing building facades. The TI-system used was the KAPILUX System (U-value: 

1.34W/m
2
K) manufactured by OKALUX GmbH in Germany, which consisted of a layer of TIM, PMMA encapsulated 

inside a double-glazed unit. The TI-wall was constructed by applying the TI-system to the external surface of a brick 

wall, with a 20mm wide air gap in between the TI-system and the wall. The brick wall was approximately 300mm thick 

with a U-value of 1.87W/m
2
K and a density of 2000kg/m

3
, its external surface was blackened and had an absorptivity of 

0.9. The type of glass used to manufacture the window glazing was clear soda-lime float glass. For ESP-r, TI-systems 

can be modelled as a transparent multilayer construction, where, each layer of the TI-system is explicitly simulated, 

with conduction, convection and radiation occurring (ESRU, 2002). For a TI-wall, the heat absorbed in the TI-system 

was subsequently transferred to the air gap by convection. For TI-system simulation, specific optical properties, such as, 

direct transmission and the absorption in each layer of the system were calculated for five different angles of incidence 

(0°, 40°, 55°, 70° and 80°) using numerical models developed by Wong and Eames (2011). The values were used to 

populate databases required by ESP-r for simulation of the TI-System. Table 3 indicates the thermo-physical and optical 
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properties for the surfaces in the simulated building models. For each surface of the building models, boundary 

conditions were defined and applied to the building facades. 

-insert Table 3- 

3.3 Four Building Envelope Configurations 

Simulations were undertaken using ESP-r for four different building envelope arrangements, designated as Cases 1, 2, 3 

and 4. As illustrated in Figure 6, Case 1 was the base case simulation, being for a conventional building envelope 

currently used for commercial buildings, whereas, in Cases 2, 3 and 4, TI-façades were used to replace the south facing 

conventional façades of the office buildings. In Case 2, the south facing double-glazed windows in the office zones of 

the office buildings were replaced with TI-glazing units. In addition to that, two TI-wall units with 20mm air gaps were 

also integrated into the external cavity wall. In Case 3, the simulations were repeated with only TI-glazing integrated 

into the south facing façades of the office zones, replacing the TI-wall described in Case 2. In Case 4, the simulations 

were repeated for building facades identical to those used in Case 2, with the 20mm air gap between the TI-System and 

the brick wall mass was reduced to minimum (1 mm). This was done to investigate the effects of air gap reduction on 

the energy performance of the TI-system. In all simulations, the construction materials used for floor slab, roof slab and 

internal walls were maintained and only the external cavity walls and double-glazed windows were modified by using 

different types of façade and construction materials. 

-insert Figure 6- 

3.4 Meteorological Data 

The weather data was obtained from the US Department of Energy website, which can be imported to and converted by 

ESP-r. The data was from the International Weather for Energy Calculations (IWEC), which is in EPW data and used 

by EnergyPlus. The file supports hourly data and includes diffuse and direct solar intensities, external dry-bulb 

temperature, relative humidity and wind speed. The hour-by-hour weather data of a typical meteorological year for 

London, UK (Figure 7) was used for the simulations. The simulations were conducted for the entire calendar year and 

the results of weekly time periods for the four different seasons were extracted: January (2
nd

 to 8
th

), April (1
st
 to 7

th
), 

July (12
th

 to 18
th

) and December (1
st
 to 7

th
). The simulation periods selected contain either maximum or minimum 

ambient temperatures in the year and thus provide a basis for comparing the performance of the simulated buildings 

under extreme ambient temperatures. The highest air dry-bulb temperature simulated during summer was 27.7˚C at 

12:00 on the 17
th

 of July, the minimum temperature of -6.4˚C was recorded at 20:00 on the 8
th

 of January, with the 
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highest intensities of direct and diffuse solar radiation (Figure 8) were simulated in spring and summer (March to 

September).  

-insert Figure 7- 

-insert Figure 8- 

3.5 Heating and Cooling Controls 

The patterns of heating and cooling in the building models were defined to reflect realistic environmental controls and 

to achieve thermal comfort in the office buildings. An auxiliary heating or cooling systems was activated one hour 

before the start of the working day at 08:00 on a lower heating set point and at half of the full capacity and operated at 

maximum capacity during office hours (09:00 to 17:00). Heating and cooling capacities varied from 0 to 23kW 

depending on the size of the office zones and these set points and are indicated in Table 4. When the buildings were 

unoccupied, heating and cooling system controls were set to free-floating, whilst, during working hours, the controls 

were activated when the air temperature dropped below or exceeded the defined heating or cooling set point. Heating 

and cooling set points were 20˚C and 24˚C respectively, in order to maintain thermal comfort (between 20˚C and 25˚C) 

inside the office zones.  

-insert Table 4- 

3.6 Occupancy Patterns 

Occupancy patterns are defined to allow accurate and realistic predictions to reflect real building operations. It was 

assumed that, the occupancy rate of the office buildings was approximately 10 to 15m
2
 floor area per person (ESRU, 

2002; BSJ, 2005).  

3.7 Infiltration and Ventilation 

CIBSE (2007) reported a mechanical ventilation rate of 1.65 air changes per hour (ACH) for air conditioned office 

buildings of up to 16 storeys to comply with the Building Regulations. It does not however specify detailed rates for 

different zones in the office buildings. Thus, for all zones, a rate from 0.5 to 1.5 ACH was applied, which complies with 

the requirements for office buildings (CIBSE, 1986; 2007; BSJ, 2004). A rate of 10 ACH was applied to office zones, 

lavatories and corridors when the internal air temperature exceeded 20C and was varied according to the types of 

activities undertaken in the rooms. 

3.8 Internal Heat Gains 
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It was assumed that standard office electrical appliances, such as, computers, fax machines, printers, photocopy 

machines and video conferencing facilities were used in the buildings. The artificial lighting systems used were of the 

tubular fluorescent type, supplying 300 to 400lux illumination to comply with the illumination levels required for a 

standard office building of between 250 and 500lux (Dubois, 2003; Serra, 1998). The sensible and latent heat emitted 

from the occupants were assumed to be 90 and 50W per occupant (CIBSE, 1986; 2007), 10 and 5W per m
2
 from 

lighting (CIBSE, 1986; 2007), and 45 and 25W per m
2
 from electrical appliances (ESRU, 2002). Lights were switched 

on one hour before the working day and switched off at 19:00 in all occupied zones. Electrical appliances, such as, 

computers, printers and copy machines were assumed to operate during working hours only and to be switched off after 

this. The internal heat gains vary according to the building occupancy and multiple studies on the impact of the 

behaviour of occupants on buildings’ energy demands have been conducted by various researchers, such as, Mahdavi 

(2009), Haldi and Robinson (2010) and Haldi et al., (2010). Previous findings on internal heat gains or occupancy rate 

during lunch break are inconsistent and contradicteach other, with values ranging from 20% (Saelens et al., 2011) to 

80% (Winkelmann et al., 1993) for office buildings. Thus, this study used an average occupancy rate of 50% for the 

office rooms during the lunch break (12:00 to 14:00). 

4 Prediction of Surface Temperature 

The surface temperatures of the four types of building façades were predicted at the different locations, as demonstrated 

in Figure 9. Initial simulations of office zones on different floors indicated that the patterns of temperature distribution 

on the lower, intermediate and top floors were similar with average temperature differences of less than 2C. To reduce 

complexity and the amount of simulations undertaken, only office zones, corridors and lavatories on the ground floor 

were modelled and the results were used to represent the performance of zones on other floors. 

-insert Figure 9- 

The surface temperature profiles for all types of south facing building façades [Cases 1 (C1) to 4 (C4)] in the office 

zones of the high-rise and low-rise office buildings are predicted. Figure 10 and Figure 11 illustrate the predicted façade 

surface temperatures for the high-rise office building in winter (2
nd

 and 3
rd

 of January) and summer (12
th

 and 13
th

 of 

July), respectively. The surface temperature difference of TI-wall with 20mm air gap (C2) and with minimum thickness 

of air gap (C4) was less than 1C. These simulations indicate that, variation to the thickness of air gap between TI-

system and the brick wall has insignificant impact on the energy performance of the TI-wall, demonstrated by the C2 

graph overlapped with the C4 graph. Surface temperatures of building façades were generally higher than ambient 
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temperature and varied with time, this was due to the solar radiation absorbed at these surfaces. The large increase in 

surface temperature was predicted due to the amount of direct solar radiation absorbed during the day.  

-insert Figure 10- 

In the high-rise office building, the internal surface temperature of the TI-glazing (C3) exceeded 29C at noon, despite 

the ambient temperature being close to the freezing point in winter (Figure 10a). This was due to the maximum direct 

solar radiation of more than 500W/m
2
 predicted at that time. The higher surface temperature predicted at TI-glazing 

(C3) compared to those predicted at the double glazing (C1) demonstrates the effect of solar energy flux absorbed. 

When the TI-wall was simulated (C2), a peak temperature of more than 48C was predicted at noon (Figure 10b), the 

result of incident direct radiation intensities of more than 500W/m
2
. Subsequently, increasing temperatures were 

predicted at the external (16:00) and internal (up to 00:30) surfaces of the brick wall mass, indicating transmission of 

the incident solar energy flux from the TI-System to the brick wall mass. The heat flux absorbed and stored in the brick 

wall mass was released to the office zones through convective heat transfer at night, when the ambient temperature was 

close to zero. A delay of approximately 6 to 12 hours was predicted for the energy flux to be transmitted from the TI-

system to the internal surface of the brick wall mass, this may help to minimise overheating problems in the office 

zones at mid day. The patterns of surface temperature distribution predicted for the low-rise office building were very 

similar to those predicted for the high-rise office building because the types of building façade used in both office 

buildings were similar with the same physical and optical properties.   

-insert Figure 11- 

In summer (Figure 11), surface temperatures predicted for all cases were generally higher than the temperatures 

predicted in winter due to higher solar energy flux and increased ambient temperature. On the 12
th

 of July, incident solar 

radiation intensities of more than 300W/m
2
 were predicted for a total of nine hours (07:00 to 16:00), compared to five 

hours (10:00 to 15:00) predicted on the 2
nd

 of January.  For TI-wall application (C2), temperatures of more than 70C 

were predicted at the internal surface of the TI-System at 15:00 (Figure 11b). The heat flux was then transmitted from 

the TI-System to the brick wall mass, indicated by the subsequent peak temperatures predicted at the external and 

internal surfaces of the wall mass in the space of 10 to 12 hours. The prediction indicates the potential of reducing the 

magnitude of temperature swings and overheating problems during the day in summer.  

It can be concluded that, the predicted surface temperatures for the TI-systems (C2, 3 and 4) were generally higher than 

for the standard façade on sunny days, due to the high absorptivity (90%) of the TIM and brick wall mass. The TI-
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systems absorbed more solar energy flux which is needed for space heating in winter, compared to conventional 

building facades. When solar radiation was absorbed in the day by the TI-systems, the solar energy flux was transferred 

to the internal layers of the system, as indicated by the subsequent surface temperature rise from external to internal 

surfaces of the TI-wall, The application of the brick wall mass behind the TI-systems (C2 and 4) stored and then 

released the heat flux to the office zones after 10 to 12 hours time lag. This significantly reduces the magnitude of 

temperature swings in the office zones. In summer, despite this temperatures exceeding 70C were predicted at the 

internal surface of the TI-System in the afternoon (Figure 11), the energy was transmitted and absorbed by the brick 

wall mass and reduced overheating problems in the office zones. The delay in energy absorbed and transmitted by the 

brick wall mass can be seen by the peak temperatures at the external and internal brick wall mass surfaces being 

predicted to occur at 17:00 and 00:30. 

5 Prediction of Zone Temperatures 

The temperatures of the office zones and the air gap within the TI-wall in the high-rise and low-rise office buildings 

were predicted for winter and summer periods. Significant air gap temperature rises were predicted after the heating and 

cooling systems were switched off after office hours, due to the release of absorbed heat flux from the wall mass 

(discussed in previous section). Figure 12 indicates office zone temperatures during the cold winter period, where a 

rapid increase of office zone temperature at around 08:00 on the 2
nd

 and 3
rd

 of January was predicted, due to auxiliary 

heating. The office zones were heated until the zone temperature stabilised at the heating set point (20C) at around 

10:30. The temperature was then kept constant at this point to maintain the desired thermal comfort temperature in the 

office zones. The auxiliary system was switched-off after working hours (17:00). The solar radiation absorbed at the 

external façade surface was transmitted through the building facade and heat subsequently released into the office zone, 

which is shown by the higher zone temperatures predicted in the office zones. The highest zone temperatures are 

predicted to occur at night and are consistent with the predicted surface temperatures discussed previously, which 

indicate a delay of approximately 10 to 12 hours in the transmission of heat to the office zones.  

-insert Figure 12- 

In summer (Figure 13), auxiliary cooling was required for the office zones to maintain the comfort conditions, due to 

heating that occurred as a result of solar energy flux transmitted through the building facades and the internal casual 

gains. For sunny days with strong direct solar radiation, the zone temperatures were decreasing after cooling system was 

activated during the office hours and reached cooling set point of 24C from 10:00 to 17:00. At the same time, solar 

energy flux was also absorbed by the wall mass. When the auxiliary cooling system was switched off after working 
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hours, the heat flux was released to the office zones between 18:00 and 00:00, which is consistent with the surface 

temperatures predicted in the previous section. Zone temperatures of up to 40C were predicted due to heat release from 

the building facade to the zone, because the buildings were unoccupied and all lighting and electrical appliances were 

not in operation after working hours. 

-insert Figure 13- 

The simulations indicate that, zone temperatures in the office zones with TI-facades (C2 to C4) were generally 2 to 3C 

higher than those with conventional façades (C1), which indicate increased solar energy gains resulting from the TI-

application. The solar energy gains will not only reduce heating demand of the office zones during winter, but also 

stabilise the zone temperatures during the day in summer, due to the wall mass. Figure 14 shows the air temperature 

profile inside the 20mm air gap of the TI-wall (C2) in winter (2
nd

 and 3
rd

 of January) and summer (17
th

 and 18
th

 of July). 

The prediction indicates a steep rise in air gap temperature during the day, with a maximum temperature of 65C was 

predicted in summer. Despite, the ambient temperature being close to 0C in winter, the air gap temperature was near to 

45C in the afternoon, demonstrating the effect of solar energy absorption by the TI-System. This result agrees well 

with the surface and office zone temperature profiles predicted. 

-insert Figure 14- 

6 Prediction of Annual Energy Demands 

The annual energy demands were defined as the energy required to achieve the heating and cooling set point 

temperatures in the south facing office zones of the office buildings. The energy demands required for both high-rise 

and low-rise office buildings for different seasons in a full calendar year were predicted. Heating dominates during the 

winter months (from October to March), with up to 1164 heating hours (C1); whilst for the TI-application, the 

minimum heating hours were down to 973 hours (C3). The annual heating energy demands required for both office 

buildings (between 32 and 44kWh/m
2
) with TI-application (C2 to C4) were 6 to 8% less than those with conventional 

facades (C1) (between 35 and 47kWh/m
2
). The application of TI-facades however, had contributed to additional cooling 

energy demands during the summer months (from April to September), demonstrated by an increase in cooling hours of 

approximately 150 hours (C3).  

7 Reduction of Overheating Problems with the Applications of Overhangs and Natural Ventilation 

To reduce the overheating problems due to TI-applications, the simulations were repeated with external overhangs and 

air vents (Figure 15Figure 15) applied to the upper section of the TI-façades. The overhangs simulated had four depths Formatted: Font: Not Bold
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(0.8, 1.0, 1.2 and 1.5m) and could be constructed using a 70mm thick conventional reinforced concrete slab, 

horizontally (90°) positioned to the vertical external wall to provide shading to incoming solar radiation. The air vents 

used in the simulations were similar to the type used in a traditional trombe wall. The air vents allow the office zones to 

be naturally ventilated to achieve the thermal comfort temperature (20 to 25°C), instead of using a mechanical cooling 

system and eliminated the cooling energy demands in these zones. For the simulations, the air vents (with a total area of 

either 2 or 4m
2
) were opened during summer (from the 1st of June to the 30th of September); and sealed during winter 

(from the 1st of October to the 31st of May), to prevent the cold ambient air from entering the office zones. The office 

zones were naturally ventilated either 24 hours per day or during office hours only (from 09:00 to 17:00) at a 20°C set 

point temperature, to allow the free flows of natural air into the south facing office zones with TI-façades. The heating 

and cooling energy demands required for the office zones with overhangs and air vents were simulated. 

-insert Figure 15- 

Initial simulations indicate that, a further increase in the depth of the overhangs from 0.8 to 1.5m contributed an 

insignificant additional cooling effect. Thus, optimum cooling performance was predicted when 0.8 or 1m deep 

overhangs were applied to the TI-façades. Figure 16Figure 16 indicates an extract from zone temperature simulations 

for a high-rise office zone, either mechanically or naturally ventilated with 0.8m deep overhangs in the London climate. 

For mechanically ventilated office zones, the mechanical cooling system was activated to achieve the cooling set point 

temperature (24°C) during office hours (09:00 to 17:00). After office hours (17:00), the mechanical cooling system was 

switched off, which resulted in the air temperature increasing to more than 38°C inside the office zone, due to the 

release of heat from the building facades to the office zone. The simulations were repeated, with the office zone 

naturally ventilated. The air temperature in the office zone rose up to 28°C after 12:30, due to the increase in ambient 

temperature. Natural ventilation continued to create a cooling effect to maintain the zone temperature at less than 23°C 

after office hours. At 12:30 when the ambient temperature was 27.7°C, the air temperature in the naturally ventilated 

zone was slightly higher (27.96°C) than the ambient temperature. Compared to the mechanically ventilated office zone, 

the predicted air temperature in the naturally ventilated zone at 09:30 and 17:30 was 2 to 4°C lower. The zone 

temperature predicted with the 4m
2
 air vents was 1 to 2°C lower than those with the 2m

2
 air vents. When the office zone 

was naturally ventilated all day, the zone temperature was 1 to 2°C lower than those with natural ventilation occurred 

during office hours only. These simulations indicate that, significant overheating problems can be reduced in the 

naturally ventilated office zones without the aid of mechanical cooling, despite high ambient temperatures. 

-insert Figure 16- 
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To achieve optimum energy saving, 0.8 to 1m deep overhangs and 4m
2
 air vents were applied. The energy demands 

were converted into monetary values for comparison and the prices of fuels were calculated in accordance with the DTI 

(2005) (1.885 pence per kWh for gas and 5.95 pence per kWh for electricity). As illustrated in Table 5Table 5, annual 

energy demands predicted in the high-rise office building with the south facing TI-façades, combined with all day 

natural ventilation through 4m
2
 air vents and 0.8 or 1m deep overhangs were 2.5% lower than those in Case 1 in 

London climate. In the low-rise office building with the application of natural ventilation and overhangs, energy savings 

of up to 2.6% were predicted. The minimum total energy demands were predicted in both high-rise and low-rise office 

buildings with the south facing TI-façades (Case 3), combined with 0.8 or 1m deep overhangs and 4m
2
 air vents.  

-insert Table 5- 

8 Discussion 

Simulations indicate that, for all office buildings, the surface temperatures of building façades were strongly affected by 

the amount of direct solar radiation absorbed. The TI-System and blackened brick wall mass used for the TI-wall with 

an absorptivity of 90% led to the highest surface temperatures. On a sunny afternoon in summer, temperatures of up to 

80C were predicted at the internal surface of the TI-System within a TI-wall. Subsequent peak surface temperatures 

were predicted at the external and internal surfaces of the brick wall mass in the evening and at midnight, approximately 

10 to 12 hours after the prediction of the peak temperature at the TIM surface, which indicates a delay in energy 

transmission from the TI-System to the office zones. When the thickness of air gap inside the TI-wall was reduced from 

20mm to 1mm, it had little effect on the energy performance of the office zone, as indicated by the identical surface 

temperatures predicted for the TI-walls and office zone temperatures for both C2 and C4. Despite ambient temperatures 

of less than 3C, an average zone temperature of above 10C was predicted in winter for all cases. The overall office 

zone temperature with a standard building façade (C1) was 1 to 2C lower than those with the TI-application (C2 to 

C4). For all simulation cases, internal casual gains, heating and cooling control set points were assumed to be identical. 

The simulated results therefore demonstrate that, the increased surface and zone temperatures predicted in C2 to C4 

were due to the additional solar energy gains as a result of the TI-application.  

This paper clearly demonstrates the suitability of applying TIM to the south facing external facades of office buildings 

to reduce heating energy demands, albeit potential overheating problems occur during summer which could lead to an 

additional cooling requirement. The overheating problem however, could be minimised using increased brick wall mass 

and the application of overhangs and natural ventilation techniques. These simulations indicate that, overhangs and air 

vents can be integrated into TI-facades to provide solar shading and natural ventilation to the buildings, which can 

Formatted: Font: Not Bold
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reduce the cooling energy demands significantly. The study also indicates that, optimum energy savings could be 

achieved when the 0.8 to 1m deep overhangs and 4m
2
 air vents were applied. The application provides a cheaper 

alternative to the standard mechanical roller blinds used in previous research, which require regular maintenance. The 

simulations predicted both temperature profiles and energy demands of the office buildings. The effects of a TI-façade 

on artificial lighting energy demands, however, were not considered due to the fact that, ESP-r is not capable of 

conducting detailed simulations on the effects of the application of TI-façade to the lighting energy demands in a 

building. This is an important area and should be addressed in future work. The simulation results can also be validated 

if TI-systems are integrated in real building facades enabling experimental works to be undertaken and real time 

measurement data generated that can be used for comparison with the simulation results. 

9 Conclusions 

Surface temperatures of building facades and the air gap temperature inside the TI-wall were affected by the direct solar 

radiation absorbed at the building facade; whilst, the office zone temperature was affected by the heat released from the 

internal casual gains, the auxiliary heating and cooling systems and solar energy gains. The application of TI-façades to 

both types of office buildings has increased solar energy gains to the buildings, and the annual heating energy loads 

required can be reduced by up to 8%. The solar energy gains demonstrated due to TI-applications are consistent with 

previous studies. During summer, increased overheating problems may result due to the use of TI-façades, though with 

the application of a 300mm thick brick wall mass to a TI-system, the overheating problems were reduced and delayed 

by up to 12 hours in the office zones. It can be concluded that, TI-systems are highly suited to south facing external 

facade application in office buildings, having the potential to significantly reduce heating energy loads in winter and 

when combined with brick wall mass, natural ventilation and overhangs, overheating problem, in summer. This research 

investigates the feasibility of applying TI-systems to office building facades because previous TI-applications have been 

focused on low-rise and non office buildings only. This study was the first of its kind, undertaken to investigate and 

compare the performance of TI-facades in low-rise and high-rise office buildings. This research provides details of 

design optimisation of TI-façades in office buildings with ESP-r simulations, which is a critical process prior to 

applications to real buildings.  
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Figure 1 Sketches of typical TI-wall and TI-glazing systems 

Figure 2 Wire frame drawings of the generic high-rise and low-rise office buildings indicating lower, intermediate and 

top floors 

Table 1 The design details and specifications of the generic high-rise and low-rise office buildings 

Figure 3 Schematic ground and upper floor layout plan of the high-rise office building, with grid points 

Figure 4 Schematic layout plan of the low-rise office building from the ground floor to the 3
rd

 floor, with grid points 

Table 2 Definition of zones for the high-rise and low-rise office buildings 

Figure 5 Construction of conventional building envelope and the TI-facades used in office buildings 

Table 3 Thermo-physical and optical properties of building facades employed in the simulations 

Figure 6 Wire frame drawings of typical office zones for high-rise and low-rise office buildings for four different 

building envelope arrangements (Cases 1 to 4) 

Figure 7 Typical meteorological year for dry-bulb temperature in London (latitude: 51˚30’N and longtitude: 0˚7’W) 

Figure 8 Direct and diffuse solar radiation (W/m
2
) for London (51˚30’N; 0˚7’W) 

Table 4 Heating and cooling control parameters used for different periods in the office buildings 

Figure 9 Sketches indicating the locations of the points in the façades (black dots) at which the surface temperatures 

were predicted  

Figure 10 Internal and external surface (int suf and ext suf) temperature predictions for Case 1 (C1) to Case 3 (C3) in 

the high-rise (a & b) office building in winter in London 

Figure 11 Internal and external surface (int suf and ext suf) temperature predictions for Case 1 (C1) to Case 3 (C3) in 

the high-rise (a & b) office building in summer in London 

Figure 12 Zone temperature predictions for Case 1 (C1) to Case 4 (C4) in the high-rise office building in winter in 

London 

Figure 13 Zone temperature predictions for Case 1 (C1) to Case 4 (C4) in the high-rise office building in summer in 

London 
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Figure 14 Predictions of ambient temperature and air gap temperature within TI-wall (Case 2) for winter (2
nd

 and 3
rd

 of 

January) and summer (17
th

 and 18
th

 of July) periods in London 

Figure 15 Illustration of overhangs and a typical air vent applied to the upper section of TI-systems in the south facing 

façades in the office buildings 

Figure 16 Comparison of air temperatures between naturally ventilated (Natural Vent) and mechanically ventilated 

(Mechanical Vent) office zone for the high-rise office building from 17
th

 to 18
th

 of July in London 

Table 5 Prediction of annual energy demands (both in kWh and £) for the office buildings in Cases 1 to 4 with 0.8 or 

1m overhang application and all day natural ventilation in London 
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Prefabricated TI-wall element Sealed TI-glazing 

 

A) Opaque insulation;  

B) Front cover glazing;  

C) TIM;  

D) Back glazing as 

absorber; 

E) Metal or wood frame;  

F) Massive wall with or 

without black paint 
 

A) 5mm outside glazing;  

B) 40mm acrylic glass 

capillary plate filled with 

rare-gas;  

C) Gasket; 

D) 4mm inside low-e 

glazing; 

E) Spacer 

Figure 1 Sketches of typical TI-wall and TI-glazing systems 
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15-storey high-rise office building 4-storey low-rise office building 

Figure 2 Wire frame drawings of the generic high-rise and low-rise office buildings indicating lower, intermediate and 

top floors 
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Office Buildings High-rise Low-rise 

Building floor plan 35m x 15m 15m x 10m 

Building height 15-storeys; 3m floor to floor height 4-storeys; 3m floor to floor height 

Floor areas Ground floor: 525m
2
 

Upper floor: 7350m
2
 

Gross floor area: 7875m
2
 

Usable floor area: 7670m
2
 

Ground floor: 150m
2
 

Upper floor: 450m
2
 

Gross floor area: 600m
2
 

Usable floor area: 585m
2
 

External wall Cavity wall: 2943m
2
 Cavity wall: 510m

2
 

External windows Double-glazed windows: 1536m
2
 Double-glazed windows: 85m

2
 

Internal layout Office space, conference room, emergency stairway and store rooms 

Building services Artificial lighting, lift, centralised HVAC system to control heating & cooling, office 

equipment & appliances e.g. computers, copy machines, printers & fax machines. 

Table 1 The design details and specifications of the generic high-rise and low-rise office buildings 
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a) Ground floor layout plan 

 

 
b) Upper floor layout plan (first to 14

th
 floor) 

 
Figure 3 Schematic ground and upper floor layout plan of the high-rise office building, with grid points 
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Figure 4 Schematic layout plan of the low-rise office building from the ground floor to the 3
rd

 floor, with grid points 
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High-rise Office 

Building 

Name of Zones Low-rise Office 

Building 

Name of Zones 

G
rd

 floor 7
th

 floor 14
th

 floor G
rd

 floor 3
rd

 floor 

Office zone 1 GF-R1 7F-R1 14F-R1 Office room 1 GF-R1 3F-R1 

Office zone 2 GF-R2 7F-R2 14F-R2 Office room 2 GF-R2 3F-R2 

Office zone 3 GF-R3 7F-R3 14F-R3 Corridor GF-Cor 3F-Cor 

Corridor GF-Cor 7F-Cor 14F-Cor Lavatory GF-Sani 3F-Sani 

Stairway GF-Stair 7F-Stair 14F-Stair Service core GF-Lift 3F-Lift 

Service core GF-Lift 7F-Lift 14F-Lift Stairway GF-Stair 3F-Stair 

Store room  7F-Store 14F-Store    

Lavatory  7F-Sani 14F-Sani    

Table 2 Definition of zones for the high-rise and low-rise office buildings 
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i) Cavity wall     ii) Double-glazed windows 

 

 

 

 

 

 

 

 
 

iii) Roof slab     iv) Ground floor slab 

 

 

 

 

 

 

 

 

 

 

 

 

 

v) TI-wall system 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi) TI-glazing system 

Figure 5 Construction of conventional building envelope and the TI-facades used in office buildings 
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Construction 

Details 

Layers 

(outside to inside) 

R-Value 

(m
2
K/W) 

Density 

(kg/m
3
) 

Specific heat 

capacity 

(J/kgK) 

Thermal 

conductivity 

(W/mK) 

Cavity wall 100mm outer brick 

75mm glasswool 

50mm air layer 

100mm lightweight block 

0.12 

1.88 

0.17 

0.53 

1700 

250 

1.2 

1000 

800 

840 

1.012 

600 

0.84 

0.04 

0.025 

0.19 

Double-glazed 

window 

6mm glass pane 

12mm air gap 

6mm glass pane 

0.01 

0.17 

0.01 

2710 

1.2 

2710 

837 

1.012 

837 

1.05 

0.025 

1.05 

Roof slab 25mm roof tiles 

20mm asphalt 

50mm concrete screed 

80mm expanded polystyrene 

150mm aerated concrete 

10mm gypsum plaster 

0.03 

0.04 

0.12 

2.67 

0.94 

0.02 

1900 

1700 

1200 

25 

500 

1200 

800 

1000 

840 

1000 

840 

837 

0.84 

0.50 

0.41 

0.03 

0.16 

0.42 

Ground floor 

slab 

250mm common earth 

150mm gravel based 

20mm bitumen felt 

120mm glass fibre quilt 

150mm concrete slab 

6mm carpet 

0.20 

0.29 

0.04 

3.00 

0.13 

0.10 

1460 

2050 

1700 

12 

2000 

186 

879 

184 

1000 

840 

1000 

1360 

1.28 

0.52 

0.50 

0.04 

1.13 

0.06 

 
Construction 

Details 

Layers (outside to 

inside) 

R-Values 

(m
2
K/W) 

Density 

(kg/m
3
) 

Specific heat 

capacity (J/kgK) 

Thermal conductivity 

(W/mK) 

TI-glazing 6mm clear float pane 

22mm PMMA slab 

8mm clear float pane 

0.01 

0.55 

0.01 

2710 

30 

2710 

837 

1400 

837 

1.05 

0.04 

1.05 

TI-wall 6mm clear float pane 

22mm PMMA slab 

8mm clear float pane 

20mm air gap 

300mm wall mass 

0.01 

0.55 

0.01 

0.17 

0.36 

2710 

30 

2710 

1.2 

2000 

837 

1400 

837 

1.012 

800 

1.05 

0.04 

1.05 

0.025 

0.84 

 
Angles of incidence 0 40 55 70 80 

1) KAPILUX System      

Overall transmission 0.691 0.402 0.308 0.130 0.017 

Absorption at: 

- 6mm external clear float pane 

- 22mm PMMA slab 

- 8mm internal clear float pane 

 

0.016 

0.138 

0.032 

 

0.018 

0.485 

0.035 

 

0.019 

0.570 

0.037 

 

0.020 

0.737 

0.040 

 

0.021 

0.931 

0.041 

2) Double-glazed window      

Overall transmission (visible transmittance of 0.76) 0.611 0.583 0.534 0.384 0.170 

Absorption at: 

- 6mm external clear float glass 

- 12mm air gap 

- 6mm internal clear float glass 

 

0.157 

- 

0.117 

 

0.172 

- 

0.124 

 

0.185 

- 

0.127 

 

0.201 

- 

0.112 

 

0.202 

- 

0.077 

Table 3 Thermo-physical and optical properties of building fabrics employed in the simulations 
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a) office zone with external cavity wall and double-

glazed window in high-rise office building (Case 1) 

Case 1: 26.27m
2
 cavity wall & 6.48m

2
 double-glazed 

window 

 
b) office zone with TI-façades in high-rise office 

building (Cases 2, 3 and 4) 

Case 2: 16.27m
2
 cavity wall, 10m

2
 TI-wall with 

20mm air gap & 6.48m
2
 TI-glazing 

 

Case 3: 16.27m
2
 cavity wall, 16.48m

2
 TI-glazing 

 

Case 4: 16.27m
2
 cavity wall, 10m

2
 TI-wall without 

20mm air gap & 6.48m
2
 TI-glazing 

 
c) office zone with external cavity wall and double-

glazed window in low-rise office building (Case 1) 

Case 1: 14.26m
2
 cavity wall & 3.24m

2
 double-glazed 

window 

 
d) office zone with TI-façades in low-rise office 

building (Cases 2, 3 and 4) 

Case 2: 7.66m
2
 cavity wall, 6.60m

2
 TI-wall with 

20mm air gap & 3.24m
2
 TI-glazing 

 

Case 3: 7.66m
2
 cavity wall, 9.84m

2
 TI-glazing 

 

Case 4: 7.66m
2
 cavity wall, 6.60m

2
 TI-wall without 

20mm air gap & 3.24m
2
 TI-glazing 

Figure 6 Wire frame drawings of typical office zones for high-rise and low-rise office buildings for four different 

building envelope arrangements (Cases 1 to 4) 
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Figure 7 Typical meteorological year for dry-bulb temperature in London (latitude: 51˚30’N and longtitude: 0˚7’W) 
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Figure 8 Direct and diffuse solar radiation (W/m
2
) for London (51˚30’N; 0˚7’W) 
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Day Periods System Control 

Weekday (Mon-Fri) 

 

 

 

Weekend (Sat-Sun) 

0000 to 0800 

0800 to 0900 

0900 to 1700 

1700 to 0000 

All day 

Free floating 

Lower 15˚C heating and 24˚C cooling set points 

Maximum 20˚C heating and 24˚C cooling set points 

Free floating 

Free floating 

Table 4 Heating and cooling control parameters used for different periods in the office buildings 
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Figure 9 Sketches indicating the locations of the points in the façades (black dots) at which the surface temperatures 

were predicted 
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Figure 10 Internal and external surface (int suf and ext suf) temperature predictions for Case 1 (C1) to Case 3 (C3) in 

the high-rise (a & b) office building in winter in London 
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Figure 11 Internal and external surface (int suf and ext suf) temperature predictions for Case 1 (C1) to Case 3 (C3) in 

the high-rise (a & b) office building in summer in London 
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Figure 12 Zone temperature predictions for Case 1 (C1) to Case 4 (C4) in the high-rise office building in winter in 

London 
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Figure 13 Zone temperature predictions for Case 1 (C1) to Case 4 (C4) in the high-rise office building in summer in 

London 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cooling system on at 08:00 

Cooling system off at 17:00 

Heat gains Heat released 

Cooling 

set point 

Overlap of 

office zone 

temperatures 

(C2 and C4) 



 

36 

 

-5

5

15

25

35

45

55

65

00h30 06h30 12h30 18h30 00h30 06h30 12h30 18h30

T
em

ep
ra

tu
re

 (º
C

)

Ambient (winter) Air gap (winter) Ambient (summer) Air gap (summer)

 

Figure 14 Predictions of ambient temperature and air gap temperature within TI-wall (Case 2) for winter (2
nd

 and 3
rd

 of 

January) and summer (17
th

 and 18
th

 of July) periods in London 
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Figure 15 Illustration of overhangs and a typical air vent applied to the upper section of TI-systems in the south facing 

façades in the office buildings 
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Figure 16 Comparison of air temperatures between naturally ventilated (Natural Vent) and mechanically ventilated 

(Mechanical Vent) office zone for the high-rise office building from 17
th

 to 18
th

 of July in London 
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 Units Case 1 Case 2 Case 3 Case 4 

High-rise office building m
2
 7580 7580 7580 7580 

Heating energy demands kWh 354897 341954 338193 341668 
Variations % Base case -3.7 -4.7 -3.7 
Cooling energy demands kWh 59592 60033 60655 60033 
Variations % Base case +0.7 +1.8 +0.7 
Total energy demands £ 10236 10018 9984 10012 
Variations % Base case -2.1 -2.5 -2.2 

Low-rise office building m
2
 741 741 741 741 

Heating energy demands kWh 26044 25081 24461 25064 
Variations % Base case -3.7 -6.1 -3.8 
Cooling energy demands kWh 9040 9061 9101 9061 
Variations % Base case +0.2 +0.7 +0.2 
Total energy demands £ 1029 1012 1003 1012 
Variations % Base case -1.7 -2.6 -1.7 

 

Table 5 Prediction of annual energy demands (both in kWh and £) for the office buildings in Cases 1 to 4 with 0.8 or 

1m overhang application and all day natural ventilation in London 

 

 

 

 

 

 


