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Geometrical nonlinear analysis of thin-walled composite beams using finite

element method based on first order shear deformation theory

Thuc Phuong Vo∗ and Jaehong Lee†

Department of Architectural Engineering, Sejong University
98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: January 22, 2010)

Based on a seven-degree-of-freedom shear deformable beam model, a geometrical nonlinear analy-

sis of thin-walled composite beams with arbitrary lay-ups under various types of loads is presented.

This model accounts for all the structural coupling coming from both material anisotropy and ge-

ometric nonlinearity. The general nonlinear governing equations are derived and solved by means

of an incremental Newton-Raphson method. A displacement-based one-dimensional finite element

model that accounts for the geometric nonlinearity in the von Kármán sense is developed to solve

the problem. Numerical results are obtained for thin-walled composite beam under vertical load

to investigate the effects of fiber orientation, geometric nonlinearity and shear deformation on the

axial-flexural-torsional response.

Keywords: Thin-walled composite beams; shear deformation; axial-flexural-torsional response; nonlinear theory.

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in various structures. Composites

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced by

pultrusion, are being increasingly used in many engineering fields. A large number of practical problems of thin-walled

composite structures require a geometrically nonlinear formulation, such as the post-buckling behavior, load carrying
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capacity of structures used in aeronautical, aerospace as well as in mechanical and civil engineering. In such cases,

linear finite element models are not able to predict the structural response accurately. Hence, the development of

efficient and accurate nonlinear finite element models becomes crucial.

The geometrical nonlinear analysis of thin-walled composite beams has received considerable attention by researchers

since the development of comprehensive theory of thin-walled bars by Vlasov [1] and Gjelsvik [2]. Bauld and Tzeng

[3] presented nonlinear model for the balanced symmetric laminated composite materials by extending Gjelsvik’s

formulation. However, the formulation was somewhat not consistent in the sense that it used coordinate mapping

when developing nonlinear stresses instead of variational formulation. Gupta and Rao [4,5] developed finite element

analysis to study instability of thin-walled open-section composite beams. The nonlinear expressions for the strains

occurring in these members under axial, flexural and torsional loads, were incorporated in a general instability

analysis. A finite element formulation was developed by Stemple and Lee [6,7] to take into account the warping

effect of composite beams undergoing large deflection or finite rotation. By extending model of Bauld and Tzeng

[3], Omidvar and Ghorbanpoor [8] derived a nonlinear finite element analysis of thin-walled open-section composite

beams with symmetric lay-up based on the updated Lagrangian formulation. Fraternali and Feo [9] formulated a small

strain and moderate rotation theory of thin-walled composite beams by generalizing the classical Vlasov theory. This

beam model accounted for axial, bending, torsion and warping deformations and allowed one to predict critical loads

and initial post-buckling behavior. Rajasekaran and Nalinaa [10] presented the formulation for static, bucking and

vibration analysis of non-prismatic thin-walled composite spatial members of generic section. The theory was limited

to small strains, moderate deflections and small rotations. Bhaskar, Librescu and Song [11,12] developed non-linear

theory of thin-walled composite beams, which was employed in a broad field of engineering problems. In this model,

the transverse shear deformation was taken into account but the warping torsion component was neglected. Special

attention deserved the works of Machado, Cortinez and Piovan [13,14] who introduced a geometrically non-linear

theory for analyzing the stability of thin-walled composite beams. This model applied for both open and closed

cross-sections and took into account shear flexibility (bending and warping shear). However, it was strictly valid for

symmetric balanced laminates and especially orthotropic laminates. Sapountzakis and Panagos [15] introduced the

non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large

deflections by employing the analog equation method, a boundary element method (BEM)-based method. Cardoso

et al. [16] developed two-node Hermitean finite beam elements, with seven-degree-of-freedom per node for structural

analysis of thin-walled composite beams with geometrically nonlinear behavior, including post-critical behavior and



3

warping deformation.

In this paper, which is an extension of the authors’ previous works [17,18], a geometrically nonlinear model for

thin-walled composite beams with arbitrary lay-ups under various types of loads is presented. This model is based on

the first-order shear deformable beam theory, and accounts for all the structural coupling coming from both material

anisotropy and geometric nonlinearity. The general nonlinear governing equations are derived and solved by means

of an incremental Newton-Raphson method. A displacement-based one-dimensional finite element model with seven-

degree-of-freedom per node that accounts for the geometric nonlinearity in the von Kármán sense is developed to

solve the problem. Numerical results are obtained for thin-walled composite beam under vertical load to investigate

the effects of fiber orientation, geometric nonlinearity and shear deformation on the axial-flexural-torsional response.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate system (n, s, z) as shown in Fig.1, wherein the n axis is normal to the

middle surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line

of the cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation ψ. As

defined in Fig.1, a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z

axis is called the pole axis.

To derive the analytical model for thin-walled composite beams, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. Transverse shear strains γ◦xz, γ
◦
yz and warping shear strain γ◦ω are incorporated. It is assumed that they are

uniform over the cross-sections.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin ψ(s)− V (z) cos ψ(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos ψ(s) + V (z) sin ψ(s) + Φ(z)r(s) (1b)
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These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the midsurface shear strains in the contour can be expressed with

respect to the transverse shear and warping shear strains.

γ̄nz(s, z) = γ◦xz(z) sin ψ(s)− γ◦yz(z) cos ψ(s)− γ◦ω(z)q(s) (2a)

γ̄sz(s, z) = γ◦xz(z) cos ψ(s) + γ◦yz(z) sin ψ(s) + γ◦ω(z)r(s) (2b)

Further, it is assumed that midsurface shear strain in s− n direction is zero (γ̄sn = 0). From the definition of the

shear strain, γ̄sz = 0 can also be given for each element of middle surface as:

γ̄sz(s, z) =
∂v̄

∂z
+

∂w̄

∂s
(3)

Displacement w̄ can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z) + Ψy(z)x(s) + Ψx(z)y(s) + Ψω(z)ω(s) (4)

where Ψx,Ψy and Ψω represent rotations of the cross section with respect to x, y and ω, respectively, given by:

Ψy = γ◦xz(z)− U ′ (5a)

Ψx = γ◦yz(z)− V ′ (5b)

Ψω = γ◦ω(z)− Φ′ (5c)

When the shear deformation effect is ignored, Eq.(5) degenerates to Ψy = −U ′, Ψx = −V ′ and Ψω = −Φ′. As a

result, the number of unknown variables reduces to four leading to the Euler-Bernoulli beam model. The prime (′) is

used to indicate differentiation with respect to z and ω is the so-called sectorial coordinate or warping function given

by

ω(s) =
∫ s

s◦
r(s)ds (6)

The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by assuming the first order variation of inplane displacements

v, w through the thickness of the contour as:

u(s, z, n) = ū(s, z) (7a)

v(s, z, n) = v̄(s, z) + nψ̄s(s, z) (7b)

w(s, z, n) = w̄(s, z) + nψ̄z(s, z) (7c)
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where, ψ̄s and ψ̄z denote the rotations of a transverse normal about the z and s axis, respectively. These functions

can be determined by considering that the midsurface shear strains γ̄nz is given by definition:

γ̄nz(s, z) =
∂w̄

∂n
+

∂ū

∂z
(8)

By comparing Eq.(2) and (8), the function ψ̄z can be written as

ψ̄z = Ψy sin ψ −Ψx cos ψ −Ψωq (9)

Similarly, using the assumption that the shear strain γsn should vanish at midsurface, the function ψ̄s can be obtained

ψ̄s = −∂ū

∂s
(10)

The von Kármán type strains, in which only the products of u, v, and their derivatives are retained and all other

nonlinear terms are neglected are given by

εz(s, z, n) =
∂w

∂z
+

1
2

[(∂u

∂z

)2 +
(∂v

∂z

)2
]

(11a)

γsz(s, z, n) =
∂v

∂z
+

∂w

∂s
(11b)

γnz(s, z, n) =
∂w

∂n
+

∂u

∂z
(11c)

By substituting Eqs.(1), (4) and (7) into Eq.(11), and using the following relations

x− xp = q cos ψ + r sin ψ (12a)

y − yp = q sin ψ − r cosψ (12b)

Eq.(11) can be rewritten as

εz = ε̄z + nκ̄z + n2χ̄z (13a)

γsz = γ̄sz + nκ̄sz (13b)

γnz = γ̄nz + nκ̄nz (13c)

where

ε̄z =
∂w̄

∂z
+

1
2

[(∂ū

∂z

)2 +
(∂v̄

∂z

)2
]

(14a)

κ̄z = −∂2ū

∂z2
− 2

∂2ū

∂s∂z

∂v̄

∂z
(14b)

κ̄sz = −2
∂2ū

∂s∂z
(14c)

χ̄z =
( ∂2ū

∂s∂z

)2

(14d)
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In Eq.(14), ε̄z, κ̄z, κ̄sz and χ̄z are midsurface axial strain and biaxial curvature of the shell, respectively. The above

shell strains can be converted to beam strain components by substituting Eqs.(1), (4) and (7) into Eq.(14) as

ε̄z = ε◦z + xκy + yκx + ωκω (15a)

κ̄z = κy sinψ − κx cos ψ − κωq + 2χzr (15b)

κ̄sz = κsz (15c)

χ̄z = χz (15d)

where ε◦z, κx, κy, κω, κsz and χz are axial strain, biaxial curvatures in the x and y direction, warping curvature with

respect to the shear center, twisting and high order curvature in the beam, respectively defined as

ε◦z = W ′ +
1
2
[
U ′2 + V ′2 + (r2 + q2)Φ′2

]− xpV
′Φ′ + ypU

′Φ′ (16a)

κx = Ψ′x − U ′Φ′ (16b)

κy = Ψ′y + V ′Φ′ (16c)

κω = Ψ′ω (16d)

κsz = Φ′ −Ψω (16e)

χz =
1
2
Φ′2 (16f)

The resulting strains can be obtained from Eqs.(13) and (15) as

εz = ε◦z + (x + n sinψ)κy + (y − n cosψ)κx + (ω − nq)κω + (2rn + n2)χz (17a)

γsz = γ◦xz cosψ + γ◦yz sin ψ + γ◦ωr + nκsz (17b)

γnz = γ◦xz sinψ − γ◦yz cosψ − γ◦ωq (17c)

III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by sum of strain energy and potential energy

Π = U + V (18)

where U is the strain energy

U =
1
2

∫

v

(σzεz + σszγsz + σnzγnz)dv (19)
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The strain energy is calculated by substituting Eq.(17) into Eq.(19)

U =
1
2

∫

v

{
σz

[
ε◦z + (x + n sinψ)κy + (y − n cosψ)κx + (ω − nq)κω + (2rn + n2)χz

]

+ σsz

[
γ◦xz cosψ + γ◦yz sin ψ + γ◦ωr + nκsz

]
+ σnz

[
γ◦xz sin ψ − γ◦yz cos ψ − γ◦ωq

]}
dv (20)

The variation of the strain energy, Eq.(20), can be stated as

δU =
∫ l

0

(Nzδεz + Myδκy + Mxδκx + Mωδκω + Vxδγ◦xz + Vyδγ◦yz + Tδγ◦ω + Mtδκsz + Rzδχz)dz (21)

where Nz,Mx,My,Mω, Vx, Vy, T, Mt and Rz are axial force, bending moments in the x and y directions, warping

moment (bimoment), shear force in the x and y directions, warping torque, torsional moment and the high order

stress resultant with respect to the centroid respectively, defined by integrating over the cross-sectional area A as

Nz =
∫

A

σzdsdn (22a)

My =
∫

A

σz(x + n sin ψ)dsdn (22b)

Mx =
∫

A

σz(y − n cosψ)dsdn (22c)

Mω =
∫

A

σz(ω − nq)dsdn (22d)

Vx =
∫

A

(σsz cos ψ + σnz sin ψ)dsdn (22e)

Vy =
∫

A

(σsz sin ψ − σnz cos ψ)dsdn (22f)

T =
∫

A

(σszr − σnzq)dsdn (22g)

Mt =
∫

A

σszndsdn (22h)

Rz =
∫

A

σz(2rn + n2)dsdn (22i)

The variation of the strain energy can be obtained by substituting Eqs.(16) and (17) into Eq.(21)

δU =
∫ l

0

[
NzδW

′ + MyδΨ′y + MxδΨ′x + MωδΨ′ω + Vxδ(U ′ + Ψy) + Vyδ(V ′ + Ψx)

+ Tδ(Φ′ + Ψω) + Mtδ(Φ′ −Ψω) + Nz(U ′δU ′ + V ′δV ′)

+ (My − xpNz)(V ′δΦ′ + Φ′δV ′)− (Mx − ypNz)(U ′δΦ′ + Φ′δU ′) + (r2
pNz + Rz)Φ′δΦ′

]
dz (23)

On the other hand, the variation of work done by external forces can be written as

δV = −
∫

v

(pzδw + pnδu + psδv)dv (24)

where pz, pn, ps are forces acting in z, n and s direction.
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The above expression can be written with respect to the shell forces and displacements by using Eq.(7)

δV = −
∫ l

0

∫

s

(p̄zδw̄ + p̄nδū + p̄sδv̄ + m̄zψ̄z + m̄sψ̄s)dsdz (25)

where p̄z, p̄s, m̄z, m̄s, p̄n are shell forces defined by

(p̄z, m̄z) =
∫

n

pz(1, n)dn (26a)

(p̄s, m̄s) =
∫

n

ps(1, n)dn (26b)

p̄n =
∫

n

pndn (26c)

After substituting Eqs.(1) and (4) into Eq.(25), the variation of the work done by the external forces can be written

with respect to the bar forces

δV = −
∫ l

0

(PzδW + VxδU +MyδΨy + VyδV +MxδΨx + T δΦ +MωδΨω)dz (27)

where the bar forces are related to the shell forces as

Pz =
∫

s

p̄zds (28a)

Vy =
∫

s

(p̄s sin ψ − p̄n cosψ)ds (28b)

Vx =
∫

s

(p̄s cosψ + p̄n sin ψ)ds (28c)

T =
∫

s

(p̄sr − p̄nq + m̄s)ds (28d)

My =
∫

s

(m̄z sin ψ + p̄zx)ds (28e)

Mx =
∫

s

(−m̄z cos ψ + p̄zy)ds (28f)

Mω =
∫

s

(−m̄zq + p̄zω)ds (28g)

Using the principle that the variation of the total potential energy is zero, the weak form of the present theory for

thin-walled composite beams is given by

0 =
∫ l

0

[
NzδW

′ + MyδΨ′y + MxδΨ′x + MωδΨ′ω + Vxδ(U ′ + Ψy) + Vyδ(V ′ + Ψx)

+ Tδ(Φ′ + Ψω) + Mtδ(Φ′ −Ψω) + Nz(U ′δU ′ + V ′δV ′)

+ (My − xpNz)(V ′δΦ′ + Φ′δV ′)− (Mx − ypNz)(U ′δΦ′ + Φ′δU ′) + (r2
pNz + Rz)Φ′δΦ′

− PzδW − VxδU −MyδΨy − VyδV −MxδΨx − T δΦ−MωδΨω

]
dz (29)
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IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by





σz

σsz





k

=




Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66




k 



εz

γsz





(30)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (εs = 0) assumption. More detailed

explanation can be found in Ref.[19].

The constitutive relation for out-of-plane stress and strain is given by

σnz = Q̄55γnz (31)

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(17), (22) and (30)




Nz

My

Mx

Mω

Mt

Vx

Vy

T

Rz





=




E11 E12 E13 E14 E15 E16 E17 E18 E19

E22 E23 E24 E25 E26 E27 E28 E29

E33 E34 E35 E36 E37 E38 E39

E44 E45 E46 E47 E48 E49

E55 E56 E57 E58 E59

E66 E67 E68 E69

E77 E78 E79

E88 E89

sym. E99








ε◦z

κy

κx

κω

κsz

γ◦xz

γ◦yz

γ◦ω

χz





(32)

where Eij are the laminate stiffnesses of thin-walled composite beams. (Ei,9 i = 1..9) can be defined by

E19 =
∫

s

(2rB11 + D11)ds (33a)

E29 =
∫

s

[
2rxB11 + D11(x + 2r sin ψ) + F11 sinψ

]
ds (33b)

E39 =
∫

s

[
2ryB11 + D11(y − 2r cosψ)− F11 cosψ

]
ds (33c)

E49 =
∫

s

[
2rωB11 + D11(ω − 2rq)− F11q

]
ds (33d)

E59 =
∫

s

(2rD16 + F16)ds (33e)

E69 =
∫

s

(2rB16 + D16) cos ψds (33f)
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E79 =
∫

s

(2rB16 + D16) sin ψds (33g)

E89 =
∫

s

(2rB16 + D16)rds (33h)

E99 =
∫

s

(4r2D11 + 4rF11 + H11)ds (33i)

where Aij , Bij , Dij are the extensional, coupling, bending stiffness matrices and Fij ,Hij are the higher order stiffness

matrices, respectively, defined by

(Aij , Bij , Dij , Fij ,Hij) =
∫

Q̄ij(1, n, n2, n3, n4)dn (34)

Other values of the laminate stiffnesses Eij can be found in Ref.[17].

V. GOVERNING EQUATIONS

The nonlinear equilibrium equations of the present study can be obtained by integrating the derivatives of the

varied quantities by parts and collecting the coefficients of δW, δU, δV, δΦ, δΨy, δΨx and δΨω

N ′
z + Pz = 0 (35a)

V ′
x + [Nz(U ′ + ypΦ′)]′ − [MxΦ′]′ + Vx = 0 (35b)

V ′
y + [Nz(V ′ − xpΦ′)]′ + [MyΦ′]′ + Vy = 0 (35c)

M ′
t + T ′ + [Nz(r2

pΦ′ + ypU
′ − xpV

′)]′ + [MyV ′]′ − [MxU ′]′ + [RzΦ′]′ + T = 0 (35d)

M ′
y − Vx +My = 0 (35e)

M ′
x − Vy +Mx = 0 (35f)

M ′
ω + Mt − T +Mω = 0 (35g)

The natural boundary conditions are of the form

δW : Nz (36a)

δU : Vx + Nz(U ′ + ypΦ′)−MxΦ′ (36b)

δV : Vy + Nz(V ′ − xpΦ′) + MyΦ′ (36c)

δΦ : T + Mt + Nz(r2
pΦ′ + ypU

′ − xpV
′) + MyV ′ −MxU ′ + RzΦ′ (36d)

δΨy : My (36e)

δΨx : Mx (36f)

δΨω : Mω (36g)
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Eq.(36g) denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Ψω = 0 and when the warping is not restrained, Mω = 0.

By substituting Eqs.(16) and (32) into Eq.(35), the explicit form of the governing equations can be expressed with

respect to the laminate stiffnesses Eij . Eq.(35) is the most general nonlinear equations for axial, flexural, torsional

and shearing behavior of thin-walled composite beams under various types of loads, and the dependent variables, W ,

U , V , Φ, Ψx, Ψy and Ψω are fully coupled.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a one-

dimensional displacement-based finite element method. The linear, quadratic and cubic elements with seven degrees

of freedom at each node are derived. The same interpolation function is used for all the translational and rotational

displacements. The generalized displacements are expressed over each element as a combination of the one-dimensional

Lagrange interpolation function φ̂j associated with node j and the nodal values

W =
n∑

j=1

wj φ̂j (37a)

U =
n∑

j=1

uj φ̂j (37b)

V =
n∑

j=1

vj φ̂j (37c)

Φ =
n∑

j=1

φj φ̂j (37d)

Ψy =
n∑

j=1

ψyj φ̂j (37e)

Ψx =
n∑

j=1

ψxj φ̂j (37f)

Ψω =
n∑

j=1

ψωj φ̂j (37g)

where n is the number of nodes in an element and Lagrange interpolation function φ̂j for linear, quadratic and cubic

elements are available in the literature.

Substituting these expressions into the weak statement in Eq.(29), the finite element model of a typical element

can be expressed as

[
K({∆})]{∆} = {f} (38)
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The nonlinear algebraic equations of present theory are solved by an iterative method. Thus, the nonlinear equa-

tions are linearized by evaluating the nonlinear terms with the known solution from preceding iterations. The

Newton−Raphson method that uses the tangent stiffness matrix, which is symmetric for all structural problems,

is used in this study. By using this method, solution of Eq.(38) results in the following linearized equations for the

incremental solution at the rth iteration (Reddy [20])

[
T{∆}r−1

]{∆} = {f} − ([K]{∆}r−1 (39)

where the tangent stiffness matrix is defined by

Tαβ
ij =

∂Kαγ
ik

∂uβ
j

uγ
k + Kαβ

ij (40)

In Eq.(38), {∆} is the unknown nodal displacements

{∆} = {W U V Φ Ψy Ψx Ψω}T (41)

VII. NUMERICAL EXAMPLES

Throughout the numerical examples, a tolerance of ε = 10−3 and maximum allowable iterations of 20 (per load

step) are used to check for the convergence of nodal displacements in the Newton−Raphson iteration scheme. The

initial solution vector is chosen to be the zero vector, so that the first iteration solution corresponds to the linear

solution. Plane stress assumption (σs = 0) is used in the numerical computation.

For verification purpose, the buckling behavior of a cantilever and simply supported symmetrically laminated mono-

symmetric I-beam with length L = 1.0m under axial force at the centroid is performed. The top and bottom flange

widths are 30mm and 50mm and web height are 50mm, respectively. The flanges and web are made of sixteen layers

with each layer 0.13mm in thickness. All computations are carried out for the glass-epoxy materials with the following

material properties: E1 = 53.78GPa , E2 = E3 = 17.93GPa , G12 = G13 = 8.96GPa , G23 = 3.45GPa , ν12 = 0.25.

The critical buckling loads obtained from present model are compared with those of Kim et al. [21] and Vo and

Lee [22], which are based on the linear bifurcation buckling analysis and ABAQUS solution [23]. The results of the

different methods are found to be in a good agreement in Table I. Load versus the lateral displacement of two fiber

angles θ = 30◦ and 60◦ in the flanges and web with different values of initial loading imperfections in x-direction

(Vx = 0.5 × 10−3Vz, 1.0 × 10−3Vz and 2.5 × 10−3Vz) are plotted in Figs. 2 and 3. These load-displacement curves

monotonically increase and approach a linear bifurcation buckling load, which is characteristic of an incipient limit-
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point response of the beam. This response is also justified by the fact that the value of the limit-point load decreases

with increasing imperfection amplitude.

In order to demonstrate the accuracy of this study further, a cantilever doubly symmetric composite I-beam with

length L = 0.5m under a tip vertical load P=2000N at the free end is investigated. Lay-ups and material properties

are the same with previous example except the geometry of I-section. Both of flanges width and web height are

50mm. For comparison, the axial and vertical displacements at the free end by this study and the results by 600

nine-noded ABAQUS’s shell elements (S9R5) are presented. The accuracy of the prediction from present model with

the ABAQUS solution can be seen again in Table II for all lamination schemes considered.

A pinned-hinged composite I-beam of length L = 2m under an eccentric uniform load q acting at the left of the top

flange is considered in order to investigate the effects of fiber orientation, geometric nonlinearity and shear deformation

on the axial-flexural-torsional response. The geometry and stacking sequence of composite I-beam is shown in Fig.4

and the following engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, G12 = G13 = G23, ν12 = 0.25 (42)

For convenience, the following nondimensional values of the axial, lateral, vertical displacement and load parameter

are used

w =
w

b2
(43a)

u =
w

b2
(43b)

v =
v

b2
(43c)

q =
qL4

E2b3
2t

(43d)

Stacking sequence of this beam consists of four layers with equal thickness as follows: [θ/ − θ]s at the bottom

flange and unidirectional at the web and top flange, respectively. Although the lay-up of each flange and web is

locally symmetric, the behavior of global section is unsymmetrical and thus, the coupling stiffnesses E19 and E68

do not vanish. Accordingly, this beam sustains two kinds of couplings from material anisotropy and geometric

nonlinearity simultaneously. The load with increment of ∆q = 0.015 is increased until the first critical point is

reached. It can be observed in Fig.5 that the highest load decreases monotonically with the increasing of fiber angle

and is about eight times when fiber angle is varied from θ = 0◦ to θ = 90◦. Based on the result of this figure,

an applied load q = 1.75 is chosen to show effect of fiber orientation on the axial-flexural-torsional response. The

solution of the linear analysis is also presented to highlight the difference between linear and nonlinear response.
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Axial and horizontal displacements with respect to fiber angle variation are plotted in Fig.6. It should be noted that

no linear axial and lateral displacements w, u are seen for all fiber angles because they are decoupled with vertical

and torsional load. The vertical displacement with respect to fiber angle variation is demonstrated in Fig.7. By

using a combination of one-dimensional linear Lagrange and Hermite-cubic interpolation function in finite element

formulation, the results obtained from previous research [24] based on the classical beam theory are also displayed.

The discrepancy of vertical displacement due to the shear deformation effect is remarkable and should not be ignored

in nonlinear analysis especially for the higher fiber angles. As fiber angle is less than θ = 30◦, the vertical displacement

of linear and nonlinear analysis coincides. However, as the fiber angle increases, since the geometrical nonlinear effect

is prominent, the discrepancy between the linear and nonlinear analysis becomes significant. From the aforementioned

figures, it can be observed that the difference between displacements of two analyzes is minimum at fiber angle θ = 0◦

and reaches maximum value at θ = 90◦. This phenomenon can be explained that the axial, flexural, torsional and

shearing rigidities decrease significantly with increasing fiber angle, and thus, the relative geometrical nonlinear effect

becomes larger for the higher fiber angles.

To investigate the geometrical nonlinear effect further, the same configuration with the previous example except in

this case, the stacking sequence at two specific fiber angles θ = 45◦ and 90◦ is considered to study the effects of load

parameter on the displacements in the high nonlinear region. Load versus the vertical and torsional displacement

of two fiber angles are shown in Figs.8 and 9. It is evident that linear analysis is not able to predict accurately

the structural response where the applied load is larger than q = 1.0 for fiber angle θ = 90◦ and 1.5 for fiber angle

θ = 45◦, respectively. It is noteworthy that the results by nonlinear analysis are always larger than those of linear

one. This is due to the fact that the geometrical nonlinear effect causes the axial-flexural-torsional-shearing coupling

which results in a decrease in the flexural and torsional stiffness of the beam. The significant influence of the nonlinear

analysis effect is easily verified with increasing load intensity. At the highest load of fiber angle θ = 45◦, the nonlinear

vertical and torsional displacements are about 165% and 125% of the linear values. Figs.10 and 11 clearly highlight

the influence of geometrical nonlinear effect on the axial and lateral displacement of beam. These responses are never

seen in linear analysis, as expected. It implies that a thin-walled composite beam under an eccentric transverse load

not only causes the transverse displacement and angle of twist as would be observed in linear case, but also causes

two additional responses due solely to geometric nonlinearity which does not occur in linear case.
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VIII. CONCLUDING REMARKS

A geometrical nonlinear analysis of thin-walled composite beams with arbitrary lay-ups under various types of loads

is presented. This model is based on the first-order shear deformable beam theory, and accounts for all the structural

coupling coming from both material anisotropy and geometric nonlinearity. The general nonlinear governing equations

are derived and solved by means of an incremental Newton-Raphson method. A displacement-based one-dimensional

finite element model with seven-degree-of-freedom per node that accounts for the geometric nonlinearity in the von

Kármán sense is developed. Numerical results are obtained to investigate the effects of fiber orientation, geometric

nonlinearity and shear deformation on the axial-flexural-torsional response. The shear effects become significant for

lower span-to-height ratio. The present model is found to be appropriate and efficient in analyzing geometrically

nonlinear behavior of thin-walled composite beams under external loads.
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CAPTIONS OF TABLES

Table I: Critical bucking loads (N) of a cantilever and simply supported mono-symmetric composite I-beam with

symmetric angle-ply laminates in the flanges and web.

Table II: The tip axial and vertical displacements of a cantilever doubly symmetric composite I-beam with symmetric

angle-ply laminates in the flanges and web under a vertical load P= 2000N at free end.
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates and generalized displacements in thin-walled open-sections.

Figure 2: Load versus the lateral displacement at mid-span of a simply supported mono-symmetric composite

I-beam under different values of initial loading imperfections with the fiber angles 30◦ and 60◦ in the flanges and web.

Figure 3: Load versus the lateral displacement at free end of a cantilever mono-symmetric composite I-beam under

different values of initial loading imperfections with the fiber angles 30◦ and 60◦ in the flanges and web.

Figure 4: A pinned-hinged composite I-beam under an eccentric uniform load.

Figure 5: Variation of the highest load with respect to fiber angle change in the bottom flange of a pinned-hinged

composite I-beam under an eccentric uniform load.

Figure 6: Variation of axial and horizontal displacement at mid-span with respect to fiber angle change in the

bottom flange of a pinned-hinged composite I-beam under an eccentric uniform load.

Figure 7: Variation of the vertical displacement at mid-span with respect to fiber angle change in the bottom flange

of a pinned-hinged composite I-beam under an eccentric uniform load.

Figure 8: Load versus the vertical displacement at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angles 45◦ and 90◦ in the bottom flange.

Figure 9: Load versus the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angles 45◦ and 90◦ in the bottom flange.

Figure 10: Load versus the axial displacement at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angles 45◦ and 90◦ in the bottom flange.

Figure 11: Load versus the horizontal displacement at mid-span of a pinned-hinged composite I-beam under an

eccentric uniform load with the fiber angles 45◦ and 90◦ in the bottom flange.
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TABLE I Critical bucking loads (N) of a cantilever and simply supported mono-symmetric composite I-beam with symmetric

angle-ply laminates in the flanges and web.

Lay-ups Cantilever beam Simply supported beam

Kim et al. [21] Vo and Lee [22] Present Vo and Lee [22] Present

ABAQUS Theory

[0]16 2969.7 2998.2 2993.2 2992.0 8918.1 8916.0

[15/− 15]4s 2790.9 2811.8 2803.6 2802.0 8587.7 8586.0

[30/− 30]4s 2190.6 2199.7 2184.7 2184.0 7187.1 7186.0

[45/− 45]4s 1558.9 1561.9 1546.0 1544.0 5352.0 5350.0

[60/− 60]4s 1239.4 1241.3 1277.8 1228.0 4291.9 4290.0

[75/− 75]4s 1132.2 1134.5 1126.7 1126.0 3898.4 3898.0

[90/− 90]4s 1106.8 1106.0 3893.4 3892.0
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TABLE II The tip axial and vertical displacements of a cantilever doubly symmetric composite I-beam with symmetric angle-

ply laminates in the flanges and web under a vertical load P= 2000N at free end.

Lay-ups Formulation W (cm) V (cm)

[0]16 ABAQUS -0.152 11.414

Present -0.133 10.569

[15/− 15]4s ABAQUS -0.177 12.300

Present -0.161 11.649

[30/− 30]4s ABAQUS -0.300 15.921

Present -0.288 15.561

[45/− 45]4s ABAQUS -0.605 22.528

Present -0.597 22.364

[60/− 60]4s ABAQUS -0.965 28.422

Present -0.953 28.250

[75/− 75]4s ABAQUS -1.153 31.088

Present -1.126 30.724

[90/− 90]4s ABAQUS -1.202 31.758

Present -1.163 31.235
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FIG. 1 Definition of coordinates and generalized displacements in thin-walled open-sections.
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FIG. 2 Load versus the lateral displacement at mid-span of a simply supported mono-symmetric composite I-beam under

different values of initial loading imperfections with the fiber angles 30◦ and 60◦ in the flanges and web.
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FIG. 3 Load versus the lateral displacement at free end of a cantilever mono-symmetric composite I-beam under different

values of initial loading imperfections with the fiber angles 30◦ and 60◦ in the flanges and web.
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FIG. 4 A pinned-hinged composite I-beam under an eccentric uniform load.
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FIG. 5 Variation of the highest load with respect to fiber angle change in the bottom flange of a pinned-hinged composite

I-beam under an eccentric uniform load.
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FIG. 6 Variation of axial and horizontal displacement at mid-span with respect to fiber angle change in the bottom flange of

a pinned-hinged composite I-beam under an eccentric uniform load.
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FIG. 7 Variation of the vertical displacement at mid-span with respect to fiber angle change in the bottom flange of a pinned-

hinged composite I-beam under an eccentric uniform load.
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FIG. 8 Load versus the vertical displacement at mid-span of a pinned-hinged composite I-beam under an eccentric uniform

load with the fiber angles 45◦ and 90◦ in the bottom flange.
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FIG. 9 Load versus the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric uniform load with

the fiber angles 45◦ and 90◦ in the bottom flange.



30

0

0.5

1

1.5

2

2.5

3

3.5

0 0.003 0.006 0.009 0.012 0.015

q

w

Nonlinear, θ = 45◦

?

?

?

?

?

?
?

?
?

?
?

?
?

? ? ? ? ? ? ? ? ? ? ? ?

?
Nonlinear, θ = 90◦

FIG. 10 Load versus the axial displacement at mid-span of a pinned-hinged composite I-beam under an eccentric uniform load

with the fiber angles 45◦ and 90◦ in the bottom flange.
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FIG. 11 Load versus the horizontal displacement at mid-span of a pinned-hinged composite I-beam under an eccentric uniform

load with the fiber angles 45◦ and 90◦ in the bottom flange.


