
Northumbria Research Link

Citation: Vo, Thuc and Lee, Jaehong (2010) Interaction curves for vibration and buckling
of thin-walled composite box beams under axial loads and end moments. International
Journal of Mechanical Sciences, 34 (10). 3142 - 3157. ISSN 0020-7403 

Published by: Elsevier

URL:  http://dx.doi.org/10.1016/j.apm.2010.02.003
<http://dx.doi.org/10.1016/j.apm.2010.02.003>

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/13370/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Interaction curves for vibration and buckling of thin-walled composite box

beams under axial loads and end moments
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(Dated: January 14, 2010)

Interaction curves for vibration and buckling of thin-walled composite box beams with arbitrary

lay-ups under constant axial loads and equal end moments are presented. This model is based on

the classical lamination theory, and accounts for all the structural coupling coming from material

anisotropy. The governing differential equations are derived from the Hamilton’s principle. The

resulting coupling is referred to as triply flexural-torsional coupled vibration and buckling. A

displacement-based one-dimensional finite element model with seven degrees of freedoms per node

is developed to solve the problem. Numerical results are obtained for thin-walled composite box

beams to investigate the effects of axial force, bending moment, fiber orientation on the buckling

loads, buckling moments, natural frequencies and corresponding vibration mode shapes as well as

axial-moment-frequency interaction curves.

Keywords: Thin-walled composite box beams; classical lamination theory; axial loads and end moments;

axial-moment-frequency interaction curves.

1. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Compos-

ites have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced

by pultrusion, are being increasingly used in many civil, mechanical and aerospace engineering applications. How-
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ever, it is well known that thin-walled composite structures might be under axial force and moment simultaneously

when used in above applications and are very susceptible to flexural-torsional/lateral buckling and display complex

vibrational behavior. Therefore, the accurate prediction of their stability limit state and dynamic characteristics is of

the fundamental importance in the design of composite structures.

The theory of thin-walled members made of isotropic materials was first developed by Vlasov [1] and Gjelsvik

[2]. Vibration and buckling of these members under axial loads and end moments becomes quite difficult problems

when other than simple boundary conditions exist, where the cross-section has one or no axis of symmetry. Since

the early works of Bleich et al. [3] and Timoshenko et al. [4,5], intensive research works have been conducted to

develop theoretical beam models and analytical solutions for the stability and vibrational behavior of thin-walled

beams. Joshi and Suryanarayan [6,7] derived closed form analytical solutions for flexural-torsional coupled instability

and vibration of thin-walled beams under the combined action of axial loads and equal end moments. Pavlovic et

al. [8] obtained closed form analytical solutions for dynamic stability problem of simply supported thin-walled beams

under time-dependent stochastic axial loads and end moments. Based on a non-linear stability model, Mohri et

al [9] proposed analytical solutions for simply supported beam-column elements with bi-symmetric I-sections under

combined bending and axial forces. Magnucka-Blandzi [10] derived the general algebraic equation of the critical state

for simply supported thin-walled beam under combined loads. Another effective approach for solving stability and

dynamic problems of thin-walled beams is to develop the dynamic stiffness matrix based on the solution of simultaneous

ordinary differential equations. By using the power series method, Leung [11,12] derived the exact dynamic stiffness

matrix including both the axial force, initial torque and bending moment for the interactive axial-torsional and axial-

moment buckling analysis of framed structures. Besides, the finite element method has been widely used because of

its versatility and much efforts have been devoted in order to obtain accurate results. Mohri et al. [13] presented a

higher-order non shear deformable model to investigate the dynamic behavior of thin-walled open sections in the pre-

and post-buckling state. Bebiano et al. [14] illustrated the application of a novel Generalised Beam Theory (GBT)

formulation to analyze the local-plate, distortional and global vibration behavior of thin-walled steel channel members

subjected to compression and/or non-uniform bending. Voros [15] analyzed the free vibration and mode shapes of

straight beams where the coupling between the bending and torsion was induced by steady state lateral loads. For

thin-walled composite beams, with the presence of the additional coupling effects from material anisotropy, these

members under axial force and moment simultaneously exhibit strong coupling. Thus, their dynamic characteristics

become more complicated than isotropic material even for doubly symmetric cross-section. Even though a significant
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amount of research has been conducted on the dynamic characteristics of axially loaded thin-walled open and closed

section composite beams (Bank and Kao [16], Banerjee et al. [17,18], Li et al. [19,20], Kaya and Ozgumus [21] and

Kim and Shin [22]), it should be noted that only a few have taken into account the effects of axial force and bending

moment. Machado et al. [23] investigated the influence of the initial in-plane deformations, generated by the action of

a static external loading, as well as the effect of shear flexibility on the dynamic behavior of bisymmetric thin-walled

composite beams. The analysis was based on a geometrically non-linear theory based on large displacements and

rotations. However, it was strictly valid for symmetric balanced laminates and especially orthotropic laminates. A

literature survey on the subject has revealed that studies of vibration and buckling of thin-walled composite box

beams with arbitrary lay-ups including the influences of axial force and bending moment in a unitary manner are

limited. To the best of the authors’ knowledge, there is no publication available that deals with axial-moment-

frequency interaction curves for vibration and buckling of thin-walled composite box beams in the open literature.

This complicated problem is not well-investigated and there is a need for further studies.

In this paper, which is an extension of the authors’ previous works [24-26], flexural-torsional coupled vibration

and buckling of thin-walled composite box beams with arbitrary lay-ups under constant axial loads and equal end

moments is presented. This model is based on the classical lamination theory, and accounts for all the structural

coupling coming from the material anisotropy. The governing differential equations for flexural-torsional coupled

vibration are derived from the Hamilton’s principle. A displacement-based one-dimensional finite element model with

seven degrees of freedoms per node is developed to solve the problem. Numerical results are obtained for thin-walled

composite box beams to investigate the effects of axial force, bending moment, fiber orientation on the buckling loads,

buckling moments, natural frequencies and corresponding vibration mode shapes as well as axial-moment-frequency

interaction curves.

2. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n, s, z) as shown in Fig. 1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ. As defined



4

in Fig.1 a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z axis is

called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. The linear shear strain γ̄sz of the middle surface has the same distribution in the contour direction as it does in

the St. Venant torsion in each element.

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled

beams.

4. Each laminate is thin and perfectly bonded.

5. Local buckling is not considered.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin θ(s)− V (z) cos θ(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the shear strain become

γ̄sz =
∂v̄

∂z
+

∂w̄

∂s
= Φ′(z)

F (s)
t(s)

(2)

where t(s) is thickness of contour box section, F (s) is the St. Venant circuit shear flow. After substituting for v̄ from

Eq.(1) and considering the following geometric relations,

dx = ds cos θ (3a)

dy = ds sin θ (3b)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z)− U ′(z)x(s)− V ′(z)y(s)− Φ′(z)ω(s) (4)
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where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial

displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate

system; and ω is the so-called sectorial coordinate or warping function given by

ω(s) =
∫ s

s◦

[
r(s)− F (s)

t(s)

]
ds (5a)

∮

i

F (s)
t(s)

ds = 2Ai i = 1, ..., n (5b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The

explicit forms of ω(s) and F (s) for box section are given in Ref.[25].

The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.

u(s, z, n) = ū(s, z) (6a)

v(s, z, n) = v̄(s, z)− n
∂ū(s, z)

∂s
(6b)

w(s, z, n) = w̄(s, z)− n
∂ū(s, z)

∂z
(6c)

The strains associated with the small-displacement theory of elasticity are given by

εs = ε̄s + nκ̄s (7a)

εz = ε̄z + nκ̄z (7b)

γsz = γ̄sz + nκ̄sz (7c)

where

ε̄s =
∂v̄

∂s
; ε̄z =

∂w̄

∂z
(8a)

κ̄s = −∂2ū

∂z2
; κ̄z = −∂2ū

∂z2
; κ̄sz = −2

∂2ū

∂s∂z
(8b)

All the other strains are identically zero. In Eq.(8), ε̄s and κ̄s are assumed to be zero. ε̄z, κ̄z and κ̄sz are midsurface

axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to beam strain

components by substituting Eqs.(1), (4) and (6) into Eq.(8) as

ε̄z = ε◦z + xκy + yκx + ωκω (9a)

κ̄z = κy sin θ − κx cos θ − κωq (9b)

κ̄sz = 2χ̄sz = κsz (9c)
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where ε◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x− and y-direction, warping curvature with

respect to the shear center, and twisting curvature in the beam, respectively defined as

ε◦z = W ′ (10a)

κx = −V ′′ (10b)

κy = −U ′′ (10c)

κω = −Φ′′ (10d)

κsz = 2Φ′ (10e)

The resulting strains can be obtained from Eqs.(7) and (9) as

εz = ε◦z + (x + n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω (11a)

γsz = (n +
F

2t
)κsz (11b)

3. VARIATIONAL FORMULATION

The total potential energy of the system can be stated, in its buckled shape, as

Π = U + V (12)

where U is the strain energy

U =
1
2

∫

v

(σzεz + σszγsz)dv (13)

After substituting Eq.(11) into Eq.(13)

U =
1
2

∫

v

{
σz

[
ε◦z + (x + n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω

]
+ σsznκsz

}
dv (14)

The variation of strain energy can be stated as

δU =
∫ l

0

(Nzδεz + Myδκy + Mxδκx + Mωδκω + Mtδκsz)dz (15)

where Nz,Mx,My,Mω,Mt are axial force, bending moments in the x- and y-direction, warping moment (bimoment),

and torsional moment with respect to the centroid, respectively, defined by integrating over the cross-sectional area A
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as

Nz =
∫

A

σzdsdn (16a)

My =
∫

A

σz(x + n sin θ)dsdn (16b)

Mx =
∫

A

σz(y − n cos θ)dsdn (16c)

Mω =
∫

A

σz(ω − nq)dsdn (16d)

Mt =
∫

A

σszndsdn (16e)

The potential of in-plane loads V due to transverse deflection

V =
1
2

∫

v

σ0
z

[
(u′)2 + (v′)2

]
dv (17)

where σ0
z is the averaged constant in-plane edge axial stress of beams loaded initially by equal and opposite axial

forces P and bending moment M0
x at two ends, defined by

σ0
z =

P0

A
− M0

xy

Ix
(18)

The variation of the potential of in-plane loads at the centroid is expressed by substituting the assumed displacement

field into Eq.(17) as

δV =
∫

v

(
P0

A
− M0

xy

Ix
)
[
U ′δU ′ + V ′δV ′ + (q2 + r2 + 2rn + n2)Φ′δΦ′

+ (Φ′δU ′ + U ′δΦ′)
[
n cos θ − (y − yp)

]
+ (Φ′δV ′ + V ′δΦ′)

[
n cos θ + (x− xp)

]
]
dv (19)

The kinetic energy of the system is given by

T =
1
2

∫

v

ρ(u̇2 + v̇2 + ẇ2)dv (20)

where ρ is a density.

The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(20) as

δT =
∫

v

ρ

{
U̇δU̇ + V̇ δV̇ + Ẇ δẆ + (q2 + r2 + 2rn + n2)Φ̇δΦ̇ + (Φ̇δU̇ + U̇δΦ̇)

[
n cos θ − (y − yp)

]

+ (Φ̇δV̇ + V̇ δΦ̇)
[
n cos θ + (x− xp)

]}
dv (21)

In order to derive the equations of motion, Hamilton’s principle is used

δ

∫ t2

t1

(T −Π)dt = 0 (22)
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Substituting Eqs.(15), (19) and (21) into Eq.(22), the following weak statement is obtained

0 =
∫ t2

t1

∫ l

0

{
m0Ẇ δẆ +

[
m0U̇ + (mc + m0yp)Φ̇

]
δU̇ +

[
m0V̇ + (ms −m0xp)Φ̇

]
δV̇

+
[
(mc + m0yp)U̇ + (ms −m0xp)V̇ + (mp + m2 + 2mω)Φ̇

]
δΦ̇

−
[
P0

[
δU ′(U ′ + Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′

Ip

A
+ U ′yp − V ′xp)

]−M0
x(ΦδU ′′ + U ′′δΦ)

]

− NzδW
′ + MyδU ′′ + MxδV ′′ + MωδΦ′′ − 2MtδΦ

}
dzdt (23)

The explicit expressions of inertia coefficients for thin-walled composite box beams are given in Ref.[26].

4. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by





σz

σsz





k

=




Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66




k 



εz

γsz





(24)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (εs = 0) assumption. More detailed

explanation can be found in Ref.[27].

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(11), (16) and (24)




Nz

My

Mx

Mω

Mt





=




E11 E12 E13 E14 E15

E22 E23 E24 E25

E33 E34 E35

E44 E45

sym. E55








ε◦z

κy

κx

κω

κsz





(25)

where Eij are the laminate stiffnesses of thin-walled composite beams and given in Ref.[25].
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5. GOVERNING EQUATIONS OF MOTION

The governing equations of motion of the present study can be derived by integrating the derivatives of the varied

quantities by parts and collecting the coefficients of of δW, δU, δV and δΦ

N ′
z = m0Ẅ (26a)

M ′′
y + P0

(
U ′′ + Φ′′yp

)
+ M0

xΦ′′ = m0Ü + (mc + m0yp)Φ̈ (26b)

M ′′
x + P0

(
V ′′ − Φ′′xp

)
= m0V̈ + (ms −m0xp)Φ̈ (26c)

M ′′
ω + 2M ′

t + P0

(
Φ′′

Ip

A
+ U ′′yp − V ′′xp

)
+ M0

xU ′′ = (mc + m0yp)Ü

+ (ms −m0xp)V̈

+ (mp + m2 + 2mω)Φ̈ (26d)

The natural boundary conditions are of the form

δW : Nz = P0 (27a)

δU : M ′
y = M ′

y
0 (27b)

δU ′ : My = M0
y (27c)

δV : M ′
x = M ′

x
0 (27d)

δV ′ : Mx = M0
x (27e)

δΦ : M ′
ω + 2Mt = M ′

ω
0 (27f)

δΦ′ : Mω = M0
ω (27g)

where P0,M
′
y
0
,M0

y ,M ′
x
0
,M0

x ,M ′
ω

0 and M0
ω are prescribed values.

By substituting Eqs.(10) and (25) into Eq.(26), the explicit form of governing equations of motion can be expressed
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with respect to the laminate stiffnesses Eij as

E11W
′′ − E12U

′′′ − E13V
′′′ − E14Φ′′′ + 2E15Φ′′ = m0Ẅ (28a)

E12W
′′′ − E22U

iv − E23V
iv − E24Φiv + 2E25Φ′′′

+P0(U ′′ + Φ′′yp) + M0
xΦ′′ = m0Ü + (mc + m0yp)Φ̈ (28b)

E13W
′′′ − E23U

iv − E33V
iv − E34Φiv + 2E35Φ′′′

+P0(V ′′ − Φ′′xp) = m0V̈ + (ms −m0xp)Φ̈ (28c)

E14W
′′′ + 2E15W

′′ − E24U
iv − 2E25U

′′′ − E34V
iv − 2E35V

′′′

−E44Φiv + 4E55Φ′′ + P0(Φ′′
Ip

A
+ U ′′yp − V ′′xp) + M0

xU ′′ = (mc + m0yp)Ü

+ (ms −m0xp)V̈

+ (mp + m2 + 2mω)Φ̈ (28d)

Eq.(28) is most general form for flexural-torsional coupled vibration of thin-walled composite beams with arbitrary

lay-ups under constant axial loads and equal end moments and the dependent variables, W , U , V and Φ are fully

coupled. If all the coupling effects and the cross section is symmetrical with respect to both x- and the y-axes, Eq.(28)

can be simplified to the uncoupled differential equations as

(EA)comW ′′ = ρAẄ (29a)

−(EIy)comU iv + P0U
′′ + M0

xΦ′′ = ρAÜ (29b)

−(EIx)comV iv + P0V
′′ = ρAV̈ (29c)

−(EIω)comΦiv +
[
(GJ)com + P0

Ip

A

]
Φ′′ + M0

xU ′′ = ρIpΦ̈ (29d)

From above equations, (EA)com represents axial rigidity, (EIx)com and (EIy)com represent flexural rigidities with

respect to x- and y-axis, (EIω)com represents warping rigidity, and (GJ)com represents torsional rigidity of thin-

walled composite beams, respectively, written as

(EA)com = E11 (30a)

(EIy)com = E22 (30b)

(EIx)com = E33 (30c)

(EIω)com = E44 (30d)

(GJ)com = 4E55 (30e)
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A. Flexural-torsional buckling under axial loads and equal end moments

By omitting the inertia terms, Eq.(29) becomes

(EA)comW ′′ = 0 (31a)

−(EIy)comU iv + P0U
′′ + M0

xΦ′′ = 0 (31b)

−(EIx)comV iv + P0V
′′ = 0 (31c)

−(EIω)comΦiv +
[
(GJ)com + P0

Ip

A

]
Φ′′ + M0

xU ′′′ = 0 (31d)

It is well known that the flexural buckling loads in the x-direction are identified while the flexural buckling loads in

the y-direction, torsional buckling loads and buckling moments are coupled. The orthotropy solution for the critical

values of axial force P0 and bending moment M0
x for simply supported boundary condition [4]

M0
x = rp

√
PθPy(1− P0

Py
)(1− P0

Pθ
) (32)

where Px, Py and Pθ are the critical flexural buckling load in the x- and y-direction, and the critical torsional buckling

load [4].

Px =
π2(EIx)com

l2
(33a)

Py =
π2(EIy)com

l2
(33b)

Pθ =
A

Ip

[π2(EIω)com

l2
+ (GJ)com

]
(33c)

B. Flexural-torsional vibration under axial loads and equal end moments

For simply supported beams with free warping, the overall displacements modes in bending and torsion are assumed

as

U(z, t) = U0 sin(
nπz

L
) sin(ωt) (34a)

V (z, t) = V0 sin(
nπz

L
) sin(ωt) (34b)

Φ(z, t) = Φ0 sin(
nπz

L
) sin(ωt) (34c)
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Substituting Eq.(34) into Eq.(29), after integrations and some reductions, the resulting flexural and torsional equations

of motion are obtained in compact form as

ω2
xn

(1− P xn
)− ω2

xxn
= 0 (35a)

A
[
ω2

yn
(1− P yn)− ω2

]
U0 −Mxn

√
AIpωynωθnΦ0 = 0 (35b)

−Mxn

√
AIpωyn

ωθn
U0 + Ip

[
ω2

θn
(1− P θn

)− ω2
]
Φ0 = 0 (35c)

For the above equations, it is well known that the flexural natural frequencies in the x-direction and bending moments

are decoupled, while, the flexural natural frequencies in the y-direction, torsional natural frequencies and bending

moments are coupled. They are given by the orthotropy solution for simply supported boundary condition

ωxxn
= ωxn

√
1− P xn

(36a)

ωyan
=

√√√√ω2
yn

(1− P yn
) + ω2

θn
(1− P θn

)
2

−
√

[ω2
yn

(1− P yn
)− ω2

θn
(1− P θn

)
2

]2

+ M
2

nω2
yn

ω2
θn

(36b)

ωybn =

√√√√ω2
yn

(1− P yn) + ω2
θn

(1− P θn)
2

+

√
[ω2

yn
(1− P yn)− ω2

θn
(1− P θn)

2

]2

+ M
2

nω2
yn

ω2
θn

(36c)

in which P xn , P yn , P θn and Mxn are nondimensional axial force and moment parameters

P xn =
P0

Pxn

(37a)

P yn =
P0

Pyn

(37b)

P θn =
P0

Pθn

(37c)

Mxn =
M0

x

Myθn

(37d)

where Pxn , Pyn and Pθn are the flexural buckling loads in the x- and y-direction, and torsional buckling loads [4].

Pxn =
n2π2(EIx)com

l2
(38a)

Pyn =
n2π2(EIy)com

l2
(38b)

Pθn =
A

Ip

[n2π2(EIω)com

l2
+ (GJ)com

]
(38c)

and Myθn is the buckling moments for pure bending [4].

Myθn =

√
n2π2(EIy)com

l2

[n2π2(EIω)com

l2
+ (GJ)com

]
(39)
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and ωxn , ωyn and ωθn are the flexural natural frequencies in the x- and y-direction, and torsional natural frequencies

[5].

ωxn
=

n2π2

l2

√
(EIx)com

ρA
(40a)

ωyn =
n2π2

l2

√
(EIy)com

ρA
(40b)

ωθn
=

nπ

l

√
1

ρIp

[n2π2

l2
(EIω)com + (GJ)com

]
(40c)

6. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a

displacement based finite element method. The element has seven degrees of freedom at each node, three displacements

W,U, V and three rotations U ′, V ′, Φ as well as one warping degree of freedom Φ′. The axial displacement W is

interpolated using linear shape functions Ψj , whereas the lateral and vertical displacements U, V and axial rotation Φ

are interpolated using Hermite-cubic shape functions ψj associated with node j and the nodal values, respectively.

W =
2∑

j=1

wjΨj (41a)

U =
4∑

j=1

ujψj (41b)

V =
4∑

j=1

vjψj (41c)

Φ =
4∑

j=1

φjψj (41d)

Substituting these expressions into the weak statement in Eq.(23), the finite element model of a typical element can

be expressed as the standard eigenvalue problem

([K]− P0[G1]−M0
x [G2]− ω2[M ]){∆} = {0} (42)

where [K], [G1], [G2] and [M ] are the element stiffness matrix, the element geometric stiffness matrix due to axial force,

bending moment and the element mass matrix, respectively. The explicit forms of them are given in Refs.[24-26].

In Eq.(42), {∆} is the eigenvector of nodal displacements corresponding to an eigenvalue

{∆} = {w u v φ}T (43)
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7. NUMERICAL EXAMPLES

A thin-walled composite box beam with length l = 8m is considered to investigate the effects of axial force,

bending moment, fiber orientation and modulus ratio on the buckling loads, buckling moments, natural frequencies

and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves. Ten Hermitian beam

elements with two nodes are used in the numerical examples. The geometry and stacking sequences of the box section

are shown in Fig. 2, and the following engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (44)

For convenience, the following nondimensional axial force, bending moment and natural frequency are used

P =
P0l

2

b3
1tE2

(45a)

M =
M0

x l

b3
1tE2

(45b)

ω =
ωl2

b1

√
ρ

E2
(45c)

As a first example, a simply supported composite box beam is considered. Stacking sequences of the left and right

webs are angle-ply laminates [θ/−θ] and [−θ/θ] and the flanges laminates are assumed to be unidirectional, (Fig.

2a). All the coupling stiffnesses are zero, but E25 does not vanish due to unsymmetric lay-up of the webs. Effect of

axial force on the critical buckling moments is shown in Table 1. The critical buckling loads (P cr) and the critical

buckling moments (M cr) without axial force agree completely with those of previous papers [24,25]. In Table 2, with

the presence of bending moment, the lowest three natural frequencies with and without the effect of axial force by

the finite element analysis are compared to those by the orthotropy solution, which neglects the coupling effect of

E25 from Eqs.(36a)-(36c). Tables 1 and 2 reveal that the tension force has a stiffening effect while the compressive

force has a softening effect on the critical buckling moments and natural frequencies. Besides, it is clear that their

change due to axial force is noticeable for all fiber angles. For unidirectional fiber direction, the lowest three natural

frequencies by the finite element analysis are exactly corresponding to the first doubly coupled mode (flexural mode

in y-direction and torsional mode), the first flexural mode in x-direction, the second doubly coupled mode by the

orthotropy solution, respectively. As fiber angle increases, this order is a little change. The typical normal mode shapes

corresponding to the lowest three natural frequencies with fiber angle θ = 30◦ for the case (P = 0.5P cr, M = 0.5M cr)

are illustrated in Fig. 3. The mode shapes for other cases of (P = −0.5Pcr, M = 0.5M cr and P=0, M = 0.5M cr)

are similar to the corresponding ones for the case of (P = 0.5P cr, M = 0.5M cr) and are not plotted, although there
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is a little difference between them. It can be seen in Figs. 3a and 3c that the vibration mode 1 and 3 exhibit doubly

flexural-torsional coupled vibration. Due to the small coupling stiffnesses E25, these coupled modes are dominated

by coupling from bending moment rather than from material anisotropy. Thus, the results by the finite element

analysis and orthotropy solution show slight discrepancy in ω1 and ω3. Since the vibration mode 2 is pure flexural

x-direction mode as can be seen in Fig. 3b, the results between them are identical. It is indicated that the simple

orthotropy solution is sufficiently accurate for vibration and buckling analysis of this stacking sequence (Tables 1 and

2). In order to investigate the effects of bending moment on the critical buckling loads and natural frequencies, the

axial-moment and moment-frequency interaction curves with the fiber angles θ = 0◦ and 30◦ are plotted in Figs. 4

and 5. It can be seen that all of the interaction curves are symmetric with respect to the y-axis. Characteristic of

axial-moment and moment-frequency interaction curves is that the value of the bending moment for which the axial

force or natural frequency vanishes constitutes the buckling moment. For example, for θ = 30◦ (Fig. 5), when the

beam is under an axial compressive force (P = 0.5P cr), the first buckling moment occurs at M = 1.94, which agrees

completely with value from Table 1. As a result, the lowest branch is disappeared when M is slightly over this value.

As the moment increases, two curves (ωxx1) and (ωya1 −Mya1) intersect at M = 4.15, thus, after this value, vibration

mode 2 and 3 change each other. The third branch will also be disappeared when M is slightly over 5.14, which is

corresponding to the second buckling moment. On the other hand, the natural frequencies (ωxx1) are constant for all

values of bending moment. A comprehensive three dimensional axial-moment-frequency interaction diagram with the

fiber angles 30◦ and 60◦ is plotted in Fig. 6. It is clear that moment-frequency interaction curves become smaller as

the axial force increases, as expected. Finally, these interaction curves vanish at about P = 6.67 and 13.55 for fiber

angles θ = 30◦ and 60◦, respectively, which implies that at these loads, the critical buckling occurs as a degenerated

case of natural vibration at zero frequency and bending moment at zero value. Fig. 6 also explains the duality among

critical buckling moment, critical buckling load and fundamental natural frequency.

The next example is the same as before except that in this case, the top flange and the left web laminates are

[θ2], while the bottom flange and right web laminates are unidirectional, (Fig. 2b). Major effects of axial force and

bending moment on the critical buckling moments and natural frequencies are again seen Tables 3 and 4. It is also from

these tables that the coupling effects become no more negligibly small. Three dimensional fiber-moment-frequency

interaction diagram with respect to the fiber angle change in the bottom flange is illustrated in Fig. 7. Three groups of

curves are observed. The smallest group is for the case of axial compressive force (P = 0.5P cr) and the largest one is for

the case of axial tensile force (P = −0.5P cr). Fig. 7 demonstrates again the fact that a tensile force stiffens the beam



16

while a compressive force softens the beam. The axial-moment interaction curves for various fiber angles are plotted in

Fig. 8. The moment at buckling increases from zero as the axial compressive force decreases from the buckling load to

the buckling moment when P = 0. At about M cr=1.26, 1.42 and 2.32 for fiber angles 90◦, 60◦ and 30◦, respectively,

the critical buckling moments for pure bending occur. The lowest three moment-frequency interaction curves by the

finite element analysis and orthotropy solution for the fiber angle θ = 60◦ with (P = ±0.5P cr) are displayed in Figs.

9 and 10. It can be observed that the first and third natural frequencies increase, reach maximum value at M = 0 and

finally decrease to zero. The increase and decrease becomes more quickly when bending moments are close to buckling

moments. The orthotropy and finite element solutions show discrepancy in Figs. 8-10 indicating the coupling effects

become significant. It can be also explained partly by the typical normal mode shapes corresponding to the first three

natural frequencies with fiber angle θ = 60◦ for the case (P = 0.5P cr, M = 0.5M cr) in Fig. 11. All three modes

are triply coupled vibration, as expected (flexural mode in the x- and y-directions and torsional mode). That is,

the orthotropy solution is no longer valid for unsymmetrically laminated beams, and triply flexural-torsional coupled

vibration and buckling should be considered for accurate analysis even for bisymmetric thin-walled composite beams.

Finally, the effects of modulus ratio (E1/E2) on the first three natural frequencies of a cantilever composite beam

under an axial compressive force and tensile force (P = ±0.5P cr) and bending moment (M = 0.5M cr) are investigated.

The stacking sequence of the flanges and web are [0/90]s, (Fig. 2c). For this lay-up, all the coupling stiffnesses vanish

and thus, the three distinct vibration mode (ωya1 , ωxx1) and (ωya2) are identified. It is observed from Fig. 12 that

the natural frequencies (ωya1 , ωxx1) and (ωya2) increase with increasing orthotropy (E1/E2) for two cases considered.

8. CONCLUDING REMARKS

Flexural-torsional coupled vibration and buckling of thin-walled composite box beams with arbitrary lay-ups under

constant axial loads and equal end moments is presented. This model is based on the classical lamination theory,

and accounts for all the structural coupling coming from the material anisotropy. A one-dimensional displacement-

based finite element method with seven degrees of freedoms per node is developed to solve the problem. The effects

of axial force, bending moment, fiber orientation on the buckling loads, buckling moments, natural frequencies and

corresponding vibration mode shapes as well as axial-moment-frequency interaction curves are investigated. The

tension force has a stiffening effect while the compressive force has a softening effect on the buckling moments and

natural frequencies. The duality among the buckling loads, buckling moments and natural frequencies is studied. The

present model is found to be appropriate and efficient in analyzing vibration and buckling problem of thin-walled
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composite beams under constant axial loads and equal end moments.
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CAPTIONS OF TABLES

Table 1: Effect of axial force on the critical buckling moments (M cr) of a simply supported composite box beam

with respect to the fiber angle change in the webs.

Table 2: Effect of axial force and bending moment on the first three natural frequencies of a simply supported

composite box beam with respect to the fiber angle change in the webs.

Table 3: Effect of axial force on the critical buckling moments (M cr) of a simply supported composite box beam

with respect to the fiber angle change in the left web and top flange.

Table 4: Effect of axial force and bending moment on the first three natural frequencies of a simply supported

composite box beam with respect to the fiber angle change in the left web and top flange.
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates in thin-walled closed sections.

Figure 2: Geometry and stacking sequences of thin-walled composite box beam.

Figure 3: The first three normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in the

webs of a simply supported composite box beam under an axial compressive force and bending moment (P = 0.5P cr,

M = 0.5M cr).

Figure 4: Effect of axial force on the critical buckling moments with the fiber angles 0◦ and 30◦ in the webs of a

simply supported composite box beam.

Figure 5: Effect bending moment on the first three natural frequencies with the fiber angles 0◦ and 30◦ in the webs

of a simply supported composite box beam under an axial compressive force (P = 0.5P cr).

Figure 6: Three dimensional interaction diagram between the fundamental natural frequency and bending moment

with respect to the axial force change with the fiber angles 30◦ and 60◦ in the webs of a simply supported composite

box beam.

Figure 7: Effect of axial force on three dimensional interaction diagram between the fundamental natural frequency

and bending moment with respect to the fiber angle change in the left web and top flange of a simply supported

composite box beam.

Figure 8: Effect of axial force on the critical buckling moments with the fiber angles 30◦ and 60◦ in the left web

and top flange of a simply supported composite beam.

Figure 9: Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the left web

and top flange of a simply supported composite box beam under an axial compressive force (P = 0.5P cr).

Figure 10: Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the left web

and top flange of a simply supported composite box beam under an axial tensile force (P = −0.5P cr).

Figure 11: The first three normal mode shapes of the flexural and torsional components with the fiber angle 60◦ in

the left web and top flange of a simply supported composite box beam under an axial compressive force and bending

moment (P = 0.5P cr, M = 0.5M cr).

Figure 12: Variation of the first three natural frequencies with respect to modulus ratio change of a cantilever

composite beam under axial force and bending moment (P = −0.5P cr, M = 0.5M cr) and (P = 0.5P cr, M = 0.5M cr).



21

TABLE 1 Effect of axial force on the critical buckling moments (Mcr) of a simply supported composite box beam with respect

to the fiber angle change in the webs.

Fiber Buckling P = 0.5P cr (compression) P=0 (no axial force) P = −0.5P cr (tension)

angle loads (P cr) Present Orthotropy Present Orthotropy Present Orthotropy

0 36.009 1.891 1.891 2.688 2.688 3.309 3.309

15 29.245 2.629 2.632 3.725 3.729 4.571 4.575

30 13.549 1.945 1.946 2.753 2.755 3.374 3.376

45 7.858 1.217 1.217 1.722 1.722 2.111 2.111

60 6.670 0.941 0.941 1.332 1.332 1.633 1.633

75 6.419 0.830 0.830 1.175 1.175 1.441 1.441

90 6.375 0.798 0.798 1.131 1.131 1.386 1.386
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TABLE 2 Effect of axial force and bending moment on the first three natural frequencies of a simply supported composite box

beam with respect to the fiber angle change in the webs.

Fiber Axial force Present Orthotropy

angle & moment ω1 ω2 ω3 ωya1 ωyb1 ωxx1 ωya2

0 6.656 16.704 39.937 6.656 74.746 16.704 39.937

30 P = 0.5P cr 4.088 14.750 24.511 4.090 125.266 14.750 24.531

60 M = 0.5Mcr 2.868 14.097 17.209 2.868 86.303 14.097 17.209

90 2.804 14.068 16.823 2.804 74.929 14.068 16.823

0 9.401 18.392 42.041 9.401 75.242 18.392 42.041

30 P = 0 5.780 15.487 25.835 5.782 125.396 15.487 25.854

60 M = 0.5Mcr 4.055 14.481 18.137 4.055 86.407 14.481 18.137

90 3.964 14.436 17.730 3.964 75.044 14.436 17.730

0 11.499 19.937 44.034 11.499 75.736 19.937 44.034

30 P = −0.5P cr 7.078 16.191 27.093 7.080 125.526 16.191 27.111

60 M = 0.5Mcr 4.966 14.855 19.019 4.966 86.511 14.855 19.019

90 4.854 14.795 18.591 4.854 75.159 14.795 18.591
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TABLE 3 Effect of axial force on the critical buckling moments (Mcr) of a simply supported composite box beam with respect

to the fiber angle change in the left web and top flange.

Fiber Buckling P = 0.5P cr (compression) P=0 (no axial force) P = −0.5P cr (tension)

angle loads (P cr) Present Orthotropy Present Orthotropy Present Orthotropy

0 36.009 1.891 1.891 2.688 2.688 3.309 3.309

15 30.210 1.922 2.599 2.741 3.595 3.366 4.376

30 17.015 1.625 2.180 2.322 2.960 2.834 3.576

45 9.899 1.232 1.502 1.748 1.977 2.133 2.360

60 7.918 1.008 1.232 1.427 1.584 1.743 1.871

75 7.454 0.909 1.121 1.285 1.431 1.571 1.686

90 7.370 0.881 1.089 1.246 1.389 1.523 1.635
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TABLE 4 Effect of axial force and bending moment on the first three natural frequencies of a simply supported composite box

beam with respect to the fiber angle change in the left web and top flange.

Fiber Axial force Present Orthotropy

angle & moment ω1 ω2 ω3 ωya1 ωyb1 ωxx1 ωya2

0 6.656 16.704 39.937 6.656 74.746 16.704 39.937

30 P = 0.5P cr 4.656 13.113 23.652 5.355 114.467 13.160 29.157

60 M = 0.5Mcr 3.135 11.918 18.624 4.083 81.416 11.635 21.522

90 3.020 11.867 18.095 4.038 72.595 11.567 21.085

0 9.401 18.392 42.041 9.401 75.242 18.392 42.041

30 P = 0 6.555 14.139 25.438 7.200 114.610 14.183 30.701

60 M = 0.5Mcr 4.429 12.458 19.650 5.131 81.512 12.182 22.397

90 4.269 12.375 19.074 5.023 72.695 12.080 21.911

0 11.499 19.937 44.034 11.499 75.736 19.937 44.034

30 P = −0.5P cr 8.038 15.093 27.118 8.671 114.753 15.138 32.183

60 M = 0.5Mcr 5.427 12.973 20.629 6.003 81.608 12.706 23.244

90 5.230 12.859 20.007 5.848 72.795 12.572 22.710



25

FIG. 1 Definition of coordinates in thin-walled closed sections
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FIG. 2 Geometry and stacking sequences of thin-walled composite box beam.
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FIG. 3 The first three normal mode shapes of the flexural and torsional components with the fiber angle 30◦ in the webs of a

simply supported composite box beam under an axial compressive force and bending moment (P = 0.5P cr, M = 0.5Mcr).
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FIG. 4 Effect of axial force on the critical buckling moments with the fiber angles 0◦ and 30◦ in the webs of a simply supported

composite box beam.
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FIG. 5 Effect of bending moment on the first three natural frequencies with the fiber angles 0◦ and 30◦ in the webs of a simply

supported composite box beam under an axial compressive force (P = 0.5P cr).
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FIG. 6 Three dimensional interaction diagram between the fundamental natural frequency and bending moment with respect

to the axial force change with the fiber angles 30◦ and 60◦ in the webs of a simply supported composite box beam.
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FIG. 7 Effect of axial force on three dimensional interaction diagram between the fundamental natural frequency and bending

moment with respect to the fiber angle change in the left web and top flange of a simply supported composite box beam.
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FIG. 8 Effect of axial force on the critical buckling moments with the fiber angles 30◦, 60◦ and 90◦ in the left web and top

flange of a simply supported composite box beam.
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FIG. 9 Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the left web and top flange

of a simply supported composite box beam under an axial compressive force (P = 0.5P cr).
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FIG. 10 Effect of bending moment on the first three natural frequencies with the fiber angle 60◦ in the left web and top flange

of a simply supported composite box beam under an axial tensile force (P = −0.5P cr).
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FIG. 11 The first three normal mode shapes of the flexural and torsional components with the fiber angle 60◦ in the left web

and top flange of a simply supported composite box beam under an axial compressive force and bending moment (P = 0.5P cr,

M = 0.5Mcr).
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FIG. 12 Variation of the first three natural frequencies with respect to modulus ratio change of a cantilever composite beam

under axial force and bending moment (P = −0.5P cr, M = 0.5Mcr) and (P = 0.5P cr, M = 0.5Mcr).


