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ABSTRACT

The central theme of the work undertaken in this thesis involved modelling 

of diffusion – numerical and microstructural – occurring during high temperature 

exposure of selected materials and coatings. 

The materials and coatings and their high temperature treatments included 

carburization of steel (nonsteady-state diffusion of iron carburized at 950o C after 

7.1 hours), a two component Cu-Ni diffusion couple subjected to diffusion anneal at 

1054oC   for 300 hours, a three component Pt-Ni-Al solid alloy subjected to 

oxidation and diffusion anneal, Multicomponent Ni -aluminide and Pt-aluminide 

coatings on MAR M002 subjected to 150 hours of diffusion treatment at 

temperature 1273K, a Ir and Ir/Pt Low-activity aluminide / MAR M002 system at 

1100oC after 100 hours, aluminise coating on low alloy steels at 650oC, Innovatial 

coatings- Ti45Al8Nb coated with Al2Au subjected to air oxidation at 750oC for 1000 

hours, and Ti45Al8Nb coated with TiAlCrY subjected to air oxidation at 750oC for 

500 hours. 

Such coatings are being increasingly used to protect materials against high 

temperature (600-1000oC) degradation by oxidation. The demands for using such 

coatings have arisen because of the need to increase the efficiency by increasing the 

operation temperature in many areas of technological applications such as power 

operation, aero engines, and energy conversion systems and in processing 

industries. However the one of the major obstacles to use these coatings to prevent 

high temperature oxidation of materials is the degradation of the coatings due to the 

coating/substrate interdiffusion. Interdiffusion of critical elements from the coating 

to the substrate will deplete the protective scale forming elements in the coating. 



Equally the diffusion of rogue elements from the substrate to the coating will 

undermine the coatings efficacy by initiating precipitation of the critical elements 

and by promoting stress generation within the coatings. 

Such considerations clearly show the need for modelling of interdiffusion in 

order to predict the changes in composition and to calculate the coating life time. 

Numerical modelling (main part of this thesis) was done by RK method with 

GAs method applied to optimise diffusion coefficients allowing prediction of 

composition profiles following coating substrate interdiffusion during diffusion 

anneals, oxidation treatments and coating fabrications. Microstructural modelling 

was constructed from the information on changes in morphologies, composition 

profiles and phase contents. Microstructural modelling aided the interpretation of 

the results produced by numerical modelling.  

Finally it is important to note that in general the model prediction improved 

when all the terms in the diffusion matrix and their composition dependence were 

taken into account in calculation. 
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CHAPTER ONE 

 
 
1.1. Introduction  
 
 

Diffusion occurs in most areas of the physical and chemical world. Most processes 

in this universe involve diffusion. 

A simple example of diffusion is observed when or droplet of ink is placed without 

stirring at the bottom of a container filled with water, the colour will slowly spread 

through the container. At the beginning, it will be concentrated near the bottom. After 

certain time it will spread and the solution will be coloured homogeneously. The 

process responsible for the movement of the coloured material is diffusion. Here 

diffusion is caused by the Brownian motion of atoms or molecules leading to the mixing 

process. In gases, diffusion progresses at a rate of centimetres per second; in liquids, its 

rate is typically fractions of millimetres per second; in solids, diffusion is a fairly slow 

process and the rate of diffusion decreases strongly with reducing the temperature: near 

the melting temperature of a metal a typical rate is about one micrometer per second; 

near half of the melting temperature it is only of the order of nanometres per second.  

In solids diffusion occurs by vacancy, interstitial and substitutional exchanges. 

 

1.2. Vacancy Diffusion    

 This mechanism involves the exchange of an atom from the normal lattice 

location to an adjacent vacant lattice site or a vacancy, as represented schematically in 

Figure 1.1.  
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(a) 

 

(b) 

             

 (c) 

Figure 1.1 a) Shows a copper-nickel diffusion couple before it is subjected to the high-

temperature heat treatment,  b) Shows a schematic representation of Cu (circles) and Ni 

(squares) atoms sites inside the diffusion couple,  c) Explains the copper and nickel 

concentrations as a function of position across the couple (step function) at time t=0 

 

     Since diffusing atoms and vacancies exchange positions, the diffusion of atoms in 

one direction corresponds to the motion of vacancies in the opposite direction. This 

mechanism can be explained in the following Figure: 

Cu                                        Ni 
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Figure 1.2 Vacancy diffusion [1] 

  

1.3. Interstitial Diffusion 

 

The other type of diffusion involves atoms that migrate from an interstitial position 

to a neighbouring one that is vacant. This mechanism is found for interdiffusion of 

impurities such as hydrogen, carbon, nitrogen, and oxygen, which have atoms that are 

small enough to fit into the interstitial positions as described in the following Figure: 

 

 

Figure 1.3 Interstitial diffusion [1] 
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1.4. Substitutional Diffusion 

 

Substitutional diffusion applies to substitutional impurities. Atoms exchange with 

vacancies and the rate depends on the number of vacancies and on the activation energy 

to exchange  

The following Figure shows this mechanism: 

 

 

Figure 1.4 Substitutional diffusion [1] 

 

Therefore diffusion involves mass transport of materials from one part of the system 

to another part as a result of random molecular motion. Many reactions and processes 

that are significant in the treatment of materials rely on the transfer of mass either 

within a solid or from a liquid, a gas, or another solid phase. Diffusion is the movement 

of particles from an area of high concentration to an area of low concentration in a given 

volume.  

This thesis is concerned with studies of diffusion in solids: 

• Diffusion simply to take place between two points in a stepwise manner 

(transport of material by moving atoms); 

• Two conditions need to be satisfied: 

1) The presence of an empty adjacent site; 
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2) The atom has a sufficient energy (heat and concentration gradient) in 

order to break the bonds with its neighbour atoms to produce some 

lattice distortion during the movement. 

 

      Consequently mechanical properties are the primary attention of the physical 

metallurgist. Most chemical, physical and mechanical changes in materials take place 

by diffusion. So diffusion plays a critical role in 

• alloying metals, bronze, silver, and gold; 

• strengthening and heat treatment processes, (hardening the surfaces of steel); 

• high temperature mechanical behaviour; 

• phase transformations, (mass transport during FCC to BCC); 

• environment degradation, (corrosion, etc.). 

 

1.5. Self Diffusion  

      Self-diffusion coefficient is the diffusion coefficient of species when the chemical 

potential gradient equals zero, i.e. in elemental solid, atoms also migrate. Diffusion is a 

function of time temperature and concentration gradient.  

 

1.6. Interdiffusion 

 

In the alloy the atoms tend to migrate from regions of large concentration as shown 

below:    
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Initially 

  

 

After some time 
 

 
 
 
 
 

 
 

 

  

 

 

Figure (1.5) Interdiffusion Phenomena 

 

 

Figure 1.5 Interdiffusion phenomena 

100%

Concentration Profiles
0

Cu Ni



 8  

      At a specific time not all the atoms vibrate at the same frequency and amplitude, or 

have the same energy. For a given temperature there will be a distribution of energies 

for the constituent atoms about an average energy. This average energy will increase 

with temperature.  

       The main theme of this thesis is to model quantitatively diffusion processes in 

solids at elevated temperature. Progress in the area of materials science has been 

hampered due to the lack of application of numerical modelling. In recent years 

computational materials science (CMC) has gained much attention. The work 

undertaken in this research falls under this CMC. 

 

1.7. Aims and Objectives 

 

       This work addresses more specifically diffusion studies and modelling in various 

coating systems, in both closed (diffusion annealing) and open systems (oxidation).    

The main objectives of this work are to: 

• study diffusion in selected materials and coating systems; 

• understand the processes of diffusion (in the selected system) in terms their 

microstructural description / modelling; 

• provide explanation of scale formation through consideration of kinetic 

(diffusion ) and thermodynamic factors(free energy); 

• the key objective has been to model quantitatively the diffusion processes 

involved using numerical technique. 

      In the area of diffusion modelling it is important to note that most of the work in the 

area of diffusion has so far been concerned with single or two component systems.  

However in real situations most materials and coating systems are multicomponent. 

Until recently [1] not many studies of diffusion have been undertaken in 
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multicomponent systems.  Until now, even in multicomponent systems diffusion 

equations have been solved using Darken’s method. There are various limitations of 

Darken’s method; 

• Darken’s method does not allow the consideration of the cross terms in a 

diffusion matrix; 

• It also can not take into account the concentration dependence of D; 

• Darken method uses only the diagonal terms in the diffusion matrix. 

 
The numerical method used here overcomes these limitations. 

 The systems studied included: 1) Carburization of iron (at 950oC). 2) Cu-Ni alloys. 

3) Three component NiPt − - aluminide system.4) Multicomponent NiPt − -

aluminide coatings on MAR M002. 5) Studies of Ir low-activity aluminide / MAR 

M002 system: assessment of the oxidation resistance and microstructural of diffusion 

process involved at 1100oC. 6) Formation of aluminised coatings on low alloy steels at 

650oC.  7) Four component TiAlTiAlCrY /  system (subjected to oxidation at 850oC), 

TiAlAuAl /2   (subjected to oxidation at 750oC). 

 This thesis has been structured in nine chapters. Chapter 1 gives the introduction 

to the thesis background knowledge on diffusion behaviour and reported diffusion 

behaviour in metallic alloys is presented in chapter 2. Design, development, preparation 

and microstructure analysis of the coating systems considered is shown in chapter 3.  

Mathematics of diffusion, relevant laws to Runge-Kutta method are given in chapter 4. 

In chapter 5 outlines of Genetic Algorithms method (GAs), fminbnd, and Simplex 

search method are presented. The results, (the diffusion coefficients and the numerical 

concentration profiles), for all the components contained in the systems are included in 

chapter 6. General discussion, which outlines the advantage of using GAs method, 

including all the diffusion matrix terms, and concentration dependent diffusion 
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coefficients are integrated in chapter 7. Chapter 8 includes conclusions from the present 

work and future areas of research based on the outcomes derived from this thesis. 
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CHAPTER TWO 

 

The literature Review is presented in two sections: 

In the first section a review of some of the background information on diffusion in 

solids is discussed. The contents of this section illustrate the development of theories of 

diffusion. The second section deals with some reported work on diffusion problems and 

analyses to the present work.  

 

2.1. Background knowledge on Diffusion behaviour  
 
2.2. History and Bibliography of Diffusion 

 
The science of diffusion in solids had its beginnings in the 19th century. Diffusion 

science is based on several points. The most important ones are [1]:  

• The continuum theory of diffusion originated from work of the German scientist 

Adolf Fick, who was inspired by elegant experiments on diffusion in gases and 

of salt in water carried out by Thomas Graham in Scotland; 

• Brownian motion was detected by the Scotish botanist Robert Brown. This 

phenomenon was interpreted many decades later by Albert   Einstein. His theory 

provided the statistical keystone of diffusion and bridged the gap between 

mechanics and thermodynamics. 

Diffusion experimental studies were performed the first time by Thomas Graham 

(1805–1869). In one of his articles he clearly stated what we now call Graham’s law: 

‘The diffusion or spontaneous intermixture of two gases is effected by an interchange in 

position of indefinitely tiny volumes of the gases, where volumes are not of equal 

magnitude, in the case of each gas, which is inversely proportional to the square root of 

the density of that gas.’ The crucial point about Graham’s work on diffusion in gases 
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was that it could be understood by the kinetic theory of gases developed by Maxwell 

and Clausius shortly after the middle of the 19th century. Graham’s law can be 

attributed to the equipartition of kinetic energies between molecules with different 

molecular masses. In this way diffusion was connected with the thermal motion of 

atoms or molecules, and the idea of the mean free path entered into science. Graham 

also extended his studies to diffusion of salts in liquids [2] and to the uptake of 

hydrogen in metals. He showed that diffusion in liquids was at least several thousand 

times slower than in gases. The next major advance in the field of diffusion came from 

the work done by Adolf  Eugen Fick (1829–1901). 

 
 

2.3. Introduction to Interdiffusion Theory 

 

In an ionic lattice, such as that of Ag2S or FeO, the migration velocity of the anion 

may differ clearly from that of the cation, the cation being more mobile [2]. Also 

investigation of solid solutions of various salts shows that there is usually considerable 

difference in the mobility of the different cations. Measurements of the mobility of 

various metals in liquid mercury show that various metals move at different rates 

relative to the mercury. Therefore in any single phase solution, the atoms of different 

elements react in different ways. In particular the force arising from a particular 

concentration gradient in a binary alloy would cause the atoms of one component to 

move with a drift velocity different from that of the atoms of the other component. 

 

2.4. Continuum Theory of Diffusion 

 

The equations leading diffusion processes are Fick’s laws. These laws correspond to 

a continuum description and are purely phenomenological. The original work of Adolf 
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Fick was completed in 1855 [3] and explained a salt-water system undergoing diffusion. 

Fick set up the idea of the diffusion coefficient and suggested a linear response between 

the concentration gradient and the mixing of salt and water. Previously, in 1807 Josef 

Fourier had developed a similar relation between the flow of heat and the temperature 

gradient [4]. Fick’s laws describe the diffusive transport of matter as an experimental 

fact without stating that it derives from basic concepts. It is, however, indicative of the 

power of Fick’s continuum description that all subsequent developments have in no way 

affected the validity of his approach. Diffusion in solids is based on random walk theory 

and on the atomic mechanisms of diffusion. 

 

2.5. Interdiffusion  

 

In multi-component solid solutions (single phase alloys) the atoms of a particular 

element can migrate from one position to another according to the concentration 

gradients of the elements. Diffusing atoms have different chemical environments and 

therefore have different diffusion coefficients. The composition-dependent diffusivity is 

usually denoted as the interdiffusion coefficient. Therefore the phenomenon of 

interdiffusion between dissimilar materials in contact with each other is of interest to 

materials scientists. The symbol 
~
D  indicates that the diffusion coefficient is 

concentration-dependent (interdiffusion or chemical diffusion coefficient). Fick’s 

second law applies when D depends on concentration; 

 

)( CD
t
C

∇•∇=
∂
∂

        (2.1) 

Then  
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The symbol 
~
D  indicates that the diffusion coefficient is concentration-dependent 

(interdiffusion or chemical diffusion coefficient).  

 

2.6. Boltzmann Transformation 

 

In 1894 Ludwig Boltzmann [3] showed that the nonlinear partial differential 

equation (equation 2.2) can be transformed to a nonlinear but ordinary differential 

equation if 
~
D  is a function of C(x) alone. He introduced the variable 

 

t
xx M

2
−

≡η          (2.3) 

which is a mixture of the space and time variables x and t, respectively. Mx  corresponds 

to a special position plane-the so called Matano plane – to be defined below. Applying 

chain-rule differentiation to equation (2.2), we obtain the following identity: 
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The operative on the left-hand side of equation 2.2 is: 
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and on the right-hand side of equation 2.2 in terms of  η  is: 
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By recombining left- and right-hand sides and using the Boltzmann variable, Fick’s 

second law as an ordinary differential equation for C (η) becomes as follows: 
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       (2.8) 

 

Some authors omit the factor 2 in the definition equation 2.3 of η . Then, a factor of 1/2 

instead of 2 appears in the equation corresponding to equation 2.8. 

 

2.6.1. Boltzmann-Matano Method 

 

 
The Boltzmann-transformed description of Fick’s second law equation 2.8 is a 

nonlinear ordinary differential equation. This equation led us to assume the 

concentration-dependent interdiffusion coefficient from an experimental concentration-
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depth profile )(xC . The suitable boundary conditions for an interdiffusion experiment 

have been recommended by the Japanese scientist Matano in 1933 [5]. He measured a 

binary diffusion couple, consisting of two semi-infinite bars joined at time t = 0. The 

initial conditions are: 

 

LCC =  for )0,0( =< tx  

RCC =  for )0,0( => tx         (2.9) 

 

for the duration of a diffusion anneal of time t , a concentration profile )(xC is 

constructed. This profile can be calculated on a cross section of the diffusion zone, for 

example by electron microprobe analysis (EMPA). This profile is schematically 

illustrated in Figure 2.1. Carrying out the integration between LC  and a fixed 

concentration *C , we obtain from equation 2.7; 
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Matano’s geometry guarantees the gradients ⎟⎟
⎠

⎞
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⎝
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dC  will vanish as *C approaches to 

LC (or RC ).  
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Figure 2.1 Schematic illustration of the Boltzman-Matano method for a binary diffusion 

couple with starting compositions LC  and RC      

 

Equation 2.11 has been changed to space and time coordinates using Boltzmann 

variable (equation 2.3) and thus,  

 

*

*
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2
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Equation 2.12 is called the Boltzmann-Matano equation. It allows us to conclude 

~
D for any 

*C from an experimental concentration-distance profile. The position of the 

Matano plane Mx  must be known for the analysis. Carrying out the integration between 

the limits LC  and RC , we obtain from equation 2.8; 
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So equation 2.13 can be measured as the definition of the Matano plane. Mx  have to be 

selected in such a way that equation 2.13 is satisfied.  

In order to find out the Matano plane, we have to keep in mind that to start the 

experiment the concentration of the diffusing species was LC  ( RC ) on the left-hand 

(right-hand) side. For example, if RL CC <  then, at the conclusion of the experiment, 

the species that is remains (or left) of the diffusing species found on the left-hand side 

must have arrived by diffusion from the right-hand side. The location of the Matano 

plane can be determined from the mass conservation condition: 
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Using integration by parts, so the integrals in equation 2.14 change to the integrals with  

C instead of x .  From the Matano boundary conditions, equation 2.9, we obtain: 
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where MC  indicates to the concentration at the Matano plane. 

 If we have the Matano plane as origin of the x-axis 0=Mx , the first term in equation 

2.15 disappears. Then equation 2.14 becomes: 
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In summary, the determination of interdiffusion coefficients from an experimental 

concentration-distance profile via the Boltzmann-Matano method needs the following 

steps: 

• Determine the position of the Matano plane from equation 2.13 and utilize this 

position as the origin of the x-axis; 

• Choose *C  and conclude the integral ∫
*C

C L

dCx from the experimental 

concentration-distance data. The integral indicates the double hatched area 

*A in Figure 2.1; 

• Conclude the concentration gradient *)( Cdx
dCS = .  S  corresponds to the slope of 

the concentration-distance curve at the position *x ; 

• Conclude the interdiffusion coefficient 
~
D  for *CC =   from the Boltzmann-

Metano equation 2.12 as: 

               )2()( **
~

tSACD −= . 

The initial interface of a diffusion couple can be labelled by inert diffusion markers 

(for example ThO2 particles, thin Mo or W wires). The plane of the markers in the 

diffusion couple is represented as the Kirkendall plane. Usually, for t = 0 the positions 

of the Matano plane and of the Kirkendall plane will be different, this is called the 

Kirkendall effect and is discussed in section 2.4.4. 

 

 
2.6.2. Intrinsic Diffusion and Kirkendall Effect 
 
 
 

So far, the diffusion of a two-component system has described by a single 

interdiffusion coefficient, which depends on composition. In general, the rate of transfer 
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of A atoms is greater/smaller than that of B atoms. Thus, there are two diffusion 

coefficients, DI
A and DI

B, which are denoted as the intrinsic diffusion coefficients of the 

components. They are concentration dependent as well. Fick’s first law can be shown 

for the diffusion fluxes relative to a frame fixed in the local crystal lattice (intrinsic 

diffusion fluxes): 
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The inequality of these fluxes leads to a net mass flow accompanying the interdiffusion 

process, which causes the diffusion couple to shrink on one side and to swell on the 

other side. This observation is called the Kirkendall effect.  It was discovered by 

Kirkendall and Co-workers in a copper-brass diffusion couple in the 1940s [6]. The 

Kirkendall shift can be observed by adding in inert inclusions, called markers (for 

example Mo or W wires, ThO2 particles), at the interface where the diffusion couple is 

initially connected. Figure 2.2 is a schematic representation of a Kirkendall diffusion 

couple. In the plane of the weld, in the centre of Figure 2.2, a number of fine wires are 

incorporated in the diffusion couple. The metals separated by the plane of the weld are 

pure metal A and pure metal B. Then it is necessarily for this couple to be heated close 

to the melting point of the metals comprising the bar, forward cooling the specimen to 

room temperature, it is placed in the lathe and thin layers parallel to the weld interface 

are removed from the bar. Each layer is analyzed chemically and the results plotted to 

give a curve showing the composition as a function of distance along the bar Figure 2.3; 

 



 22  

 
 

Figure 2.2 Kirkendall diffusion couple 

 

 

Figure 2.3 Curves showing concentration as a function of distance along a diffusion 

couple 

The motivating result was that the wires moved during the diffusion process. The 

nature of this movement is shown in Figure 2.4, where the left Figure indicates the 

diffusion couple before the isothermal treatment, and the right, the same bar after 

diffusion happened.  
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Figure 2.4 Marker movements in a Kirkendall diffusion couple 

 

Figure 2.4 shows that the wires have moved to the right through the distance x 

which is small, is measurable. This distance has been found to vary as the square root of 

the time during diffusion.    

The only way to explain the movement of the wires in Figure 2.4 is for A atoms to 

diffuse faster than the B atoms, i.e. more A atoms than B atoms must pass through the 

cross-section (defined by the wire) per unit time. This hypothesis is supported by the 

experiment of Smigelskes and Kirkendall [6]; the specimen consisted of a long 18-cm 

brass bar (70 wt % Cu-30 wt % Zn) on which were placed 12 parallel, molybdenum 

wires ( six on top and six below), as shown in Figure 2.6.   

 The original Kirkendall experiment is illustrated in Figure 2.5. It showed that Zn 

atoms diffused faster outwards than Cu atoms inward (DI Zn > DI Cu) causing the inner 

brass core to shrink. This in turn resulted in the movement of the inert Mo wires. More 

recently, it has been demonstrated that the Kirkendall effect is a general phenomenon of 

interdiffusion in substitutional alloys Figure 2.5. Presented below is a schematic 

illustration of a cross section of a diffusion couple composed of pure Cu and brass (Cu-

Zn) prepared by Smigelskas and Kirkendall [6] before and after heat treatment. The Mo 

markers placed at the original contact surface moved towards each other. It was 
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concluded that Zn atoms diffused faster outwards than Cu atoms move inwards (DI 
Zn > 

DI Cu). 

 

 

 

Figure 2.5 Schematic design of a cross section of a diffusion couple composed of pure 

Cu and brass (Cu-Zn) prepared by Smigelskas and Kirkendall [6] before and after 

diffusion  treatment 

 

 

Figure 2.6 Cross section of original bar 

 

The wires were plated with a thick layer of pure Cu electrodeposited to a final 

thickness of about 2.5 mm. This assembly was heated at 400oC for 3 hours to removes 

the hydrogen. Then a diffusion experiment was carried at 785oC, it was found that 
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during diffusion, according to the fact that the solute atoms might cross the diffusion 

interface without an equal number of solvent atoms diffusing across the interface in the 

opposite direction, the zinc atoms in alpha Brass diffuse across the interface more 

rapidly in one direction than the copper atoms diffuse across the interface in the 

opposite direction, this means that the rate of diffusion of Zn in α-brass (composition) is 

much greater than Cu, Zn diffuses faster than Cu, and the interface shifts to compensate 

for the   required lattice motion. 

This phenomenon forced the interface to move in the opposite direction of the 

diffusion of the zinc atoms to provide space for the additional zinc atoms dissolved in 

the alpha brass. Figure 2.6 is a sketch of the cross section of the bar. Molybdenum wires 

have been chosen because of their very low solubility in copper and alpha brass. The 

wires and the interface moved together toward the centre of the bar as the zinc diffused 

out. The movement of the insoluble molybdenum wires was conclusive evidence that 

the alpha brass was being forced back as a whole as a result of the diffusing out of the 

zinc atoms.  

The Mo markers were placed at the original contact surface. It was concluded that 

Zn atoms diffused faster outwards than Cu atoms moved inwards. 

 
 
 
2.6.3. Determination of the Intrinsic Diffusivities 

 

The determination of the intrinsic diffusivities has been demonstrated with the use 

of the assumed data of Table 2.1. First an expression for the marker velocity v in terms 

of the marker displacement and the time of diffusion t is required to be derived. 

Experimentally, it has been determined that the markers move in such a way that the 

ratio of their displacement squared to the time of diffusion is a constant, thus [7]: 
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where k is a constant. Therefore the marker velocity is, 

x
k

t
xv

2
=

∂
∂

=          (2.19) 

t
xv
2

=⇒          (2.20) 

In Figure 2.7, an arbitrarily assumed position of the marker interface was shown at a 

distance x = 0.0001 m from the Matano interface. The diffusion time t taken for the data 

was 50 hours, or 180,000 s. These numbers correspond to a marker velocity; 
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At the position of the markers, the atom fractions of the A and B atoms were 65.0=AN  

and 35.0=BN  respectively, and  
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The value of  MD
~

 is obtained from Figure 2.8, while
x

N A

∂
∂  is the slope of the penetration 

curve in Figure 2.7 at the position of the markers. The above values can now be 

substituted into the Darken equation: 
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The solution of this pair of simultaneous equations 2.24 has a result; 
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These values inform that the flux of A atoms through the marker interface from right 

to left is approximately 1.2 times that of the flux of B atoms moving from left to right. 

Therefore it is possible to calculate the intrinsic diffusivities of a binary diffusion 

system  AD  and BD . 

 

 

Figure 2.7 Plot of hypothetical diffusion data (Matano method) 
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  Diffusion from  

Composition  the Matano 

Atomic Percent Interface, 

Metal A mm 

100 5.08 

93.75 3.14 

87.5 1.93 

81.25 1.03 

75 0.51 

68.75 0.18 

62.5 -0.07 

56.25 -0.27 

50 -0.39 

43.75 -0.52 

37.5 -0.62 

31.25 -0.72 

25 -0.87 

18.75 -1.07 

12.5 -1.35 

6.25 -1.82 

0 -2.92 

 

Table 2.1 Assumed diffusion data to illustrate the Matano method 

 
Composition NA 

Figure 2.8 Variation of the interdiffusion coefficient 
~
D  with composition from the data 

of Table 2.1 
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2.7. Self-Diffusion and Tracer Diffusion 

2.7.1. The Determination of Tracer Diffusion Coefficients 

 

When atoms in pure crystal diffuse without a concentration gradient or other driving 

force, the process is called self-diffusion. In such cases, the atomic movements are 

random, with motion in one direction just as likely as another. The appropriate diffusion 

coefficient is called the self-diffusion coefficient and is given the symbol D. 

To measure D of an atom, it is not achievable to keep track of the movements of one 

atom in a crystal composed of many identical atoms. However it is possible to measure 

something which is a very good approximation to the self-diffusion coefficient, if some 

of the atoms can be uniquely labelled and their movement tracked. In this case the 

diffusion coefficient that has been calculated is called the tracer diffusion coefficient, 

written *D .   

 

2.8. Darken’s Equations 

 

The first theoretical description of interdiffusion and the Kirkendall effect was 

attempted by Darken in 1948 [8]. In a binary alloy the interdiffusion coefficient is 

usually a composition –dependent quantity. On the other hand, interdiffusion is due to 

the diffusive motion of A and B atoms, which in general have different intrinsic 

diffusion coefficients.  The Kirkendall velocity Kv  can be expressed in terms of the 

intrinsic fluxes, BA jj ,  and partial molar volumes, 
~~

, BA VV  as: 

⎟
⎠
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and  
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So we are able to write for the Kirkendall velocity,  
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where xCB ∂∂ /  indicates the concentration gradient at the Kirkendall plane. With 

Darken’s approach, the laboratory-fixed interdiffusion flux J  (at the Kirkendall plane) 

can be written as the sum of an intrinsic diffusion flux of one of the components i  plus 

(or minus) a Kirkendall drift term iK Cv : 
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Substituting equation 2.26 in equation 2.27 so the general expression for the 

interdiffusion coefficient is: 

I
BAA
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ABB DVCDVCD

~~~
+=       (2.29) 

 

Equations 2.27 and 2.29 give a description of isothermal diffusion in a binary 

substitutional alloy. They also provide an option to conclude the intrinsic diffusivities 

from measurements of the interdiffusion coefficient and the Kirkendall velocity.  
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From a fundamental point of view, the postulation that the concentration gradients 

are the driving forces of diffusion as given by Fick’s laws is not correct. Instead, the 

gradient of the chemical potential iμ  of component i  is the real driving force. The flux 

of component i  ),( BAi =  in a binary alloy can be written as [9, 10]: 

x
CBj i

iii ∂
∂

−=
μ

        (2.30) 

where iB  denotes the mobility of component i . The chemical potential can be 

expressed in terms of the thermodynamic activity, ia  using: 

 

i
o
ii aRT ln+= μμ         (2.31) 

 

where o
iμ is the standard chemical potential and R  is the ideal gas constant 

)3143.8( 11 −−= KmolJR . The atomic mobility iB  is connected to the tracer diffusion 

coefficient *
iD  of component i  using the Nernst-Einstein relation (Appendix A): 

 

RTBD ii =*          (2.32) 

 

Substituting equations 2.32 and 2.30 in the following equation as: 
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x
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          (2.33) 

 

And knowing that  
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mAA VNC /=          

and 

AAmA dCVVdN ⎟
⎠
⎞

⎜
⎝
⎛=

~
2 /  

So the relation between the intrinsic and tracer diffusion coefficients is as follows: 
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The quantity ii Na ln/ln ∂∂≡φ  is indicated as the thermodynamic factor. The 

thermodynamics of binary systems informs us that the thermodynamic factor can also 

be expressed as follows [11]: 
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Here G  denotes the Gibbs free energy and iii Na /=γ  the coefficient of 

thermodynamic activity of species BorAi ,= .  In addition, as a result of the Gibbs-

Duhem relation there is only one thermodynamic factor for a binary alloy: 

 

B
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ln
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Substituting equation 2.34 in equation 2.29 and signify by the relation, 
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( ) miBAii VNCCNC /=+=        (2.37) 

 

between concentrations and mole fractions, we obtain for the interdiffusion coefficient 

( )φ**
~

ABBADarken DNDND +=       (2.38) 

 

Equations 2.34 and 2.38 are called the Darken equations. Sometimes the name Darken-

Dehlinger equation is used. These relations are widely used in practice for substitution 

binary alloys.  

The Darken equations have been applied in many systems. Figures 2.9 and 2.10 

contain experimental data for gold-nickel diffusion at 1173 K. At this temperature, gold 

and nickel dissolve totally in each other and form absolutely soluble alloys [7]. The 

importance of this experimental information is that it gives experimental confirmation 

of the Darken relationships.    

In Figure 2.9, the tracer-diffusion coefficients are plotted as a function of 

composition. The tracer–diffusion rate of nickel atoms in pure gold is about 1000 times 

larger than nickel atoms in pure nickel. The interdiffusion coefficient as a function of 

composition is given in Figure 2.10. There is good agreement between the calculated 

interdiffusion coefficients from self diffusion coefficients Figure 2.9, and the observed 

one from direct chemical-diffusion measurements using Matano analysis.   
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Figure 2.9 Self diffusion coefficients of Au and Ni in gold-nickel alloys at 1173 K [12] 

 

Figure 2.10 Calculated and observed interdiffusion coefficients in gold-nickel alloys at 

1173 K [12]  

 

Two curves are shown in Figure 2.10: the one marked D (calculated) has been 

derived from the self diffusion coefficients, Figure 2.9, and the thermodynamic factor 

(equation 2.36), the other marked D (observed) , has been obtained from direct chemical 

diffusion measurements using Matano analysis. Good agreement has been found 

between the calculated and observed curves. The small divergence between the two 
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curves at high nickel concentrations has been explained on the basis of experimental 

errors.   

 
 
 

This section summarises some basic theories and experimental work to provide a 

framework for improved understanding of the processes of the diffusion.  

 
 

2.9. Reported Diffusion Behaviour in Metallic Alloy 

2.9.1. Diffusion Mechanisms and Kirkendall Effect  

 

Ryusuke et al. [13] measured the intrinsic diffusivities of both components and the 

activation volume for interdiffusion in the B2 type NiAl phase at a high temperature 

region from 1473–1773 K. 

 Rods of Ni60Al40, Ni54Al46, Ni51Al49 and Ni47Al53 alloys were made by melting nickel 

pellets (99.97 %) and aluminum blocks (99.99 %) in an alumina crucible under argon 

gas atmosphere and then casting into a steel mould. These ingots were annealed under 

high purity hydrogen gas at 1723– 1773 K for 86.4 ks for homogenization and grain 

growth. The resultant grain sizes were 2–4 mm. The rods were cut to make specimens 8 

× 5 × 4 mm3 and 3 × 3 × 1.5 mm3 in size under atmospheric pressure and under high 

pressure, respectively.  

Titanium oxide particles were used as multiple markers; by spreading the particles 

on one face of the Ni60Al40 sample and sputtering a titanium sheet under active 

atmosphere. Two specimens, on one face of which the titanium oxide particles were 

dispersed, were diffusion-welded in a stainless steel holder by heating at 1173 K for 3.6 

ks in a stream of high purity argon gas. From the diffusion- welded specimen, a plate 4 

mm in thickness was machined so that the titanium oxide particles array, as the multiple 

markers made an angle of π /4 rad with the flat face. Titanium oxide particles as the 
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Kirkendall markers were also dispersed on one face of Ni51Al49. Then, a 

Ni60Al40/Ni51Al49 diffusion couple was made by putting the Ni60Al40 with the 

surrounded multiple markers and the Ni51Al49 with the Kirkendall marker into a 

stainless steel holder and by diffusion-welding at 1173 K for 3.6 ks. Subsequently, a 

Ni54Al46/Ni47Al53 diffusion couple with the Kirkendall marker was made by the same 

method as above. The diffusion couple was sealed in a quartz tube with high purity 

argon gas. The diffusion annealing was carried out at temperatures from 1473–1773 K 

for 21.6–604.8 ks. It was also done under the high pressures, 3 and 5 GPa, by a   

tungsten carbide cubic-anvil apparatus. The Ni60Al40/Ni51Al49 diffusion couple with 3 × 

3 × 3 mm3 size was placed in the cell for the high pressure experiment shown in Figure 

2.11. 

 

(1) Diffusion couple (2) Pyrophylite (3) BN 

(4) Graphite heater (5) Thermocouple 

Figure 2.11 The schematic diagram of high pressure cell [13] 
 

 Figure 2.12a shows the diffusion zone in the Ni60Al40/Ni51Al49 couple diffused at 

1673 K for 86.4 ks. The titanium oxide particles array fixed in Ni60Al40/Ni51Al49 as the 
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Kirkendall marker and another array fixed in Ni60Al40/Ni60Al40, as the multiple markers, 

were observed to move from the original position (broken line) to the Ni51Al49 side. On 

the other hand, in Figure 2.12b the curved array of the Kirkendall marker was observed 

near the side-end of the Ni60Al40/Ni51Al49 couple. The Kirkendall marker near the side-

end of the couple was fixed at the original welded plane during diffusion, and the side-

end represented the reference plane for the shift of the marker. The Kirkendall marker in 

the area was 200 μm from the side-end of the couple shifted from the original plane to 

the Ni51Al49 side. The shift was 30–40 μm in the total interdiffusion zone of 2000–2400 

μm. The determined Al concentration at the Kirkendall plane was 43.5 at%. The marker 

shifted to the Al-rich side which meant that the fluxes of Al atoms across the Kirkendall 

plane exceed the Ni atoms flux; the Al intrinsic diffusion coefficient, DAl, is larger than 

the Ni intrinsic diffusion coefficient, DNi.  

The concentration dependence of DA1 and DNi at 1573 K obtained by analyzing the 

shift of multiple markers was shown in Figure 2.13. It can be seen that DAl are much 

larger than DNi in the concentration range from 42.5–43.5 at% Al and that DNi showed 

strong concentration dependence, while DAl is almost constant. 

Figure 2.14 shows the difference of Al concentration with the parameter (x-xm)/ t  

in the Ni60Al40/Ni51Al49 couple diffused at 1623 K under atmospheric pressure of 0.1 

MPa and under high pressures of 3 and 5 GPa, where xm represents the Matano plane. 

The total interdiffusion distance decreased with increasing pressure, indicating that the 

diffusion was developed by applying hydrostatic high pressure. Interdiffusion 

coefficients, D˜, at 1623 and 1773 K under 0.1 MPa–5 GPa were obtained by analyzing 

the concentration-penetration profiles as shown in Figure 2.15. The values of D˜ are 

plotted between 40 and 49 at% Al. The value of D˜ shows a minimum at about 47 at% 

Al and increases with decreasing Al concentration at each temperature and pressure. 
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Figure 2.12 (a) Diffusion zone in the Ni60Al40/Ni51Al49 couple diffused 

at 1673 K for 86.4 ks. (b) Kirkendall markers near the 

side-end of the diffusion couple [13] 

As shown in the above Figure 2.12, the dotted line in (a) represents the marker’s 

distribution before diffusion. 
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Figure 2.13 Concentration dependence of intrinsic diffusion coefficients 

of Al and Ni at 1573 K[13] 

 

Figure 2.14 Concentration profiles obtained  by Ni60Al40/Ni51Al49 

couple diffused at 1623 K under 0.1 MPa, 3 and 5 GPa[13] 
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Figure 2.15 The concentration dependence of D˜ in NiAl 
 

 
The activation volume for diffusion has been obtained from the pressure dependence 

of the diffusion coefficient, using the following relations: 

 

)/exp(2* RTGvgfaD o Δ−=        (2.39) 

*D  is the self-diffusion coefficient, g indicates the geometrical constant, f the 

correlation factor, a lattice parameter and ov  the attempt frequency. The Gibbs free 

energy, GΔ , could be decomposed as: 

 

STVpUG Δ−Δ+Δ=Δ        (2.40) 

 

where p is the hydrostatic pressure, UΔ  the activation enthalpy, SΔ  the activation 

entropy and VΔ  the activation volume. The activation volume VΔ is defined from the 

thermodynamic relationship, as follows: 
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where Gγ and KT are Gruneisen’s constant and the isothermal compressibility, 

respectively. The second term on the right hand side of equation 2.41 is a small 

correction term; not more than a few percent of the atomic volume [14].   

The intrinsic diffusivities of both components and the activation volume for 

interdiffusion in the B2 type NiAl phase have been calculated in the high temperature 

region from 1473–1773 K. The activation volume for interdiffusion in 40–49 at% Al is 

found to be almost constant value of 1.0V0 (V0: molar volume of alloys) at 1473–1773 

K, and as shown in Figure 2.13, DAl near the 43 at% Al is much larger than DNi.  

 
 
 
2.9.2. Interdiffusion Analysis 

 
Another study was carried out using solid-solid diffusion couples with discs of Mo 

and Si annealed over the temperature range (900 oC to 1350 oC), has been studied by P. 

C. Tortorici et al. [15] with the aim of determining the interdiffusion coefficients for the 

silicides of Mo. The integrated interdiffusion coefficients as well as energies of 

activation for interdiffusion were determined from the concentration profiles for the 

silicide layers.  

Metallographically preferred 99.95 pct Mo and 99.9999 pct Si samples were used as 

diffusion couples which were subjected to diffusion experiments at selected 

temperatures between 900oC and 1350oC. Figure 2.16 presents an optical micrograph 

and the experimental concentration profiles for a Mo vs Si diffusion couple annealed at 

1350 oC for 10 hours. 
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Figure 2.16 (a) Optical micrograph and (b) Experimental concentration profiles for the 

Mo vs Si diffusion couple annealed at 1350 7C for 10 hours[15] 

 

The interdiffusion fluxes of all components in an isothermal, n-component solid-

solid diffusion couple could be evaluated at any section of the concentration profiles 

without using Fick’s law. The analysis is based on a direct integration of the continuity 
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equation over a concentration profile, and the interdiffusion flux at any section (x) at a 

given time (t) can be determined directly from the following equation [16, 17]: 

 

),,2,1()(
2
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)(~
nidCxx

t
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i

ii
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−+

    (2.42) 

 

Where C1and C2 denote the concentrations of component i in the terminal alloys, and x0 

is the place of the Matano plane. An integrated interdiffusion coefficient (
~
int
iD ) can be 

calculated [18, 19] over a concentration range from Ci(X1) to Ci(X2) by: 

 

),,2,1(
2
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~~
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x

x
ii K== ∫     (2.43) 

 

where x2 is greater than x1 for positive fluxes, whereas x2 is smaller than x1 for negative 

fluxes. On the basis of Fick’s law for binary diffusion, 
~

int
iD can be expressed by [20]: 

[ ])()( 21

~~
int xCxCDD ii −=

−

       (2.44) 

where 
−
~
D  is the average value of the interdiffusion coefficient 

~
D  over the selected 

composition range. 

The integrated interdiffusion coefficients were calculated on the basis of equation 

2.43 for the MoSi2- and Mo5Si3-phase layers and are included in Table 2.2. The 

integrated interdiffusion coefficients for the Mo5Si3 phase are one to two orders of 

magnitude smaller than those for the MoSi2 phase. The equations (2.42-2.44) are 

applicable to the analysis of isothermal multiphase diffusion couples that do not develop 

all the phase layers. The main condition for using these equations (2.42-2.44)   is that 
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the growth of the observed layers must be parabolic and that the concentrations of the 

phases at the individual interfaces must be invariant with time under conditions of 

metastable or stable equilibrium. These conditions are satisfied by the Mo vs Si 

diffusion couples developing the MoSi2- and Mo5Si3-phase layers, although a Mo3Si 

layer is not observed in the diffusion zone. 

The activation energies (Q) for interdiffusion of Mo and Si in the silicide layers 

were determined from plots of ln (
~
intD ) vs 1/T; Figure 2.17. The activation energies 

calculated from the slopes of the plots, were 130 ±  20 and 210±  10 kJ/mol for the 

MoSi2 and Mo5Si3 phases, respectively. The energy of activation for interdiffusion in 

the Mo5Si3 phase is higher than that for interdiffusion in the MoSi2 phase. 
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Figure 2.17 Ln (
~
intD ) vs 1/T plots for (a) MoSi2 and (b) Mo5Si3 phase layers 

developed in the Mo vs Si diffusion couples annealed at the temperature range (900oC - 

1350oC) 

From this study, the authors observed that the Layers of MoSi2 and Mo5Si3 formed in 

the diffusion zone, and the MoSi2 layer was around one to two orders of magnitude 
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larger in thickness than the Mo5Si3 layer as shown in Table 2.2, and the thickness of this 

layer (MoSi2) varied parabolically with time [21].  

 

Temperature 

Co 

Time 

h 

MoSi2

)( mx μΔ  

~
int

2MoSiD  

[mol/(m.s)] 

Mo5Si3

)( mx μΔ  

~
int

35SiMoD [mol/(m.s)]

Mo5Si3 )( mx μΔ  

900 144 40 1.4x10-11 1-2 7.4x10-14 

1000 120 125 1.7x10-10 2 5.5x10-13 

1050 120 140 2.1x10-10 3 9.3x10-13 

1100 72 115 2.4x10-10 3 1.3x10-12 

1200 12 15 2.8x10-10 4 4.9x10-12 

1300 11 110 1.5x10-9 6 1.7x10-11 

1300 14 70 5.0x10-10 16 2.9x10-11 

1350 7 74 1.1x10-9 10 3.4x10-11 

1350 10 112 1.7x10-9 10 3.3x10-11 

1350 16 120 1.2x10-9 16 3.8x10-11 

Table 2.2 Layer thicknesses and integrated interdiffusion coefficients (
~
intD ) for MoSi2 

and Mo5Si3 phases in the Mo vs Si diffusion couples 

 

From the analysis of concentration profiles of the diffusion couples, integrated 

interdiffusion coefficients were determined for the MoSi2 and Mo5Si3 phases. The 
~
intD  
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values for the MoSi2 phase are larger by one to two orders of magnitude than those for 

the Mo5Si3 phase over the temperature range from 900oC to 1350oC.  

 
Ternary interdiffusion coefficients were measured in the Ni solid solution γ  (fcc) 

phase of the Ni-Cr-Al system at 1100oC and 1200oC by Nesbitt et al. [22]. nickel was 

taken as the dependent concentration variable. Two analysis techniques were used to 

calculate the concentration dependence interdiffusion coefficients from the γ /γ  ternary 

diffusion couple. The first technique, discussed by Kirkaldy [23], requires the 

positioning of a Matano plane. The second technique derived from the Boltzmann-

Matano analysis without need for positioning of a Matano plane.  Both techniques were 

used to determine the four interdiffusion coefficients at the intersection of two γ /γ  

diffusion couples. The starting equations for either technique are Fick’s first law for 

ternary alloys [23] where the interdiffusion flux iJ
~

 for Al and Cr is expressed as: 
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The Matano plane is positioned such that: 

∫
+∞

∞−

=
i

i

C

C
iXdC 0  i=Al, Cr       (2.46) 

where +∞−∞
ii CC ,  are the concentration of aluminium and chromium at either end of the 

diffusion couple. The flux determined at any position X (measured from the Matano 

plane [16]) by the following equation: 

∫
+∞

∞−

=
i

i

C

C
ii XdC

t
J

2
1~

       i=Al, Cr       (2.47) 

So equations 2.45 and 2.47 were combined to obtain two equations: 



 48  

*

*
~~

2
Al

Al

Al C

Cr
Ni

AlCr
Al

Ni

AlAl

C

C
AL X

C
D

X
C

DtXdC ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−=∫
∞−

    (2.48a) 

*

*
~~

2
Cr

Cr

Cr C

Cr
Ni

CrCr
Al

Ni

CrAl

C

C
Cr X

C
D

X
C

DtXdC ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−=∫
∞−

    (2.48b) 

 

where *
AlC  and *

CrC are exact concentration at a certain position *X , measured from 

Matano plane. Equations 2.48a and 2.48b were estimated for two intersecting diffusion 

paths such that *
AlC and *

CrC are the concentration at the common composition point of 

the intersecting paths. So the results were four equations with four diffusion equations 

instantaneously.  

 The four ternary interdiffusion coefficients were calculated without positioning a 

Matano plane, by inserting the parameter [24]: 
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−
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=
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When we insert this into equation 2.48a we obtain: 
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Equation 2.48b was operated similar to the equation 2.48a. The four diffusion 

coefficients calculated by Whittle-Green technique [24] were identical to the values 

calculated by the Kirkaldy technique when the Matano planes are concurrent. 

The results of the diffusivity measurements showed that  
Ni

AlAlD
~

   is approximately 

four times greater than
Ni

AlCrD
~

, whereas 
Ni

CrAlD
~

 and  
Ni

CrCrD
~

 are the same magnitude Table 
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2.3. For all concentrations,  
Ni

AlAlD
~

 is two to three times greater than   
Ni

CrCrD
~

. 
Ni

AlAlD
~

 and 

Ni

AlCrD
~

increased with increasing Al concentration and showed slight  dependence on  Cr 

concentration. 
Ni

CrAlD
~

is strongly dependent on Cr concentration while 
Ni

CrCrD
~

 is more 

dependent on Al concentration.  The four diffusion coefficients calculated by the 

Whittle-Green technique for the intersection of couples Ni-10Al / W and Ni-10-10/Ni 

annealed at 1100oC are shown in Table 2.3.  The diffusion coefficients determined by 

the Whittle-Green technique were very close to the average of the values calculated by 

the Kirkaldy technique.   

 

 

Table 2.3 Calculated interdiffusion coefficients for intersecting couples Ni-6.7Al/Ni-

12.0Cr (Ni-10Al/W) and Ni-15.2Cr-6.7Al/Ni (Ni-10-10/Ni) annealed at 1100oC for 100 

hours 

 

The interdiffusion in the γ  phase of the Ni-Cr-Al system has been measured at 1100 

and 1200oC. 

 

  

 
 

 
 

 
 

 
 

 
 

Kirkaldy technique 1.86 0.35 1.04 0.88   
(noncoincident  1.76 0.31 0.86 0.81   
Matano planes 1.71 0.39 1.27 0.82   
 1.62 0.35 1.1 0.74   
 1.35 0.35 1.03 0.88   
 1.44 0.39 1.24 0.97   
 1.53 0.31 0.7 0.96   
 1.62 0.35 0.91 1.05   
Average 1.61 0.35 1.02 0.89   
Standared deviation 0.16 0.03 0.18 0.09   
Whittle-Green 
technique 1.61 0.35 1.02 0.87   

Ni

CrAlD
~ Ni

CrCrD
~

Ni

AlAlD
~Ni

AlCrD
~

scm /10 210×
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Karunaratne et al. [25] determined the interdiffusion coefficients in the Ni-rich 

portion of the Ni–Al–Ti system, in the temperature range 900–1200°C, concentrated 

mainly on the face-centred cubic (γ ) phase. The values were derived from 

concentration profiles measured by electron probe microanalysis, using a modified form 

of the Boltzmann–Matano method. The diffusion couples were of three types: γ /γ , 

γ /γ ’ and γ ’/γ ’, where γ ’denotes the L12 phase. 

Fick’s second law [26, 27] characterized a satisfactory description of the diffusion 

behaviour of the two solute atoms Al and Ti. Therefore, the concentrations of Al and Ti, 

denoted CAl and CTi, respectively, are illustrated by:  
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Here 
Ni

AlAlD
~

 and 
Ni

TiTiD
~

are the director (major) interdiffusion coefficients which 

correspond to the influences of aluminum and titanium concentration gradients on their 

own fluxes, and 
Ni

AlTiD
~

and 
Ni

TiAlD
~

 are the indirect (cross) diffusion coefficients which 

represent the influences of the concentration gradients of titanium and aluminum on the 

fluxes of aluminum and titanium, respectively. Time is denoted by the symbol t. 

The solution to equation 2.46 for aluminum diffusion in Ni–Al–Ti is given by: 
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where −
AlC  is the concentration of aluminum at one end of the diffusion couple. A 

similar expression was written for titanium. The position of the Matano interface at x = 

xo was determined using iterative procedures from equations of the form: 
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−
AlC  and +

AlC  are the limiting compositions of the far ends of the couple. 

The method was used by Karunaratne [25], does not require the Matano interface to 

be determined. So the diffusion coefficients are determined by solving the four 

simultaneous equations in Alφ and Alφ  [28]: 
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The expression iY (i=Al, Ti) is the normalized concentration which is specified as: 
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Alφ  and Tiφ  regarded as ‘pseudo-binary’ diffusion coefficients because they were 

calculated from [25] their own concentration profiles independently of the other 

components. 

The two major interdiffusion coefficients 
γ,~ Ni

AlAlD and 
γ,~ Ni

TiTiD are almost equal, and 

vary slightly with composition. The minor diffusion coefficients
γ,~ Ni

AlTiD ,
γ,~ Ni

TiAlD  are 
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much smaller than major interdiffusion coefficients. The general thermodynamic 

relationships between these coefficients are followed [26, 27, and 28]: 

0
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Both the major coefficients
γ,~ Ni

AlAlD  
γ,~ Ni

TiTiD  and minor coefficients
γ,~ Ni

AlTiD  
γ,~ Ni

TiAlD are 

positive. This indicates that the diffusion fluxes of Al and Ti are governed mostly by 

their own concentration gradients and the influence of the gradient of the other element 

is small and positive. 

 

2.9.3. Interfdiffusion and Diffusion Structure 
 
 

Tortorici et al. [29] determinated the interdiffusion coefficients and the activation 

energies for interdiffusion in various silicides developed in the couples. Several series 

of solid-solid diffusion couples, Me vs. MoSi2, where Me= Mo, W, Re, Nb, or Ta were 

assembled with discs of  Mo, W, Re, Nb, and Ta in contact with disks of a single crystal 

of MoSi2, they were annealed at selected temperatures in the range 1300° - 1700°C. The 

couples were analyzed and characterized by Scanning Electron Microscope (SEM) and 

optical microscopy, microprobe analysis, X-ray diffraction and orientation imaging 

microscopy.  Interdiffusion between Mo and Si was investigated [30,31] at temperatures 

over 900°– 1350°C for the determination of activation energies for the growth of 

silicide layers. The growth kinetics of Mo5Si3 and Mo3Si between Mo and MoSi2 was 

reported over 1200°–1900°C [32, 33]. Diffusion studies with Mo vs. Si diffusion 



 53  

couples have been carried out over 900°–1350°C for the determination of interdiffusion 

coefficients for the MoSi2 and Mo5Si3 phases; the energies of activation for 

interdiffusion in these phases have been reported to be 130± 20 and 210± 10 kJ mol-1, 

respectively [34, 35].  

So the authors’ [29] aim was to investigate interdiffusion and the formation of 

silicide layers between MoSi2 and selected refractory metals. 

 In studying the interdiffusion in various silicides, Me/ MoSi2 couples were 

subjected to diffusion experiments at 1300 to 1700oC (depending on the nature of Me).  

After the diffusion experiments the diffusion couples were examined with a series of 

analytical instruments. Concentration profiles were determined by point-to-point 

counting techniques with a Cameca SX-50 microprobe equipped with four wavelength 

dispersive spectrometers at an accelerating voltage of 15 kV and a probe current of 20 

nA. 

In order to calculate the integrated and average effective interdiffusion coefficients, 

the authors’ [29] used equations 2.42 and 2.43 for interdiffusion flux )(
~

xJ i  and 

integrated interdiffusion coefficients.  On the basis of Fick’s law for multi-component 

diffusion: 

x
C
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n
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where 
x

C j

∂
∂

is the concentration gradient of component j and 
n

ijD
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were (n-1)2 

composition-dependent interdiffusion coefficients. On the basis of equation 2.43,  
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Equation 2.61 became [16]; 
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where 

n

ijD
−
~

  corresponds to average values of the interdiffusion coefficients over the 

concentration range in the diffusion zone from x1 to x2. An average effective 

interdiffusion coefficient 
eff

iD
~

for the component i over the interval is also defined by 

[16]: 

)()( 21

int
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~

xCxC
DD

ii

xi
eff

i
−

= Δ        (2.63) 

 

In Table 2.4, the values of the integrated interdiffusion coefficients 
int~
iD  calculated 

on the basis of equation 2.43 for Mo, W and Si in the W5Si3 and (W, Mo)5Si3 layers for 

the various couples were presented. The average effective interdiffusion coefficients 

calculated from equation 2.63 for W and Mo in the (W, Mo)5Si3 layer were presented in 

Table 2.5. In the binary W5Si3 layer, the 
int~
iD values are common to both W and Si. In 

the ternary (W, Mo)5Si3 layer, 
int~
SiD is larger than 

int~
WD and  

int~
MoD  in magnitude by a factor 

of (2–3). 
int~
MoD  is negative and specifies that the cumulative interdiffusion of Mo in the 

(W, Mo)5Si3 layer is against its own concentration gradient. The average effective 

interdiffusion coefficients of Mo and W in the (W, Mo)5Si3 layer are also of opposite 

signs, but of parallel magnitude. The negative values of 
eff

MoD
~

 suggested that Mo 

interdiffuses uphill against its own concentration gradient. 

 



 55  

Temperature 

(oC) 

Annealing 

time (h) 

int~
MoD (mole m-1 

s-1) 

int~
WD (mole m-

1s-1) 

int~
SiD (mole m-1s-

1) 

W5Si3 Layer     

1400 16 - 8.1x10-13 8.1 x10-13 

1500 6 - 1.8 x10-11 1.8 x10-11 

1500 12 - 8.1 x10-12 8.1 x10-12 

1500b 12 - 8.3 x10-12 8.3 x10-12 

1600 8 - 6.5 x10-12 6.5 x10-12 

1700 6 - 9.6 x10-11 9.6 x10-11 

(W, Mo)5Si3     

1400 16 -1.5x10-13 2.6 x10-13 4.9 x10-13 

1500 6 -8.0x10-13 1.6 x10-12 2.4 x10-12 

1500 12 -4.0x10-12 6.2 x10-12 8.9 x10-12 

1500b 12 -4.2x10-12 6.7 x10-12 7.7 x10-12 

1600 8 -8.8x10-12 1.3 x10-11 2.2 x10-11 

1700 6 -4.2x10-11 3.1 x10-11 7.7 x10-11 

 

 
Table 2.4 Integrated interdiffusion coefficients in the W5Si3 and (W, Mo)5Si3 layers in 

the W vs. MoSi2 diffusion couples annealed between 1400° and 1700°C 
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Temperature (Co) Annealing 

time (h) 
)( 12

~
−smD

eff

Mo  )( 12
~

−smD
eff

W  

1400 16 17104.2 −×−  17102.3 −×  

1500 6 15100.1 −×−  15109.1 −×  

1500 12 16106.2 −×−  16102.7 −×  

1500a 12 16100.3 −×−  15105.6 −×  

1600 8 15100.1 ×−  15105.1 −×  

1700 6 15109.4 ×−  15106.3 −×  

 

Table 2.5 Average effective interdiffusion coefficients for Mo and W in the 

(W, Mo)5Si3 phase layer in the W vs. MoSi2 diffusion couples annealed 

between 1400° and 1700°C 

 

Interdiffusion and diffusion structures were investigated in several Re and MoSi2 

diffusion couples at selected temperatures over 1425°–1700°C. A back-scattered 

electron micrograph and the experimental concentration profiles for a Re vs. MoSi2 

diffusion couple annealed at 1700°C for 6 hours are presented in Figure 2.18. 

 



 57  

 
Distance, x ( mμ ) 

 
Figure 2.18 (a) Back-scattered electron micrograph and (b) experimental concentration 

profiles for the Re vs. MoSi2 diffusion couple annealed at 

1700°C for 6 hours [29] 

  

The activation energies (Q) for the interdiffusion are presented in Table 2.6. 
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Layers Q of Si &W 

W5Si3 360 kJ mol-1 

(W, Mo)5Si3 450 kJ mol-1 

 
(a) 

 
Phase Q of Re & Si  

Re2Si 190 kJ mol-1 

(Re, Mo)Si 325 kJ mol-1 

(Re, Mo)5Si3 270 kJ mol-1 

 
(b) 

 
Phase Q of Si  Q of Nb 

(Nb, Mo)5Si3 300 kJ mol-1 240 kJ mol-1 

  
(c) 

 

Table 2.6 (a) the activation energies of Si and W in the W5Si3 and (W, Mo)5Si3 layers; 

(b) the activation energies of Re and Si in the (Re, Mo)Si  and (Re, Mo)5Si3 phases; (c) 

the activation energies of Si and Nb in (Nb, Mo)5Si3 

 

Interdiffusion was investigated at selected temperatures in the range 1400° - 1700°C 

with several series of MoSi2 vs. Me ternary couples, where Me=W, Re, Nb, or Ta. From 

an analysis of concentration profiles, integrated and average effective interdiffusion 

coefficients were determined for the components in the various silicide layers developed 

in the diffusion zone. 
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2.9.4. Generalized Darken Method GDM 

 

Significant work on diffusion has been performed by Datta et al. [36] in the AMRI 

(Advanced Material Research Institute) in developing and applying of the Darken’s 

Generalised Model (GDM) of Interdiffusion. The authors postulated that total mass 

flow is a sum of the diffusion and drift flows, and can be applied to the description of 

the diffusion transport in multi-component solid solutions. The equations of mass 

conservation (continuity equations) determine the appropriate expressions that describe 

the various fluxes based on the postulate of constant molar volume in the system. This 

allows a complete quantitative description of the diffusion transport processes both for 

the open and closed systems. Here the GDM is used for the calculation of the 

concentration profiles.  Parameters used are as follows: 

• 1 rM … M, , - Molar masses of the elements (g*mol-1), where r  - is the 

number of components in the alloy; 

• Λ - a position of the alloy/scale interface ; 

• 1 1( ) ( )r rc c x … c c x= , , =
0 0 0 0
c c c c - The initial distributions of the components, such 

that: 

• ialloyc c const= = .
0
c  

                 where alloyc  is the molar concentration of the system 

• ( ) ( )1 1 r rD D N … D D N∗ ∗ ∗ ∗= , , = - Self diffusion coefficients of the components, 

which may depend on components’ molar fractions, ( )1 rN N …N= , ; 

• ( ) ( )1 1 r rN … Nμ μ μ μ= , , =  - The chemical potentials of the components can 

be shown as a functions of components’ concentration; 
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• t̂ - The time of the process duration;  

          ( ), 1ij t i … rΛ = , ,  - Evolution of mass flow of the i -th component through the 

alloy /scale interface.  

 

2.9.4.1. Physical Laws 
 

Various physical laws are relevant to the models such as the law of the mass 

conservation of a i -th element. This law states that a local change of density of an i -th 

element is a result of its net in- or outflow only:  

0 1i ic J i … r
t x

∂ ∂
+ = = , , .

∂ ∂
                  (2.64) 

 

Following Darken’s postulate [37, 38], it was postulated that the flux of the i-th element 

can be expressed in a form of the sum of the diffusional (Fick’ian) and drift flow; 

 

i
ii i i i

cJ c D c
x

ν ν
− ∂

= = − +
∂

       (2.65) 

where:  

 

( , )i ic c x t=  is the distribution of the i-th element after time t  of the process. 

The alloy was assumed to be constant molar volume. The consequence is that the molar 

concentration of the alloy, as a sum of the concentrations of all elements at any position 

for every time, is constant:  

1 1
1

1 1.....      or     r r alloy
r

c c c const c c c const
M M

+ + = = + ... + = = .   (2.66)  
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2.9.4.2. Initial Conditions 
 

The initial density distributions of the components in the system:  

( ) (0 ) [ ] 1i ix x for x i … r= , ∈ −Λ, Λ , = , , .
0
ñ ñ     (2.67) 

 

The following boundary conditions are postulated:  

 

( ) ( )( ) ( )
ˆ[0 ] 1

i iL i iRJ t j t J t j t

for t t i … r

,−Λ = , ,+Λ = ,

∈ , , = , , .
     (2.68) 

 

In the open system the functions, ( )iLj t  and ( )iRj t , have to be known. They can be 

calculated for example, from the known rate of reactions at the boundary or from the 

experimental data. In the closed system the gradients of all components at both 

boundaries vanish, so that, the flux of an i -th component at the boundary equals zero:  

 

( ) ˆ0 [0 ] 1iJ t for t t i … r, ±Λ = ∈ , , = , , .      (2.69) 

 

2.9.4.3. Boundary Conditions  
 

For the closed system (annealing in argon) boundary conditions - zero fluxes of the 

components though the boundary occur:  

 

( )( , ) 0 for i = 1,2,.......,ri ic tν ±Λ =       (2.70) 
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2.9.4.4. The Unknowns 
 

Two variables in the system are unknown at the start of the experiment that is: 

• Concentrations of the components in the alloy as functions of time and position,             

 

            ( ) 1ic t x i … r, , = , ,        (2.71) 

 

• A drift velocity as a function of time and position, ( )t xυ , [39, 40, 41]  

 

Using these equations interdiffusion process can be modelled. 

 
 
2.9.5. Modelling Interdiffusion in Cu-Fe-Ni Alloy Using GDM 

 

The above equations were applied to demonstrate the possibility of interdiffusion 

modelling in the closed system (Cu-Fe-Ni) [42]. 

    Interdiffusion modelling in the Cu-Fe-Ni closed system has been done using 

DifSim software [43] and compared with the experimental results [44]. For the 

calculations the following data were used: 

• Initial concentration profiles – step functions defined by the terminal 

composition of the diffusion couple, Figure 2.19. 

 

• Average molar concentration of the Cu-Fe-Ni alloy, c= 0.144molcm−3. 

• Thickness of the diffusion couple, 2Λ =0.07cm. 
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• Calculated average self-diffusion coefficients of copper, iron and nickel in Cu-

Fe-Ni diffusion couple [44] at 1273 K; 

scmxD

scmxD

scmxD

Ni

Fe

Cu

/1009.2

/1052.1

/1089.2

211

211

211

−

−

−

=

=

=

 

 

 

Figure 2.19 The calculated (solid lines) and experimental concentration profiles of the 

components in Cu-Fe-Ni alloy after 612 ks of diffusion annealing at 1273 K in argon 

[44] 

 

Figure 2.19 shows the calculated concentration profiles of Cu, Fe, and Ni. 

Satisfactory agreement between the experimental results and the calculated 

concentration profiles was obtained.  

A mathematical model of interdiffusion in a multi-component has been formulated. 

The model can be used both for a quantitative description of interdiffusion in the open 

and closed systems. Application of the model for modelling interdiffusion in the Cu-Fe-

Ni diffusion couple (closed system) was demonstrated. The calculated concentration 

profiles were consistent with experimental results. 
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Filipek et al. [45] studied interdiffusion in Co-Fe-Ni alloys in a1373-1588 K 

temperature range. The Danielewski-Holly model was used for the description of the 

interdiffusion process in ternary Co-Fe-Ni diffusion couples both for the finite and 

infinite geometry. The average intrinsic diffusivities of components in the Co-Fe-Ni 

system were calculated by using the inverse method and compared with the results of 

the other authors.  The inverse method allows calculation of the diffusion coefficients in 

the multi-component system.  

The Danielewski-Holly model of interdiffusion is an initial boundary-value problem 

for partial differential equations, namely for the equations of mass conservation. The 

model describes diffusion in solid solutions. Equations (2.65-2.71) were applied to 

calculate the concentration profile for all the elements and the drift velocity. The author 

defined a new variable ),( xtwi  that has a physical interpretation and denotes a deviation 

of i-th element mole fraction from its average in the alloy; 

−

−= iii NxtNxtw ),(),(        (2.72) 

 

Where 
−

iN  is an average mol fraction of i-th element in the alloy. Therefore the 

interdiffusion problem can be transformed as follows [46, 47]: 
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Also another variable has been defined, 
^
t
iw -calculated molar deviation of i-th 

element for time 
^
t and diffusion coefficients rDD ,,1 K . Calculations were performed 

using the Danielewski-Holly model (equation 2.73) for the following data:  

• initial molar deviation distributions of elements )(,),(
0

1

0
xwxw rK in the alloy; 

• time of process duration; 
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• rww
0

1

0
,,K  – (experimental) molar deviation distributions of the elements in the 

alloy after the time 
^
t  . So the error function, err, was defined:  

 

          
2

1

^

1 )()(),,(
^

∫∑
Λ

Λ− =
⎟
⎠
⎞

⎜
⎝
⎛ −=

r

i

t
iir xwxwDDerr K     (2.74) 

 

The computation of the diffusion coefficients was to minimize the function err in r-

dimensional space, equation 2.74, where r is the number of elements in the alloy.  

Software was used to calculate the diffusion coefficient of each element in the alloy Co-

Fe-Ni system combined from sequential quadratic programming [48], multi-dimension 

downhill simplex method [49], and evolutionary operation algorithm [50].  

Experimentally Cobalt, Iron and Nickel (99.98 pct purity) were used as initial 

materials. The binary alloys Co-Ni and Fe-Ni were induction melted to form 1 cm 

diameter rods. After 48 hours at 1573 K in argon atmosphere the rods were sectioned 

into discs of 1 mm thick with a diamond impregnated cut-off wheel to have parallel 

faces. The compositions of materials were determined by a chemical analysis and the 

level of homogeneity of materials used in subsequent diffusion experiments were 

determined by Energy Dispersive X-ray analysis (EDX). The actual compositions of 

samples used for diffusion experiments were Co–51.3±0.1 wt% Ni and Fe–51.9±0.1 

wt% Ni. The couples were heat treated in argon atmosphere at temperatures and for the 

periods of time shown in the Table 2.7. The partial oxygen pressure was lower than 10
-6 

atm. The concentration profiles were analysed by point-to-point counting techniques. 
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Diffusion Couple T [K] Time [h] 

P1 1273 68 

P2 1323 50 

P3 1373 140 

P4 1423 85 

P5 1473 59 

P6 1523 24 

P7 1588 17 

P8 1588 131 

 

Table 2.7 The examined diffusion couple 
 

 
As a result the diffusion couples investigated in Table 2.7 and the experimental 

concentration profiles in the Co-Fe-Ni system for several diffusion couples were 

presented in the Figure 2.20. The average intrinsic diffusion coefficients of Co, Fe and 

Ni were calculated and presented in Table 2.8. The diffusion coefficients of cobalt, iron 

and nickel in the range 1373–1588 K followed Arrhenius equation Figure 2.21:  

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
QDD o exp         (2.75) 

The preexponential factor oD  , activation energy Q and its error were calculated and 

presented in Table 2.9. The calculated diffusivities of Co, Fe and Ni showed good 

agreement with the results of other authors for the ternary Co-Fe-Ni system [51] and for 

the binary Fe-Ni [52, 53, and 54], Co-Fe [53] and Co-Ni [55, 56, and 53] alloys, Figure 

2.22. 
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T [K] DFe (cm2/s) DCo(cm2/s) DNi(cm2/s) 

1273 4.97 x10-12 1.53 x10-12 7.86 x10-13 

1323 1.78 x10-11 3.83 x10-12 3.42 x10-12 

1373 5.78 x10-11 1.53 x10-11 1.14 x10-11 

1423 1.21 x10-10 3.44 x10-11 2.67 x10-11 

1473 3.22 x10-10 1.06 x10-10 5.14 x10-11 

1523 4.86 x10-10 1.43 x10-10 1.23 x10-10 

1588 1.2x10-9 4.28 x10-10 2.35 x10-10 

 
Table 2.8 Calculated average intrinsic diffusion coefficients 

 
 
 
 

Element Q 1−kJmol  scmDo /2  

Fe 13289 ±  4.62 

Co 13304 ±  4.45 

Ni 13301±  2.38 

 

Table 2.9 Activation energy and preexponential factor for Co-Fe-Ni alloy in the range 

1273-1588 K 
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Figure 2.20 Interdiffusion in the Co-Fe-Ni diffusion couples: (a) P2 1323 K after 50 

hours; (b) P3 1373 k after 10 hours; (c) P4 1423 K after 85 hours; (d) P5 1473 K after 

59 hours [51] 

 

 Figure 2.20 demonstrate the experimental and calculated concentration profiles of 

Co, Fe and Ni using the Danielewski-Holly model and intrinsic diffusivities from the 

Table 2.7 are compared.  
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Figure 2.21 Temperature dependence of Co, Fe, and Ni intrinsic diffusivities in the 

Arrhenius plot [51] 

Figure 2.21 shows the diffusion coefficients of cobalt, iron and nickel in the range 

1373–1588 K followed Arrhenius equation (equation 2.75). 
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Figure 2.22 the intrinsic diffusion coefficients by different authors in Co-Fe-Ni alloys 

for different temperatures [51] 

 

Figure 2.22 showed good agreement between the calculated intrinsic diffusivities of 

Co, Fe and Ni with the results of other authors for the ternary Co-Fe-Ni system [51] and 

for the binary Fe-Ni [52, 53, and 54], Co-Fe [53] and Co-Ni [55, 56, and 53] alloys. 

The GDM of interdiffusion allows a quantitative description of complex diffusion 

transport process for an unlimited number of elements. It allows calculate the 

diffusivities and concentration profiles both for the infinite and finite system. Using the 

Danielewski-Holly model, the interdiffusion in the Co-Fe-Ni system was analysed and 

satisfied agreement of the calculated concentration profiles and the experimental. The 

calculated Iron intrinsic diffusivity is higher than Ni and Co, and was in good agreement 
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with data for the binary systems [52- 53]. The values of activation enthalpy of Co, Fe 

and Ni are similar and the errors were estimated to be less than 5%.  

Filipek [42] presented the ternary system Cr-Fe-Ni as a practical application of 

Generalized Darken model (GDM) of interdiffusion.  The evolution of the Cr-Ni was 

steeled because of its oxidation, i.e., the interdiffusion in open system due to reaction at 

the boundary. The computer simulation of interdiffusion process in binary Au-Ni alloy 

system in which diffusivities markedly vary with composition was shown. 

 

2.9.6. Intrinsic Diffusivities in Cr-Fe-Ni Alloys 
 

Filipek [42] performed computer simulations of interdiffusion process for open and 

closed systems in order to determine the intrinsic diffusivities. For calculations the 

following data were used: 

• atomic masses of Cr, Fe and Ni;  

• global concentration in the alloy: c= 0.146 mol cm-3; 

• the initial density profiles were shown in Figure 2.23(dotted lines ); 

• experimental density profiles [59] were shown in Figure 2.23(points);  

• the diffusional couple was formed by two alloy pellets of thickness Λ=400 μ m 

each; 

• annealing time ~ = 168 hours. 
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Figure 2.23 Comparison of the experimental [59] (points) and calculated (solid lines) 

density profiles of Cr, Fe and Ni in 32Cr- 16Fe-Ni/152Fe-Ni diffusional couple at 1373 

K after 168 hours of diffusion annealing. Dotted lines represent initial distributions of 

the components 

 

In Figure 2.23 the measured and calculated density profiles of Cr, Fe and Ni in the 

32Cr-16Fe-Ni/52Fe-Ni diffusion couple are shown. Reasonable agreements of the 

results were obtained from the generalized model of interdiffusion with experimental 

data. 

The intrinsic diffusivities of Cr, Fe and Ni were calculated using original software 

[43] and are shown in Table 2.10. 

 

Diffusional couple Intrinsic Diffusivities Cm2s-1 

32Cr-16Fe-

Ni/52Fe-Ni 

DCr DFe DNi 

168 h [9] 8.8x10-11 2.9x10-11 2.3x10-10 

 

Table 2.10 Calculated intrinsic diffusivities in Cr-Fe-Ni system at 1373 K  
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2.9.7. Interdiffusion in the Binary Au-Ni Alloy (Variable Diffusion    

Coefficients) 

 

The Au-Ni alloys were investigated by Reynolds et al. [60]. They determined the 

intrinsic diffusivities of gold and nickel in a wide range of nickel composition Figure 

2.24. The author approximated Reynolds' data by the following function: 

 

( )2exp yCyBAD iiii +=        (2.76) 

 

where iA , iB , iC  are the coefficients of approximation, i={Ni, Au} and y denotes 

nickel's mole fraction. In Table 2.11 the estimated values of coefficients A, B and C for 

nickel and gold are shown: 

 

 Coefficients in Equation (82)  

Component A,cm2s-1 B C 

Ni 101039.9 −×  3.48 -8.13 

Au 101022.7 −×  5.16 -11.27 

 

Table 2.11 Estimated values of coefficients A, B, C in equation 2.76 for nickel and gold 

 



 74  

 

Figure 2.24 Intrinsic diffusivities of gold and nickel as a function 

of nickel mole fraction [60] at 1173 K 

 

In Figure 2.24 the comparison of experimentally determined intrinsic diffusivities 

[60] and approximated by equation 2.76 was shown. For a simulation of interdiffusion 

in Au-Ni diffusional couple the following data were used: 

1. total concentration in alloy c=0.12 mol cm-3;  

2. variable intrinsic diffusivities of Au and Ni (equation (2.76) and Table 2.11; 

3. Times of observation (process duration), 1, 5, 24 and 85 hours. 

As a result the generalized model of interdiffusion in multicomponent open systems 

was presented. The method of calculation of the intrinsic diffusivities in the 

multicomponent system was also shown. 

 
 
 

2.10. Conclusions 

 
It is clear from the literature review that interdiffusion is a serious problem in many 

situations associated with the use of coatings at elevated temperatures. Substrate / 

coating interdiffusion can allow the migration of coating elements, critical for the 
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formation of protective scales, to the substrate and thus affecting adversely the 

efficiency of the coating. Equally the substrate coating interdiffusion can allow the 

incorporation of the damaging elements (from the substrate) within the coating raising 

the stress, initiating precipitation and delaying the processes of scale development. 

Hence an understanding of the processes of interdiffusion and the prediction of the 

effects of interdiffusion is essential for the design, development of coatings and 

assessing their performance. Thus interdiffusion modelling is a key issue and forms a 

significant part of this project. This project involves studies and modelling of 

interdiffusion. 

 However, most high performance coatings are multi-components in nature. The 

literature review clearly shows that modelling in multi-component systems is not easy 

and indeed no significant work has been done in this area except the recent work at 

Northumbria [39].  

Attempts have been made by Datta et. al [39] in our group at Northumbria to model 

interdiffusion in multi component systems using the Generalised Darken method 

(GDM) with mixed successes. The limitations of Darkens method elaborated in chapter 

3 clearly indicates the necessity of finding an alternative method of modelling 

interdiffusion which allows the inclusion of the cross-terms in the diffusion matrix: 
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and also allows the consideration of composition dependent diffusion coefficients. 
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CHAPTER THREE  

                                                                                                                                          

3.1. System Studied 

 

This chapter discusses the systems which have been studied in this project. A range 

of systems varied in complexity have been considered. The systems studied included; 

(1) carburization of iron (at 950oC ) 

(2) Cu-Ni alloys  

(3) Three component NiPt − - aluminide system 

(4) Multicomponent NiPt − -aluminide coatings on MAR M002 System 

(5) Ir and IrPt-Low Activity Aluminide/ MAR M002 System 

(6) Four component systems - TiAlTiAlCrY /  system (subjected to oxidation at 

750oC), TiAlAuAl /2   (subjected to oxidation at 750oC) and formation of 

aluminised coatings on low alloy steels at 650oC. 

The first two systems were selected because of their simplicity and so that these can 

be used as standards for the diffusion modelling work. The three components and 

multicomponent NiAlPt − systems are extremely impotent systems in aerospace 

applications and much is known about these materials and much work has been done 

[39] in Northumbria including in this project. No modelling using numerical method has 

been attempted previously on these systems.  

 TiAlTiAlCrY / and TiAlAuAl /2  are newly developed coatings. Interdiffusion 

modelling has urgently needed on these materials to assess their performance. A part 

from the modelling effort this work required involvement in oxidation studies. 

The systems involving the formation of aluminise coatings on low alloy steels 

represents an interesting case where interdiffusion modelling has allowed the 
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optimisation of the coating processes. Coatings were produced using varying processes 

parameters, pack compositions, activators processing temperatures and diffusion 

modelling played a significant role in producing the coatings with optimised process 

variables. In this area both the experimental and modelling work needed to be 

undertaken to select and optimise the high temperature processes parameters to apply 

the pack process to produce the coatings.    

Interdiffusion modelling has been performed in two ways: microstructural 

modelling (where appropriate) and numerical modelling. It is important to point out  

microstructural modelling was undertaken to gain improved understanding the diffusion 

processes involved in the processing and property enhancing treatments. Numerical 

modelling was undertaken to develop methodologies to solve diffusion problems in 

multicomponent coating systems and to predict quantitatively the concentration profiles 

of the components of the coatings following interdiffusion at high temperatures.   

Studies of these systems and modelling of the processes of interdiffusion in them 

constitute the main themes of this thesis. 

 

3.2. Nonsteady-State Diffusion of Iron Carburized at 950o C, 7.1 Hours 

3.2.1. Introduction / Background Information 

 

Carburizing involves addition of carbon to the surface of low-carbon steels (0.2% C) 

at temperatures generally between 850 and 950°C (1560 and 1740°F) with the aim of 

increasing surface hardness of steels. Austenite, with its high solubility for carbon, is 

the stable crystal structure at this temperature. High hardness is achieved by changing 

→γ  martensite at the surface causing case hardening of the surface. The Carbon 

content of the surface reaches to ~ (0.8 to 1%) C.   
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3.2.2. Carburizing Methods  

There are various methods for carburization of steel surfaces; 

• Solid carburizing 

• gas carburizing 

• liquid carburizing 

• plasma carburizing 

 In this project the focus on gas carburizing process. In this process a hydrocarbon 

gas e.g. CH4 is used to provide carbon source. The most important parameters defining 

the carburization processes are; 

• the temperature 

• duration of the process 

• depth of carbon penetration 

Clearly the process involves diffusion of carbon through the surface. Diffusion 

equations have been solved for this system using both the analytical and numerical 

techniques (chapter 6). This system has been modelled using Runge-Kutta of order two 

and four (Figure 6.5). It was not necessary to use Genetic Algorithms method in this 

case because of the diffusion coefficient of carbon was available from the analytical 

solution (DC=1.6x10-11m2/s). 
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3.3. A Binary Solid - Solid Diffusion System (Cu-Ni System) 

3.3.1. Introduction /Background Information 

 

A binary solid – solid diffusion system (Cu-Ni) alloy has been selected for diffusion 

analysis. Diffusion studies have been carried out using diffusion couples (3.2.2). 

Following is the copper - nickel phase’s diagram.  

 

 

Figure 3.1 The copper-nickel phase’s diagram 

The system shows the formation of a single phase solid solution. 
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3.3.2. Formation of a Cu - Ni Diffusion Couple, Diffusion Treatment 

and Analysis 

A Cu-Ni diffusion couple was made by welding together the two metals copper 

and nickel. In the plane of the weld shown in the centre of Figure 3.2, a number of fine 

Mo wires were incorporated in the diffusion couple. These wires served as inert markers 

by means of study the diffusion process. Copper and nickel had separated by the plane 

of weld. The specimen has been hardened at a temperature close to the melting point of 

the metals constituting the bar. Upon cooling the specimen to room temperature, it was 

placed in a lathe and thin layers parallel to the weld interface which removed from the 

bar. Each layer was then analysed chemically and the results plotted to give a curve 

showing schematically the composition of the bar as a function of distance along the bar 

as shown in Figure 3.3.  

 

Figure 3.2 Kirkendall diffusion couple 

 

The interesting result which obtained was that the wires moved during the diffusion 

process.  
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Figure 3.3 The curves showing concentration as a function of distance along a diffusion 

couple  

Diffusion modelling for this system has been done previously [91] by analytical 

method. Using the analytically derived diffusion coefficient DCu=8.35x10-10cm2/s, the 

numerical modelling has been performed (chapter 6). Using the GAs technique, copper 

diffusion coefficient has been optimized. This optimized value has been used to 

determine the numerical concentration profile. The GAs method has been used to 

optimize D values assuming D is variable (concentration dependent), with a second 

order polynomial (equation 6.23).    

 

3.4. Pt-Ni-Al Solid Alloy System Containing Three Elements  

3.4.1. Introduction / Background Information 

 

Interdiffusion studies have been carried out in a solid alloy system. In performing 

diffusion studies the samples were produced as follows: 2 mm thick slices were cut 

from an extruded NiAl−β  bar and polished up to 0.25 μ m diamond pest [61]. An 

8.0± 0.5 μ m thick layer of Platinum was electroplated on the specimens. Such 

prepared diffusion couples, consisting of NiAl−β  and Pt  coating, were heat treated at 

a constant temperature 1273 K in an argon atmosphere ( )1015
2

atmaO 〈  for 60 minutes. 
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The couples were sectioned for the purpose of analysing the concentration profiles 

which were measured using the EDS technique.  

This system has been modelled and discussed in chapter 6 section 6.3. Trial and 

error technique has been used to calculate the diffusion coefficients for nickel and 

platinum (Figures 6.21 and 6.22). The GAs method has also been used to estimate 

constant diagonal D values for Ni, Figure 6.24, and Pt, Figure 6.25, constant cross and 

diagonal D values, Figure 6.27, and variable cross and diagonal D values, Figure 6.29. 

Additionally the fminbnd command in MATLAB has been used to optimise nickel 

diffusion coefficient (considering diagonal term) (Figures (6.31- 6.34). Finally Simplex 

search method as shown in Figures 6.35 and 6.36 has been used to optimize D value for 

nickel (D11Ni) and using both diagonal and cross terms respectively.  

 

3.5. Nickel Aluminise Coatings on MAR M002 Superalloys                                      

3.5.1. Introduction / Background Information 

 

Super alloys represent a class of materials which are considered as high temperature 

structural materials. In this class of alloys, Ni -base super alloys have received particular 

attention because of their suitability for use in aero engines as turbine blade 

components. These components in service encounter extreme external conditions –high 

tensile load, aggressive environments combined with the presence of high temperatures 

imposed by heating and cooling cycles of the engines. 

Ni -base superalloys are the most highly designed structural alloys. Ni -base 

superalloys contain such elements as CandTaWMoCoCrTiAl ,Re,,,,,,, . The 

main strengthening mechanism in cast superalloys is by precipitation hardening by 

coherent ),(3
' TiAlNi−γ    of volume fraction of 0.5 to 0.7. The matrix is Ni−γ . Cr  
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which is mostly in solid solution in Ni−γ  confers solid solution hardening and 

resistance to high temperature oxidation; and hot corrosion resistance is due to the 

formation of a slow-growing 32OCr  . It is well known that the addition of  Al  forms a 

thermo dynamically stable 32OAl scale   capable of increasing the resistance to high 

temperature corrosion. The addition of  Al  is problematic. Due to the high amount of 

Al  necessary to form  32OAl  it is difficult to achieve optimum strength and toughness. 

Another complication is that Al  reduces the solubility of Cr  in the matrix which 

adversely affects the resistance to hot corrosion. Thus  Al  is added merely to increase 

the strength of the alloy. 

To overcome these problems and provide Ni -base superalloys with adequate 

strength, and resistance to high temperature corrosion, the approach has been to produce 

a coating based on Ni - aluminide AlNi−β  to the alloy surface to form MAR M002. 

Nickel aluminide coatings are the most extensively used intermetallic coatings. 

Nickel aluminide is an ordered intermetallic and exists over a composition range of 45 – 

60 at % Al  [62]. Because of its high oxidation resistance coupled with low density, 

nickel aluminide is used as a structural coating to stop the high temperature 

environmental degradation generally encountered in aero gas turbines. 

The composition of gas turbine superalloys, optimized to supply a high content of 

the precipitation strengtheners ( 'γ ) in order to get sufficient creep resistance will 

adversely affect the high temperature corrosion resistance of these materials. Nickel 

aluminide coatings have been designed to confer the required corrosion resistance to the 

superalloys substrates.  
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3.5.2. Production of Nickel Aluminide Coatings on MAR M002 

Superalloys 

 

These coatings are produced by two types of pack processes [63, 64]. In one version 

the component is located in contact with a pack consisting of aluminium, a halide 

activator ),( 24 CrForNaClClNH  and inert filler and subjected to a diffusion 

treatment (for 2 to 24h) within a temperature range of 750 to 1000oC. The  Al  halide 

formed, assisted by the decay of the halide activator, undergoes dissociation on the 

surface allowing Al  diffusion into the substrate and leaving halide ions free to react 

with more Al  and cause the cycle to continue. A modification of this technique, worded 

“out-of-pack”, is alike to the chemical vapour deposition process (CVD) in that the 

components to be coated are not in contact with the powder of the pack, the aluminum 

halide gas generated being transported over the component/substrate surface by a carrier 

gas [63]. 

The protectivity of aluminide NiAl coatings stems from their ability to form 

−α alumina ( 32OAl−α ) scale. −α alumina has an hcp construction of oxygen 

anions with two thirds of the octahedral sites filled by trivalent cations. 

The high temperature protection afforded by the 32OAl−α  grades is due to the 

oxides having low concentrations and mobilities of both ionic and electronic defects 

[66]. The slow growth rate of the oxide is connected to its low nonstoichiometry and 

large band gap width, which makes electronic conduction hard. In the main, 32OAl−α  

acts as an ionic conductor in which both oxygen and aluminium are mobile [67, 68]. 

The efficiency of aluminide coatings in stopping high temperature corrosion is 

undermined by the incorporation within the scale of the outwardly diffusing, damaging 

substrate elements. The high activity aluminide coatings are inwardly grown make it 



 86  

easy for this incorporation. The incorporation of the damaging elements is more 

difficult in the outwardly grown, low activity coatings [63]. The efficiency of 

aluminides is further compromised by the increased attack by impurities in combustion 

gases caused by engines operating on lower grade fuel and in harsher situations. The 

limitations in the use of conventional nickel aluminide coatings deposited on Ni-base 

superalloys, e.g., MAR M002, to provide oxidation and hot- corrosion resistance, are 

well known [69], and are as follows: 

• It’s massively low ductility at ambient temperatures 

• The very great difficulty of manufacturing anything useful from them  

 

3.5.3. Pt Modified NiA1 Coatings on MAR M002 Superalloys 

 

  There are some advantages of adding platinum to overcome these limitations. A 

main move forward was made by adding Pt  to nickel aluminide coatings. Such 

coatings out-perform the unmodified conventional aluminide coatings [66]. Two major 

kinds of AlPt −  coatings are used: 

(1) a single phase structure with a continuous 2PtAl  surface layer; and 

(2) a two phase PtAl  + AlPtNi ),(  structure with changing quantities and  

morphologies of Pt  rich phases and with changing quantities of extent of  

substrate intervention in the ),( PtNi  layer.                                                          

The Pt   aluminide coatings have been found to show better oxidation resistance and 

a greater resistance to type-I [63] hot corrosion and a marginal development in type-II 

hot corrosion resistance. There is an improved adherence of a slow growing 

32OAl−α scale, avoiding spallation and cracking, this is a major factor. This 

improvement in general, is considered to be due to:  
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• encouragement of the selective oxidation of Al ; 

• a capability for the oxide to regenerate following spallation, linked with  

enchanced Al  diffusion in the coating; 

• the creation of an Al  reservoir during the attraction of Al  for Pt ;  

• the inhibition of the coating/substrate interdiffusion; 

• the barring or limiting the concentration of the substrate refractory elements in 

the outer zone of the coatings-such as elements undermine the integrity of the 

coatings; 

• a decrease in the oxide growth stresses. 

 

3.5.4. Production of Pt Modified NiA1 Coatings on MAR M002 

Superalloys 

 

The nominal composition of the superalloy MAR M002 is presented in Table 3.1. 

The platinum-modified coatings were prepared by Chromalloy (UK) Limited. Rod 

shaped specimens, mm25  in length and mm6  diameter, were coated with a platinum 

aluminide which normally contains Pt%5535 − . Initially, a layer of platinum was 

electroplated on the alloy surface. After a diffusion treatment, the surface was 

aluminized in a high activity pack. Following cooling, all the specimens were then 

diffusion heat treated for 1 hour at 1371 K in argon. Ultimately, all the specimens were 

thermally aged for 16 hours at 1143 K to precipitate the support gamma prime phase. 

Following heat treatment the specimens were washed in purified water and then 

ultrasonically cleaned in acetone, followed by hot air drying prior to testing. 
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Cr Al Ti Co W Ta Mo Hf Fe Zr B C Ni 

9 5.5 1.5 10 10 2.5 0.5 1.25 <0.5 0.1 0 0 Bal

               

Table 3.1 Nominal chemical composition of MAR M002 substrate material %)(wt  

 

Some of the prepared specimens were diffusion annealed at selected temperatures in 

the 1073-1373 K temperature range in argon atmosphere. For the reason that the studied 

alloys have precipitations at the gamma phase the average concentration profiles of the 

components have been determined using the EDS (Energy Dispersive Spectrometer) 

technique. 

 

3.5.5. Failure Mechanisms of Pt- Modified Coatings 

 

Although the life of superalloys coated with −Pt modified coatings have been 

significantly improved, these coatings will eventually suffer failure. These coated 

superalloys are predominantly used as components in aircraft turbine engines which are 

normally operated at temperature  )980( Co>  during cruising with temperatures 

transiently increasing to )1200( Co>    with the possibility of engine overheating. 

Thermal barrier coatings are used as protection against high temperature degradation 

mechanisms. However the exposure of the components to such high temperatures and 

for long periods will adversely affect the structural suitability of the materials and of the 

ceramic topcoat.  

The dominant failure mechanics identified include: 

• oxidation and hot corrosion  

• coating substrate interdiffusion 
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High temperature degradation of coated −Ni base superalloys have been studied 

extensively [62]. The oxidation and hot corrosion failure mechanics of coated 

−Ni superalloys have been established and are well known [70]. In contrast, the coating 

/ substrate interdiffusion processes responsible for some major failures have not been 

studied extensively. The main problem lies in the difficulty in quantifying the 

interdiffusion processes in multi-component systems such as coated −Ni base 

superalloys. This study has been undertaken to remedy this situation.          

Thus the most critical issue is still the migration incorporation of the substrate 

elements and their incorporation in the coating and in the scale. The design of high 

performance −Pt modified −Ni  aluminide coatings requires information on coating / 

substrate elements interdiffusion.  

These coatings constituted an important system for the present study. Interdiffusion 

processes in such systems have been modelled numerically using constant diagonal 

terms, constant diagonal and cross terms and variable diagonal and cross terms in the 

diffusion matrix. Optimization of the diffusion coefficients used was done using GAs 

technique given in chapter 6. The detailed analyses of GAs method have been presented 

in chapter 5.  

 

3.6. Studies of Ir and Ir/Pt Low- Activity Aluminid / MAR M002 

System: Assessment of the Oxidation Resistance and 

Microstructural Aspects / Modelling of Diffusion Process involved 

at (1100oC) 

3.6.1. Introduction / Background Information  

The superior performance of the Pt-modified Ni aluminide coatings have been 

discussed in the previous section. It is to be noted that a stable oxide of Pt is not formed 
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and Al is relatively mobile in Pt-rich phases [71]. Thus Pt helps to create a reservoir of 

Al in the outer portion of the coating promoting an easy formation of the protective 

layer of Al2O3 [72]. The major disadvantage of Pt is that it is very expensive. Because of 

the high cost implication of Pt, attention has been focussed on replacing Pt  by other 

noble metals for example Pd, Rh, and Ir. While the performance Pd , and Rh  modified 

−Ni aluminide coatings have been reported [73], the performance of Ir modified 

coatings have not been extensively discussed. Fisher and Datta [74, 75] have 

manufactured and produced Ir-modified −Ni aliminide coatings on MAR M002 

substrate and studied their oxidation performance after exposure to air at 1100oC. 

 

3.6.2. Production of Ir and IrPt Modified Coatings on MAR M002 

System at 1100oC 

 

A number of MAR M002 directionally  superalloy buttons (diameter 20 mm, width 5 

mm) were sputter-coated with approximately 7 μ m of Ir and then heat-treated for 1 

hour at 1100°C. Half of the button samples were then electroplated with 7 μ m of Pt 

and then heat-treated for 1 hour at 1100°C. The samples were then aluminized, Figure 

3.4, using a high temperature, low-activity, out-of-pack process.  

The oxidation performance of the coatings was evaluated using isothermal soaks at 

1100°C for 25, 100 and 250 hours. The soaks were conducted using carbolite tube 

furnaces in still laboratory air. Both the as-processed and aged coatings were assessed 

using optical microscopy, SEM and XRD techniques. 



 91  

 

Figure 3.4 Schematic diagram of the production process for the samples  

 

Interdiffusion processes in these systems have been modelled numerically using 

constant diagonal diffusion coefficient for the all the components 

),,,( NiIrCrAl and ),,,,( PtNiIrCrAl . Variable diffusion matrix (diagonal and cross 

terms) have been also optimised using GAs technique. The detailed analyses of GAs 

method has been presented in chapter 5.  

 

3.7. Aluminise Coating on low Alloy Steels at 650oC 

3.7.1. Introduction / Rational for Development of Aluminise Diffusion 

Coatings 

 

 It is widely recognized that the higher efficiency of the steam power plants can 

be achieved by increasing the operation temperature above 650oC. The commonly used 

9Cr-1Mo steels or the improved low alloy steels will suffer oxidation degradation in air 

or in steam at 650oC. To prevent such degradation coatings are needed. 

It has been demonstrated by Xiang and Datta [76] and by others [77] that formation 

of surface coatings by pack process is one of the most elegant methods of creating 

Pt plate and heat treats 
for 1 hour at 1100oC 

Ion implantation of Pt 
diffused samples 

Aluminise for 6 
hours at 1100oC 

Ion implantation of 
aluminised samples 

 

Heat treats for 1 
hour at 1100oC 

and 16 h at 875oC 

Ion implantation of 
fully processed 

samples 



 92  

protective coatings. The approach was to enrich the surface with Al by pack cementation 

to form Fe- aluminide on low alloy steel [78, 79]. 

Most of the pack processes so far have been carried out at higher temperatures 

(900oC). Only recently pack coatings have been used by Xiang and Datta [80, 81] on 

2.25Cr-1Mo steel at 600 to 750oC where effects of some process variables such as type 

of activator, pack composition and temperature have been investigated. AlCl3 was found 

to be an effective activator. 

 

3.7.2. Formation of Coatings 

 

With this objective aluminide coatings were deposited on steel substrates (Fe-9Cr-

1.0Mo-0.1C) using a pack deposition process. Steel samples measuring 20x10x2 mm 

cut, ground, degreased and weighed were pack aluminized. The powder mixtures for 

aluminizing contained suitable amounts of powders of Al, Al2O3 and AlCl3.  

The process was carried out in the following stages: 

Firstly the sample fixed in pack powder was heated at 850oC, secondly it was then 

heated at 150oC for 1 hour, thirdly further heating at 650oC for a predetermined time, 

and fourthly, the processed sample taken out of the furnace and weight change 

determined. 

 

3.8. Studies of Interdiffusion Modelling in Al2Au and TiAlCrY Coated 

Ti45Al8Nb Subjected to Air Oxidation at 750oC for 1000 Hours 

for Al2Au Coatings and 500 Hours for TiAlCrY Coatings 

3.8.1. Introduction / Background Information 

γ-TiAl and TiAl based alloys are a class of novel, promising materials for 

automotive, energy and aerospace applications. The specific stiffness and strength, of 
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these materials as compared to their low weight, potentially lead to large weight savings 

(50%) compared to the Ni base alloys. However, the major obstacles for wider uses of 

TiAl based materials are their susceptibility to severe environmental attack in oxidising, 

sulphidising, and hot corrosion environments at elevated temperatures of more than 650 

°C. 

The need to raise the service temperature and combat the oxidation, wear and 

corrosion problems of γ-TiAl materials has promoted extensive development of high 

temperature protective thin films for this class of materials. With this in mind a large 

EU project (InnovaTiAl) was initiated with University of Northumbria at Newcastle as 

one of the main partners. This project has several themes. The main themes are: 

• Development of high performance coatings; 

• Studies of the high temperature (700-900oC) corrosion behaviour of the 

developed coating; 

• Studies of their mechanical behaviour; 

• Modelling of the processes of deposition and modelling of the response of these 

coatings to stress, temperature and environmental interactions including 

interdiffusion processes. 

 Under InnovaTiAl several high performance coatings have been developed: 

TiAlCrY; Al2Au; CrAlYN/CrN+CrAlYON etched by Cr; CrAlYN/CrN+CrAlYON  

etched  by CrAl; CrAlYN/CrN+CrAlYON etched by Y etc. The substrate material 

chosen in this project is Ti45Al8Nb. 

 New methods of producing coatings have been developed by the partners of 

InnovaTiAl project. These methods included Unbalanced Closed-Field Magnetron 

Sputtering System (UBM), and High Power Impulse Magnetron Sputtering System 

(HIPIMS).  
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However in our own study attention has been focussed on two coatings – Al2Au and 

TiAlCrY deposited on Ti45Al8Nb. The study addresses the interdiffusion modelling 

issues surrounding oxidation of these coatings on Ti45Al8Nb at 750oC for various times 

up to 1000 hours. Modelling of the interdiffusion processes involved was performed 

both by microstructural analysis and by numerical methods.        

The rationale for selecting these coatings to prevent high temperature corrosion 

(700-900oC) of materials in oxidising, sulphidising environments, is based on the fact 

that Al2O3 and Cr2O3 oxide scales are essential to provide the required degree of 

protection against environmental attacks. Thus an Al2Au coating has been developed on 

the basis that in high temperature oxidising/sulphidising environments Al will oxidise to 

form a protective Al2O3 scale and gold is a novel material and its oxides will not affect 

the performance of Al2Au coatings.  

In the case of TiAlCrY coatings the expection was that Al and Cr will form protective 

Al2O3 and Cr2O3 scales; additionally Y was introduced to enhance the selective 

oxidation of aluminum. 

 

3.8.2. Studies of Al2Au Coatings – Production and Oxidation (750oC up 

to 1000 Hours)  

3.8.2.1. Production of Al2Au Coatings 

 

We investigated an Al2Au phase demonstrating Zintl phase, (Zintl phases were 

named for the German chemist Eduard Zintl who investigated them in the 1930's [83]), 

with a cubic CaF2 structure. Al2Au is hard and brittle at room temperature: it shows 

plastic deformation and possibility self-lubrication at high temperatures. The melting 

point for Al2Au, which is the thermally most stable intermetalic phase within Al-Au 

http://en.wikipedia.org/wiki/Eduard_Zintl
http://en.wikipedia.org/wiki/Zintl_phase#cite_note-Kauzlarich-0#cite_note-Kauzlarich-0
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phase diagram, is 1060 oC, whereas the other phases AlAu2, Al2Au5, and AlAu4 show 

melting temperatures between 525 and 625 oC.  

The Al2Au coating used in this study was deposited using an unbalanced d. c 

magnetron sputtering system on Ti45Al8Nb material in argon atmosphere at 0.2 Pa. 

The substrate temperature, bias voltage and sputter power was 300 oC, 50V and 380W. 

Prior to deposition, all substrates (Ti45Al8Nb) used were metallographically ground, 

polished and ultrasonically cleaned with ethylene and acetone. After target (Al, Au) pre-

cleaning and ion etching of the substrates within the deposition chamber, coatings in the 

thickness range between 0, 1, 7 μ m were deposited [84]. The coated test specimens 

were approximately 15 mm in diameter and two mm thick with polished appearance and 

0.5 mm hole near the rim to allow for platinum wire to be threaded for suspending the 

samples for subsequent tests.  

3.8.2.2. Oxidation Studies of Al2Au Coatings at 750oC for 1000 Hours 

 

The experiment in oxidising environment (pO2=0.21 atm) was carried out 

discontinuously in the static air in an open tube at 750°C for 1000 hours. Heating rate 

was then 10oC/min in order to reach 750oC. The oxidation experiment was performed 

using a number of specimens. The ultrasonically cleaned and prepared samples were 

weighed to get the initial mass of the sample. To measure the mass gain, the following 

equation has to be applied; 

M2-M1=M              (3.1)  

where M2 is the mass after certain time (1000 hours), and M1 is the initial mass, so 

M is the mass gain. The samples were withdrawn from the furnace periodically after a 

predetermined time, and weight changes measured, providing information on the 

kinetics of oxidation. After the experiment the furnace was cooled down to room 

temperature at the natural rate, by switching off the power supply. All exposed samples 
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were analysed by scanning electron microscope (SEM) and energy dispersive X-Ray 

spectroscopy (EDS).  

 

 
3.8.3. Studies of TiAlCrY Coatings: Production and Oxidation at 

750oC up to 500 Hours  

3.8.3.1. Production of TiAlCrY Coatings 

 
The TiAlCr and TiAlCrY (Y as a dopant element was introduced in order to 

improve the selective oxidation of Al [85]) coatings with the composition of 

Ti43Al13Cr at % were produced by an unbalanced close field magnetron sputtering 

system. The TiAlCr coatings consist of γ-TiAl and TiAlCr Laves phase. The high 

content of Cr was introduced in order to produce Cr2O3 and enhance the selective 

oxidation of Al [86]. The sputtering parameters were as follows; argon pressure 0.2 Pa, 

power density ca. 4.2 W/cm2, and substrate temperature 250oC. Zhaolin et. al. note [87] 

that Ti-Al-Cr alloys containing a minimum of 8-10% Cr exhibite excellent oxidation 

resistance due to the formation of continuous Al2O3 scale.  

 

3.8.3.2 Oxidation Studies of TiAlCrY Coatings at 750oC for 500 Hours 

 

Oxidation experiments were carried out in the static air (pO2=0.21atm) in an open 

tube at 750°C for 500 hours with a series of specimens. Heating rate was 10oC/min in 

order to reach 750oC. Each sample was weighed before the start of the experiment then 

periodically withdrawn and weighed. The weighed change was determined by equation 

3.1. All exposed samples were examined using SEM surface, SEM cross – section and 

EDS analysis.  
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These coatings (Al2Au and TiAlCrY coated Ti-45Al8Nb) composed an important 

system for the present study. Interdiffusion processes in these coatings have been 

modelled numerically using constant and variable diagonal and cross terms in the 

diffusion matrix. Optimization of the diffusion coefficients used was done using the 

GAs technique. The detailed analyses of the GAs method have been presented in 

chapter 5.  
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CHAPTER FOUR 

 

       This chapter discusses some numerical techniques which are applicable to solve 

Fick’s diffusion equations. Emphasis has been placed on these techniques which have 

been used in the present work.     

 

4.1. Fick’s Diffusion Laws 

 

      Diffusion is a time-dependent process. When we know how quickly diffusion takes 

place, we know the rate of mass transfer. This rate is usually expressed as a diffusion 

flux ( J ) [89, 90] 

 

At
MJ =   (4.1) 

 

where ( M ) is the mass of a diffusing species through and perpendicular to a unit cross-

sectional area ( A ) of solid per unit time ( t ). The units of ( J ) are kilograms or atoms 

per metre squared per second ( )./( 2 smkg  or (atoms/ sm .2 ). Equation 5.1 in 

differential form can be expressed as follows: 

 

dt
dM

A
J 1
=   (4.2) 

 

      If the diffusion flux does not change with time, a steady-state situation exists. One 

general case of steady-state diffusion is the diffusion of atoms of a gas through a plate 
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of metal for which the concentrations C of the diffusing types on both surfaces of the 

plate are supposed constant. 

      When the concentration (C ) (which is usually expressed in weight percent %at  or 

atomic percent %at ), is plotted against position or diffusion distance, within the solid x , 

the resultant curve is termed as the concentration profile. The slope at a particular point 

on this curve is the concentration gradient or penetration curve: 

 

Concentration gradient =
dx
dC   (4.3) 

 

      It is typically most suitable to express concentration (C ) in terms of mass of 

diffusing types per unit volume of solid ( 3/ mkg or 3/ cmg ). 

      The mathematics of steady-state diffusion in a single direction ( x ) is fairly 

straightforward, the flux is proportional to the concentration gradient as shown by the 

expression: 

 

dx
dCDJ −=   (4.4) 

 

This equation is known as Fick’s first law. 

      The constant of proportionality D  is known as the diffusion coefficient, which is 

expressed in square metres per second. The negative sign in equation 4.4 designates that 

the direction of diffusion is down the concentration gradient, from a high to a law 

concentration. Equation 4.4 is Fick’s first law, it fits the experiential fact that the flux 

goes to zero as the specimen becomes homogeneous or reaches equilibrium. The 

concentration can be given in a variety of units, but the flux must be expressed in 

consistent units. 
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      Generally the practical diffusion circumstances are always in non-steady state. That 

is, the diffusion flux and the concentration gradient at some particular point in a solid 

differ with time. This is demonstrated in Figure 4.1, which shows concentration profiles 

at three different diffusion times. 

 

t3

t1
t2

t3>t2>t1

Distance

C
on

ce
nt

ra
tio

n

 
 

Figure 4.1 concentration profile for nonsteady-state diffusion taken at three different 

diffusion times ,, 21 tt  and 3t  

 

      So under a nonsteady-state condition, using equation 4.4 is no longer suitable, it 

becomes necessary to consider the partial differential equation: 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C

        (4.5) 

 

This is known as Fick’s second law. If the diffusion coefficient is independent of 

composition, then equation 4.5 simplifies to: 
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2

2

x
CD

t
C

∂
∂

=
∂
∂

        (4.6) 

 

Equation 4.6 known as Fick’s second law when the diffusion coefficient is constant [89, 

90, 91, 92].  

 

4.2. Solutions of Fick’s Second Law 

 

      Fick’s second law can be solved by analytical and numerical methods. 

 

4.2.1. Analytical Solutions 

 

      One of the solutions of equation 4.6 (Fick’s second law), for a semi-infinite solid, 

that is none of the diffusion atoms reaches the end of the bar when diffusion processes 

begin a function of position (diffusion distance), and time when the boundary conditions 

are specified. This is shown in Figure 4.2. 
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Figure 4.2 One dimensional diffusion into a semi-infinite medium. The concentration at 

0=x  is maintained for all time at fixed value oC  while the diffusant spreads toward the 

right 

 

The boundary conditions are: 
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For t=0, C=Co at 0≤x≤ ∞        (4.7.a) 

For t>0, C=Cs at x=0        (4.7.b) 

              C=Co at x=∞  when surface concentration is constant  (5.7.c) 

 

      Applying these boundary conditions to Fick’s second law (equation 4.6), then the 

solution becomes as follows: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1        (4.8) 

 

where xC  is the concentration of the diffusion atoms at the location x  below the 

surface and after time t , erf  is the Gaaussian error function of the variable x [89]. The 

Gaaussian error function is defined by 

 

dyezerf
z

y∫ −=
0

22)(
π

       (4.9) 

 

where Dtx 2/  has been replaced by the variable z . The values are given in a 

mathematical table for various Dtx 2/  values: 
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z erf(z) z erf(z) z erf(z) 

0 0 0.55 0.5633 1.3 0.934 

0.025 0.0282 0.6 0.6039 1.4 0.9523 

0.05 0.0564 0.65 0.642 1.5 0.9661 

0.1 0.1125 0.7 0.6778 1.6 0.9763 

0.15 0.168 0.75 0.7112 1.7 0.9838 

0.2 0.2227 0.8 0.7421 1.8 0.9891 

0.25 0.2763 0.85 0.7707 1.9 0.9928 

0.3 0.3286 0.9 0.797 2 0.9953 

0.35 0.3794 0.95 0.8209 2.2 0.9981 

0.4 0.4284 1 0.8427 2.4 0.9993 

0.45 0.4755 1.1 0.8802 2.6 0.9998 

0.5 0.5205 1.2 0.9103 2.8 0.9999 
 

Table 4.1 Tabulation of error function values 

 

A second solution can be found in a plane source by differentiation as follows [90]: 

 

)4/exp( 2
2 Dtx

t
AC −=        (4.10) 

 

where A  is an arbitrary constant, for equation 4.6, Fick’s second law, and when the 

diffusion takes place in one dimension and D  is constant. Equation 4.10 is symmetrical 

with respect to: 

0=x  

That is it tends to zero as x  approaches infinity in the positive and negative side for 

0>t , and for 0=t  it vanishes everywhere except 0=x , it becomes infinite. If the 

diffusion (or diffuser) is allowed to spread into two material bodies occupying the half-

spaces 0 < x < ∞ and −∞ < x < 0, which have an equal and constant diffusivity, this 

is shown in Figure 4.4, we obtain the following equation [90]: 
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∫
∞

∞−
= CdxM         (4.11) 

 

                    C  

x− x  
              0 

Figure 4.3 the substance ( M ) diffusing to the positive and negative side. 

 

  That is the whole substance M  diffusing in an infinite length and unit cross 

section is known by. And if  

22 4/ ξ=tDx         (4.12) 

ξξ d
tD

dxx 2
4

2
=         (4.13) 

2/12 )(2
4

4
4

/4

Dt
dDt

Dt
dDtdx

xdtDdx

ξ
ξξ

ξ

ξξ

ξξ

==

=

       (4.14) 
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ξdDtdx 2/1)(2=         (4.15) 

 

So equation 4.11 becomes, using equation 4.10 and equation 4.15, as follows: 

 

dx
tD

x

t

AM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∫

∞

∞− 4
exp

2

2
1        (4.16) 

2
1

22
1

)(2)exp(2 DAdADM πξξ =−= ∫
∞

∞−
     (4.17) 

2
1

)(2 D

MA
π

=          (4.18) 

 

Equation 4.17 explains that the substance diffusing remains constant and equal to the 

amount of substance deposited in the plane 0=x . 

Therefore, substituting A  from equation 4.18 in equation 4.10, we get 

 

)4/exp(
)(2

2

2
1 tDx

Dt

MC −=
π

       (4.19) 

 

Equation 4.19 is therefore the solution of Fick’s second law which explains the 

spreading by diffusion of an amount of substance M  deposited at time 0=t  in the 

plane 0=x . Figure 4.5 shows typical distributions at three successive times. 
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Figure 4.4 Concentration-distance curves for an instantaneous plane source. Numbers 

on curves are values of Dt  

 

However, the analytical methods or solutions are not always possible, especially 

when the equations are not linear and contain variable coefficients.  Further difficulty 

arises when the degree of the equation is higher than the first degree. Under this 

situation numerical methods need to be adopted to deal with the problems where there is 

no analytical solution available. Numerical methods have no such limitation. The 

solution is as a tabulation of the values of the function at a variety of values of the 

independent variable. In this project the numerical methods such as Euler’s method, 

Modified Euler’s method, and Runge-Kutta method of order four, which have been used 

are described in next chapters. 

The next sections provide elaborations of Euler, Modified Euler, and fourth order 

Runge-Kutta numerical methods. 
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4.3. Taylor-Series Method, Euler Method, Modified Euler’s Method 

and Runge-Kutta Method of Order Four 

 

4.3.1. Taylor-Series Method 

 

Taylor-series is not strictly a numerical method but from time to time it is used in 

combination with the numerical methods. Hence it is appropriate to start considering the 

Taylor-series. Consider this example [93]: 

 

yx
dx
dy

+=          (4.20) 

 

Considering the initial condition oo yxy =)(      

1
0

=
=

o

o

y
x

 

 

The analytical solution is  

 

12 −−= xey x         (4.21) 

 

This will be compared with the numerical result as follows: 

The relation between y   and x  can be produced by finding the coefficients of the 

Taylor-series, 

L+−+−+−+= 3
'''

2
''

' )(
!3

)()(
!2

)())(()()( o
o

o
o

ooo xxxyxxxyxxxyxyxy    (4.22) 
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If  

hxx o =−  

Therefore the above series (equation 4.22) becomes as: 

 

L++++= 3
'''

2
''

'

!3
)(

!2
)()()()( hxyhxyhxyxyxy oo

oo    (4.23) 

 

If Taylor- series uses the derivatives at zero, the series will be called a Maclaurin 

series. 

When the initial condition is )( oxy , (the first term is known from initial condition  

1)0( =y . The coefficient of the second term can be calculated by substituting 

1,0 == yx  into the equation 4.20 for the first derivative: 

 

10)0()( '' +== yxy o   

  

The second and higher –order derivatives can be found by differentiating the 

equation 4.20. Each of these derivatives can be calculated corresponding to 0=x   to 

obtain the various coefficients: 

2)0(

2)0(,)(
2)0(,)(

211)0(,1)(

)(

'''

''''''''

'''''

=

==

==

=+=+=

n

iviv

y

yyxy
yyxy
yyxy

M

M

 

Then the series solution for Y  by substituting hx = is as follows: 

errorhhhhhy +++++= 432

12
1

3
11)(      (4.24) 

The solution of equation 4.20 is given in Table 4.2: 
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Table 4.2 Tabulation of y  values in the Taylor series and the analytical solution 

 

In the above Table 4.2, the last two values in the column 2 and 3 the accuracy is not 

perfect, so it means we need more terms than we have considered obtaining four-

decimal-place accuracy.    

The error term of the Taylor-series after the term of 4h is: 

hhyerror
v

<<= ξξ 0
!5

5
)(

       (4.25) 

The error cannot be calculated here because the derivatives are known just at 0=x  and 

not at hx = . The Taylor-series is truncated when the contribution of the last term is 

negligible to the number of decimal places.  

  

4.3.2. Euler and Modified Euler Methods 

 

The Taylor-series method is difficult to apply if the various derivatives are 

complicated, and is also difficult to determine the error. So the application of Taylor’s 

X y y, analytical 

0 1 1 

0.1 1.1103 1.1103 

0.2 1.2428 1.2428 

0.3 1.3997 1.3997 

0.4 1.5835 1.5836 

0.5 1.7969 1.7974 
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method to a specific problem is complicated by the requirement to determine and 

calculate the high-order derivatives with respect to t . 

It has been established that the error in Taylor’s series will be small if the step size 

h  (the interval beyond ox  where we evaluate the series), is small. If the step size h  is 

small enough, only a small number of terms are necessary for good accuracy. The Euler 

method may be considered as following this plan, (only a small number of terms are 

necessary for good accuracy), to first order differential equations. So when h  is small 

enough, then: 

 

hxxhyxhyxyhxy ooooo +<<++=+ ξξ ,
2

)()()()( 2
''

'    (4.26) 

 

This equation has been written in the usual form of the error term for the truncated 

Taylor series. The value of  )( oxy is given by the initial condition and  )(' oxy  can be 

calculated from ),( oo yxf  , known  from the differential equation:  

),( yxf
dx
dy

=  

and then for  hxx o 2+=  after )( hxy o +  has been found, then to hxx o 3==  , etc. 

Assuming the subscript notation for the successive −y values and demonstrating the 

error by the order relation, the Euler method algorithm could be written as: 

 errorhOxhyxyhxy ooo )()()()( 2' ++=+     (4.27) 

 

As an example, consider this simple equation (4.20): 

 

,yx
dx
dy

+=  1)0( =y   
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It is suitable to organize the work as in Table 4.3. Let 02.0=h . 

 

nx  ny  '
ny  

'
nhy  

0 1.0000 1.0000 0.0200 

0.02 1.0200 1.0400 0.0208 

0.04 1.0408 1.0808 0.0216 

0.06 1.0624 1.1224 0.0224 

0.08 1.0848 1.1648 0.0233 

0.10 1.1081   

 

Table 4.3 Tabulation of y values from Euler method 

  

Each of the ny values is calculated using equation 4.27, adding  nhy '  and ny of the 

previous line in the above Table 4.3. Comparing the last result 1081.1  to the analytical 

answer 1103.1)10.0( =y   , it can be seen that there is only two-decimal-place accuracy 

because the error is 0.0022. Therefore the difficulty with this mainly uncomplicated 

method is its lack of accuracy, requiring a very small step size h . In the simple Euler 

method, the slope at the beginning of the interval
'
ny  has been used to decide the 

increment to the function. So if the slope of the function were constant, the solution is a 

linear relation. Consequently the effort has been added to use an average slope over the 

interval to estimate the change in y  with accuracy [93]. This is shown in Figure 5.6. 
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Figure 4.5 An improvement of Euler  

 

Using the arithmetic average of the slopes at the beginning and end of the interval: 

2

'
1

'

1
+

+

+
+= nn

nn
yy

hyy       (4.28) 

 

Consequently this gives an improved estimate for y  at 1+nx . Equation 4.28 is the 

modified Euler method.  Equation 4.28 cannot be used straight away, since the 

derivative 'y   is a function of  x  and y , so '
1+ny cannot be evaluated with 1+ny  

unknown. The Modified Euler-method overcomes the difficulty by approximating (or 

predicting) a value of 1+ny by the simple Euler-method shown in equation 4.27, and 

then use this value to calculate
'

1+ny , giving an improved approximation (corrected 

value) for 1+ny . Hence the modified Euler-method is more efficient than Euler-method. 

This method also called Euler-predictor-corrector method, using the same example and 

earlier treatment. The solution using equation 4.27 is given in Table 4.4: 
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nx  ny  
'
ny  '

nhy  1+ny  '
1+ny  '

avy  
'
avhy  

0 1.0000 1.0000 0.0200 1.0200 1.0400 1.0200 0.0204 

    1.0204 1.0404 1.0202 0.0204 

0.02 1.0204 1.0404 0.0208 1.0412 1.0812 1.0608 0.0212 

    1.0416 1.0816 1.0610 0.0212 

0.04 1.0416 1.0816 0.0216 1.0632 1.1232 1.1024 0.0220 

    1.0636 1.1236 1.1026 0.0221 

    1.0637 1.1237 1.1027 0.0221 

0.06 1.0637 1.1237 0.0225 1.0862 1.1662 1.1449 0.0229 

    1.0866 1.1666 1.1451 0.0229 

0.08 1.0866 1.1666 0.0233 1.1099 1.2099 1.1883 0.0238 

    1.1104 1.2104 1.1885 0.0238 

0.10 1.1104       

  

Table 4.4 The solution using Modified Euler method 

 

In this table, the corrected values of 1+ny have been tabulated in the same column as 

the predicted ones. '
avy  is the mean of  '

ny   and the last value of '
1+ny . The accuracy is 1 

in the fourth decimal place. The error of the modified Euler method can be found by 

comparing with the Taylor series. 

 

hxxhyhyhyyy nnnnnn +<<+++=+ ξξ ,
6

)(
2
1 3

'''
2'''

1              (4.29) 

 

When we substitute the forward-difference approximation in the second derivative, 

 

h
yy

y nn
''

1'' −
= +         (4.30) 
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which has error of  )(hO , and the error term as )( 3hO is: 
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             (4.31) 

 

The above equation (4.31) shows the error of one step of the modified Euler method 

is )( 3hO , and is called local error. The error will be accumulated from step to step; 

therefore the error over the whole range of application is called the global error and 

is )( 2hO .  Since the number of steps into which the interval is subdivided is proportional 

to1/h; for this reason the order of the error is reduced to )( 2hO  on the continuing 

application. 

 

 4.3.3. Runge-Kutta Methods 

 

An additional move forwards in efficiency and accuracy can be secured with a 

group of methods due to the German mathematicians Runge and Kutta. To express 

some thought   of how Runge-Kutta methods are developed, the derivation of a second 

–order method is as follows: 

 

),(
),(

,

12

1

211

kyhxhfk
yxhfk

bkakyy

nn

nn

nn

βα ++=
=

++=+

      (4.32) 

where 
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 ),( yxf
dx
dy

=  

 

The values 1k  and 2k are the estimates of the change in y  when x  advances by h   

because they are the product of the change in  x   and a value for the slope of the curve, 

dx
dy

  the Runge-Kutta method uses the first estimate of yΔ the simple Euler method, the 

other estimates are taken with x  and  y  moved up the fractions α  and β  of h and the 

earlier estimate of  yΔ , 1k . The difficulty is to create a method of choosing the four 

parameters βα ,,,ba . Therefore equation 4.32 through Taylor-series expansion is as 

follows: 

K+++=+ ),()2/(),( '2
1 nnnnnn yxfhyxhfyy  

And since  

fffdxdyffdxdf yxyx +=+= //          

so 

nyxnnn fffhfhyy )
2
1

2
1(2

1 +++=+       (4.33) 

 

Equation 4.32, by substituting the definition of  1k   and 2k , becomes, 

 

)],(,[),(1 nnnnnnnn yxhfyhxbhfyxfhayy βα ++++=+             (4.34) 

 

To construct the last term in equation 5.34 similar to equation 4.33, ),( yxf in 

Taylor-series in term of nn yx ,  is  
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nyxnnn fhfhffyxfhhxf )()],(,[ βαβα ++=+    (4.35) 

 

In equations 5.33 and 5.35, f and its partial derivatives are all to be evaluated at 

),( nn yx . 

When substituting from equation 5.35 into equation 5.34, we obtain the following: 

 

nyxnnn

nyxnnn

ffbfbhfhbayy

fhfhffhbfhayy

)()(

)(
2

1

1

βα

βα

++++=

++++=

+

+
              (4.36) 

 

Equation 4.36 is identical to equation 4.33 if  

,1=+ ba       ,
2
1

=bα        
2
1

=bβ  

 

Therefore there are three equations and four unknowns, thus one value can be 

chosen arbitrarily, for example let 
3
2

=a , then  

2
3,

2
3,

3
1

=== βαb  

If 
2
1

=a     then     1,1,
2
1

=== βαb  

and this last set of parameters presents a modified Euler algorithm: the modified Euler 

method is a special case of a second-order Runge-Kutta method. 

  

A further move forwards in efficiency and accuracy can be achieved with Runge-

Kutta method of order four as shown bellow: 
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     (4.37)  

 

In the following section we are going to discuss briefly the application of Euler’s 

method, modified Euler’s method and Runge-Kutta method of order to Fick’s second 

law. 

As an example, when we solve 1.0,1)0(,/ ==+= hyyxdxdy  

  

11034.1

)12105.022100.02200.010000.0(
6
10000.1)1.0(

,12105.0)1105.110.0(1.0
,11050.0)055.105.0(1.0

,11000.0)05.105.0(1.0
,10000.0)10(1.0

4

3

2

1

=

++++=

=+=
=+=
=+=

=+=

y

k
k
k
k

 

  This agrees to five decimals with the analytical solution. The local error term for 

the fourth-order Runge-Kutta is )( 5hO : the global error would be about   )( 4hO . 

In the example problem 1)0(,' =+= yyxy  the comparative results are shown in 

Table 4.5 for the y-value at 1.0=x . 
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Method Step size Result Error Number of 

function 

evaluations 

Euler 0.02 1.1081 0.0022 5 

Modified Euler 0.02 1.1104 0.0001 12 

fourth-order 

Runge-Kutta  

0.1 1.11034 0.00000 4 

 

Table 4.5 Methods comparison result  

 

4.3.4. Application of Euler Method, Modified Euler Method and 

Runge-Kutta Method of Order Four to Fick’s Second Law 

 

In this section applications of these numerical methods on Fick’s second law 

(equation 4.6) when the diffusion coefficient D  is constant are considered. Fick’s 

second law is a partial differential equation. So initially the finite difference method has 

been used to convert equation 4.6 to an ordinary differential equation so that numerical 

methods can be applied: 
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So equation 4.6; 
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Converted when: 

 

ii xxx −=Δ +1  

 

into: 
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where D  is the concentration independent diffusion coefficient when D  is constant. So 

equation 4.40 can be explained if L,2,1=i  as follows: 
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The equation 4.40 can be shown in matrix form as follows: 
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where the obdc =0  and ( obd , 1+nbd ) are the boundary conditions. Therefore Fick’s 

second law has been transformed to an ordinary differential equation. Then Euler’s and 

modified Euler’s methods are applicable now, which can be expressed respectively as 

follows: 
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It seems that by estimating a value of ),( htxC +  from Euler’s method, and then using 

this value to determine 
( )htxt

C

+

⎟
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⎞

⎜
⎝
⎛
∂
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,
we can then provide an improved or corrected value 

for ( )htxC +, . By assuming ( D ) as a constant, the numerical solution of Fick’s second 

law calculates the concentrations of diffusing species near the surface of the material as 

a function of time and distance.  

Fourth-order Runge-Kutta method also can be applied on Fick’s second law as 

follows: 

( ) ( ) ( )4321,, 22
6
1 KKKKCC txhtx ++++=+ [See Appendix B]   (4.44) 

Such that 
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Comparison between the modified Euler’s method and the Runge-Kutta method of 

order four has been made in chapter 6, section 6.2 [nonsteady state diffusion -iron 

carburized at 950o C, 7.1 hours]. 
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4.4. Fick’s Second Law for Variable Diffusion Coefficient ( D ) 

 

In real situations the diffusion coefficient can be variable. The diffusion coefficient 

for a known composition can differ with time; it can change with composition. Since 

there is a concentration gradient, this means that ( D ) changes with position along the 

sample. In this case )(xDC = , and Fick’s second Law (equation 4.6) must be written  
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when the diffusion coefficient depends only on the concentration of diffusing substance. 

That is if the diffusion coefficient differs with concentration, it is also clear that the 

value of D  assumed from the measurement of the steady rate of flow is some sort of 

mean value of variety of different concentrations. Thus, if D is a function ofC , so the 

solution of equation 5.45 in one dimension becomes: 
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such that  

)(λCC =       where     tx 2/=λ       (4.47) 

 

When we replace, equation 4.47, this converts the partial differential equation (equation 

4.46) to ordinary differential equation in C  andλ : 
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And hence 
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So that finally equation 4.46 becomes 
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an ordinary differential equation which is known as Boltzmann equation [94, 95]. 

Equation 4.50 can be solved, provided the concentration is initially constant, and the 

boundary conditions are as follows: 

 

+∞==
−∞==

λ
λ

,
,,

2

1

CC
CC

          (4.51) 

 

 Then the solution of equation 4.50 will be a unique solution of equation 4.6 (Fick’s 

second law) [96, 97]. By differentiation equation 4.50 becomes: 
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and integrating with respect to λ ; 
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Integrating again gives the following equation, ( 11 ln kk = ): 
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It seems that this is an integral equation, and there is not strictly a solution, because 

C  becomes visible inside and outside the integral sign. In order to find the solution an 

examination solution must be done, )(CD has to be evaluated numerically, then 

integrated numerically to obtain a new (C ) and repeat awaiting (C ) convergences. 

Equation 4.47 can be used when the diffusion takes place in infinite or semi-infinite 

media.  The application of initial and boundary conditions,  

 

2)0,0( CxC =>  and 1)0,0( CxC =<      (4.54)  

and 

2)0,( CtC =>∞  and 1)0,( CtC =>−∞      (4.55) 

 

for the infinite media, and  

 

12 )0,0()0,0( CtxCCtxC =====>      (4.56) 

2)0,( CtC =>∞    and   1)0,0( CtxC =>=  

 

for the semi-infinite media. The initial boundary conditions for the infinite and semi-

infinite diffusion couples are stated in Figure 4.7, 
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Figure 4.6 Boundary and initial conditions for: a) Infinite b) Semi-infinite diffusion 

couples 

 

4.5. Comparison between the Experimental and Numerical 

Concentration 

 

The method of least squares assumes that the best-fit curve of a given type is the 

curve that has the minimal sum of the deviations squared also known as least square 

error) from a given set of data.  

Suppose that the data points are ),( 11 yx , ),( 22 yx , ..., ),( nn yx  where x is the 

independent variable and y is the dependent variable. The fitting curve )(xf has the 
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deviation (error) d  from each data point, which means that 

)(,),(),( 222111 nnn xfydxfydxfyd −=−=−= K . According to the method of least 

squares, the best fitting curve has the property is shown by the following equation:  
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K [98, 99,100]           (4.57) 

Thus, a curve with a minimal deviation from all data points is desired. This best-fitting 

curve can be obtained by the method of least squares. 

 

The Least squares method has been used to compare between the experimental and 

numerical concentration value for each component because, it can be practical without 

needing differential. Let iY  corresponds to the experimental concentration for such a 

component, and iy  represents a numerical concentration value for the same component, 

consequently the error between the experimental and numerical concentration is as 

follows: 
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1
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i
i yYError −= ∑

=

       (4.58) 

 

Where N represents the number of points in the concentration profiles. Following that 

the error needs to be compared with the minimum error we set. If the error is close to 

the minimum error we set, then the diffusion coefficient value can be used to calculate 

the concentration profile. But if not, the error calculated in equation 4.58 is not close to 

the minimum error we set, then it indicates that the diffusion coefficient under 

consideration is not the optimum value that can be used to calculate the concentration 

profile for the component. Three optimization methods, Genetic algorithms method 

(GAs), bounded nonlinear function minimization (fminbnd), and Simplex method, can 
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be used to determine the optimum diffusion coefficient. These optimization methods 

have been investigated in chapter four in detail. The Genetic algorithms optimization 

method has been found be the best optimization method with the advantages that it can 

be used to find the optimal diffusion coefficient value, and the flow chart is in the 

Appendix C. 

 

4.6. Conclusions 

 

The use of three numerical methods - Euler method, Modified Euler method, and 

Runge-Kutta method of order four to solve Fick’s second law to find the numerical 

concentration profile for each component in the system has been considered. Fick’s 

second law is a partial differential equation: it has been shown how the finite difference 

method has been used to convert Fick’s second law to an ordinary differential equation.  

 However to solve completely Fick’s second law it would be necessary to 

optimize the diffusion coefficients. In the next chapter 6 we will discuss the 

optimization techniques that have been used in this thesis.   

The Least squares method has been used to calculate the error between the 

experimental and numerical concentration for each component, and then we can 

compare this error with the error we set. 
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CHAPTER FIVE 
 
5.1. Introduction 
 

The idea of evolutionary computing was introduced in 1960s by I. Rechenberg in 

his work "Evolution strategies", Evolutions strategies in original. His idea was further 

developed by other researchers. Genetic Algorithms (GAs) were invented by John 

Holland and developed by him and his students and colleagues [101]. This lead to 

Holland's book "Adaption in Natural and Artificial Systems" published in 1975. So 

Genetic Algorithms (GAs) was first introduced and analysed by John Holland (1975) 

and extended to functional optimisation by De Jong (1975) [102]. The GAs is a 

stochastic global search optimisation method.  

Genetic Algorithms (GAs), (given by Goldberg 1989), [103] can be defined as 

search algorithms based on the mechanics of natural selection and natural Genetics. 

They combine “survival of the fittest” among string with a random structure. In every 

generation, a new set of artificial creatures (string) is created using bits and pieces of the 

fittest of the old: an occasional new part is tried for good measure. The GAs efficiently 

exploits historical information to speculate within new search points with expected 

improved performance. This method can handle a large number of parameters and also 

non-differentiable function. It is a stochastic iterative process, which is very robust in 

respect of the initial starting parameters estimates. 

 

5.2. Outline of Genetic Algorithms 

 

Genetic algorithms are stochastic search techniques based on the mechanism of natural 

selection and natural genetics. Genetic Algorithms differs from conventional search 

techniques, it starts with an initial set of randomly generated solutions called a 
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population. Each individual in the population is encoded as string, called a 

chromosome, representing a solution to the current problem. A chromosome is usually a 

string of symbols, such as binary bit string, ternary, integer, real valued etc. The 

chromosomes evolve through successive iterations, called generations. Each individual 

in the set generated, is assigned a fitness value by evaluating the fitness function for 

each individual, in order to create the next generation, new chromosomes, called 

offsprings.  Offsprings are generated either by: a) merging two chromosomes from the 

current generation using a crossover operator or b) modifying a chromosome using a 

mutation operator. We select, according to the fitness values, some of the parents and 

offsprings and reject others in order to keep the number of chromosomes or population 

size constant. After a number of iterations the algorithms converge to the best 

chromosomes, which represent the optimum solution to the problem. 

The outline of a traditional genetic algorithm is as follow: 

• Initialise and encode a random population of chromosomes; 

• Decode and evaluate each chromosome's fitness in the population; 

• Reproduce a new generation by stochastically selecting current chromosomes as 

parents according to fitness to generate new children; 

• Apply crossover and mutation operators to the new chromosomes; 

• Repeat 2-4 until an adequate solution is found, (reproduction). 
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Figure 5.1 The general structure of Genetic Algorithms method 

 

5.3. Genetic Algorithms versus Traditional Methods 
 

 The GAs method differs substantially from more traditional search and optimisation 

methods. The four most significant differences are [103]: 

• GAs searchs a population of points in parallel, not a single point; 

• GAs do not require derivative information or other auxiliary knowledge, only 

the objective function and corresponding fitness levels influence the directions 

of search; 

• GAs use probabilistic transition rules, not deterministic ones; 
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• GAs works on an encoding of the parameter set rather than the parameter set 

itself except in where real-valued individuals are used. 

 It is notable that the GAs provides a number of potential solutions to a given 

problem and the choice of final solution is left to the user.  

 

5.4. Major Elements of Genetic Algorithms 

5.4.1. Population Representation and Initialisation 

 

 The GAs method operates on a number of encoding potential solutions, called a 

population, simultaneously. Thus, the encoding and decoding procedures are more 

relevant in the applications of the Genetic Algorithms. Typically, Genetic algorithms 

start their search with a population size, which is bounded between 30 and 100 

individuals, however a variant called the micro GA uses very small populations, 10≈  

individuals, with a restrictive reproduction and replacement strategy in an attempt to 

reach real-time execution [102]. 

Originally the most commonly used chromosome's representation in the GAs is the 

binary string. Here, each decision variable in the parameter set is encoded as a binary 

string of ones and zeros and these are ordered to form a chromosome. In addition, 

usually the binary strings used are of fixed length. 

 Although the binary-coded GAs is most commonly used, there is an increasing 

interest in alternative encoding strategies, such as integer and real-valued 

representations. For some problem domains it is argued that the binary representation is 

in fact deceptive in that it obscures the nature of the search [103].  

 The first step in the Genetic Algorithms method is to create an initial set of 

population. This can be achieved by generating the required size population using a 

random number generator that uniformly distributes numbers in the specific range. For 
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example, a binary population of M  population whose chromosomes are of N  bits long, 

NM ×  random numbers uniformly distributed from the set { }1,0  will be generated. 

However, an initial population can be seeded with individuals that are known to be in 

the range of the global minimum (maximum) [104, 105, and 106]. This is applicable if 

the nature of the problem is already well understood or if the Genetic Algorithms are 

used in connection with knowledge based system. 

 

5.4.1.1. Binary String 

 

In most applications of genetic algorithms, binary string representations are 

implemented to encode control variables. A binary string is defined using a binary 

alphabet { }1,0 .An N -bit string belongs to a space { }1,0B NN = . Each variable is 

encoded into a binary string of a particular, normally equal, length iN  defined by the 

user. So, the complete string has a length N : 

∑
=

=
n

i
iNN

1
                                                                                                    (5.1) 

where n is the number of variables. A binary string of length iN  has a total of 2N i  

search points. The string length used to encode a particular variable depends on the 

desired precision in that variable: normally the precision is equal for all the variables. 

A typical encoding binary representation of n variables ( )nxxx K,, 21=x  can be 

illustrated as follows:  
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The variable 1x  has a string length 1N  and so on, usually all the strings have the same 

length. The binary representation of the variables allows genetic algorithms to be 
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applied to a wide variety of problems, because genetic algorithms deal with the string 

and not with the variables directly. 

 

5.4.2. The Objective and Fitness Functions 

 

The objective function is used to provide a measure of how individuals have 

participated in the problem domain. In the case of maximisation of the problem, the fit 

individuals will have the highest numerical value related to the objective function. This 

measurement of fitness is usually used as an intermediate step in order to induce the 

relative performance of individuals in a Genetic Algorithms. Another function, the 

relative fitness function, is usually used as an alternative of the objective function 

measure [104]. Thus the relative fitness function transforms the objective function value 

into a measure of relative fitness, thus: 

 

))(()( xfgxF =         (5.2) 

                                                          

where f  is the objective function, g  transforms the value of the objective function to a 

non-negative number and F  is the resulting relative fitness. The fitness function value 

corresponds to the number of an individual that can be a candidate to participate in the 

creation of the following generation. The most commonly used transformation is that of 

proportional fitness assignment [104]. Each individual fitness is evaluated as the 

individual's raw performance, )( ixf , relative to the entire population as follows:  
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where n  is the size of population and ix  is the phenotypic value of individual i. 

According to its relative fitness each individual has a probability of reproducing the 

next generation, however, this fitness assignment fails to account for negative objective 

function value. A linear transformation to offset the objective function [103] is usually 

used such that, 

 

( ) ( ) bxafxF +=          (5.4) 

 

where a is a scaling factor, which is positive for maximising optimisation and negative 

for minimising optimisation, and b is used as offset factor to guarantee that the resulting 

fitness values are non-negative. 

However, there are several scaling mechanisms that have been proposed, which are 

practically accepted [101, 102] such as Dynamic linear scaling, sigma truncation, power 

law scaling, and, logarithmic scaling. 

 

5.4.3. Selection 

 

Selection is one of the main operators used in Genetic Algorithms. Selection is 

the process of introducing the number of times a particular individual is selected for 

reproduction. This operator does not create any new solution; instead it selects relatively 

better solutions from the current population and deletes the remaining. Thus the 

selection provides the driving force in a genetic algorithm. The selection guides a 

genetic algorithm search in the direction of promising regions in the search space. 

Recently many selection methods have been introduced, examined, and compared such 

as Roulette wheel selection method, Tournament selection, Rank-based selection, 

Boltzmann selection, and other selection methods. 
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5.4.3.1. Roulette Wheel Selection 

 

The simplest and most popular selection method is the Roulette Wheel selection 

method, which is a stochastic selection strategy. Each solution in the population 

occupies an area on the roulette wheel proportional to its fitness. Then the roulette 

wheel is spun as many times as the population size, each time selecting a solution 

marked by the roulette wheel pointer. Because the solutions are marked proportionally 

to their fitness, an individual with a higher fitness is always receiving more copies than 

an individual with a low fitness (see Figure 6.2). 

 

Figure 5.2 Roulette Wheel selection 

 

5.4.3.2. Tournament Selection 

 

A second popular method is the tournament selection. This procedure works by 

selecting randomly within a sub-population and allowing them to compete on the bases 

of their fitness. The individual in the sub-population with upper fitness wins the 

tournament, and then become the selected individual. All of the sub-population 

members are returned back into the general population, and the process is repeated [103, 

107]. 
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Figure 5.3 Tournament selection methods 

 

5.4.4 The Crossover Operators 

 

The crossover operator is a very important operator in genetic algorithms. 

Crossover is a process which introduces recombination of bit substrings through an 

exchange of segments between pairs of parents (chromosomes) in order to create two 

children (new chromosomes). Many kinds of crossovers have been developed: here the 

concepts of some crossover kinds will be introduced. A probability term, crossover rate, 

is set to determine the operation rate cp . It has been shown that the best setting for the 

crossover rate depends on the other aspects of the entire genetic algorithm, such as 

population size, selection operator used and mutation rate. Inpractice [104], 

Pc [ ]9.0,4.0∈cP  so that somewhere between 40% and 90% of a given population are  

chosen as parents for the next generation. 
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5.4.4.1 One-point Crossover 

 

The one-point crossover process can be illustrated as follows: 

• Given parent strings yx, ; 

• Crossover point selected randomly as an integer ]1,1[ −∈ Nk  where N is the 

length of the chromosomes; 

• Every bit before k  from the first chromosome is copied, and all the bits after 

this point from the second chromosome are copied as well to produce the first 

offspring; 

• The second part of the first parent and the first part of the second parent are 

combined to produce the second offspring. 

 

Crossover can be described like this: 

 

 

 

 

 

 

5.4.4.2. Two-point Crossover 

 

Two-point crossover is similar to one-point crossover except that two points will be 

selected and the bits between the two selected points will be exchanged. In this 

crossover the first and the last parts in each parent are preserved. 

 

Parent 1 11011 

Parent 2 10101 

Parent 1 11001 

Parent 2 10111 
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5.4.4.3. N-point Crossover 

 

N-point crossover is similar to the two previous crossover types except that N 

crossover point are selected and only the bits successive crossover points are exchanged 

between the two parents to produce two new offsprings. 

This operation can be shown as follows: 

 

Parent1 10100111 

Parent2 00010001 

 

Child11 10010001 

Child2 00110011 

 

5.4.4.4. Uniform Crossover 

 

The process of uniform crossover can be summarised as follows: 

Randomly generate a number N of how many positions will be swapped. 

Randomly generate N numbers say, Nppp L,, 21  which indicate the N position to be 

swapped. 

For each ip , exchange the thpi  bit of one parent with thpi  bit of the other parent, so 

generating two new children. 
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5.4.5. Mutation 

 

Mutation generally refers from the creation of new chromosome from one and 

only one binary bit in the chromosome string. The mutation is used to ensure that all 

possible chromosomes are reachable. Since the crossover and selection operators may 

not be able to introduce all undiscovered bits then the mutation can simply overcome 

this by randomly selecting any bit position in a string and converting it. 

Mutation consists of simply switching over one binary bit in the chromosome string 

of an eligible candidate which, again is chosen at random. The Genetic Algorithms 

mutation is randomly applied with low probability mp  typically [ ]1.0,01.0∈mp , and 

modifies bits in the chromosomes. 

The mutation operator is explained as follows: 

 

Parent 10101010 

 

Child 10100010 

 

 

5.5. Step by Step Genetic Algorithms Example 

 

In order to present a good understanding of the operation of the Genetic Algorithm 

approach, let us consider a function which will be used to demonstrate the application of 

GAs processes:  

 

)3(
))3(sin(

)3(
))3(sin(),(

−
−

⋅
−
−

−=
y

y
x

xyxf
π
π

π
π  
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This function is called objective function and is plotted in Figure (5.4) with the 

parameters x and y constrained between 0.0 and 8.0. This equation is a two-dimensional 

(2D) function, and involves a pair of the magnitude of the sine functions, which appear 

in many engineering designs. This function has a well-defined global minimum at (3.0, 

3.0) and a number of local minimum and undifferentiable regions resulting from the 

magnitude operator.  

0 2 4 6 80510
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Figure 5.4 A plot of the solution surface for the 2D magnitude sine function 

 

Initialisation  

First we seed the algorithm with a set of initial random solutions of the function 

expressed as a binary representation system{ }0,1 . 

 

Initial population 

The initial population is randomly generated as follows: 
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[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]11000101000101110100

01000100100110110100
11000101110101110100
11000110100110110100
11000111100111110000
11100110110111111100
01100111110101111000
11100101110101111000
01110000100010010010
01010111101101011010

10

9

8

7

6

5

4

3

2

1

=
=
=
=
=
=
=
=
=
=

y
y
y
y
y
y
y
y
y
y

 

This initial population is converted to the corresponding real values as follows: 

 

12 1 −
−

×+= −len
ii

iii
lobupb

vlobx  

 

where lob  and upb are the lower bound and the upper bound of the variable ix  

respectively, iv  is the decimal value of the substring iy and m  is the number of bits for 

each substring.  The related real values of these binary populations are as follows:  

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]2581.0,9423.4,

2033.6,1046.1,
8260.1,6422.1,
1769.7,4418.0,
6168.1,3666.1,

,8426.0,6774.1,
5861.1,7038.0,
7937.4,2727.7,
0176.2,0450.6,
1916.4,4962.0,

10

9

8

7

6

5

4

3

2

1

==
==
==
==
==
==
==
==
==
==

yxy
yxy
yxy
yxy
yxy
yxy
yxy
yxy
yxy
yxy

 

 

Evaluation 

 The next step after converting the chromosome's genetype (binary representation) to its 

phenotype (decimal values) the objective function )( ii yf  is evaluated. Then convert the 
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value of the objective function into fitness. For minimisation problem, the fitness is 

equal to the value of the objective function as follows: 

 )()( iiii yfyeval =  

The fitness function values of the above chromosomes are as follows: 

0003.0),()(
0087.0),()(
01784.0),()(
0290.0),()(
0054.0),()(
0012.0),()(
0249.0),()(
0042.0),()(
0141.0),()(
0163.0),()(

1010

99

88

77

66

55

44

313

22

11

−==
−==
−==
−==
−==
−==
−==
−==
−==
−==

yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval
yxfyeval

 

From the above function evaluation we can conclude that the chromosome 7 is the 

strongest one and that the chromosome 10 is the weakest one. 

 

Selection 

A roulette wheel selection approach is the most practically adopted procedure. It is 

fitness-proportional selection, which select a new population according to the 

probability distribution based on fitness values. This procedure can be summarised as 

follows:  

• Calculate the fitness value for each chromosome iy ; 

           )()( iiii yfyeval =  

• Calculate the total fitness for the population; 

         ∑
−

=

=
sizenpopulaatio

i
ii yevalF

1
)(  

• Calculate the selection probability ip  for each chromosome iy ; 
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F

yevalp ii
i

)(
=  

• Calculate cumulative probability iq  for each chromosome iy ; 

         ∑
=

=
i

j
ji pq

1
 

Now the selection starts by spinning the roulette wheel the population's size times: 

each time a single chromosome is selected for a new population as follows: 

Generate a random number r  from the range [0, 1]; 

• If 1qr ≤  then select the first chromosome 1y ; otherwise select the kth 

chromosome ky , sizepopulationk ≤≤2  such that kk qrq ≤≤−1 . 

 

The total fitness F of the population is  

∑
=

==
10

1

27564.0)(
i

ii yevalF  

The probability of a selection of each chromosome iy  ( )10,2,1 L=i  is as follow: 

0293.0,0815.0,0290.0,0367.0,0077.0
,1519.0,1119.0,0787.0,3457.0,1275.0

109876

54321

=====
=====

ppppp
ppppp

 

The cumulative probabilities iq  for each chromosome iy  when i=1, 2, ..., 10 are as 

follows:  

1,9707.0,8892.0,8601.0,8234.0
8157.0,06639,5519.0,4732.0,1275.0

109876

54321

=====
=====

qqqqq
qqqqq

 

 

Now the roulette wheel is ready to be spinning 10 times each time we select a single 

chromosome for a new population. If the following 10 random numbers are generated: 

5494.0,1338.0,5694.0,4638.0,7281.0
5196.0,4033.0,7376.0,4083.0,6318.0

109876

54321

=====
=====

rrrrr
rrrrr
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the first number =1r 0.6318 is greater than 3q  and smaller than 4q . This means that the 

chromosome 4 is selected for the new population. The second number 4083.02 =r  is 

greater than 1q  and smaller than 2q  meaning that the chromosome 2 is selected for the 

new population, and so on. Finally, the new population consists of the following 

chromosomes: 

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] 10

'
3

9
'

1

8
'

4

7
'

2

6
'

5

5
'

3

4
'

2

3
'

5

2
'

2

1
'

4

11100101110101111000

01010111101101011010

01100111110101111000

01110000100010010010

11100110110111111100

11100101110101111000

01110000100010010010

11100110110111111100

01110000100010010010

01100111110101111000

yy

yy

yy

yy

yy

yy

yy

yy

yy

yy

==

==

==

==

==

==

==

==

==

==

 

 

Crossover 

Crossover used here is a one-point method, which randomly selects one cut-point and 

exchanges the right parts of two parents to generate offspring. The probability of the 

crossover is set to be as 4.0=cp . This means that 4 chromosome’s pairs will be 

selected for crossover operator. The other remaining chromosomes will migrate to the 

next generation. Four random numbers are generated as follows; 

'
9

'
6

'
5

'
3 and,, yyyy  were selected for crossover. We generate a random integer number 

pos  from the range [1, 19] (because 20 is the total length of a chromosome) as a cutting 

point. We assume the generated crossover position is 9, the four selected chromosomes 
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are cut after bit number 9, and offspring are generated by exchanging the right parts 

between each two of them as follows: 

 

[ ]
[ ]11100101110101111000

11100110110111111100

5
'

3
'

=

=

y
y

 

 

[ ]
[ ]11100110110101111000

11100101110111111100

5
'

3
'

=

=

y
y

 

[ ]
[ ]11100101110100111100

11100110110111111100

9
'

6
'

=

=

y
y

 

 

[ ]
[ ]11100110110100111100

11100101110111111100

9
'

6
'

=

=

y
y

 

 

Mutation 

 Mutation alters one or more genes with a probability equal to the mutation rate. The 

probability of the mutation rate is set as 01.0=mp ; this means that an average of 1% 

of the total bits of the population would undergo mutation. Since there are 

2002010 =×  bits in the entire population, 2 mutations per generation is excepted. All 

the bits have an equal chance to be mutated. Thus a sequence of random numbers 

)200,2,1( L=iri  will be generated from the range [0, 1]. Suppose the following genes 

will go through mutation: 
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Bit position Chromosome num. Bit num. Random num. 

192 10 12 192 

83 5 3 83 

 

After mutation we get the final population as follows: 

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]11100101110111111000

11100110110100111100
01100111110101111000
01100111100111110000
11100101110111111100
11100110110101111000
01100111100111110000
11100101110111111100
01100111100111110000
01100111110101111000

10
'

9
'

8
'

7
'

6
'

5
'

4
'

3
'

2
'

1
'

=

=

=

=

=

=

=

=

=

=

y
y
y
y
y
y
y
y
y
y

 

 

The corresponding real values of variables ],[ yx   and fitness are as follows: 

32152.0)1884.7,018344(
017030.0)4930.1,8364.0(

34680.0)39250.3,7244.6(
42008.0)2571.2,7557.2(
01835.0)9072.1,7621.2(
01907.0)1543.0,1301.1(
02344.09002.4,7767.2(
02189.0)7884,.1658.6(
00408.),0238.1,0231.1(

0126.0),0255.1,7376.05(

−=
−=
−=
−=
−=
−=
−=
−=
−=
−=

f
f
f
f
f
f
f
f
f
f

 

Now we just completed one iteration of the genetic algorithm. This test run is 

terminated after the 200th generation. We have obtained that the best chromosome in 

the 42nd generation as follows: 
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000.1)0005.3,99997.2( −=f  

 

5.6. Conventional Methods of Optimization 

 

It is considered appropriate at this stage to present a short description of some 

conventional methods of optimization so that comparison can be made between the 

Genetic Algorithms method and conventional methods.   

 

5.6.1. FMINBND Bounded Nonlinear Function Minimization 

 

The determination of maximum or minimum value of a real-valued function 

)...,,( 1 nxxf  of n  real variables in an n -dimensional space is a common problem in 

scientific computation. The words optimization refers to either the minimization or 

maximization of a function [108]. To find a minimum of a function of one variable on a 

fixed interval: 

 

21)(min xxxthatsuchxf <<  

 

where ,, 1xx and 2x  are scalars and )(xf  is a function. 

There are several methods to optimize the above function such as Nelder-Mead method 

[109, 110], and Simplex algorithm [111, 112]  

Fminbnd method is a combination of the Golden section search method [109], [113, 

114] and a polynomial interpolation. The purpose of the next section is to show the 

http://en.wikipedia.org/wiki/Nelder-Mead_method
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derivation of the golden section search method to find the minimum of a unimodal 

continuous function over an interval without using derivatives.    

 

5.6.1.1. Derivation of the Golden Section Search  

 

Let us consider a function f over the interval ],[ 21 xx . The function to be 

minimized has to be continuous over ],[ 21 xx ; and that )(xf  is unimodal over ],[ 21 xx , 

that is: )(xf  has only one minimum in ],[ 21 xx . The function  )(xf   is unimodal 

on ],[ 21 xxI = , if there exists a unique number ],[ 21 xxp∈   such that: 

 )(xf  is decreasing on ],[ 1 px   

    and 

  )(xf   is increasing on  ],[ 2xp .    

The purpose of this method is narrowing the interval that contains the minimum, so the 

root is supposed to have been bracketed in an interval ],[ 21 xx . A root of a function is 

known to be bracketed by a pair of points, a and b, when the function has an opposite 

sign at those two points. A minimum, by contrast, is known to be bracketed only when 

there is a triplet of points, 321 xxx <<  or )( 123 xxx << , such that )( 2xf is less than 

both )( 1xf and; )( 3xf  

)()( 12 xfxf <  

 and  

)()( 32 xfxf <  

In this case the function has a minimum in the interval ],[ 31 xx . Consider such a line 

segment, 
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                      x1                  x2                      x                      x3 

The way of bisection is to choose a new point x , either between 1x  and 2x  or between 

2x  and 3x . Suppose, to be specific, the latter choice. Then evaluate )(xf . If   

)()( 2 xfxf < , then the new bracketing triplet of points is ( xxx ,, 21 ); in reverse 

if )()( 2 xfxf > , then the new bracketing triplet is ),,( 32 xxx . In all cases the middle 

point of the new triplet is the best minimum achieved, (see Figure 5.4). We can continue 

the process of bracketing until the distance between the two outer points of the triplet is 

tolerably small.   

 

 

 
 
 

Figure 5.5 Diagram of a Golden section search method  
 

Figure 5.5 shows successive bracketing of a minimum. The minimum is originally 

bracketed by points 1, 3, 2. The function is evaluated at 4, which replaces 1, and then at 

6, which replaces 4. The rule at each stage is to keep a centre point that is lower than the 

two outside points. After the steps shown, the minimum is bracketed by points 5, 3, 6.   
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5.6.1.2. Restriction on Golden Search Method  

 

• The function to be minimized must be continuous; 

• fminbnd often exhibits slow convergence when the solution is on a boundary of 

the interval; 

• fminbnd only handles real variables;  

• fminbnd only give local solutions. 

 

5.6.2. Simplex Search Optimization Method 

 

To find the minimum of unconstrained multivariable function using a derivative-

free method:  

)(min xf
x

  

where x  is a vector and  )(xf is a function that returns a scalar. 

 

5.6.2.1. Algorithms 

 

The Simplex Search method is a direct search method that does not use numerical or 

analytic gradients [115]. If n  is the length of x , a Simplex in n-dimensional space is 

characterized by the )1( +n  distinct vectors that are its vertices. In two-space, a Simplex 

is a triangle, in three-space, it is a tetrahedron. At each step of the search, a new point in 

or near the current simplex is generated. The function value at the new point is 

compared with the function's values at the vertices of the simplex and, usually, one of 
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the vertices is replaced by the new point, giving a new simplex. This step is repeated 

until the diameter of the simplex is less than the specified tolerance.  

 

Figure 5.6 Geometric interpretation of lower dimensional simplices 

 

The simplex methods are based on an initial design of )1( +k  trials, where k  is the 

number of variables. A )1( +k geometric figure in a k-dimensional space is called a 

simplex. The corners of this Figure are called vertices. 

 

 

Figure 5.7 a Simplex defined by three different trial conditions for two control variables 
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With two variables the first simplex design is based on three trials, for three 

variables it is four trials, etc. This number of trials is also the minimum for defining a 

direction of improvement. Therefore, it is a timesaving and economical way to start an 

optimization project. 

After the initial trials the simplex process is sequential, with the addition and 

evaluation of one new trial at a time. The simplex searches systematically for the best 

levels of the control variables. The optimization process ends when the optimization 

objective is reached or when the responses cannot be improved further. 

 

5.6.2.2. The Restrictions on the Simplex Search Method 

• Simplex search method solves nondifferentiable problems; 

• It can often handle discontinuity, particularly if it does not occur near the 

solution; 

• It might only give local solutions; 

• It is only used to minimise the real numbers, that is, x  must only consist of real 

numbers and )(xf  must only return real numbers. When x  has complex 

variables, they must be split into real and imaginary parts. 

The Simplex search method is not the preferred choice for solving problems that are 

sums of squares, that is, of the form: 

))()()((min)(min 22
2

2
1

2
2 xfxfxfxf nxx

+++= L  
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5.6.3. Comparison between the Conventional Methods and Genetic    

Algorithms Method 

   

The Genetic Algorithms method deviates significantly from other traditional search 

and optimisation methods. The most significant variations are: 

• Genetic Algorithms possess the ability of implicit parallelism, to evaluate 

simultaneously many possible problem solutions; 

• GAs does not require derivative information or other auxiliary knowledge; only 

the objective function and corresponding fitness levels influence the directions 

of search; 

• Genetic Algorithms encode initial input data set information into strings, 

analogous to living being cellular chromosomes; 

• GAs use probabilistic transition rules, not deterministic ones; 

• GAs provides a number of potential solutions to a given problem and the choice 

of final solution is left to the user. 

A typical Genetic Algorithms requires two things to be defined: 

(1) a Genetic representation of the solution domain;  

(2) a fitness function to evaluate the solution domain. 

The main property that makes these Genetic representations convenient is that their 

parts are easily aligned due to their fixed size which facilitates simple crossover 

operation.  

In a summary: often, GAs method can rapidly locate good solutions, even for difficult 

search spaces. 

 

http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Domain
http://en.wikipedia.org/wiki/Fitness_function
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CHAPTER SIX 
 
6.1. Introduction 
 
 

Chapter 6 is presented in two parts: 

 

Part one presents for each of the case studies (chapter 3), the results and discussion of 

the information generated relating to the processes of coating production/surface 

treatments and oxidation tests of the coatings produced. The information presented here 

includes that collected from the literature, that produced in our laboratory and also that 

generated in the current project. Here emphasis has been placed on microstructural 

aspects of the diffusion processes involved both in the coating production and oxidation 

tests. 

 This presentation of the results along with their discussion will provide 

improved interpretation of the observed interactions between the microstructures and 

the involved diffusion processes. 

 The information available in the literature on the microstructural aspects of the 

diffusion processes involved in the coating production and in assessment of the 

oxidation resistance on the produced coatings has been found not to be consistent or 

systematic. In discussing the results this deficiency has been corrected. The information 

generated from numerical modelling has also been used, where appropriate, to elaborate 

on the information gathered from the literature and on the new information generated in 

this project. 

 

Part two solely deals with the results obtained by numerical modelling.  
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6.2. Nonsteady State Diffusion of Iron Carburized at 950o C, 7.1 Hours 

 

Information from interdiffusion studies on iron carburized system at 950o C, 

after 7.1 hours has been described in section 3.2. 

 

6.2.1. Carburization – Microstructural Aspects/Microstructure 

Modelling of Diffusion Processes Involved – Results and 

Discussion 

 

The understanding of the diffusion processes involved in carburizing processes can 

be facilitated by considering the following two cases: 

(1) Carburization of pure iron at relatively low temperature below the eutectoid 

temperature for example at 700oC; 

(2) Carburization of steel above the eutectoid temperature of 950oC. 

 

Case-1- Carburization at Temperature below the Eutectoid 

Temperature 

 

A rod of pure iron is subjected to a carbon rich source at one end as shown in 

Figure 6.1. 
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γ
α

CFe 3+α

Figure 6.1 a) Composition profiles for carburizing iron. b) Relevant portion of iron – 

carbon phase diagram 

 

After short exposure of the rod at 700oC a local equilibrium is expected to reach at 

interface 1 (Figure 6.1(a)). This means that the compositions of the two phases at 

interface 1 are given by the phase diagram (Figure 6.1(b)) which indicates that α -Fe is 

in equilibrium with Fe3C. Because of the local equilibrium a carbide layer is formed on 

the surface giving carbon concentration (Cs). This means at the left of the interface the 

carbon concentration increases to Cs at time t=0 and stays there, establishing a large 

concentration gradient which drives the diffusion of carbon along the rod. The 

concentration profiles of carbon can be schematically represented as shown in Figure 

6.1. 

 

Case-2- Concentration at Temperature above the Eutectoid 

Temperature T1 

 

The iron rod of Figure 6.1 is heated to a temperature T1, above the eutectoid 

temperature as shown in Figure 6.2(a). 

1
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Figure 6.2 a) Relevant portion of iron – carbon phase diagram. b) Composition profiles 

for carburizing iron above the eutectoid temperature 

 

This differs from case 1 in the following ways: 

The local equilibrium at interface establishes the carbon composition at the left end 

of the bar at C3. At C3 we haveγ  iron at interface 1. At temperature T1 iron with carbon 

content between C3 and C2, we have γ  at interface 1. 

At C<C1 we have α  iron; 

C1 =maximum amount of carbon in α; 

C2=minimum amount of carbon in γ ; 

Thus between C1 and C2 we have α +γ .  

It is important to note that the two phase regions never form a diffusion couple. 

In the next section the results from numerical modelling for interdiffusion in iron 

carburizing has been presented. 

 

 

 

1
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6.2.2. Modelling the Diffusion Process using Analytical and Numerical 

Methods 

Most realistic diffusion processes are of nonsteady-state nature. That is, the 

diffusion flux and the concentration gradient at some particular point in a solid differ 

with time. This is illustrated in Figure 6.3 which shows concentration profiles at three 

different diffusion times. 

 

t3

t1
t2

t3>t2>t1

Distance

C
on

ce
nt

ra
tio

n

 

 

Figure 6.3 Concentration profile for nonsteady-state diffusion taken at three different 

diffusion times ,, 21 tt  and 3t [89] 

 

The surface carbon concentration of steel can be increased by carburising. Such 

an alloy originally had a consistent carbon concentration of (0.25 wt %). The process of 

carburising at 950oC increased the surface carbon concentration to 1.20 wt %. Very 

often it becomes necessary to determine the carbon concentration at a particular distance 

(0.5 mm) below the surface after 7.1 hours. The diffusion coefficient of carbon in iron is 

known–this is sm /106.1 211−× [89]. 
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6.2.2.1. Analytical Solution of Iron Carburized at 950o C, 7.1 Hours 

 

This is a nonsteady-state diffusion problem in which the surface composition is 

supposed to be stable, so the following equation was used: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1        (6.1) 

where xC  represents the concentration and can be determined at any time t  and 

position x  when the parameters ( oC , sC and D ) are known. oC  corresponds to the 

uniform carbon concentration before diffusion treatment, and sC  corresponds to the 

surface carbon concentration after diffusion treatment as shown in Figure 6.4. 

 

Co

Cs

Cx Cs-Co

Diffusion Distance

 

Figure 6.4 Concentration profile for nonsteady-state diffusion concentration parameters 

relate to equation 7.1 

when the following conditions are applied: 
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o
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×==

=

=

−
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Thus equation 6.1 becomes:  

 

( ) oosx C
Dt

xerfCCC +
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

2
1      (6.2) 

So at the position (0.5 mm) and after 7.1 hours (25560 s) the carbon concentration from 

equation 6.2, as follows: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×

×
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−

ssm

merf
Dt
xerf

)25560(/)106.1(2

)105.0(
2 211

3

 

( ) 0.41963909.0 =⇒ erf  

The expression ⎟
⎠

⎞
⎜
⎝

⎛
Dt

xerf
2

is the Gaussian error function, values of which are given in 

mathematical tables for various values of ⎟
⎠

⎞
⎜
⎝

⎛
Dt

xerf
2

: a partial listing is given in 

Table 4.1 in chapter 4. 

Therefore 

( ){ } 25.04196.0125.02.1 +−−=xC  

CwtCx %8.0=  
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6.2.2.2 Numerical Solution of Iron Carburized at 950o C, 7.1 Hours 

 

The numerical solution or carbon numerical concentration for the above problem 

can be achieved by using modified Euler’s method (Runge-Kutta method of order two):  
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We can also use fourth order Runge-Kutta method: 
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This is applied on Fick’s second law as follows: 
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        (6.3) 

     
In Figure 6.5 the carbon diffusion coefficient is 1.6x10-11m2/s [89]. Using this 

diffusion coefficient the carbon numerical concentration was then calculated using the 

modified Euler’s method (equation 4.32) and Rung-Kutta method of order four 

(equation 4.37) applied on Fick’s second law (equation 4.3). The carbon concentration 

profile can be shown as follows: 
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Figure 6.5 Carbon numerical and analytical concentration profiles after 7.1 hours 

diffusion treatment at 950oC  

 

As shown in Figure 6.5 the black circle (•) concentration profile curve is the 

carbon analytical concentration after 7.1 hours, the black star (*) concentration profile 

curve corresponds to the carbon numerical concentration after 7.1 hours using Runge-

Kutta method of order four, and the black triangle concentration profile curve 

corresponds to the numerical concentration profile of carbon calculated from the Rung-

Kutta method of order 2 (modified Euler’s method). We can see that there is good 

agreement between the carbon analytical concentration profile obtained from equation 

6.2 and carbon numerical concentration profile values obtained from Rung-Kutta 

method of order four for the whole range of diffusion distance. However there is a 

divergence between the carbon analytical concentration profile and the carbon 

numerical concentration profile obtained from modified Euler’s method, indicating the 

importance of Runge-Kutta method of order four. 
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6.2.2.3. Conclusions of Iron Carburized at 950o C, 7.1 Hours 

 

Both Runge-Kutta method of order four and modified Euler’s method (Runge-

Kutta method of order two) have been used to calculate the carbon numerical 

concentration profile. The Least squares method has been used to calculate the absolute 

error between the carbon analytical and the numerical concentration profiles. The 

analytical method showed a carbon concentration of 0.80 w% at a position 0.5 mm 

below the surface of the sample after 7.1 hours. The carbon numerical concentration 

computed from Runge-Kutta method of order four was 0.82 w%, and the carbon 

numerical concentration computed from Runge-Kutta method of order two (modified 

Euler’s method) was 0.88 w% at the same distance from the surface. Consequently the 

carbon numerical concentration obtained from fourth order Runge-Kutta method is 

more reliable compared with the modified Euler’s method. The diffusion coefficient for 

carbon in iron at the temperature 950oC was sm /106.1 211−× . 

This case confirms the validation of the numerical method which has been 

applied in the present project. 

 

 

 

 

 
 
 
                                                                                                                                         

 6.3. Copper-Nickel Diffusion Couple after 300 Hours 
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Background information from interdiffusion studies on copper-nickel system after 

300 hours at 1054oC   has been described in section 3.3. 

 

6.3.1. Copper-Nickel Diffusion Couple at 1054oC after 300 Hours - 

Microstructural Aspects / Microstructural Modelling of the 

Diffusion Processes Involved - Results and Discussion  

 

For understanding of the diffusive processes involved in the copper-nickel system, it 

is important to note the following facts: 

• Cu, (copper atomic radius= 0.128 nm=128pm), and Ni, (nickel atomic 

radius=0.135 nm=135 pm), atoms have almost the same size. 

• Copper and nickel mobility have nearly the same order of magnitude (similar 

size). 

Considering the bar in Figure 6.6 (a) the copper atoms diffuse to the left faster than 

the nickel atoms (melting point of Cu= 1083oC and melting point of Ni= 1453°C). With 

reference to the markers studies described in chapter 3, section 3.2 it is clear that the 

diffusion happened at elevated temperature and the net atoms transport from the right of 

the markers to their left since the Cu atoms are diffusing faster than the nickel atoms. 

The additional atoms which enter the left hand side of the marker will cause the lattice 

to expand to the left, while the loss of atoms from the right hand    side   will cause the 

lattice to shrink. Therefore the entire centre of the bar will shift to the left as shown in 

Figure 6.6 (b). This shift was reported in metals by Kirkendall and it is called 

Kerkendall shift.       
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Figure 6.6 The Kirkendall shift 

 

Consider that the copper –nickel diffusion couple shown in Figure 6.7 to be studied 

was subjected to an interdiffusion treatment at 1054oC for 300 hours. 

 
Figure 6.7 Copper –nickel diffusion couple 

 bc1Ni, bc2Ni are the boundary conditions of the nickel component, and bc1Cu , bc2Cu 

are the boundary conditions of the copper component. 

 The copper-nickel diffusion couple has the step function composition at t=0, and 

after such time at certain temperature, copper atoms will diffuse into nickel side and 

nickel atoms will diffuse into the copper side as explained in the following Figures; the 

Figures (A, B, C, and D) in Figure 6.8 represent the composition evolutions of Cu and 

Ni as a function of time. These composition profiles have been calculated by numerical 
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methods (given subsequently). It is instructive to see how the composition profiles 

change with time. 
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Figure 6.8 Copper numerical concentration profiles at A (t=0), after B (t=50h), C 

(t=100h), and D (t=200h) diffusion treatments at 1054oC 

 

 The concentration profiles in the above Figure 6.8 (A-D) show the gradual 

distributions of copper and nickel atoms from t=0 until t=200 hours. 

 

         Experimental measurements have shown that the component with the lower 

melting point diffuses in at a faster rate than does the higher melting component [89] 

indicating that for a binary system the diffusion rates of the two components are not 

equal.  

Let us now consider the composition profiles of Cu and Ni after 300 hours of 

diffusion. The experimental data of concentration profiles of Cu and Ni as a function of 

diffusion distance (taken from the literature [91]) is shown in Figure 6.9. The diffusion 

distances considered are shown below: 

 dx = [0 .005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 

0.075 0.08 0.085 0.09 0.1 0.109 0.118 0.128 0.143 0.175 0.185] cm . 
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Figure 6.9 NiCu −  diffusion data at 1054oC after 300 hours diffusion treatment  

 

Inert markers placed within the couple moved )200(02.0 mcm μ during the 

period of the diffusion anneal.  

To find out the concentration profile of the two metals (copper and nickel) 

numerically, the diffusion coefficient for each component should be determined, as 

described in the next section (6.3.2). 

 

6.3.2. Analytical Solution for Cu-Ni System at 1054oC after 300 Hours 

To determine the interdiffusion coefficient 
~
D  a Boltzmann-Matano analysis 

[90] has been used at the Matano interface ( %71.0 atCCu = ). The 
~
D  value for Cu-Ni 

system at 1054oC after 300 h is equal to: 

 

scmD /1016.3 210
~

−×=    [Appendix D]         (7.4) 
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 The Matano interface describes a plane MX , within the diffusion couple, 

characterized by equivalent amounts of mass diffusion to the left and right. The location 

of the Matano interface may be determined through a mass-conservation condition. The 

mass conservation balances the loss of diffusant on the left side of the couple with the 

equivalent gain on the right side.  

xxM x'

CCL

C=0

CR

Matano Interface
 

Figure 6.10 Matano interface for the diffusion couple 

 

The grey areas in Figure 6.10 that represent the balanced gain and loss are separated by 

the Matano plane MX  and may possibly be expressed by two integrals as follows [91],  

 

444 3444 21444 3444 21
gain

X R

loss

X

L dxCxCdxxCC
M

M ])([)]([ ∫∫
∞

∞−
−=−   (6.5) 

 

In this case the initial conditions selected here for the above equation 6.5 are as follows: 
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The motion of the markers is the square of the dislocation, )(tX , and is proportional 

to the diffusion time t, as a result [91] 
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The matching marker velocity is: 

 

)(2
)(

tX
k

t
tXuM =

∂
∂

≡        (6.8) 

But t
tXk )(2

=  

 

Placing in the proportionality constant from equation 6.7 into equation 6.8 we obtain:  

 

t
tXuM 2
)(

=          (6.9) 

 

Substituting equation 6.9 Mu  can be calculated after that as:  
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][)3600()300(2
][200

2
)(

s
m

t
tXuM ××
==

μ  

]/[103.9 5 smuM μ−×=        (6.10) 

Mu  is given by Darken’s first equation [92]  

 

x
C

DDu A
BAM ∂
∂

−= )(        (6.11) 

 

Thus in the present case: 

x
CDDu Cu

NiCuM ∂
∂

−= )(        (6.12) 

Substituting equation 6.10 into equation 6.12 so 

 

69.12)(]/[103.9 9 ×−=× −
NiCu DDscm  [mol. frac. /cm]         (6.13) 

 

Where 
x

NCu

∂
∂

=69.12  [i.e. the slope at %71 atCCu = ] 

Using Darken’s second equation [92]  

 

BAAB DNDND +=
~

           (6.14) 

And from equation 6.4 

10
~

1016.3.29.0.71.0 −×=+= CuNi DDD     (6.15) 

where 

            NiD =Nickel diffusion coefficient 

      CuD =Copper diffusion coefficient 
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Consequently we can solve equations 6.15 and 6.13 simultaneously as follows: 

 

69.12/)69.12103.9(

69.1269.12103.9
9

9

CuNi

CuNi

DD

DD

+×=

+=×
−

−

     (6.16) 

 

when we substitute equation 6.16 in equation 6.15 as follows we obtain: 

 

CuCu DD 29.0)69.12/)69.12103.9((71.01016.3 910 ++×=× −−   (6.17) 

Then    101035.8 −×=CuD  

 

by substituting CuD  in equation 6.16 the result becomes: 

101002.1 −×=NiD  

Consequently the diffusivities are: 

 

scmD

scmD

Ni

Cu

/1002.1

/1035.8
210

210

−

−

×=

×=
       (6.18) 

 

The copper diffusion coefficient scmDCu /1035.8 210−×=  has been used to find the 

numerical concentration profile of Cu as shown in Figure 6.11 using the numerical 

technique as explained in the next section 6.2.3. 

 

6.3.3. Numerical Solution using GAs with the Numerical Methods 

All copper nickel alloys consist of only one phase as the copper nickel binary 

system exhibits complete solid solubility, as shown by the phase diagram in Figure 3.1, 

and it is therefore amenable to modelling by both Darken’s and numerical methods. The 
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trial and error, and Genetic Algorithms optimization method were used to calculate the 

diffusion coefficient of copper (Cu ) in the NiCu −  binary system. Two cases were 

considered: 

 In case 1 the diffusion coefficient of copper was assumed constant and in case 2 

diffusion coefficients was assumed to be concentration dependent (second orders 

polynomial). The obtained diffusion coefficient was used to calculate the numerical 

concentration of Cu in the system. The numerical concentration of the component was 

calculated by using the numerical method (Rung-Kutta of order four, equation 4.37) as 

follows: 
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By applying this technique to solve Ficks second law 4.6: 
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where D is the diffusion coefficient for each component (copper and nickel).  
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Case -1 

 Following the procedure given above (solving Fick’s second law numerically 

and using the flow chart), the table below shows the numerical concentration profile of  

Cu  (along with the experimental concentration). 

 

Diffusion  Experimental Numerical  
Distance 

dx 
Concentration 

Cu 
Concentration 

Cu 
0 0 0.0005 

0.005 0 0.0035 
0.01 0 0.021 

0.015 0.79 0.1097 
0.02 4 0.5014 

0.025 9 1.9678 
0.03 19 6.4851 

0.035 27 17.4832 
0.04 40 37.4715 

0.045 55 62.5285 
0.05 65 82.5168 

0.055 71 93.5149 
0.06 77 98.0322 

0.065 80 99.4986 
0.07 83 99.8903 

0.075 85.3 99.979 
0.08 87.5 99.9964 

0.085 90 99.9995 
0.09 92 99.9999 
0.1 95 100 

0.109 96 100 
0.118 97 100 
0.128 98 100 
0.143 99 100 
0.175 100 100 
0.185 100 100 

 

Table 6.1 Tabulation of numerical-experimental concentrations of copper after 300 

hours diffusion treatment 

 

The copper penetration curves have been shown in Figure 6.11, where the boundary 

conditions are: 
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Figure 6.11 Copper numerical and experimental concentration profiles after 300 

hours diffusion treatment 

 

Figure 6.11 shows the numerical and experimental concentration for copper after 

300 hours diffusion treatment. The copper diffusion coefficient used 

was scm /108.3D 210
Cu

−×= (equation 6.18). The dotted (.) concentration profile 

represents the experimental concentration profile for copper after 300 hours and the star 

(*) concentration profile represents the copper numerical concentration profile after 

300 hours, and at temperature 1054oC. There is good agreement between the copper 

numerical and experimental concentration profile from cm)03.00( − , and 
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from cm)2.009.0( − . There is however some divergence at cm)08.004.0( −  diffusion 

distance, between the numerical and experimental concentration profile for copper after 

300 hours diffusion treatment. 

The numerical concentration for nickel can be calculated using the same procedure 

if the nickel diffusion coefficient is known and the boundary conditions are: 

 

2.01.00
1.001

≤≤
≤≤

xwhen
xwhen

          (6.20) 

 

If, the nickel diffusion coefficient is unknown, then the following equation can be used: 

CuNi CC −= 100            (6.21) 

where  

CuC  is the concentration of copper in nickel. 

NiC  is the concentration of nickel in copper. 

 

The numerical concentration of nickel in copper has been shown in Figure 6.12 using 

equation 6.21: 
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Figure 6.12 Nickel numerical concentration profile (equation 6.21) after 300 hours 

diffusion treatment 

 

In the following Figure 6.13, the difference between the numerical and 

experimental concentration profiles for copper has been plotted against the diffusion 

distance.  
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Figure 6.13 The absolute error between the copper numerical and experimental 

concentration profiles    

 

Figure 6.13 shows the difference between copper experimental and numerical 

concentration profiles. Figure 6.13 shows that (22.5149 %at ) is the maximum 

difference between the copper numerical and experimental concentration profile. 

 

6.3.3.1. Conclusions of Using the Analytical Diffusion Coefficient 

DCu=8.3x10-10cm2/s 

 
A numerical concentration profile, from Fick’s second law (equation 3.6) has 

been determined for a binary system with time step size (0.01 second).  The 

concentration profile is a function of time and distance. The numerical concentration 

has been shown in Table 6.1. In Figure 6.11 the copper numerical and experimental 

concentration profiles have been presented after 300 hours. As shown from the Figure 
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6.11 there is a divergence between the copper numerical and experimental concentration 

for the cm)08.004.0( − diffusion distance, after 300 hours diffusion treatment. Figure 

6.11 explains how the copper experimental concentration increases rapidly 

from cm)09.002.0( − , while the numerical concentration increases gradually from  

cm)05.00( −  and then rapidly cm)09.0( . In the diffusion couple formed from copper 

and nickel, Figure 7.11 demonstrates that copper moves faster than nickel, in agreement 

with the fact that copper melts at a lower temperature than Nickel. Figure 6.13 shows 

the maximum difference between the copper numerical and experimental concentration 

profiles is    (22.5149 %at ). To reduce the divergence between the experimental and 

calculated concentration profile, the Genetic Algorithms method as described in chapter 

5 has been applied and is described in the next section.   

 

6.3.4. Numerical Solution using Genetic Algorithms Method to 

Determine Constant Diffusion Coefficient for Copper-Nickel 

System 

 

 The Genetic Algorithms optimization method was used to calculate the diffusion 

coefficient of copper (Cu ) in the NiCu −  binary system. The diffusion coefficient of 

copper was assumed to be constant. This diffusion coefficient was used to calculate the 

numerical concentration of Cu  in the system. The numerical concentration of the 

component was calculated by using the numerical method (Rung-Kutta of order four, 

equation 4.37). This technique has been applied to solve Ficks second law 4.6: 
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where D  is the diffusion coefficient calculated from the Genetic Algorithms 

optimization technique. 

Rung-Kutta method of order four (equation 4.37): 
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The error between the experimental and numerical concentration was calculated 

using the least squares approximations (equation 4.58): 

 

2

1
)( i

N

i
i yYError −= ∑

=

  

        

where iY  corresponds to the experimental concentration for such a component, and iy  

represents a numerical concentration value for the same component, and N represents 

the number of points in the concentration profile. In the following Figure 6.14 the 

experimental and the calculated numerical concentration of copper are presented. 
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Figure 6.14 Copper numerical concentrations and experimental concentrations after 300 

hours diffusion treatment with constant diffusion coefficient 

 

Figure 6.14 shows copper experimental and numerical concentration after 300 hours 

diffusion treatment. The optimum value for the copper diffusion coefficient was 

scmDCu /1054.1 210−×=  calculated using the Genetic Algorithms method. There is 

good agreement between the experimental and numerical concentration profile of 

copper from cm)05.00( −  diffusion distance, and between cm)18.011.0( −  diffusion 

distances. Some divergence is seen between the experimental and numerical 

concentration profile for copper from the  cm)10.006.0( −  diffusion distance. 

Figure 6.15 shows the difference between the numerical and experimental 

concentration profiles for copper against diffusion distance.  
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Figure 6.15 the difference between copper experimental and numerical concentration 

profiles 

Figure 6.15 shows that 18.6139 is the maximum difference between the copper 

numerical and experimental concentration profile for the use of diffusion coefficient 

calculated from Genetic Algorithms method. 

 

6.3.4.1. Conclusions for Copper-Nickel System Using Constant 

Diffusion Coefficient Determined From GAs Method 

 

Fick’s second law has been used to find the concentration profile for copper 

(Cu ) using Rung-Kutta method of order four. Genetic Algorithms method allowed 

optimization of the value of the diffusion coefficient. The calculated concentration 

profiles have been compared with the experimental data using Least squares method. 

There is good agreement between the copper numerical concentration and experimental 
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concentration through the entire range of diffusion distance after 300 hours diffusion 

treatment. Using GAs method, the maximum difference between the copper 

experimental and numerical concentration profile curve was (18.6139) (Figure 6.15), 

while using the analytical diffusion coefficients, the maximum difference was (22.5149) 

as shown in Figure 6.13. Clearly there is an improvement in the numerical concentration 

profile when the Genetic Algorithms optimization method was used to calculate the 

copper diffusion coefficients (assumed constant).     

 

 

6.3.5. Numerical Solution using Genetic Algorithms Method to 

Optimise Diffusion Coefficients with Assumption of their 

Dependence on Composition (i.e. Variable Diffusion 

Coefficients) 

 

In this section Fick’s second Law has been solved using a variable diffusion 

coefficient for the copper using Genetic Algorithms method. With variable diffusion 

coefficient Fick’s second Law (equation 4.46), the diffusion matrix form becomes: 
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Case -2 

In the earlier sections the diffusion coefficient for the copper component (Cu ) 

was considered to be constant. In this section the diffusion coefficient has been 

considered to be concentration dependent. Second order polynomial has been used for 

concentration dependence diffusion coefficient such that: 

 

2
21 CmCmmD o ×+×+=        (6.23) 

where 21 ,, mmmo  are the polynomial coefficients. In the following Figure 6.16 the 

experimental and the calculated numerical concentration have been presented.  

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

90

100

Diffusion distance x(cm)

co
nc

en
tra

tio
n 

(a
t %

)

Copper Concentration Profile after 300 Hours 

 Copper Exp.
 Copper Num.

 

Figure 6.16 Copper numerical and experimental concentration profiles with variable 

diffusion coefficient 

 

Figure 6.16 shows the numerical and experimental concentration values for 

copper after 300 hours of diffusion treatment assuming variable diffusion coefficient 
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(equation 6.23). There is very good agreement between the experimental concentration 

and numerical concentration for this component (Cu ), through the entire range of 

diffusion distance. 21 ,, mmmo  for equation 6.23 are as follows: 
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          (6.24) 

These coefficients have been optimized from Genetic Algorithms optimization 

method.  C  in the equation 6.23 is the initial copper concentration profile.  

In the following Figure 6.17, the difference between the numerical and 

experimental concentration profiles for copper has been plotted against diffusion 

distance.  
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Figure 6.17 the difference between copper experimental and numerical concentration 

profiles 
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Figure 6.17 shows the difference between copper experimental and numerical 

concentration profiles. From the Figure, (10.6100 %at ) was the maximum difference 

between the copper numerical and experimental concentration profile, when the 

diffusion coefficients assuming their concentration dependence (equation 6.23). 

 

6.3.5.1. Conclusions for Copper-Nickel Diffusion Couple at 1054oC 

after 300 Hours Using Variable Diffusion Coefficient 

Determined from GAs Method 

 

The Genetic Algorithms method has been used to determine the copper diffusion 

coefficient, assuming their concentration dependence. The Genetic Algorithms method 

has been used to optimize values of the polynomial’s coefficients, 21 ,, mmmo , for 

equation 6.23. Figure 6.16 shows a very good agreement between copper experimental 

and numerical concentration after 300 hours diffusion treatment through the entire range 

of diffusion distance. The maximum difference between copper experimental and 

numerical concentration profile has been reduced to (10.6100 %at ) from Figure 6.17 

when the diffusion coefficient was variable (second order polynomial). These results 

clearly show that in this case D values were strongly concentration dependent.  

 

6.3.6. Inverse Method of Calculating Diffusion Coefficients from 

Experimental Concentration of Cu  

 

In the earlier sections the aim was to calculate the diffusion coefficient of the 

components such as copper and nickel in the binary copper - nickel system, so as to 

calculate the concentration profiles of the components by solving Fick’s second law. 
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However in some cases the concentrations of the components are known and the 

diffusion coefficients are unknown. In this section we are going to calculate the 

diffusion coefficient approximately from the concentration (reverse the procedure) 

profiles. Experimental concentration for the copper has been used to calculate the 

copper diffusion coefficient. The method of Finite difference was applied on Fick’s 

second law as follows: 
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The calculation’s steps are as follows: 

1. The last few points and beginning few points from the experimental concentration 

have been removed, that is the middle experimental concentration points from (19-

90) at% have been chosen. Then equation 6.26 was applied to calculate D, followed 

by calculation of the arithmetic mean of the column of D. 

2. From the experimental concentration, the average of every three points was 

computed as follows: 
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Thus equation 6.26 was used to calculate D, followed by calculation of the arithmetic 

mean of the column of  D. 

3. Finally  the average of step 1 and 2 was calculated as follows: 

      scmD /103.3021
2

102.5250104.0791 210-
-10-10

×=
×+×

=         .     

In Table 6.2, the steps 1 and 2 are shown. 

 

Middle 
Concentration Diffusion 

Average 
concentration Diffusion 

Point at% Coefficient Points Coefficient 
Step 1 cm^2/s Step 2 cm^2/s 

19    
27 2.41E-10   
40 6.94E-10 1.5967  
55 9.26E-10 18.3333 1.77E-10 
65 2.78E-10 53.3333 3.94E-10 
71 2.78E-10 76 1.87E-10 
77 1.98E-10 85.2667 3.64E-10 
80 1.74E-10 92.3333 2.70E-10 
83 6.94E-10 97 1.23E-10 

85.3 1.25E-10 99.6667  
87.5 1.07E-10   
90 7.72E-10   

 A1m= 4.0791e-010  A2m=2.5250e-010 
 

Table 6.2 Copper experimental concentration and diffusion coefficients 

 

Table 6.2 shows the steps 1 and 2 for diffusion coefficient calculation. A1m 

corresponds to the arithmetic mean of column (2) from the table step (1), and A2m 

corresponds to the arithmetic mean of column (4) from the table step (2). As a result the 
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approximated copper diffusion coefficient was scm /103.3021 2-10×  and the analytical 

diffusion coefficient for copper (equation 6.18) was scm /108.3 2-10× . 

 

6.3.6.1. Conclusions 

 

 Copper experimental concentration has been used to calculate copper diffusion 

coefficient using equation 6.26. The procedure of inverse method has been explained in 

three steps, so instead of calculating the numerical concentration for copper after 

estimating its diffusion coefficient, the diffusion coefficient has been calculated 

approximately from the copper experimental concentration. The approximated copper 

diffusion coefficient was  scm /103.3021 2-10×  while the analytical diffusion coefficient 

was scm /108.3 2-10× . 
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6.4. Pt-Ni-Al Solid Alloy System Containing Three Elements 

 

 The information from interdiffusion studies on Pt-Ni-Al solid system is as 

described in section 3.4. 

 

6.4.1. Microstructural Aspects / Microstructural Modelling of the 

Diffusion Processes Involved - Results and Discussion  

   

This system consists of three components – nickel, aluminium and platinum. It is a 

multicomponent system with limited number of elements.  This is relatively simple but 

this simple multicomponent system has been used as a first step in modelling a complex 

multicomponent system. 

Figure 6.18 shows the measured concentration profiles of the Pt, Ni and Al at 1073 

K after 64.5 hours diffusion treatment. Figure 6.19 illustrates Pt, Ni and Al measured 

concentration profiles for the temperature 1173 K after 5 hours diffusion treatment, and 

Figure 6.20 demonstrates the measured concentration profiles for these components (Pt, 

Ni and Al) after 1273 K after 1 hour diffusion treatment. These profiles have been 

obtained from previous work in our laboratory [39]. 
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Figure 6.18 Measured concentration profiles in Pt/β -NiAl system at 1073 after 64.5 

hours diffusion treatment [39] 

 

Figure 6.19 Measured concentration profiles in Pt/β -NiAl system at 1173 after 5 hours 

diffusion treatment [39] 



 196  

 

Figure 6.20 Measured concentration profiles in Pt/β -NiAl system at 1273 after 1 hour 

diffusion treatment [39] 

 

In the next section (6.4.2) the numerical modelling for interdiffusion for the three 

components (Ni, Pt, Al) system have been presented. 

 

6.4.2. Modelling of Interdiffusion Using Runge-Kutta Method of Order 

Four 

 

A trial and error technique was used to calculate the diffusion coefficient of 

nickel and platinum components ( ), PtNi  in NiAlPt −β/ . The hypothetical diffusion 

coefficients of each component have been employed to compute their numerical 

concentration. The numerical concentration of each component was calculated by using 

the numerical method (Runge-Kutta method of order four, equation 3.37), 
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was applied to Fick’s second law 4.6 
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where D  is the diffusion coefficient calculated from trial and error technique. 

Fick’s second law for the multi-component system can be written as: 
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Thus the diffusion coefficients matrix can be written as: 
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The Least squares approximations method (6.58)  

∑
=

−=
n

i
ii NEError

1

2)(         

 

was used to calculate the error between the numerical concentration and experimental 

concentration of each component in the sample. iE  is the experimental concentration 

for every component, and iN  is the numerical concentration. 

In the first part of this investigation the diagonal diffusion coefficients, (in the 

diffusion matrix), were considered constant and the cross terms were considered to be 

zero. 

In Figure 6.21 the nickel diffusion coefficient (DNi=4.7241x10-11cm2/s), calculated 

from trial and error technique, was used to calculate the nickel numerical concentration 

using Runge-Kutta method of order four. 

 

 
Diffusion Distance )( mμ  

 
Figure 6.21 Nickel numerical and experimental concentration profiles after 1 hour 

diffusion treatment 
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As shown in the Figure 6.21 the star (*) concentration profile curve shows the 

nickel experimental concentration after 1 hour diffusion treatment, and the point (.) 

concentration profile curve represents the numerical concentration profile after1 hour. 

There is reasonable agreement between the numerical and experimental concentration 

profile for nickel component. 

Figure 6.22 shows the experimental and numerical concentration profiles for 

platinum after 1 hour diffusion treatment. The diffusion coefficient is 

(DPt=6.973241x10-11cm2/s) and was calculated from trial and error technique. 

 

 
Diffusion Distance )( mμ  

 

Figure 6.22 Platinum numerical and experimental concentration profiles for the 

diffusion coefficient (DPt=6.973241x10-11cm2/s)   

 

As shown from the Figure 6.22 there is an agreement between the numerical 

concentration profile and experimental concentration profile of platinum for the 
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diffusion distances (0-0.4) x 10-3 μ m, and (1-1.5) x 10-3 μ m. There is some divergence 

between (0.5-0.9) x10-3μ m, and (1.6-2) x10-3μ m diffusion distance.  

 

6.3.2.1. Conclusions of Using Trial and Error Technique  

 

 Fick’s second law has been used to calculate the concentration profile for each 

component (Ni, Pt) using Rung-Kutta method of order four. A trial and error technique 

was used to calculate the diffusion coefficient of nickel and platinum components (Ni, 

Pt) of the sample. The Least squares method has been used to compute the absolute 

error between the numerical and experimental concentration profile for each component 

(Ni, Pt). There is reasonable agreement for nickel component between the experimental 

and numerical concentration profile, while there is some divergence between (0.5-0.9) 

x10-3μ m, and between the diffusion distances (1.6-2) x10-3μ m for platinum 

component. For the aluminum component, the numerical concentration can be 

calculated using the equation  

 

C1+C2+C3=100%         (6.32) 

 

at any time of diffusion treatment (1=Ni, 2=Pt, and 3=Al), where 321 ,, CCC are nickel, 

platinum, and aluminum concentration profile respectively So the aluminum numerical 

concentration is; 

 

C3=100% - (C1+C2)     

 

which has been presented in the following Figure 6.23. The absolute error between 

aluminum numerical concentration and experimental concentration is (291.0418). 
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Diffusion Distance )( mμ  

 
Figure 6.23 Aluminum numerical and experimental concentration profiles after 1 hour 

diffusion treatment 

 

6.4.3. Calculation of the Diffusion Coefficients Using the Genetic 

Algorithms Method  

 

The Genetic Algorithms method was used to calculate the diffusion coefficients for 

each component ( ), PtNi of the sample (details in chapter 4). The diffusion coefficients 

of each component were then used to compute their numerical concentration using 

equation 4.37. 

In this analysis only the diagonal diffusion coefficients were considered with the 

cross terms assumed zero. 

In Figure 6.24 the numerical and experimental concentration profiles for nickel have 

been presented after 1 hour diffusion treatment. The nickel diffusion coefficient 

calculated from Genetic Algorithms method was scmDNi /107619.6 211−×=  . Similar 
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for platinum, the numerical and experimental concentrations have been presented in 

Figure 6.25; 

 

 
Diffusion Distance )( mμ  

 
Figure 6.24 Numerical and experimental concentration profiles for nickel after 1 hour 

diffusion treatment   

 

There is good agreement between the numerical and experimental concentration 

profiles of nickel for the diffusion distance (0.1-0.5) x10-3μ m, and some divergence 

can be seen for the diffusion distance (0.6-0.9) x10-3 μ m. 
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Diffusion Distance )( mμ  

 
Figure 6.25 Platinum numerical and experimental concentration profiles after 1 hour 

diffusion treatment  

 

Figure 6.25 illustrates the numerical and experimental concentration profiles for 

platinum after 1 hour diffusion treatment. The platinum diffusion coefficient 

(DPt=3.38712x10-11cm2/s) was calculated from Genetic Algorithms method. There is an 

agreement between the platinum experimental concentration and numerical 

concentration from (0-1.4) x10-3μ m diffusion distance, with some divergence from 

(1.5-2) x10-3μ m diffusion distance. 

 

6.4.3.1. Conclusions for using GAs method (Constant Diagonal Terms) 

 

 Fick’s second law has been solved using Runge-Kutta method of order four. The 

Genetic Algorithms method has been used to optimise the values of diffusion 

coefficients, in the diffusion matrix; 
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The intended concentration profiles have been compared with the experimental data 

using Least squares method. There is an agreement between the nickel numerical 

concentration and experimental concentration in almost the entire range of diffusion 

distance after 1 hour diffusion treatment. For platinum component there is good 

agreement between the numerical concentration and experimental concentration from 

(0-1.4) x10-3μ m diffusion distance, and a little divergence for the range (1.5-2) x10-

3μ m diffusion distance after 1 hour diffusion treatment. According to equation 6.32 the 

numerical concentration for aluminum is presented in Figure 6.26. The absolute error 

between the aluminum experimental concentration and numerical concentration is 

(201.4900).       

 
Diffusion Distance )( mμ  

 

Figure 6.26 Aluminum numerical and experimental concentration profiles after 1 hour 

diffusion treatment from equation 6.32  
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6.4.4. Calculation Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

Fick’s second law for muticomponent system can be written as follows: 
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Equation 6.33 explains how the diagonal and cross terms diffusion coefficients are 

constants: 
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In this matrix the diagonal and cross terms have been assumed to be constant. 

In Figure 6.27 the experimental and numerical concentration for the components 

(nickel and platinum), have been presented with the interdiffusion coefficients 

calculated from the Genetic Algorithms method and using equation 6.33, Fick’s second 

law. Here the cross terms have been taken into account. 
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Diffusion Distance )( mμ  

 
Figure 6.27 Nickel and platinum concentration profiles after 1 hour diffusion treatment 

(constant cross and diagonal terms)   

 

Figure 6.27 demonstrates nickel platinum concentration (numerical and 

experimental) using constant diffusion coefficients 22211211 ,,, DDDD  determined from 

Genetic Algorithms optimization method: 
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      (6.36) 

 

In the above Figure 6.27 the numerical concentration profile for the components 

(nickel and platinum) have been calculated considering constant cross terms and 

diagonal terms, in a diffusion matrix. There is reasonable agreement between the 

experimental and numerical concentration for both the components shown.  
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6.4.4.1. Conclusions for Using Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

The same techniques (as in 6.4.2) have been used to calculate the concentration 

profiles using the Genetic Algorithms method for optimizing the values of diffusion 

coefficients, in the diffusion matrix (equation 6.35). There is good convergence between 

the experimental and numerical concentration for the components (Ni, Pt) when 

equation 6.34 was used to calculate the diffusion coefficients, taking into account the 

cross terms. The difference between the experimental and numerical concentration 

profiles for the components (Ni, Pt) has been reduced. It means the results or the 

numerical concentration profiles, for nickel and platinum show much improvement 

compared to the numerical concentration profiles when the cross terms were considered 

to be zero. An additional improvement the numerical concentration for aluminum shows 

more agreement with the experimental concentration when the cross terms are taken 

into account, that is the absolute error has been reduced. In Figure 6.28 the numerical 

concentration for aluminum has been presented and the absolute error was (140.051).   
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Diffusion Distance )( mμ  

 
Figure 6.28 Aluminum concentration profiles after 1 hour diffusion treatment (constant 

cross and diagonal terms)   

 

6.4.5. Calculation Considering Variable Cross and Diagonal Terms 

Diffusion Coefficients 

 

In the previous part, (6.4.4), the diffusion coefficients (diagonal and cross terms) for 

the both components (Ni, Pt) were considered to be constant. In the present part the 

diffusion coefficients are considered to be concentration dependent (a function of 

concentration). A second order polynomial has been used for concentration dependence 

diffusion coefficients for nickel and platinum components, and the numerical 

concentration profile for nickel and platinum have been shown below: 
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Figure 6.29 Nickel and platinum concentration profiles after 1 hour diffusion treatment 

(variable cross and diagonal terms)   

 

Figure 6.29 illustrates the numerical and experimental concentrations for nickel and 

platinum with concentration dependent diffusion coefficients 22211211 ,,, DDDD  

(second order polynomial) after 1 hour diffusion treatment. This can be shown 

mathematically as follows: 
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where 1C  and 2C are the initial concentration for nickel and platinum respectively. 

321321 ,,,,,, vvvxxx L  are the polynomial coefficients calculated using Genetic 

Algorithms optimization method. The diffusion coefficients values are as follows: 



 210  

scmD
scmD

scmD

scmD

/103519.4
/101451.0

/100013.1

/103497.1

211
22

211
21

211
12

211
11

−

−

−

−

×=

×=

×=

×=

       

 

 There was very good agreement in the numerical and experimental concentration 

values for nickel and platinum for the entire range of the diffusion distance. 

 

6.4.5.1. Conclusions of Using Variable Cross and Diagonal Terms 

Diffusion Coefficients 

 

Fick’s second law has been used to determine the concentration profile for each 

component (Ni, Pt) using Rung-Kutta method of order four. The Genetic Algorithms 

method allows optimization of the values of the coefficients in the second order 

polynomial (equation 6.36) of diffusion coefficients, in diffusion matrix (equation 6.35). 

There is good convergence between the experimental and numerical concentration for 

the components (Ni, Pt) when equation 6.37 was used to calculate the diffusion 

coefficients, (taking into account the cross terms). The difference between the 

experimental and numerical concentration profiles for the components (Ni, Pt) has been 

reduced significantly. The minimum absolute error was (3.4256e+003) in Figure 6.24 

while it was (2.0080e+003) in Figure 6.29. It means there is good convergence between 

the experimental and numerical concentration for the components (Ni, Pt) when 

equation 6.37 was used to calculate the diffusion coefficients (concentration dependent 

diffusion coefficients). 

For the third component (aluminum) the numerical concentration has been presented 

in Figure 6.30 as regards to equation 7.32. The absolute error is (35.9284) between the 

numerical and experimental concentration for aluminum. As a result the absolute errors 
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for all the components (Ni, Pt, and Al) have been reduced when the diffusion 

coefficients is concentration dependent.    

 

 
Diffusion Distance )( mμ  

 
Figure 6.30 Aluminum concentration profiles after 1 hour diffusion treatment (variable 

cross and diagonal terms)   

 

6.4.6. Calculation of the Constant Diagonal Diffusion Coefficients 

Using Bounded Nonlinear Function Minimization (fminbnd) 

 

The bounded nonlinear function minimization method was used to calculate the 

diffusion coefficients for each component ( ), PtNi of the sample (details in chapter 

three). The diffusion coefficients of each component were then used to compute their 

numerical concentration using Runge-Kutta method of order four. 

In this analysis only the diagonal diffusion coefficients were considered. In Figure 

6.31 the numerical and experimental concentration profiles for nickel have been 
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presented after 1 hour diffusion treatment. The nickel diffusion coefficient calculated 

from Bounded Nonlinear Function Minimization Method 

was scmDNi /105958.1 210−×= . 

 

 
Diffusion Distance )( mμ  

 
Figure 6.31 Nickel experimental and numerical concentrations after 1 hour diffusion 

treatment 

 As shown in the Figure 6.31 the star (*) concentration profile curve is the nickel 

numerical concentration after 1 hour diffusion treatment when the diffusion coefficient 

calculated from (fminbnd). The plus (•) concentration profile curve corresponds to the 

nickel numerical concentration after 1 hour diffusion treatment when the diffusion 

coefficient calculated from GAs method. The concentration profile (diamond) 

corresponds to the nickel experimental concentration after 1 hour. The initial guess 

(range) was ( 1011 106.1,101.1 −− ×× ) to find the diffusion coefficient for both fminbnd 

method and GAs method. The diffusion coefficient calculated from GAs method as 
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shown in Figure 6.24 was scmDNi /107619.6 211−×= . In the following Figure the 

numerical concentrations for nickel have been presented with different initial guess.  

 

 
Diffusion Distance )( mμ  

 
Figure 6.32 Nickel experimental and numerical concentration profiles after 1 hour 

diffusion treatment 

In Figure 6.32 the star (*) concentration profile curve is the nickel numerical 

concentration after 1 hour diffusion treatment when the diffusion coefficient calculated 

from fminbnd. The plus (+) concentration profile curve corresponds to the nickel 

numerical concentration after 1 hour diffusion treatment when the diffusion coefficient 

calculated from GAs method. The point (.) concentration profile curve corresponds to 

nickel experimental concentration after 1 hour. The initial guess or range was 

( 1011 1014,1071.0 −− ×× ) to find the diffusion coefficient for both fminbnd method and 

GAs method. The diffusion coefficient calculated from GAs method as shown in Figure 
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6.24 was scmDNi /107619.6 211−×= . The nickel diffusion coefficient calculated from 

Bounded nonlinear function minimization method was scmDNi /103909.5 210−×= . 

In Figure 6.33 the numerical and experimental concentration profiles for nickel have 

been presented after 1 hour diffusion treatment. The nickel diffusion coefficient 

calculated from Bounded nonlinear function minimization method 

was scmDNi /103501.3 211−×= . 

 

 
Diffusion Distance )( mμ  

 
Figure 6.33 Nickel experimental and numerical concentrations profiles after 1 hour 

diffusion treatment 

Figure 6.33 illustrates concentration profile (*) for nickel numerical concentration 

after 1 hour diffusion treatment when the diffusion coefficient calculated from fminbnd. 

The concentration profile (+) for the nickel numerical concentration after 1 hour 

diffusion treatment when the diffusion coefficient was calculated from GAs method. 

The point (.) concentration profile curve corresponds to the nickel experimental 
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concentration after 1 hour diffusion treatment. The initial guess or range was 

( 1111 105,101 −− ×× ) to find the diffusion coefficient for both fminbnd method and GAs 

method. The diffusion coefficient calculated from GAs as shown in Figure 6.24 

was scmDNi /107619.6 211−×= . 

 
Diffusion Distance )( mμ  

 
Figure 6.34 Nickel experimental and numerical concentrations after 1 hour diffusion 

treatment 

As shown in the Figure 6.34 the star (*) concentration profile curve represents the 

nickel numerical concentration after 1 hour diffusion treatment when the diffusion 

coefficient calculated from (fminbnd). The plus (+) concentration profile curve 

corresponds to the nickel numerical concentration after 1 hour diffusion treatment when 

the diffusion coefficient calculated from the GAs method. The point (.) concentration 

profile curve corresponds to the nickel experimental concentration after 1 hour. The 

initial guess was ( 1111 104,1071.2 −− ×× ) to find the diffusion coefficient for both 

fminbnd method and GAs method. The diffusion coefficient calculated from the GAs 
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method as shown in Figure 6.24 was scmDNi /107619.6 211−×= . The nickel diffusion 

coefficient calculated from bounded nonlinear function minimization method 

was scmDNi /1052077.4 211−×= . In this Figure there is a good agreement between the 

numerical concentration calculated from Genetic Algorithms method and the numerical 

concentration calculated from fminbnd. Therefore when the initial guess is close to the 

optimal solution (diffusion coefficient), fminbnd can be used to find the diffusion 

coefficient.   

 

6.4.7. Calculation of the Constant Diagonal Diffusion Coefficients 

Using Simplex Search Method  

 

The Simplex search method was used to calculate the diffusion coefficient for 

nickel (details in chapter 5). The diffusion coefficients of nickel component were then 

used to compute its numerical concentration. In this analysis the diagonal diffusion 

coefficients are taken into account and the cross terms were considered to be zero. 

In the following Figure 6.35 Simplex search method was used to calculate the 

diffusion coefficient for nickel. 
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Diffusion Distance )( mμ  

 
Figure 6.35 Nickel experimental and numerical concentrations after 1 hour diffusion 

treatment 

 

Figure 6.35 shows the star (*) concentration profile curve which represents the 

nickel numerical concentration after 1 hour diffusion treatment when the diffusion 

coefficient was calculated from Simplex search method. The plus (+) concentration 

profile curve corresponds to the nickel numerical concentration after 1 hour diffusion 

treatment when the diffusion coefficient was calculated from GAs method. The point (.) 

concentration profile curve corresponds to the nickel experimental concentration after 1 

hour. The initial guess (range) was ( 11101 −× ) to find the diffusion coefficient for both 

Simplex search method and GAs method. The diffusion coefficient calculated from 

GAs method as shown in Figure 6.24 was scmDNi /107619.6 211−×= . The nickel 

diffusion coefficient calculated from Simplex search method 

was scmDNi /103823.3 211−×= . In this figure there is a good agreement between the 
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numerical concentration calculated from Genetic Algorithms method and the numerical 

concentration calculated from Simplex search method.  

 

6.4.8. Calculation of the Constant Diagonal and Cross Terms Diffusion 

Coefficients Using Simplex Search Method 

 

In this section the diagonal and the cross terms from the diffusion matrix (equation 

6.35) 
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DD
DD

       

have been considered to be constant.  

In Figure 6.36 the numerical and experimental concentration profiles for nickel and 

platinum have been presented after 1 hour diffusion treatment.  

 

 
Diffusion Distance )( mμ  

Figure 6.36 The experimental and numerical concentrations for nickel and platinum 

after 1 hour diffusion treatment 
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Figure 6.36 illustrates the numerical and experimental concentrations for nickel and 

platinum with concentration constant diffusion coefficients 22211211 ,,, DDDD  

calculated from Simplex search method: 
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when the initial guess for all of them were as follows:  
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6.4.9 Conclusions 

 

 The Genetic Algorithms optimization method (GAs), bounded nonlinear function 

minimization (fminbnd), and Simplex Search method (SSm) have been used to calculate 

the diffusion coefficient for nickel when just the diagonal terms from the diffusion 

matrix are taken into account. Simplex Search method also has been used to optimise 

the diffusion coefficients for nickel and platinum when the cross terms are included. 

There is an agreement between nickel and platinum numerical and experimental 

concentration profiles when GAs method has been used. There is good agreement 

between the numerical and experimental concentration for both components (Ni, Pt) if 

fminbnd and SSm have been used considering close initial guess (range) to the optimal 
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diffusion coefficients. This result shows the advantage of GAs method to optimise the 

diffusion coefficient without need for a very close initial guess (range) whereas the 

other two methods (fminbnd, SSm) need to have a close initial guess to the optimal 

solution. 

 

 

6.5. Diffusion Processes Involved in Growth Mechanisms of Ni -

aluminide and Pt-aluminide Coatings on MAR 

M002/Microstructure Formation / Microstructural Modelling   - 

Results and Discussion 

 

Background information on Ni-aluminide coatings and on Pt-modified nickel 

aluminide coatings including the rationales for the development of these coatings and 

their methods of production have been presented in section 3.4. 

 

6.5.1. Microstructural Aspects of Diffusion Processes involved in the 

Formation of Nickel - aluminide Coating (without Pt) on MAR 

M002 

 

It has been recognised that [40] aluminide coatings grow by two mechanisms 

depending on the employment of the low or high activity pack. The high aluminum 

activity process involves the inner diffusion of aluminum to form 32 AlNi−δ  with a 

small amount of NiAl . The coating is heat treated to let Ni diffusion from the substrate 

to form NiAl−β , a much more ductile and oxidation resistant phase than the 32 AlNi  

phase. A three-zone structure is formed consisting an outer zone containing α-Cr and 



 221  

other substrate phases in a β -NiA1 matrix, a middle zone of a single phase NiAl−β  

with MoCoCrTi ,,, in solution and a β -matrix inner zone holding carbides and  σ  

phases as shown in Figure 7.37b  [63,65]. 

 

Figure 6.37 Microstructure of aluminide coatings formed on an IN738 nickel base 

superalloys: a) Low-activity process, b) High-activity process 

 

The low aluminum activity process leads to the configuration of a two-zoned 

structure by the outward diffusion of Ni  from the substrate reacting with Al . The outer 

zone consists of a single phase NiAl−β  with alloying elements diffusing out from the 
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substrate along with Ni . The inner zone contains carbides and/or phases shaped by the 

Ni removal from the NiAl−β  matrix as shown in Figure 6.37b [63]. 

 

6.5.2. Microstructural Aspects of Diffusion Processes involved in the 

Formation of Platinum Modified Nickel aluminide Coatings  

 

The Pt diffusion treatment of the Pt electroplated coating (on Ni-base superalloy) 

leads to the enrichment of the superalloy surface with Pt which form aβ -NiAl phase 

with Pt in substitution, that means the β -(Ni Pt) Al phase, during aluminising [J.Benoist 

2005]. It has also been observed that during the aluminising process an intermetallic 

compound PtAl2 is also formed in addition to the (Ni Pt) Al. PtAl2 is an additional 

reservoir of Al.  

The existence of a continuous PtAl2 layer in the case of an Al rich donor can be 

described in Figure 6.38 following the frame work given in [J.Benoist 2005]: 

• Initially at the interface I1, Al atoms join with Pt atoms to form PtAl2. At the 

same time, Ni atoms go through the Pt layer by diffusion through the interface I2 

to form a (Ni, Pt) solid solution; 

• Aluminum diffusion continues to construct the in-depth PtAl2 phase, producing 

a new interface I2 which divides this phase from the (Ni, Pt) solid solution 

formed by outward Ni diffusion coming from the substrate. The limit between 

the (Ni, Pt) solid solution and the interdiffusion zone becomes the interface I3 

and the one between interdiffusion zone and the superalloy forms the boundary 

I4, and during this step the complete PtAl2 phase gets formed;  

• All platinum atoms are joint with aluminum atoms to form PtAl2, the remaining 

Al atoms diffuse through the later phase to form the (Ni, Pt) Al phase;  
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• The convergence of Al and Ni flux under the PtAl2 layer, (Ni, Pt) Al phase 

continues to develop; 

• The last step represents the final PtAl2 → (Ni, Pt) Al conversion by Ni atoms 

diffusion from the substrate.  
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Figure 6.38 Schematic diagram of aluminizing process on MAR M002 substrate 

 
 

In the next section 6.5.3 the numerical modelling for interdiffusion for the Pt-

aluminide coatings on MAR M002 system have been presented. 

 

6.5.3. Modelling Interdiffusion Using Genetic Algorithms Method 

(GAs) with the Numerical Method  

 

The numerical method (Runge-Kutta method of order four) has been used to 

calculate the numerical concentration;    
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was applied to Fick’s second law 
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where D  is the diffusion coefficient.  
 

In the first investigation only the diagonal diffusion coefficients in the diffusion 

matrix, 
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 were considered, these were assumed constant and the cross terms were assumed to be 

zero. Using this assumption the composition profiles of  CoNiCrAlPt ,,,,  have been 

calculated.   
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Diffusion Distance ( mμ ) 

 
Figure 6.39 Nickel numerical and experimental concentrations after 150 hours of 

diffusion annealing 

 

Figure 6.39 shows nickel concentration profiles (numerical and experimental) using 

the diffusion coefficient )/10368.12( 213 scmDNi
−×= obtained from Genetic 

Algorithms method after 150 hours of diffusion annealing. The initial concentration 

profile of Ni used in the above Figure 6.39 has been taken from the experimental value 

of concentration at 0=t . There is a broad agreement between the numerical 

concentration and experimental concentration profiles between the diffusion distances (-

100-(-10)) mμ  and between ‘(10-100) mμ ’, and followed by divergence between the 

experimental and the numerical values from (-10-10) mμ .  

 
Similarly in Figure 6.40 the numerical and experimental concentrations of Al have 

been presented after 150 hours diffusion treatment using )/109181.5( 213 scmxDAl
−=  

calculated from Genetic Algorithms method. 
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Diffusion Distance ( mμ ) 

 
Figure 6.40 Aluminum numerical and experimental concentrations after 150 hours of 

diffusion annealing 

 
The initial concentration profile of Al  used in the above Figure has been taken from the 

experimental value of concentration at  0=t . Good agreement is shown between the 

numerical concentration and experimental concentration for Al in the whole range of 

diffusion distance.  

In Figures 6.41 and 6.42 the experimental and numerical concentration profiles for 

the components cobalt and platinum have been presented with the interdiffusion 

coefficients calculated from Genetic Algorithms method. 
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Diffusion Distance ( mμ ) 

 

Figure 6.41 Cobalt numerical and experimental concentrations after 150 hours of 

diffusion annealing 

 

Figure 6.41 shows cobalt concentration profiles (numerical and experimental) using 

the diffusion coefficient )/106412.3( 213 scmDCo
−×= from Genetic Algorithms method 

after 150 hours diffusion treatment, and the initial concentration profile at 0=t . For 

the entire range of diffusion distance the experimental and numerical profiles show 

good agreement.  
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Diffusion Distance ( mμ ) 

 
Figure 6.42 Platinum numerical and experimental concentrations after 150 hours of 

diffusion annealing 

 

The platinum concentration profile (numerical and experimental) using the diffusion 

coefficient )/100297.8( 213 scmDPt
−×= from Genetic Algorithms method after 150 hours 

diffusion treatment is shown in Figure 6.42. The initial concentration profile of Pt used 

in the above Figure has been taken from the experimental value of concentration at 

0=t . There is good agreement between the numerical concentration and experimental 

concentration for the whole range of diffusion distance.  

 

6.5.3.1. Conclusions of Ni -aluminide and Pt-aluminide Coatings on 

MAR M002 Using Constant Diagonal Terms 

 

Fick’s second law has been used to find the concentration profile for each 

component ),,,( PtCoAlNi  using Rung-Kutta method of order four. The Genetic 
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Algorithms method allows optimization of the values of diffusion coefficients, in 

diffusion matrix. The calculated concentration profiles have been compared with the 

experimental data using Least squares method. There is some divergence between the 

),,( PtCoAl  numerical concentrations and experimental concentrations in some 

distances in the entire range of diffusion distance after 150 hours diffusion treatment. 

For the nickel component there is good agreement between the numerical concentration 

and experimental concentration profiles between the diffusion distances (-100-(-

10)) mμ , and between (10-100) mμ , followed by divergence between the experimental 

and the numerical values from (-10-10) mμ . Further improvement can be achieved 

considering the cross terms. 

 
 
 
 
6.5.4. Calculation Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 
 

Fick’s second law for the muticomponent system can be written as follows: 
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Equation 6.39 explains how the diagonal and cross terms diffusion coefficients are 

constants: 
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Equation 6.40 clarifies in more depth  
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In this matrix (equation 6.41), the diagonal and cross terms have been considered to 

be constant. 

In Figure 6.43 the experimental and numerical concentration for the components 

(nickel, aluminum, cobalt and platinum), have been presented with the interrdiffusion 

coefficients calculated from Genetic Algorithms method and using equation 6.40, Fick’s 

second law. Here the cross terms have been taken into account. 
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Diffusion Distance ( mμ ) 

 
Figure 6.43 The numerical and experimental concentration profiles after 150 hours of 

diffusion annealing for all the components Co, Ni, Al, and Pt 

The concentration profiles have been obtained using constant diffusion 

coefficients 44434241343332312423222114131211 ,,,,,,,,,,,,,,, DDDDDDDDDDDDDDDD  

determined from Genetic Algorithms optimization method and the values are given 

below: 
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      (6.42) 

 

In the above Figure 6.43 the numerical concentration profiles for the components 

(nickel, aluminum, cobalt and platinum) have been calculated considering constant 

cross terms and diagonal terms, in a diffusion matrix. 

 

6.5.4.1. Conclusions (Constant Cross and Diagonal Terms Diffusion 

Coefficients) 

 

Here the concentration profiles for each component nickel, aluminum, cobalt and 

platinum were calculated by solving Fick’s second law using Rung-Kutta method of 

order four. Genetic Algorithms method has allowed optimization of the values of 

diffusion coefficients, in a diffusion matrix (equation 6.41). There is good convergence 

between the experimental and numerical concentration for the components 
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),,,( PtCoAlNi  when equation 6.40 was used to calculate the diffusion coefficients, 

taking into account the cross terms. The difference between the experimental and 

numerical concentration profiles for the components ),,,( PtCoAlNi  has been reduced. 

It means the results (the numerical concentration profiles for (nickel, aluminum, cobalt 

and platinum) show much improvement compared to the numerical concentration 

profiles when the cross terms were considered to be zero.  

 

6.5.5. Calculation Considering Variable Cross and Diagonal Terms 

Diffusion Coefficients 

 

In the previous part 6.4.4 the diffusion coefficients (diagonal and cross terms) for 

the components ),,,( PtCoAlNi were considered to be constant. In the following 

analysis the diffusion coefficients are considered to be concentration dependent (a 

function of concentration). Second order polynomial has been used for concentration 

dependence diffusion coefficients for the (nickel, aluminum, cobalt and platinum). The 

following Figure presents the concentrations for the all components ),,,( PtCoAlNi ;   
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Diffusion Distance ( mμ ) 

Figure 6.44 The numerical and experimental concentrations after 150 hours of diffusion 

annealing for all the components Co, Ni, Al, and Pt with variable diffusion coefficients 

 

Figure 6.44 illustrates the numerical and experimental concentrations for the nickel, 

aluminum, cobalt and platinum with concentration dependent diffusion coefficients: 

44434241343332312423222114131211 ,,,,,,,,,,,,,,, DDDDDDDDDDDDDDDD  (second 

order polynomial) after 150 hours diffusion treatment: 
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where 4321 ,, CandCCC  are the initial concentration for nickel, aluminum, cobalt 

and platinum respectively. 21321 ,,,,,, llwww LL  are the polynomial coefficients 

calculated using Genetic Algorithms optimization method. There were superior 

agreements in the numerical and experimental concentration values for nickel, 

aluminum, cobalt and platinum for the entire range of the diffusion distance. 

 

6.5.5.1. Conclusions (Variable Cross and Diagonal Terms Diffusion 

Coefficients) 

 

Fick’s second law has been used to determine the concentration profile for each 

component (nickel, aluminum, cobalt and platinum) using Rung-Kutta method of order 
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four. Using Genetic Algorithms optimization method, the diffusion coefficients values 

in the diffusion matrix (equation 6.41) have been optimized. There is very good 

convergence (agreement) between the experimental and numerical concentration for the 

components ),,,( PtCoAlNi  when equation 6.44 was used to calculate the diffusion 

coefficients, concentration dependent. The difference between the experimental and 

numerical concentration profiles for the components ),,,( PtCoAlNi has been reduced. 

It means the numerical concentration profiles for nickel, aluminum, cobalt and platinum 

show significant improvement compared to the numerical concentration profiles when 

the cross terms were considered to be zero and constant.  

 

6.6. Studies of Ir and Ir/Pt Low-Activity Aluminide / MAR M002 

System / Assessment of the Oxidation Resistance and 

Microstructural Aspects/Modelling of Diffusion Process Involved 

at (1100oC) - Results and Discussion 

 

Background information on this system including the production of Ir and IrPt 

modified coatings on MAR M002 system at 1100oC have been given in section 3.6. 

  

6.6.1. As Processed Ir-aluminide and Pt-Ir-aluminide 

 

Figure 6.45 gives the EDS – X-ray mapping for as processed Ir- aluminide coating. 

Figure 6.46 gives the EDS – X-ray mapping for as processed IrPt- aluminide coating. 

Figures 6.45 and 6.46 show that the outer layer was Ni or Ni, Pt-rich, while the inner 

layer was Ir-rich, with Al distributed during the coatings [64]. Inside the Ir-aluminide 
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the substrate elements such as W and Ta were limited within the Ir-rich layer, but for 

the IrPt-aluminide, such elements were excluded from the coating.       

 

Figure 6.45 Digimap of the −Ir aluminide, as-processed, in section 

 

Figure 6.46 Digimap of the Ir Pt- aluminide, as-processed, in section 
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In the case of the Ir-aluminide coating, the Ir-rich layer contained the substrate 

elements-W, Ta. For the Ir-Pt aluminide coatings the substrate elements were excluded 

from the coating.  

The cross-sectioned EDS analysis shown in Figure 6.47 and 6.48 confirmed the 

distribution of the elements. The XRD analysis (not presented) exposed that the outer 

layers of the systems had a structure similar to that of β -NiAl. 
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Figure 6.47 ZAF analysis of the −Ir aluminide, as-processed, in section 
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Figure 6.48 ZAF analysis of the −− PtIr aluminide, as-processed, in section 
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6.6.1.1. Summary of the Diffusion Processes involved in the Formation 

of Ir-aluminide and IrPt-aluminide Coatings 

 

During the manufacturing stage of the coatings a β NiAl layer developed due to the 

selective diffusion of Ni which reacted with Al. This diffusion process created a large Ir-

rich interdiffusion zone which also contained substrate elements Cr, W, Ta, Ti due to the 

outward diffusion of these elements. 

In the case of Pt-Ir-Ni-aluminide there also developed a Ir-rich inner layer. There 

was no outward diffusion of the substrate elements. Pt was distributed in the top part of 

the coating.  

 

6.6.2. Oxidation of Ir-aluminide and Pt-Ir aluminide Coatings at 

1100oC for 100 Hours 

6.6.2.1. Ir-aluminide Coatings 

 

After oxidation of Ir-aluminide coatings at 1100oC for 100 hours the samples were 

subjected to EDS analysis for EDS-X ray maps (Figure 6.49).     

The EDS-X ray maps (Figure 6.49) show: 

• the formation of an Al2O3 scale (deduced); 

• the virtually consumed β NiAl; 

• the concentration of Al in the Ir-rich inner layer;  

• the formation of an internal oxidation zone containing Ti. 
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6.6.2.2. Pt-Ir-aluminide Coatings 

 

After oxidation of IrPt-aluminide coatings at 1100oC for 100 hours the samples were 

subjected to EDS analysis for EDS-X ray maps (Figure 6.50).     

The EDS-X ray maps shown in Figure 6.50 confirm: 

• the formation of an outer scale Al2O3; 

• the distribution of Pt and Ir throughout; 

• the incorporation of Ti and Hf just below the scale; 

• W residing in the substrate. 
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Figure 6.49 Digimap analysis of the Ir-aluminide, aged for 100 hours at 1100°C, in 

section 
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Figure 6.50 Digimap analysis of the IrPt-aluminide, aged for 100 hours at 1100°C, in 

section 
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6.6.3. Ir-aluminide Information on Structure 

6.6.3.1. As Processed 

 

EDS (ZAF analysis), (Figure 6.47), confirms the following structure: 

 

NiAlβ

 

 

6.6.3.2. Ir-aluminide 

 Oxidation at 1100oC 100 hours: 

    

NiAlβ

 

 

6.6.4. Ir-Pt-aluminide Information on Structure 

6.6.4.1. As Processed  

EDS data confirms using ZAF analysis, Figure 6.48, the following scheme:  
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6.6.4.2. Ir-Pt-aluminide 

When the metals are subjected to oxidation at 1100oC for 100 hours; 

 
  

 In the next section 6.6.5 the numerical modelling of interdiffusion for this 

system has been presented.  

 

6.6.5. Modelling Interdiffusion Using Genetic Algorithms Method 

(GAs) with the Numerical Method 

Genetic Algorithms method was used to calculate the diffusion coefficients for each 

component ),,,( NiIrCrAl and ),,,,( PtNiIrCrAl of the samples (details in chapter 

W 

Scale Al2O3 

Modified coating

Substrate

Ti 
Hf 
W} Ir   distributed 
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3). The diffusion coefficients of each component were then used to compute their 

numerical concentration using the equation, (Runge-Kutta method of order four): 
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where D is the diffusion coefficient calculated from Genetic Algorithms method. With 

this method the results found are shown below where we have supposed constant 

diffusion coefficient in the diffusion matrix: 
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where the diagonal terms ),,,( 44332211 DDDD and ),,,,( 5544332211 DDDDD are taking 

into account and the cross terms are considered to be zero from the diffusion matrixes 

(equations 6.44 and 6.45 respectively). 

In the following Figure the aluminum concentration profiles have been presented at 

1100oC after 100 hours diffusion treatment: 

 
Diffusion Distance )( mμ  

 
Figure 6.51 Aluminum concentration profiles in an iridium/low-activity aluminide/ 

MAR M002 system at 1100oC after 100 hours diffusion treatment 

 

  Figure 6.51 shows the numerical concentration calculated using only the 

composition independent diagonal terms of diffusion matrix, and experimental 

concentration after 100 hours diffusion treatment. The optimum value of aluminum 

diffusion coefficient is scm /1099417.1 213−×  in −Ir aluminide system. This coefficient 

has been calculated by using Genetic Algorithms optimization method. The blue star 

curve (represents the aluminum experimental profile after 100 hours diffusion 

treatment), the red dot curve represents the numerical concentration profile for 

aluminum after 100 hours diffusion treatment, and the black solid circle curve 
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represents the initial aluminum concentration profile. There is an agreement between the 

aluminum numerical and experimental concentration profiles for the whole range of 

diffusion distance after 100 hours diffusion treatment. 

Similarly, in Figure 6.52 aluminum concentration profiles are presented in 

−IrPt aluminide system: 

 
Diffusion Distance )( mμ  

 
Figure 6.52 Aluminum concentration profiles in an iridium platinum/low-activity 

aluminide/ MAR M002 system at 1100oC after 100 hours diffusion treatment 

 

As shown in Figure 6.52, there is an agreement between the numerical   

concentration and experimental concentration for aluminum. scm /10865.2 213−×  is the 

optimum aluminum diffusion coefficient value determined from GAs method.  

In the following Figures (6.53, 6.54) the chromium concentrations profiles have been 

presented (in both systems −Ir aluminide and −PtIr  aluminide);  
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Diffusion Distance )( mμ  

Figure 6.53 Chromium concentration profiles in an iridium/low-activity  

aluminide/ MAR M002 system at 1100oC after 100 hours diffusion treatment 

 

Figure 6.53 shows the numerical and experimental concentration profiles after 100 

hours diffusion treatment calculated using scmCrD /1020417.2)( 213−×=  determined 

from GAs method.  
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Diffusion Distance )( mμ  

 
Figure 6.54 Chromium concentration profiles in an iridium platinum/low-activity 

aluminide/ MAR M002 system at 1100oC after 100 hours diffusion treatment 

 

As presented in Figures 6.53 and 6.54 there is an agreement between the chromium 

numerical and experimental concentration profiles for the whole range of diffusion 

distance after 100 hours diffusion treatment. 

In Figures (6.55 – 6.59) the iridium, nickel, and platinum concentrations profiles are 

presented using GAs method to determine the diffusion coefficients: 

 

scmIrD /1094321.7)( 214−×=  in −Ir aluminide 

scmIrD /109265.4)( 214−×=  in  −IrPt  aluminide 

scmNiD /1054204.3)( 214−×=  in −Ir aluminide 

scmNiD /101085.3)( 214−×=  in  −IrPt  aluminide 

scmPtD /106120.4)( 214−×= in  −IrPt  aluminide 
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Diffusion Distance )( mμ  

 
Figure 6.55 Iridium concentration profiles in an iridium/low-activity aluminide/ MAR 

M002 system at 1100oC beyond 100 hours diffusion treatment 

 
Diffusion Distance )( mμ  

 
Figure 6.56 Iridium concentration profiles in an iridium platinum/low-activity 

aluminide/ MAR M002 system at 1100oC after 100 hours diffusion treatment 
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Figure 6.57 Nickel concentration profiles in an iridium/low-activity aluminide/ MAR 

M002 system at 1100oC behind 100 hours diffusion treatment 
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Figure 6.58 Nickel concentration profiles in iridium-platinum/low-activity aluminide/ 

MAR M002 system at 1100oC after 100 hours diffusion treatment 
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Diffusion Distance )( mμ  

 
Figure 6.59 Platinum concentration profiles in an iridium platinum/low-activity 

aluminide/ MAR M002 system at 1100oC behind 100 hours diffusion treatment 

 

All the Figures from (6.55 - 6.59) show a little divergence between the experimental 

and numerical concentration profiles for the diffusion distance (15-25) mμ  beyond 100 

hours.  

 

6.6.5.1. Conclusions of  Ir-aluminide and Pt-Ir aluminide Coatings at 

1100oC for 100 Hours (Constant Diagonal Terms) 

 

Fick’s second law has been used to find the concentration profile for each 

component, ),,,,( PtNiIrCrAl using Rung-Kutta method of order four. The 

Genetic Algorithms method allows optimization of the values of diffusion coefficients. 

The calculated concentration profiles have been compared with the experimental data 

using Least squares method.  The results from Genetic Algorithms optimization method 

(GAs), the diffusion coefficients for each component, show reasonable agreement 
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between the numerical and experimental concentration profiles for these 

components ),,,,( PtNiIrCrAl . Further improvement can be achieved by introducing 

composition dependent diffusion coefficients and taking into account the cross terms in 

diffusion matrix.   

 

 
6.6.6. Calculation Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

Fick’s second law for multicomponent systems (four independent component 

),,,( NiIrCrAl  and five independent components ),,,,( PtNiIrCrAl systems) can be 

written as: 
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where the number 1 means aluminum, 2 means chromium, 3 means iridium, and 4 

means nickel.  
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And for five independent components ),,,,( PtNiIrCrAl system, Fick’s second 

law can be written as follows: 
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    (6.48) 

 

Numbers 1, 2, 3, 4, and 5 belong to aluminum, chromium, iridium, nickel, and platinum 

respectively.       

 So the diffusion coefficients matrix is as follows: 
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In these matrixes the diagonal and cross terms have been considered to be constant. 

In Figures 6.60 and 6.63 the experimental and numerical concentration for the 

components (aluminum, chromium, iridium, and nickel) and for the components 

(aluminum, chromium, iridium, nickel, and platinum)  have been presented with the 

interrdiffusion coefficients calculated from Genetic Algorithms method and using 
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equations 6.47 and 6.48 respectively (applying Fick’s second law). Here the cross terms 

have been taken into account. 

 

 
Diffusion Distance )( mμ  

 
Figure 6.60 Numerical and experimental concentration profiles for all the components 

(aluminum, chromium, iridium, and nickel) in an iridium/low-activity aluminide/ MAR 

M002 system at 1100oC after 100 hours diffusion treatment considering constant cross 

and diagonal terms 

 

Figure 6.60 demonstrates aluminum, chromium, iridium, and nickel concentrations 

(numerical and experimental) using constant diffusion coefficients 

4443424134333231

2423222114131211

,,,,,,,
,,,,,,,,

DDDDDDDD
DDDDDDDD

 determined from Genetic Algorithms 

optimization method described in chapter 5 as: 
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          (6.51) 

 

In the above Figure 6.60 the numerical concentration profiles for the components 

aluminum, chromium, iridium, and nickel have been calculated considering constant 

cross terms and diagonal terms, in a diffusion matrix. There is improved agreement 

between the experimental and numerical concentration for all the components shown. 

This improvement can be explained in the following Figures (6.61 and 6.62): 
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Figure 6.61 The absolute error for the components aluminum, chromium   iridium and 

nickel with the constant diagonal diffusion coefficients −Ir aluminide system 

 

As shown in Figure 6.61 the absolute error for aluminum is (1945.3), for chromium 

is (385.8003), for iridium is (544.6138), and for nickel is (752.134). Whereas if we look 

to the following Figure 6.62 the absolute error for aluminum is (1680.3), for chromium 

is (197.6218), for iridium is (355.8656), and for nickel is (327.3896). The numbers 1, 2, 

3, and 4 represent Al, Cr, Ir, and Ni respectively. 
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Figure 6.62 The absolute error for the components aluminum, chromium, iridium and 

nickel (whole constant diffusion coefficient matrix, equation 6.47) for −Ir aluminide 

system 
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Diffusion Distance )( mμ  

 
Figure 6.63 Numerical and experimental concentration profiles for all the components 

(aluminum, chromium, iridium, nickel and platinum) in an iridium platinum /low-

activity aluminide/ MAR M002 system at 1100oC after 100 Hours diffusion treatment 

considering constant cross and diagonal terms 

 

Figure 6.63 shows aluminum, chromium, iridium, nickel, and platinum 

concentrations (numerical and experimental) using constant diffusion coefficients 

555453525145444342413534
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 determined from 

Genetic Algorithms optimization method (chapter 5) as: 
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      (6.52) 

 

A similar picture is presented in Figures 6.64 and 6.65 for the  −IrPt  aluminide 

system. 
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Figure 6.64 The absolute error for the components aluminum, chromium   iridium, 

nickel and platinum with the constant diagonal diffusion coefficients −IrPt aluminide 

system 

 

As shown in Figure 6.64 the absolute error for aluminum is (576.6679), for 

chromium is (270.9045), for iridium is (3.7174e3), for nickel is (943.9835) and for 

platinum is (351.1695). 

However in Figure 6.64 the absolute error for aluminum is (298.1100), for 

chromium is (196.1750), for iridium is (2.6893e+003), for nickel is (730.8212), and for 

platinum is (256.7069). 
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Figure 6.65 The absolute error for the components aluminum, chromium, iridium nickel 

and platinum (whole constant diffusion coefficient matrix, equation 6.51) 

 

6.6.6.1. Conclusions Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

Numerical modelling has been done using the same technique as above. Data 

presented show good convergence between the experimental and numerical 

concentration for the components ),,,( NiIrCrAl when equation 6.47 was used to 

calculate the diffusion coefficients, taking into account the cross terms. In a similar way 

for the system ),,,,( PtNiIrCrAl , equation 6.48 has been done. The absolute error 

between the experimental and numerical concentration profiles for both systems has 

been reduced, Figures (6.61, 6.62, 6.64, and 6.65). It means the numerical concentration 

profiles for all the components show much improvement when the cross terms are taken 

into account.   
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6.6.7. Calculation Considering Variable Cross and Diagonal Terms 

Diffusion Coefficients 

 

In the previous part, (6.6.6), the diffusion coefficients (diagonal and cross terms) for 

the all the components ),,,,(),,,,( PtNiIrCrAlNiIrCrAl were considered to be constant. 

In the present part the diffusion coefficients are considered to be concentration 

dependent (a function of concentration). Second order polynomials have been used for 

concentration dependence diffusion coefficients for aluminum, chromium, iridium and 

nickel, and platinum. The concentration profiles have been presented in the Figure 6.66: 

 
Diffusion Distance )( mμ  

 
Figure 6.66 Numerical and experimental concentration profiles for all the components 

(aluminium, chromium, iridium, and nickel) in an iridium/low-activity aluminide/ MAR 

M002 system at 1100oC after 100 hours diffusion treatment considering variable cross 

and diagonal terms 
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Figure 6.66 illustrates the numerical and experimental concentrations for 

(aluminum, chromium, iridium, and nickel) with concentration dependent diffusion 

coefficients 
4443424134333231

2423222114131211
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,,,,,,,,

DDDDDDDD
DDDDDDDD

 (second order polynomial) after 

100 hours diffusion treatment: 
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The values of D’s are as follows: 
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where 4321 ,,, CCCC  are the initial concentrations for aluminum, chromium, iridium, 

and nickel respectively. 21321 ,,,,,, ppaaa LL  are the polynomial’s coefficients 

calculated using Genetic Algorithms optimization method. There were good agreements 

in the numerical and experimental concentration values for (aluminum, chromium, 

iridium, and nickel) of the entire range of the diffusion distance. 

In the following Figure 6.67 the absolute error for the components (aluminum, 

chromium, iridium, and nickel) have been plotted against the number of the components 

as 1, 2, 3 and 4 belong to the aluminum, chromium, iridium, and nickel respectively. In 

this Figure the diffusion coefficients for the whole diffusion matrix, equation 6.49, have 

been considered concentration dependence (second order polynomial): 
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Figure 6.67 The absolute error for the components aluminum, chromium, iridium and 

nickel (whole variable diffusion coefficient matrix, equation 6.49) 

 

The following Figure 6.68 illustrates the numerical and experimental concentration 

for the iridium platinum –aluminide system: 
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Diffusion Distance )( mμ  

 

Figure 6.68 Numerical and experimental concentration profiles for all the components 

(aluminum, chromium, iridium, nickel, and platinum) in an iridium platinum/low-

activity aluminide/ MAR M002 system at 1100oC after 100 hours considering variable 

cross and diagonal terms 

 

Figure 6.68 demonstrates the numerical and experimental concentrations for 

aluminum, chromium, iridium, nickel and platinum with concentration dependent 

diffusion coefficients ,,,,,,,,,, 25242322211514131211 DDDDDDDDDD   

555453525145444342413534333231 ,,,,,,,,,,,,,, DDDDDDDDDDDDDDD , (second 

order polynomial) after 100 hours diffusion treatment: 
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The values of D’s are as follows: 
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Similar to Figure 6.68 the absolute error for the components (aluminum, chromium, 

iridium, nickel, and platinum) have been plotted (Figure 6.69) against the number of the 

components as 1, 2, 3, 4, and 5 belong to the aluminum, chromium, iridium, nickel, and 

platinum respectively, in this Figure the diffusion coefficients for the whole diffusion 

matrix, equation 6.50, have been considered a concentration dependence (second order 

polynomial): 
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Figure 6.69 The absolute error for the components aluminum, chromium, iridium, 

nickel, and platinum (whole variable diffusion coefficient matrix, equation 6.50) 

 

Figure 6.69 shows better agreement between the experimental and numerical 

concentration profiles for the components ),,,,( PtNiIrCrAl . 

 

6.6.7.1. Conclusions 

 

There is very good convergence between the experimental and numerical 

concentration for the components ),,,,(),,,,( PtNiIrCrAlNiIrCrAl when equations 6.49 

and 6.50 were used to calculate the diffusion coefficients, (taking into account the cross 

terms). The absolute error between the experimental and numerical concentration 

profiles for the components ),,,,(),,,,( PtNiIrCrAlNiIrCrAl have been reduced 

significantly, (Figures 6.61, 6.62, 6.67) for −Ir aluminide system and (Figures 6.64, 

6.65, and 6.69) for −IrPt  aluminide system. In the following table the diffusion 

coefficients for the components in both systems are shown:  
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  Systems   

D's values (cm^2/s) Ir-aluminide IrPt-aluminide 

D(Al) 1.99E-13 2.87E-13 

D(Cr) 2.20E-13 2.04E-13 

D(Ir) 7.94E-14 4.93E-14 

D(Ni) 3.54E-14 3.11E-14 

 

Table 6.3 Diffusion coefficients for the components ),,,( NiIrCrAl in both systems 

−Ir aluminide and  −IrPt  aluminide 

 

6.7. Diffusion Processes Involved in the Formation and Oxidation 

Studies  of Aluminise Coating on low Alloy Steels at 650oC 

/Microstructure Formation - Microstructural Modelling -Results 

and Discussion 

Background information on aluminise coating on low alloy steels at 650oC together 

with the method of formation have been presented in section 3.6. 

 

6.7.1. Studies of the Microstructures of the Coating and Diffusion 

Processes Involved 

       Figure 6.70 shows a cross-sectional  SEM image and depth profiles of the main 

elements measured by EDS in a coating formed at 650o C for 8 hours in a pack 

containing  32%2,%6 ClAlwtAlwt  and 32%94 OAlwt . It shows a uniform coating 

layer with a thickness of mμ39~ . The fractures at the top of the coating were created 

during sample preparation for analysis. It is clear from the depth profile that the Al  
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concentration decreased slowly from about %87 at  at the surface to about %73at at a 

depth of about mμ8 and remained constant with sudden fall to zero at the 

coating/substrate interface. The formation of an abrupt interface such as this suggests 

coating development by a reaction-diffusion controlled mechanism, leading to the 

formation of intermetallic compounds. The observed smooth surface of the as coated 

sample without any entrapped pack particles indicated that the coating was formed 

mainly through the inward diffusion of Al . XRD analysis shown in Figure 6.71 

confirms that the major phase in the surface layer was 8614 AlFe . Figure 6.72 shows the 

molar ratio of FeAl /  as a function of the coating depth, and reveals that, in the inner 

layer of the coating at depths below )8(~ mμ , the molar ratio of FeAl /  is )3(~ , 

indicating that the major phase in the inner layer is 3AlFe . Figure 6.70a indicates 

precipitates containing a high concentration of Cr  in the coating layers. Cr has a 

limited solubility in 8614 AlFe  and 3AlFe . 

 

 



 277  

 

Figure 6.70 Cross-sectional SEM image and depth profiles of major elements in the 

coating layer formed at 650o C for 8 hours in a pack of 32%2,%6 ClAlwtAlwt  and 

32%94 OAlwt  
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Figure 6.71 XRD pattern measured from the as-coated surface 

 

 

Figure 6.72 Molar ratio of  FeAl /  in the coating layer 

 

6.7.2. Effect of Pack Al Content 

The effect of pack Al   content on the coating growth was studied by changing Al  

content from %)64.1( wt− while fixing the pack 3AlCl content at %2 wt . The 

specimens were all coated at 650oC for 8 hours. The Al  depth profiles of the coatings 
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given in Figure 6.73 show the coating thickness increasing with pack Al  content. The 

Al  concentrations at the coating surface and at equivalent depths within the coating 

layer stayed unaffected by the pack Al  content. The main phase as determined by XRD 

in the surface layer of all the coatings was 8614 AlFe . EDS data also confirms this. The 

Al  concentration at depths greater than mμ8  was constant and the molar ratio of 

FeAl /  at these depths was close to 3, indicating a 3FeAl  phase in the inner layer of 

all the coatings. The Al  concentration fell rapidly to effectively zero at the 

coating/substrate interface, demonstrating that the coatings were all formed using the 

same reactive diffusion mechanism. Certainly, the microstructure of all the coatings 

showed essentially the same features as in Figure 6.70 (a). Figure 6.74 shows the 

growth kinetics. Figure 6.74 realistically demonstrates that the coating thickness 

increased progressively from approximately )19( mμ  to about )39( mμ as the pack Al 

content was increased from %)64.1( wt− . It can consequently be concluded that the 

coating growth rate increased with the pack Al  content in the range studied. 
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Figure 6.73 Effect of pack Al  content on the Al  depth profile (deposition condition: 

650oC, 8 hours)[76,77] 

 

Figure 6.74 Effect of pack Al  content on coating thickness with a deposition condition 

of 650oC, 8 hours 
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6.7.3. The Effect of Heat Treatments Applied and their Effects and 

Observed Diffusional Processes Involved: Microstructural 

Description of the Diffusion Processes Involved 

 

The coatings formed under the deposition conditions, at 650oC on the MoCr 19 −  

alloy steel using 3AlCl  as an activator and elemental Al  powder, used in this study 

consisted of an outer 8614 AlFe phase layer and an inner 3FeAl  phase layer. These 

phases are brittle [82]. To improve the ductility, a series of heat treatment experiments 

were applied to the coatings for changing 8614 AlFe  and 3FeAl  phases through solid-

state diffusion to the ductile FeAl  phase at 650oC under an argon atmosphere. The 

specimen studied had an initial coating thickness of mμ33~ . The specimen was taken 

out of the diffusion furnace and a portion of the specimen analysed periodically. Figures 

6.75 (a) and 6.75 (b) present respectively Al  and Fe  depth profiles in the coating layer 

at dissimilar diffusion intervals. Figures 6.76 (a – h) illustrate the corresponding cross-

sectional SEM images. Figure 6.77 plots the coating thickness, (which measures the 

thickness of all the phase layers including the diffusion zone) against diffusion time. 

These results show the change of 8614 AlFe  and 3FeAl  to FeAl . However, this process 

at 650oC, required 1132 hours in total for an initial coating layer thickness of mμ33 to 

develop. From the results presented in Figures 6.75 – 6.77, it can be assumed that the 

overall change process was influenced by two different diffusion mechanisms 

dominating during two different stages. 

The following observations were made: 

• After 26 hours the 3FeAl  layer became thinner shown in Figures 6.75 a and 

6.76 (a-c); 
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• The coating thickness decreased slightly with diffusion time; 

• There was a formation of  FeAl  and a diffusion zone between 3FeAl  layer and 

substrate; 

• The appearance of Kirkendall voids at the interface between FeAl  and diffusion 

zone (Figure 6.76 (a-c)); 

• There was outward diffusion of Fe; 

• At about 122 hours of diffusion the thickness of FeAl  and diffusion started to 

increase and the thickness of 3FeAl stated to decrease; 

• There was increase in coating thickness indicating inward diffusion of Al as the 

main diffusion mechanism; 

• At about 554 hours, the Kirkendall voids were eliminated and coating thickness 

increased to 46μ m (Figures 6.76 (f) and 6.72); 

• At about 1132 hours 3FeAl  completely changed to FeAl  and a diffusion zone 

formed below FeAl layer as shown in Figure 6.76 (h) 

• The coating thickness increased from mμ33  to mμ48 ; 

• After 1132 hours (shown in Figure 6.75 (b)) Fe concentration remained at 50 

at% showing a FeAl  phase (confirmed by XRD). 

 

 These systems have allowed us to obtain information on the microstructural 

description of the diffusion processes involved. The numerical modelling of the 

diffusion processes (discussed in chapter seven) has allowed an insight into the coating 

processes used. The Gas method technique has been used to optimise the diffusion 

coefficients for Al and Fe when the diagonal terms in the diffusion matrix were constant 

and also the whole diffusion matrix was constant and variable (see section 6.6).   
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Figure 6.75 Depth profiles of Al and Fe in the coating layer at different diffusion 

intervals [76, 77] 
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Figure 6.76 Cross-sectional SEM images at different diffusion intervals, a) as-coated; b) 

10 hours; c) 26 hours; d) 122 hours; e) 290 hours; f) 554 hours; g) 818 hours; h) 1132 

hours [76, 77] 
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 This section reports and discusses the numerical work carried out in determining 

the diffusion coefficients and calculating the concentration profiles for aluminise 

coatings deposited on low alloy steels at 650oC. 

 As mentioned in chapter 4 the coated samples were subjected to diffusion 

treatments for various times (10, 26, 122, 290 and 554 hours). 

 Crucially, modelling was used to optimise the process parameters. Varied 

deposition parameters were used to produce various coatings with various composition 

profiles. Numerical modelling was used to ascertain the composition parameters and 

finally the desired profile and hence appropriate process parameters. The full 

methodology for numerical modelling has been given in chapter 4, and is summarised 

as follows. 

 

6.7.4. Numerical Techniques to Determine Diffusion Coefficients using 

GAs Method with the Numerical Methods 

 

 The Genetic Algorithms optimization method was used to calculate the diffusion 

coefficient of aluminum and iron components (Al, Fe) of the samples. The diffusion 

coefficients of each component determined were then used to calculate their numerical 

concentration. The numerical concentration of each component was calculated by using 

the numerical method (Rung-Kutta of order four). This numerical method (Rung-Kutta 

of order four) was applied to Ficks second law: 
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where D  is the diffusion coefficient calculated from Genetic Algorithms optimization 

method. 
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Rung-Kutta method of order four can be written as: 
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The error between the experimental and numerical concentration was calculated 

using the least squares approximation: 
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where iE  and Ni are the experimental and numerical concentration profiles for each 

component respectively. 

So Fick’s second law for multi-component system can be written as: 
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Thus the diffusion coefficients matrix can be written as: 

 

⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

DD
DD

 

 

6.7.5. Diffusion Analysis Using Constant Diagonal Diffusion 

Coefficients and Without the Cross Terms  

 

In this analysis only the diagonal diffusion coefficients were considered, and were 

assumed to be independent of composition. 

The aluminum diffusion coefficient (0.1001x10-11cm2/s) was calculated using 

Genetic Algorithms method after 10 hours of diffusion treatment. Using this diffusion 

coefficient the aluminum concentration as shown in Figure 6.77 was then calculated 

using Runge-Kutta method of order four. 
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Diffusion Distance )( mμ  

 
Figure 6.77 Aluminum concentration profiles considering constant diagonal diffusion 

coefficients after 10 hours diffusion treatment 

 

The experimentally determined concentration profile together with the initial profile 

(at t=0) are also included in this Figure. As shown in the Figure the green concentration 

profile corresponds to the aluminum experimental concentration after 10 hours diffusion 

treatment, and the red concentration profile corresponds to the numerical concentration 

profile of aluminum calculated  from the Runge-Kutta method. It is clear that in the 

range (0- 3.5) mμ  diffusion distance there is good agreement between the experimental 

and numerical concentration values of Al. However between (3.6-5.5) mμ  diffusion 

distance there is some divergence between the experimental and numerical 

concentration.  
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In Figure (6.78) the numerical and experimental concentration values for aluminium 

have been presented after 26 hours diffusion treatment. The aluminum diffusion 

coefficient calculated from Genetic Algorithms method was (0.1003x10-11cm2/s). 

 

 
Diffusion Distance )( mμ  

 

Figure 6.78 Aluminum concentration profiles considering constant diagonal diffusion 

coefficients after 26 hours diffusion treatment 

 

These results are similar to those in Figure 6.78 at a smaller diffusion distance. 

There is good agreement followed by disagreement at larger than 4x10-3cm diffusion 

distance.  

In the following Figures (6.79 - 6.81), the concentration profiles of aluminum  have 

been presented after 122 hours, 290 hours and 554 hours of diffusion treatments. 
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Diffusion Distance )( mμ  

 

Figure 6.79 Aluminum concentration profiles considering constant diagonal diffusion 

coefficients after 122 hours diffusion treatment 

 

The diffusion coefficients used at various times were calculated using GAs method:  

D (Al) =0.132x10-11cm2/s after 122 hours diffusion treatment 

D (Al) =0.123x10-11 cm2/s after 290 hours diffusion treatment 

D (Al) =0.130x10-11 cm2/s after 554 hours diffusion treatment 

 

The initial concentration profile of Al used in Figure 6.79 has been taken from the 

experimental value of concentration at t=0. There is good agreement between the 

numerical concentration and experimental concentration in the range (0-3.0 x 10-3) cm 

diffusion distance and from (3.5 x 10-3 to5.0 x 10-3) cm diffusion distance the 

experimental and the numerical concentration profiles diverged. 
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Diffusion Distance )( mμ  

 
Figure 6.80 Aluminum concentration profiles considering constant diagonal diffusion 

coefficients after 290 hours diffusion treatment 

 
Diffusion Distance )( mμ  

 

Figure 6.81 Aluminum concentration profiles considering constant diagonal diffusion 

coefficients after 554 hours diffusion treatment 
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Again in Figure 6.80 and 6.81 there is good agreement between the aluminum 

numerical concentration and experimental concentration profiles through the entire 

range of diffusion distance after 290 hours diffusion treatment. 

The following Figure shows the diffusion coefficients with the diffusion time for the 

aluminum component. 

 

 

Figure 6.82 Aluminum diffusion coefficients with the diffusion time  

 

Figure 6.82 shows the aluminum diffusion coefficients- (0.10012146, 0.100302, 

0.132909, 0.123011049, and 0.13063921) x10-11cm2/s determined at various times (10, 

26, 122, 290, and 554 hours) respectively. 

 

Now applying the procedure used for Al, the diffusion coefficients and concentration 

profiles of Fe after 10, 26, and 122 hours of diffusion treatment have been determined.    
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Diffusion Distance )( mμ  

 
Figure 6.83 Iron concentration profiles considering constant diagonal diffusion 

coefficients after 10 hours diffusion treatment 

 

Figures (6.83 – 6.85) show the concentration profiles for Fe after 10, 26, and 122 

hours of diffusion treatments using the following GAs method determined diffusion 

coefficients: 

D (Fe) =0.381 x10-11 cm2/s after 10 hours diffusion treatment 

D (Fe) =0.402x10-11 cm2/s after 26 hours diffusion treatment 

 D (Fe) =0.305 x10-11 cm2/s after 122 hours diffusion treatment 

 

These Figures show that for 10 h and 26 h diffusion treatments the agreement 

between the calculated and experimental values did not cover the whole range of 

diffusion distance. For the case of 122 h the calculated and experimental values show an 

agreement through the entire range of diffusion distance.   
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Diffusion Distance )( mμ  

 
Figure 6.84 Iron concentration Profiles considering constant diagonal diffusion 

coefficients after 26 hours diffusion treatment 

 
Diffusion Distance )( mμ  

 
Figure 6.85 Iron concentration profiles considering constant diagonal diffusion 

coefficients after 122 hours diffusion treatment 
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 In the same way as aluminum in Figure 6.82, the following Figure for iron shows 

the diffusion coefficients with the diffusion time.  

 

Figure 6.86 Iron diffusion coefficients with the diffusion time 

 

Figure 6.86 shows the iron diffusion coefficients against the diffusion time. The 

diffusion coefficients for the diffusion time are 10, 26, and 122 hours are (0.3810208, 

0.40200172, and 0.3054102) x10-11 cm2/s respectively. 

 

6.7.5.1. Conclusions of Aluminise Coating on low Alloy Steels at 650oC 

(Constant Diagonal Terms) 

 

The numerical concentration profile for each component (Al, Fe) has been 

calculated considering only the diagonal terms from the diffusion matrix. These 

numerical   concentration profiles have been compared with the experimental data using 
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Least squares method. There is good agreement between the iron numerical 

concentration and experimental concentration through the entire range of diffusion 

distance after 122 hours diffusion treatment. For aluminum component there is good 

agreement between the numerical concentration and experimental concentration through 

the entire range of diffusion distance after 122, 290, and 554 hours of diffusion 

treatment.  

 

6.7.6. Calculation Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

Equation 6.56 shows the diagonal and cross terms diffusion coefficients are 

constants: 
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So the diffusion matrix is: 
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In this matrix the diagonal and cross terms have been considered to be constant. 
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In Figure 6.87 the experimental and numerical concentration for the components 

(aluminum and iron), have been presented with the interdiffusion coefficients calculated 

from Genetic Algorithms method and using equation 6.56, Fick’s second law. That is to 

say the cross terms have been taken into account. 

 
Diffusion Distance ( mμ ) 

 
Figure 6.87 Aluminum and iron concentration profiles considering constant diagonal 

and cross terms diffusion coefficients after 10 hours diffusion treatments 

 

Figure 6.87 shows iron and aluminum concentration (numerical and experimental) 

using constant diffusion coefficients 22211211 ,,, DDDD  determined from Genetic 

Algorithms optimization method: 
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Reasonable agreement between the experimental and numerical concentration for 

iron component is shown. For the aluminum component, the divergence between the 

experimental and numerical concentration occurs after the diffusion distance of 4 mμ . 

The experimental concentration profile shows a sharp fall – this can not be produced by 

numerical method; the numerical concentration profile shows gradual change. The other 

reason for the divergence beyond 4 mμ  diffusion distance is probably due to the fact 

that the coefficients in the diffusion matrix have been considered constant. In the 

following Figure the numerical and experimental concentration profiles for Al and Fe 

have been presented after 26 hours. 

Diffusion Distance ( mμ ) 

 
Figure 6.88 Aluminum and iron concentration profiles considering constant diagonal 

and cross terms diffusion coefficients after 26 hours diffusion treatments  
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Figure 6.88 shows experimental and numerical concentration profiles for the 

components iron and aluminum after 26 hours. This Figure includes the initial 

concentration profile at t=0 from the experimental value. The diffusion coefficients 

considered to be constant (concentration independent). Genetic Algorithms optimization 

method has been used to calculate these coefficients 22211211 ,,, DDDD : 
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 This Figure shows deviation between the numerical and experimental concentration 

profile after 26 hours for the diffusion distances (3.5-5.0) mμ  for the aluminum 

component. There is good agreement between the iron numerical and experimental 

concentration profiles through the entire range of diffusion distance. Figure 6.89 

described the numerical and experimental concentration profiles for Al and Fe after 122 

hours. 
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Figure 6.89 Aluminum and iron concentration profiles considering constant diagonal 

and cross terms diffusion coefficients after 122 hours diffusion treatments 

 

Similar to Figure 6.89 the diffusion coefficients were considered to be constant 

(concentration independent) after 122 hours diffusion treatment. Genetic Algorithms 

optimization method has been used to calculate these diffusion 

coefficients 22211211 ,,, DDDD : 
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Good agreement has been found between the aluminum experimental and numerical 

concentration after 122 hours diffusion treatment. For the iron component, the 
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divergence between the experimental and numerical concentration occurs after the 

diffusion distance of (2.9 mμ ). 

 
 
 
6.7.6.1. Conclusions Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

 
 
 Fick’s second law has been used to find the concentration profile for each 

component (Al, Fe) using Rung-Kutta method of order four. The Genetic Algorithms 

method permits optimization of the values of diffusion coefficients, in the diffusion 

matrix. The calculated concentration profiles have been compared with the experimental 

data using Least squares method. There is good agreement between the iron numerical 

concentration and experimental concentration through the entire range of diffusion 

distance after 26 hours. While for the aluminum component there is good agreement 

between the numerical concentration and experimental concentration through the entire 

range of diffusion distance after 122 hours.  

 
 
 
6.7.7. Calculation Considering Variable Cross and Diagonal Terms 

Diffusion Coefficients 

  
In the earlier sections the diffusion coefficients (diagonal and cross terms) for the 

both components (Al, Fe) were considered to be constant. In this section the diffusion 

coefficients are considered to be concentration dependent (a function of concentration). 

First order polynomial has been used for concentration dependence diffusion 

coefficients for the iron and aluminum (Figure 6.90).  
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Figure 6.90 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 10 hours diffusion treatment (concentration 

dependent, first order polynomial) 

 

Figure 6.90 shows the numerical and experimental concentrations for iron and 

aluminum with concentration dependent diffusion coefficients 22211211 ,,, DDDD  (first 

order polynomial) after 10 hours diffusion treatment: 
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where 1C  and 2C are the initial concentration profiles for aluminum and iron 

respectively. 2112121 ,,,,,, vvzyyxx   are the polynomial coefficients calculated by using 

Genetic Algorithms optimization method. There is good agreement between the iron 

numerical and experimental concentration profiles for the entire range of the diffusion 

distance, while for the aluminum component (Figure 6.90) shows deviation between the 

numerical and experimental concentration profiles after 26 hours for the diffusion 

distances for the range (3.8-5.0) mμ . 
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Figure 6.91 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 10 hours (second order polynomial) 
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Figure 6.91 shows the numerical and experimental concentrations profiles for iron 

and aluminum with concentration dependent diffusion coefficients 22211211 ,,, DDDD  

(second order polynomial) 
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Where 1C  and 2C are the initial concentration for aluminum and iron respectively. 

321321 ,,,,,, vvvxxx L  are the polynomial coefficients calculated using Genetic 

Algorithms optimization method. Again there is good agreement in the numerical and 

experimental concentration values for Fe for the entire range of the diffusion distance. 

For the Al component, there is a deviation between the numerical and experimental Al 

concentration for the diffusion distances for the range (3.8-5.0) mμ . 
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Figure 6.92 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 10 hours diffusion treatment (third order 

polynomial) 

 

Figure 6.92 shows the numerical and experimental concentrations for iron and 

aluminum with concentration dependent diffusion coefficients 22211211 ,,, DDDD  (third 

order polynomial): 
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 using Genetic Algorithms optimization method. There is an agreement in the numerical 

and experimental concentration values for Fe for the entire range of the diffusion 

distance, while for Al there is good agreement in the numerical and experimental values 

between (0-3.5) x10-3 cm diffusion distance, followed by divergence between the 

numerical and experimental values from   (3.8 x10-3) cm diffusion distance.  

 

 

Figure 6.93 Aluminum and iron diffusion coefficient’s polynomial order with the 

absolute error 

Figure 6.93 shows the order of the polynomial plotted against the absolute error 

between the experimental and numerical concentration for the components aluminum 

and iron. The x-axis corresponds to the order of the polynomial, and the y-axis 

represents the sum of the absolute error between the experimental and the numerical 

concentration for the components (Al, Fe). The minimum error between the 

experimental and numerical concentration is (1.1391e+4) when the order of the 

polynomial is second order (equation 6.59), where 0, 1, 2, and 3 correspond to the 

constant, first, second, and the third order polynomial respectively. 



 307  

In the next section another structure of second order polynomial has been applied to 

calculate the diffusion coefficients for the components (Al, Fe). 

 

2
23

2
2122

2
1212121

2221112

2
1212111

CvCvD

CzCCzD

CyCCyD
CxCCxD

+=

+=

+=
+=

       (6.61) 

 

 The coefficients 321 ,,, vxx K  have been calculated using Genetic Algorithm 

optimization method. 

 
Diffusion Distance ( mμ ) 

Figure 6.94 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 10 hours diffusion treatment (second order 

polynomial) 
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Figure 6.94 shows the numerical and experimental concentration profiles values for 

aluminum and iron after 10 hours. The initial concentrations for (Al, Fe) have been 

taken from the experimental concentration at t=0. Genetic Algorithms optimization 

method was used to optimise the diffusion coefficients 22211211 ,,, DDDD  (equation 

6.61). For the entire range of the diffusion distance, there is reasonable agreement 

between the numerical and experimental concentration profiles for (Al, Fe). Figure 6.95 

shows the experimental and numerical concentration profiles for both components after 

26 hours.  

 
Diffusion Distance ( mμ ) 

 

Figure 6.95 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 26 hours (second order polynomial) 

Figure 6.95 shows the numerical and experimental concentration values for 

aluminum and iron after 26 hours when the diffusion coefficients are concentration 

dependent (equation 6.59). Here the initial concentrations for (Al, Fe) have been taken 

from the experimental concentration at t=10 hours instead at t=0. Again good 
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agreement between the experimental concentration and numerical concentration for the 

components (Al, Fe), through the entire range of diffusion distance.  
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Figure 6.96 Aluminum and iron concentration profiles considering variable diagonal 

and cross terms diffusion coefficients after 122 hours (second order polynomial) 

 

Figure 6.96 shows the numerical and experimental concentration values for 

aluminum and iron after 122 hours when the diffusion coefficients are concentration 

dependent (second order polynomial, equation 6.59). The initial concentrations for (Al, 

Fe) have been taken from the experimental concentration at t=26 hours. There is very 

good agreement between the experimental concentration and numerical concentration 

for the components (Al, Fe), through the entire range of diffusion distance.  
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Figure 6.97 Aluminum and iron diffusion coefficients’ polynomial order with the 

absolute error 

 

Figure 6.97 shows that the minimum absolute error between the experimental and 

numerical concentration for the components aluminum and iron, (0.4639e+4), when the 

order of the polynomial is second order polynomial (equation 6.59). The x-axis 

corresponds to the order of the polynomial, and the y-axis corresponds to the sum of the 

absolute error between the experimental and the numerical concentration for the 

components (Al, Fe).  0, 1, 2, 3 and 4 correspond to the constant, first, second, (equation 

6.59), and third order. There is good convergence between the experimental and 

numerical concentration for the components (Al, Fe) when equation 6.61 was used to 

calculate the diffusion coefficients (concentration dependent diffusion coefficients). 
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6.7.7.1. Conclusions  

 

 In this section variable cross and diagonal (concentration dependent) terms in 

the diffusion matrix have been taken into account. In Figures 6.90, 6.91 and 6.92, first, 

second and third order polynomials respectively have been used to calculate the 

diffusion matrix after 10 hours diffusion treatment. Figure 6.93 shows the minimum 

error between the experimental and numerical concentration for (Al, Fe) when second 

order polynomial (equation 6.59) has been used. In Figure 6.94 another type of second 

order polynomial (equation 6.61) has been used to estimate the diffusion matrix. There 

is improved agreement between the experimental and experimental concentration for 

both components for the entire range of diffusion distance after 10 hours diffusion 

treatments. Figure 6.95 and 6.96 demonstrate superior agreement between the numerical 

and experimental concentration values for Al, Fe after 26, 122 hours diffusion treatment 

respectively for the reason that the initial concentration was at t=10 hours instead of 

t=0, and t=26 hours instead of t=0 respectively. So it means there is an additional 

improvement when the initial concentration has been transformed.  Therefore when we 

change the initial concentration from step to step, (initial concentration for 26 hours is 

the concentration profile at t =0 and for 122 hours is the concentration profile at t =26), 

the agreement has been improved.     
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6.8. Ti45Al8Nb Coated with Al2Au Subjected to Air Oxidation at 750oC 

for 1000 Hours - Microstructural Aspects/Microstructure 

Modelling of Diffusion Process -Results and Discussion 

 

Background information on Al2Au coatings including the rationales for the 

development of these coatings and their methods of production has been presented in 

sections 3.7.1 and 3.7.2. 

 

6.8.1 The Results from SEM/EDS Investigations of Al2Au Coated Ti-

45Al8Nb after Oxidation at 750oC for 1000 Hours 

 

Figure 6.98 shows a cross section SEM image after 1000 hours of oxidation at 

750oC. The numbers on the image are defined at the end of the section. The image 

shows scale formation in various layers. The EDS concentration profiles have been 

presented in Figure 6.99.  

 

 

 

 

 

 

 

 

Figure 6.98 SEM cross section image with mag. 5000x of the sample (Al2Au coated 

Ti45Al8Nb) after 1000 hours of oxidation at 750oC (1023 K) 
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Figure 6.99 EDS concentration profiles obtained from Al2Au coated Ti45Al8Nb alloy 

after 1000 hours of oxidation at 750oC (1023 K) 

 
The EDS cross–section concentration profiles presented in Figure 6.99 shows that a 

relatively thin (2 μm) outer Al2O3 scale with Au inclusions developed, underneath this 

scale pure Al2O3 without inclusions of Au formed, and a little amount of Ti was 

detected. Both these layers were extremely porous and brittle (Figure 6.98). Beneath 

two Al2O3 layers the modified coating (Al2Au) was found. At the scale/substrate 

interface a large diffusion zone of Al, Au, and Ti was formed. The EDS concentration 

profiles identified the following regions: 

• Al2O3 oxide with Au inclusions; 

• Al2O3 oxide layer; 

• Modified coating (Al2Au); 

• Scale/substrate interface with Au, Ti, and Al diffusion zone. 
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6.8.2. Microstructural Description of the Diffusion Processes Involved 

in Al2Au Coated Ti-45Al8Nb after Oxidation at 750oC for 1000 

Hours: Consideration of Thermodynamic and Kinetic Factors 

 

The scale formed after 1000 hours oxidation (pO2 = 0.21 atm) at 750oC consisted 

of Al2O3 with small amount of TiO2 and Au oxide. 

 The mechanism of the scale formation can be described as follows: 

A large amount of Al in the deposited coating (66 at% of Al) has developed Al2O3 

oxide scale, due to outward Al3+ diffusion from the coating, and inward O2- diffusion 

from the ambient atmosphere. The produced scale was thick and had porous structure.  

The porous structure formed due to the fact that Al2Au is a solid solution only up to 

650oC [83]. Beyond this temperature Al2Au phase is transformed into a liquid state. 

Thus the porous structure developed during the heating up and cooling down processes. 

The reason for the presence of small amounts of TiO2 in the top scale was that 

because Ti ions were only in the substrate, and the diffusion distance for Ti ions to 

reach the top layers was large.  

A schematic model of the scale development at 750oC for the Al2Au coated alloy is 

presented in Figure 6.100. Al has high affinity for oxygen. The thermodynamic factor 

oGΔ  for the oxidation of Al is 2 3, 1676.000 320o
Al O TG TΔ = − + . The diffusion 

coefficients of Al is (DAl=1.972x10-12). Both thermodynamic and kinetic factors favour 

the formation of Al2O3. The outward diffusion of Al caused depletion of Al in the 

modified coating. Below the modified coating the diffusion zone of Al and Ti 

developed. 
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Figure 6.100 Al2Au exposed to oxidation at 750C after 1000 hours (final stage) 

 
 
 In the following sections the numerical modelling for interdiffusion for this 

system has been presented. 

 
6.8.3. Modelling Interdiffusion Using Genetic Algorithms Method 

(GAs) with the Numerical Method 

 

As in other cases the interdiffusion coefficient for each component was optimised 

from a range of possible values. The Genetic Algorithms method allows optimisation of 

the values of the interdiffusion coefficients.  Using this technique the results obtained 

are shown below where we have assumed constant diffusion coefficient and ignored the 

cross terms. DAl=3.10x10-12 cm2/s 

In the following Figure the aluminum concentration has been presented: 
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Figure 6.101 Interdiffusion studies GAs in TiAlNb – Al2Au after 1000 hours (Al 

concentration profiles) 

 
Figure 6.101 shows the numerical and experimental concentration after 1000 hours 

of diffusion treatment. The black diamond curve represents the initial EDX aluminum 

profile, the red square curve represents the numerical concentration profile for 

aluminum after 1000 hours of diffusion treatment, and the green triangle curve 

represents the EDX aluminium profile after 1000 hours. There is good agreement 

between the aluminum numerical and EDX concentration profiles from (9-45) μm 

diffusion distance after 1000 hours diffusion treatment, while some divergence can be 

seen from (0-8) μm  diffusion distance.    

In the following Figure 6.102 the titanium concentration has been presented: 
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Figure 6.102 Interdiffusion studies (GAs) in TiAlNb – Al2Au after 1000 hours (titanium 

concentration profiles) 

Figure 6.102 shows the titanium numerical and experimental concentration after 

1000 hours of diffusion treatment. Using the GAs method determined DTi 

= 12106.2 −× cm2/s The black diamond curve represents the initial EDX titanium profile, 

the red square curve represents the numerical concentration profile for titanium after 

1000 hours diffusion treatment, and the green triangle curve represents the EDX 

titanium profile after1000 hours. There is good agreement between the titanium 

numerical and EDX (experimental) profiles from (10-45) μm diffusion distance after 

1000 hours diffusion treatment, while some divergence can be seen from (0-9) μm  

diffusion distance.  

   In the following Figure 6.103 the gold concentration has been presented: 
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Figure 6.103 Interdiffusion studies (GAs) in TiAlNb – Al2Au after 1000 hours (gold 

concentration profiles) 

 
Figure 6.103 shows the numerical and experimental concentration profiles after 1000 

hours of diffusion treatment. The optimum value of the gold diffusion coefficient used 

was 111001.1 −× cm2/s.  

For the niobium the concentration profile can be calculated by using the equation: 

)(%100
%100

3214

4321

CCCC
CCCC

++−=
=+++

      (6.62) 

where: 1C  is the aluminum concentration.  

         2C  is the titanium concentration. 

          3C  is the gold concentration. 

          4C  is the niobium concentration. 

Therefore equation 6.62 has been applied and the niobium concentration profiles have 

been presented as follows: 
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Figure 6.104 Interdiffusion studies (GAs) in TiAlNb – Al2Au after 1000 hours (niobium 

concentration profiles) 

 

6.8.3.1. Conclusions for Ti45Al8Nb Coated with Al2Au Subjected to Air 

Oxidation at 750oC for 1000 Hours (Constant Diagonal Terms) 

 

The Genetic Algorithms optimization method (GAs) has been used to optimise the 

diffusion coefficients for the components (Al, Ti, Au, and Nb), and the results clarify 

practical agreement between the numerical and experimental concentration profiles for 

these components. Additional improvement can be achieved by taking into account the 

cross terms in the diffusion matrix and introducing composition dependent diffusion 

coefficients.   
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6.8.4. Diffusion Analysis Using Constant Diagonal and Cross Terms 

Diffusion Coefficients 

 

In this section the whole 3x3 diffusion matrix has been considered, Fick’s second 

law for multicomponent systems (three independent components ),,( AuTiAl ) can be 

written as: 
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         (6.63) 

So the diffusion matrix is as follows: 
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considered to be all constant terms. 

In Figure 6.105 the experimental and numerical concentration for the components 

(aluminum, gold and titanium) have been presented with the interdiffusion coefficients 
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calculated from Genetic Algorithms method and using equation 6.63, Fick’s second 

law. Here the cross terms have been taken into account. 
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Figure 6.105 Numerical and experimental concentration profiles in TiAlNb – Al2Au after 

1000 hours diffusion treatment (constant diagonal and cross terms) 

 

Figure 6.105 shows aluminum, gold and titanium numerical and experimental 

concentrations profiles using constant diffusion coefficients 

333231232221131211 ,,,,,,,, DDDDDDDDD calculated from Genetic Algorithms 

optimization method chapter (5) as: 
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Figure 6.106 shows the concentration profiles for niobium after 1000 hours 

diffusion treatments using the equation 6.62. 
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Figure 6.106 Niobium concentration profiles in TiAlNb – Al2Au after 1000 hours 

diffusion treatment (constant cross and diagonal terms) 
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6.8.4.1. Conclusions for Considering Constant Diagonal and Cross 

Terms Diffusion Coefficients 

 

The GAs technique has been used to optimise D (diffusion coefficients). The 

agreement has been enhanced between the experimental and numerical concentration 

for the components (Al, Au, and Ti) when equation 6.63 was used to calculate the 

diffusion coefficients, including the cross terms. The agreement between the 

experimental and numerical concentration profiles for the components (Al, Au, and Ti) 

has been improved compared to those formed by using diagonal terms only. This mean 

that the numerical concentration profiles for aluminum, gold and titanium demonstrate 

much improvement compared to the numerical concentration profiles when the cross 

terms considered to be zero. The following Figures 6.107 and 6.108 illustrate the 

absolute error for the components aluminum, gold, titanium and niobium against the 

number of the components when 1, 2 3, and 4 belong to the aluminum, gold, titanium 

and niobium respectively. 
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Figure 6.107 The absolute error for the components aluminum, gold, titanium and 

niobium with the constant diagonal terms diffusion coefficients 
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Figure 6.108 The absolute error for the components aluminum, gold, titanium and 

niobium with the constant diagonal and cross terms diffusion coefficients 
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The above two Figures 6.107 and 6.108 show the absolute errors between the 

experimental and numerical concentration profiles for all the components. From these 

Figures, it can be noticed that the error has been decreased significantly.    

 
6.8.5. Diffusion Analysis Using Variable Diagonal and Cross Terms 

Diffusion Coefficients 

 

In the earlier part 6.7.4 the diffusion coefficients (diagonal and cross terms) for the 

components TiAuAl ,, were considered to be constant. Here the diffusion coefficients 

are considered to be concentration dependent (a function of concentration). This 

function will be second order polynomial. Figure 6.109 shows the concentration profiles 

for the three components ),,( TiAuAl . 
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Figure 6.109 The numerical and experimental concentration profiles in TiAlNb – Al2Au 

after 1000 hours diffusion treatment (variable diagonal and cross terms) 
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Figure 6.109 describes the numerical and experimental concentrations for 

aluminum, gold and titanium with concentration dependent diffusion coefficients 

333231232221131211 ,,,,,,,, DDDDDDDDD (second order polynomial) after 1000 

hours diffusion treatment: 
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where the values of D’s are as follows: 
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where 321 ,, CandCC  are the initial concentrations for aluminum, gold and titanium 

respectively. 21321 ,,,,,, ggxxx LL  are the polynomial coefficients calculated using 

Genetic Algorithms optimization method. There were improved agreements in the 

numerical and experimental concentration values for aluminum, gold and titanium for 

the entire range of the diffusion distance. 

In the following Figure niobium concentration profiles have been presented. 
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Figure 6.110 Niobium concentration profiles in TiAlNb – Al2Au after 1000 hours 

diffusion treatment (constant cross and diagonal terms) 

 
In the following Figure 6.111 the absolute error for the components aluminum, gold, 

titanium and niobium have been plotted against the number of the components as 1, 2, 3 

and 4 refer to the aluminum, gold, titanium and niobium respectively,  
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Figure 6.111 the absolute error for the components aluminum, gold, titanium and 

niobium with the variable diagonal and cross terms diffusion coefficients 

 

6.8.5.1. Conclusions 

 

The agreement between the numerical and experimental concentration profiles has 

been improved when the diffusion coefficients were concentration dependent and the 

cross terms were considered.  

Genetic Algorithms method optimizes the values of the coefficients in the second 

order polynomial (equation 6.65) of diffusion coefficients, in the diffusion matrix. 

There is good convergence between the experimental and numerical concentration for 

the components Al, Au, Ti when equation 6.65 was used to compute the diffusion 

coefficients, (taking into account the cross terms). The variation between the 

experimental and numerical concentration profiles for the components (Al, Au, Ti) has 

been reduced considerably. Therefore there is an improvement for the numerical 

concentration profiles for aluminum, gold and titanium compared with the numerical 
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concentration profiles when the cross terms are considered to be constant. Figures 

6.107, 6.108, and 6.111 show the errors between the numerical concentration profiles 

and the experimental concentration profiles using Least squares method.  

 

6.9. Ti45Al8Nb Coated with TiAlCrY Subjected to Air Oxidation at 

750oC for 500 Hours -Microstructural Aspects/Microstructure 

Modelling of Diffusion Process -Results and Discussion 

 

Background information on TiAlCrY coatings including the rationales for the 

development of these coatings and their methods of production have been presented in 

sections 3.8.1 and 3.8.3. 

 

6.9.1. The Results from SEM/EDS Investigations of TiAlCrY Coated 

Ti45Al8Nb after Oxidation at 750oC for 500 Hours 

 

Figure 6.112 shows the digimaps of TiAlCrY coated Ti45Al8Nb after 500 hours 

oxidation at 750oC (1023 K).The cross–sectioned SEM image of TiAlCrY coated 

Ti45Al8Nb alloy after 500 hours oxidation at 750oC (1023 K) in static air is shown in 

Figure 6.113. The scale shows good protection against high temperature in an oxidising 

environment: there was no spallation or cracks formation. The different areas shown by 

Figures 6.113 and 6.114 with different magnifications illustrate that the whole sample 

oxidized at a similar rate. The detailed analysis was performed and is presented by the 

EDS concentration profiles in Figure 6.114. 
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Figure 6.112 Digimaps of TiAlCrY coated Ti45Al8Nb after 500 hours oxidation at 

750oC (1023 K) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y

O Ti

Al Cr

Nb



 331  

 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 6.113 Cross – section SEM image (mag. 5000x) of TiAlCrY coated Ti45Al8Nb 

alloy after 500 hours of oxidation at 750oC (1023 K) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.114 EDS Concentration profiles obtained from TiAlCrY coated Ti45Al8Nb 

alloy after 500 hours of oxidation at 750oC (1023 K) 

 
Figure 6.114 shows the cross–sectional EDS concentration profiles of the TiAlCrY 

coated alloy which had been exposed for 500 hours at 750oC (1023 K). A thick (5 µm) 

oxide scale consisting of Al, Cr, and Ti oxides was observed to form at the top. Below 

the top scale we observed the modified coating TiAlCrY. The modified 
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coating/substrate interface shows a depletion zone of Al and Ti. Beneath the depletion 

zone is a zone depleted in Ti (pre-depletion zone); where Al concentration increased 

due to the faster outward diffusion of Ti ions from the bulk material. The straight line in 

the EDS concentration profiles indicate the different regions formed after exposure. The 

numbers in the EDS profiles correlate with the SEM image shown in Figure 6.113. An 

oxide scale of Al, Cr, and Ti is seen to be the same as outer scale and Nb remains in the 

substrate TiAl45Al8Nb. The EDS X-ray mapping detects the increased concentration of 

Al in the area where depletion zone of Ti formed. The EDS concentration profiles are 

indicated by the following regions: 

• Al/Ti/Cr oxide scale; 

• Modified coating (TiAlCrY) and depletion  zone; 

• Pre-depletion zone; 

• Substrate (Ti45Al8Nb alloy). 

 

6.9.2. Microstructural Description of the Diffusion Processes Involved 

in TiAlCrY Coated Ti45Al8Nb after Oxidation at 750oC for 500 

Hours: Consideration of Thermodynamic and Kinetic Factors 

 

The degradation of the TiAlCrY coated Ti45Al8Nb alloy during high temperature 

oxidation at 750oC (1023 K) after 500 hours oxidation was associated with the 

formation of the mixed, Al, Ti, and Cr oxide. The formation of the top scale was caused 

by the outward diffusion of Al, Ti, and Cr from the modified coating and inward 

diffusion of O2- from the atmosphere. 

The oxidation of TiAlCrY coated alloy at 750oC (1023 K) in the initial stage was 

related to the formation of non protective TiO2 scale. The formation of TiO2 scale was 

associated with high partial pressure of oxygen (pO2 = 0.21 atm) in oxidising 
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atmosphere and with Ti having a high affinity for oxygen [88]. The calculated values of 

Gibbs Free Energy Formation ( o
TGΔ ) [J/mole] for Al2O3, Cr2O3, and TiO2 are given in 

Table 6.4. 

o
TGΔ [J/mole] 750oC (1023 K) 

TiO2 -733021 

Al2O3 -1348640 

Cr2O3 -728470 

 
Table 6.4 Calculated free energies of formation ( o

TGΔ ) of developed oxides at 

temperature 750oC 

 
The development of TiO2 outer scale is given by reaction 1: 

Reaction 1   )()()( 22 sTiOgOsTi →+  

The formation of Al2O3 and Cr2O3 develops according to the reactions 2 and 3 

Reaction 2   )()(
2
3)(2 322 sOAlgOlAl →+  

Reaction 3   )()(
2
3)(2 322 sOCrgOsCr →+  

A schematic model of the scale development at 750oC of TiAlCrY coated alloy is 

presented in Figure 6.115. 
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Figure 6.115 The scale formation at 750oC (1023 K) on TiAlCrY coated Ti45Al8Nb 

alloy with formation of the final scale after 500 hours of oxidation 

 

In the following section 6.8.3, the interdiffusion has been modeled in this multi-

component system consisting of TiAlCrY coating on TiAl materials using the Genetic 

algorithms (GAs) method. 

 

6.9.3. Modelling Interdiffusion Using Genetic Algorithms Method 

(GAs) with the Numerical Method 

 

As previously shown the GAs method has been used to optimise the diffusion 

coefficient. With this technique the results found are shown below where we have 

supposed constant diffusion coefficient in the diffusion matrix: 
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Where the diagonal terms ),,( 332211 DDD have been taken into account and the cross 

terms ignored.  

In the following Figure 6.116 the aluminum concentration profiles have been 

presented: 

 
Diffusion Distance )( mμ  

 
Figure 6.116 Interdiffusion studies GAs in TiAlCrYTiAl −  after 500 hours (aluminum 

concentration profiles) 

 
Figure 6.116 shows the numerical and experimental concentration after 500 hours of 

diffusion treatment. The optimum value of aluminum diffusion coefficient 

is scm /101247.0 211−× . The red solid square curve (represents the EDS aluminum 

profile after 500 hours), the green solid circle curve represents the numerical 

concentration profile for aluminum after 500 hours of diffusion treatment, and the black 

star curve represents the initial EDS aluminum profile. There is good agreement 

between the aluminum numerical and EDS concentration profiles from (9-40) μm 

diffusion distance after 500 hours diffusion treatment, while some divergence can be 

seen from (0-8) μ m diffusion distance.  
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Figure 6.117 and 6.118 show the modelling concentration profile results for Cr and 

Ti using GAs optimised DCr =5.61301201x10-12 cm2/s , DTi =0.156171x10-11 cm2/s 

 

 
Diffusion Distance )( mμ  

 
Figure 6.117 Interdiffusion studies GAs in TiAlCrYTiAl −  after 500 hours (chromium 

concentration profiles) 
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Diffusion Distance )( mμ  

 
Figure 6.118 Interdiffusion studies GAs in TiAlCrYTiAl −  after 500 hours (titanium 

concentration Profiles) 

 

For the niobium concentration can be calculated by using the equation: 

 

)(%100
%100

3214

4321

CCCC
CCCC

++−=
=+++

 

Where: 1C  is the aluminum concentration.  

         2C  is the chromium concentration. 

          3C  is the titanium concentration. 

and 4C  is the niobium concentration, is presented as follows: 
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Diffusion Distance )( mμ  

 

Figure 6.119 Interdiffusion studies GAs in TiAlCrYTiAl −  after 500 hours (niobium 

concentration profiles) 

 
6.9.3.1. Conclusions for Ti45Al8Nb Coated with TiAlCrY Subjected to 

Air Oxidation at 750oC for 500 Hours (Constant Diagonal 

Terms) 

 

 The results using Genetic Algorithms optimization method (GAs) show reasonable 

agreement between the theoretical and experimental concentration profiles for these 

components. Further improvement can be attained by initiating composition dependent 

diffusion coefficients and including the cross terms in the diffusion matrix.   
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6.9.4. Calculation Considering Constant Cross and Diagonal Terms 

Diffusion Coefficients 

 

Fick’s second law for multicomponent system can be written as: 
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     (6.67) 

 

Where the number 1 means aluminum, 2 means chromium, 3 means titanium, and 4 

means yttrium       

  So the diffusion matrix is as follows: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4
33

4
32

4
31

4
23

4
22

4
21

4
13

4
12

4
11

DDD
DDD
DDD

        (6.68) 

 

In this matrix the diagonal and cross terms have been considered to be constant. 

In Figure 6.120 the experimental and numerical concentration for the components 

aluminum, chromium and titanium have been presented with the interdiffusion 

coefficients calculated from Genetic Algorithms method and using equation 6.67, Fick’s 

second law. Here the cross terms have been taken into account. 
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Diffusion Distance )( mμ  

 
Figure 6.120 The numerical and experimental concentration profiles in TiAlCrYTiAl −  

after 500 hours diffusion treatment for Al, Ti, and Cr 

 

Figure 6.120 demonstrates aluminum, chromium and titanium concentrations 

(numerical and experimental) using constant diffusion coefficients 

333231232221131211 ,,,,,,,, DDDDDDDDD  determined from Genetic Algorithms 

optimization method chapter 5 as: 
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In the above Figure 6.120 the numerical concentration profiles for the components 

aluminum, chromium and titanium have been calculated considering constant cross 

terms and diagonal terms, in a diffusion matrix. There is reasonable agreement between 

the experimental and numerical concentration for all the components shown.  

 

6.9.4.1. Conclusions for Considering Constant Cross and Diagonal 

Terms Diffusion Coefficients 

 

Fick’s second law has been solved using Runge-Kutta method of order four with 

GAs method for diffusion coefficient D optimisation. There is good convergence 

between the experimental and numerical concentration for the components (Al, Cr, and 

Ti) when equation 6.67 was used to calculate the diffusion coefficients, taking into 

account the cross terms. The difference between the experimental and numerical 

concentration profiles for the components (Al, Cr, and Ti) has been reduced compared 

to those produced by using diagonal terms only. It means the results (the numerical 

concentration profiles for aluminum, chromium and titanium) show much improvement 

compared to the numerical concentration profiles when the cross terms was considered 

to be zero. In the following Figure 6.121 the absolute error for the components 

aluminum, chromium and titanium have been plotted against the number of the 



 342  

components where 1, 2 and 3 refer to the aluminum, chromium and titanium 

respectively. 
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Figure 6.121 The absolute error for the components aluminum, chromium and titanium 

with the constant diagonal diffusion coefficients 

 

As shown in Figure 6.121 the error for aluminum is more than 4500, and more than 

3500 for titanium, while if we look at the following Figure 6.122 the absolute error  for 

aluminum is just more than 4000, and more than 2500 for titanium.      
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Figure 6.122 The absolute error for the components aluminum, chromium and titanium 

(whole constant diffusion coefficient matrix, equation 7.68) 

 
 
6.9.5. Calculation Considering Variable Cross and Diagonal Terms 

Diffusion Coefficients 

 

In the previous part 6.8.4, the diffusion coefficients (diagonal and cross terms) for 

the both components (Al, Cr, Ti) were considered to be constant. In the present part all 

the diffusion coefficients are considered to be concentration dependent (a function of 

concentration). Second order polynomial has been used to represent the concentration 

dependence diffusion coefficients for the aluminum, chromium and titanium: 
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Diffusion Distance )( mμ  

 
 Figure 6.123 The numerical and experimental concentration profiles in 

TiAlCrYTiAl −  after 500 hours diffusion treatment for Al, Ti, and Cr considering 

variable cross terms 

 

Figure 6.123 illustrates the numerical and experimental concentrations for 

aluminum, chromium and titanium with concentration dependent diffusion coefficients 

333231232221131211 ,,,,,,,, DDDDDDDDD (second order polynomial) after 500 

hours diffusion treatment as shown below: 
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where the values of D’s are as follows: 
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where 321 ,, CandCC  are the initial concentrations for aluminum, chromium and 

titanium respectively. 21321 ,,,,,, ggxxx LL  are the polynomial coefficients calculated 

using Genetic Algorithms optimization method. There were better agreements in the 

numerical and experimental concentration values for aluminum, chromium and titanium 

for the entire range of the diffusion distance. 

 

In the following Figure 6.124 the absolute error for the components aluminum, 

chromium and titanium have been plotted against the number of the components where 

1, 2 and 3 belong to the aluminum, chromium and titanium respectively, exactly like we 

did in Figure 6.121 and 6.122. In this Figure the diffusion coefficient in the whole 
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diffusion matrix, equation 6.70, has been considered a concentration dependence 

(second order polynomial).  
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Figure 6.124 The absolute error for the components aluminum, chromium and titanium 

(whole concentration dependent diffusion coefficient matrix, equation 6.70) 

 

6.9.5.1. Conclusions 

 

The agreement between the numerical and experimental concentration profiles 

improved when composition dependent diffusion coefficients including the cross terms.  

Genetic Algorithms method permits optimization of the values of the coefficients in 

the second order polynomial (equation 6.70) of diffusion coefficients, in diffusion 

matrix (equation 6.68). There is good convergence between the experimental and 

numerical concentration for the components (Al, Cr, Ti) when equation 7.70 was used to 

calculate the diffusion coefficients, (taking into account the cross terms). The difference 

between the experimental and numerical concentration profiles for the components (Al, 

Cr, Ti) has been reduced significantly. It means that the numerical concentration 
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profiles for aluminum, chromium and titanium) were improved compared with the 

numerical concentration profiles when the cross terms are considered to be constant. 

The minimum absolute error was (611.02) in Figure 6.124 while it was (704.97) in 

Figure 6.123. Therefore there is good convergence between the experimental and 

numerical concentration for the components (Al, Cr, Ti) when equation 6.70 was used to 

calculate the diffusion coefficients (concentration dependent diffusion coefficients). 
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CHAPTER SEVEN 

7. Discussion 

7.1. Introduction 

  

Interdiffusion modelling has been the main focus of this thesis. Interdiffusion 

processes, in selected high performance coatings systems, occurring at elevated 

temperature during the preparation of the coatings or during subsequent property 

enhancing heat treatments have been studied and modelled in terms of microstructure 

evolution (chapter 3 and 6) and using numerical methods (chapter 6). Information on 

microstructural description / microstructural modelling of the diffusion processes 

involved in the deposition and heat treatment of coatings has been discussed along with 

the results on microstructural evolution in chapter 6. This chapter (chapter 7) only 

present discussion of the results obtained from numerical modelling.   

At the outset it is important to note that we are dealing with binary and 

multicomponent systems. The difficulties in modelling of interdiffusion in 

multicomponent complex systems cannot be over emphasized. 

 Numerical modelling of interdiffusion in the systems studied (chapter 3) has 

been studied using the technique of Genetic Algorithms method combined with the 

numerical modelling. In addition the fminbnd method combined with the numerical 

modelling and Simplex search method combined with the numerical modelling have 

been used to solve and understand the diffusion processes in the Pt-Ni-Al solid alloy 

ternary system. 

Runge-Kutta method of order four is the numerical method which has been used to 

solve Fick’s second law. 

 In numerical modelling of interdiffusion the first step is to optimise the diffusion 

coefficient for each component from a range of possible values. Genetic Algorithms 
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method has been used (for all systems) to optimize the values of the interdiffusion 

coefficients from these range values. Fick’s second law has been used to find the 

concentration profile for each component using Runge-Kutta method of order four. 

Then least squares method has been used to compare between these profiles with the 

experimental data.  

Fminbnd method (used only in Pt-Ni-Al solid alloy ternary system) is a combination 

of the Golden section search method and a polynomial interpolation. The Golden 

section search is a technique for finding the minimum or maximum of a unimodal 

function by successively narrowing the range of values. The Polynomial interpolation is 

the interpolation of a given data set by a polynomial. Given some data points {xi, yi}, 

the aim is to find a polynomial which goes exactly through these points. 

Simplex search method (again used only in Pt-Ni-Al solid alloy ternary system) is 

described for the minimization of a function of n variables, which depends on the 

comparison of function values at the (n+1) vertices of a general simplex, followed by 

the replacement of the vertex with the highest value by another point. 

 

7.2. Nonsteady State Diffusion in Iron Carburized at 950o C, 7.1 Hours 

 

The results presented in Figure 6.5 in chapter 6, section 6.1.4 show carbon 

concentration wt %, against diffusion distance, obtained using the modified Euler 

method (Runge-Katta method of order two RK2) (Num. carbon (MEm)), the Runge-

Kutta method of order four RK4 (Num. carbon (RKm), and analytically calculated 

carbon concentration in iron. 

From Figure 6.5 giving carbon concentration profiles against diffusion distance after 

7.1 hours at 950oC, the following carbon concentrations at 0.5 x10-3 m diffusion 

distance; by different methods have been obtained; 

http://en.wikipedia.org/wiki/Unimodal_function
http://en.wikipedia.org/wiki/Unimodal_function
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0.8002 wt % C    at    0.5 x10-3 m       analytical   

0.7832 wt % C    at    0.5 x10-3 m       Runge-Katta method of order four 

0.6878 wt % C    at    0.5 x10-3 m       Modified Euler method   

The numerical concentration profiles for carbon derived using Runge-Kutta method 

of order two and four and analytical method are given in Table 7.1. The agreement 

between the results obtained from Runge-Kutta method of order four, RK4, and the 

analytical solution results (concentration profile) validates the numerical method 

(Runge-Kutta method of order four). This means that the RK4 can be used when the 

analytical solution is not available. 

 Least squares method as shown in chapter 4 section 4.5 has been used to calculate 

the absolute error between the numerical and the analytical concentration profiles. The 

absolute error between the analytical solution and the numerical solution using modified 

Euler’s method was (0.158) whereas the absolute error between the analytical solution 

and the numerical solution using Runge-Kutta method of order four was 0.005 (see 

Table 7.1). The accuracy of the numerical concentration profile has been given as better 

than ±  0.1 wt% C using RK4 and ± 0.3 wt% C using RK2. Therefore there is a clear 

difference between the results using Runge-Kutta method of order four (RK4) and 

Runge-Kutta method of order two (RK2). It can be concluded that Runge-Kutta method 

of order four is more reliable to solve Fick’s second law in the carburizing system to 

calculate the concentration profile for carbon. 
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Diffusion   Analytical C Numerical C Numerical C 

Distance D(C) =1.61e-11 RK2 RK4 
0.0001 1.1161 1.0886 1.1121 
0.0002 1.0332 0.9795 1.0254 
0.0003 0.9524 0.8751 0.941 
0.0004 0.8744 0.7774 0.86 
0.0005 0.8002 0.6878 0.7832 
0.0006 0.7304 0.6075 0.7114 
0.0007 0.6656 0.537 0.6452 
0.0008 0.6061 0.4765 0.585 
0.0009 0.5522 0.4256 0.531 
0.001 0.504 0.3838 0.483 
0.0011 0.4613 0.3501 0.4411 
0.0012 0.424 0.3236 0.4049 
0.0013 0.3918 0.3031 0.374 
0.0014 0.3644 0.2876 0.3479 
0.0015 0.3413 0.2761 0.326 
0.0016 0.3221 0.2677 0.3078 
0.0017 0.3064 0.2617 0.2926 
0.0018 0.2936 0.2574 0.2799 
0.0019 0.2833 0.2544 0.2689 
0.002 0.2752 0.2524 0.2592 

    err=0.1587 err=0.0055 
 

Table 7.1 Carbon numerical (Runge-Kutta of order 2, RK2, and Runge-Kutta of order 4, 

RK4), and analytical concentration profiles at 950oC after 7.1 hours diffusion treatments 

 

Table 7.1 shows the absolute errors between the analytical concentration and 

numerical concentration profiles for carbon using MEm and RKm and they were 

(0.158), and (0.005) respectively. 

 

7.3. Copper Nickel System after 300 Hours Diffusion Treatment  

 

 In this section the nickel diffusion coefficient has been calculated using GAs 

technique, whereas in chapter 6 section 6.2.4 the Cu diffusion coefficient was calculated 

using GAs method. scmDNi /10715.3 210−×=  obtained using GAs method, and in the 

following Figure 7.2, the nickel numerical and experimental concentration profiles have 
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been presented. The Ni experimental concentration profile has been calculated from Cu 

experimental concentration given in Table 6.1 and Figure 6.11 using the equation; 

CuNi CC −= 100         (7.1) 

 

 
Diffusion Distance ( mμ ) 

 
Figure 7.1 Nickel numerical and experimental concentration profiles after 300 h 

diffusion treatment 

 Figure 7.1 presents nickel numerical concentration profile after 300 hours diffusion 

treatments along with the Ni experimental concentration profile. The Cu concentration 

profile determined experimentally and given in literature [91] has been presented in 

chapter 6 section 6.3.4.  

 There is good agreement between nickel experimental and numerical concentration 

profiles when the diffusion coefficient for nickel has been optimised using GAs 

technique.    

 In the next section we will discuss the numerical result for copper component.  
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One of the uncertainties associated with the techniques that have been used in 

calculating the diffusion coefficients in this study is the assumption of constant 

diffusion coefficient.  

The maximum difference between the numerical concentration profile using 

analytical copper diffusion coefficient value 8.35x10-10cm2/s and the experimental 

concentration profile was 22.5 at% as shown in Figure 7.13, while the greatest 

difference was 18.60 at% using the GAs optimum diffusion coefficient value (1.54x10-

10 cm2/s) for copper given in Figure 7.15. This indicates that the diffusion coefficient 

value from GAs technique produced improved results.  

It is interesting to examine the concentration dependence diffusion coefficient as a 

function of copper concentration, because the error between the copper experimental 

and numerical concentration is still obvious. To take into account the concentration 

dependence of diffusion coefficients, second order polynomial equations with the 

independent variables (equation 7.23) have been used to calculate the copper diffusion 

coefficient (given in Figure 7.16) as shown again below for clarification.   
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Figure 7.16 Copper numerical and experimental concentration profiles 
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 The highest difference between copper numerical and experimental concentration 

profiles after 300 hours diffusion treatment at 1054oC was 10.6 at% as shown in Figure 

6.17. Therefore using variable diffusion coefficients had decreased the absolute error. 

Table 7.2 presents the absolute error between the experimental concentration profile and 

numerical concentration profile for copper component.  

 

 Copper  Experimental 
and  Numerical 

Concentration using 
DCu=8.35x10-10cm2/s 

(eq. 7.18) 

Copper Experimental and 
Numerical Concentration 

using DCu=1.54x10-10cm2/s 
 

Copper Experimental 
and Numerical 

Concentration using 
Variable diffusion 

coefficient (eq. 7.23) 

Maximum Error 22.5 18.6 10.6 

 

Table 7.2 The maximum error values for different diffusion coefficients 

 

To conclude the discussion in this section it is instructive to examine the inverse 

method of calculation the diffusion coefficient from the concentration profile described 

in chapter 6 section 6.3.6. 

The copper diffusion coefficient which was calculated in section 7.2.6 using inverse 

method was (3.3021x10-10cm2/s), and the GAs optimum diffusion coefficient was 

(1.54x10-10 cm2/s) given in chapter 6 section 6.2.4.  It is clear that the GAs method is 

the most suitable method to calculate the diffusion coefficient for each component in the 

system, as the use of GAs method ensures minimum error.  

 

7.4. Pt-Ni-Al Solid Alloy System Containing Three Elements 

 

The first part investigation for this system (three component system) was trial and 

error technique, and the second part was using Genetic Algorithms method. Figures 

6.21 and 6.22 show the numerical and experimental concentration profiles for nickel 
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and platinum respectively using trial and error technique. There is a divergence between 

the numerical and experimental concentration profiles for the both components (Ni, Pt) 

as presented in these Figures, probably because the diagonal terms in the diffusion 

matrix  ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

DD
DD

 have been considered and the cross terms have been considered to 

be zero.  The other reason because the diffusion coefficients were not optimised using 

GAs technique. The numerical and experimental concentration profiles using GAs 

technique for nickel and platinum have been presented in Figures 6.24 and 6.25 

respectively. There is an improvement in the numerical concentration profiles using 

GAs technique for both (Ni and Pt) given in Figures 6.24 and 6.25 compared with the 

numerical concentration profiles for (Ni and Pt) shown in Figures 6.21 and 6.22 using 

trial and error technique. Although there is a divergence between the numerical 

concentration profiles for both components since the cross terms in the diffusion matrix 

have not been considered so far. In Figure 6.27 the agreement between the experimental 

concentration and numerical concentration profiles for both the components (Ni and Pt)  

have been improved compared with Figures 6.24 and 6.25 considering only the diagonal 

terms in the diffusion matrix , because the cross terms have been taken into account. 

However small divergence between the experimental and numerical concentration 

profiles for nickel, (Figure 6.27), in the diffusion distance ranges (0.4-0.9) x10-3 mμ  and 

(1.5-2) x10-3 mμ  because of the smoothness of the nickel numerical concentration 

profile. The absolute errors between the numerical and experimental concentration for 

Ni and Pt have been presented in Table 7.3. 

The results obtained using variable cross and diagonal terms have been considered 

in Figure 6.29. Significant enhancement can be seen in the agreement between the 

experimental and numerical concentration profiles for Ni and Pt using concentration 

dependence diffusion coefficients (equation 6.37) as shown in Table 7.3.  
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  Absolute error Absolute error 

  for nickel for platinum 

Trial and Error(const. diago. terms) 2.20E+02 1.75E+02 

GAs (const. diago. terms)  2.05E+02 1.68E+02 

GAs (const. diago. and cross terms) 1.98E+02 1.53E+02 

GAs (variab. diago. and cross terms) 1.75E+02 1.40E+02 
  

Table 7.3 The absolute error between the experimental and numerical concentration 

profiles for nickel and platinum  

 

Now let us consider the use of fminbnd method to optimise the diffusion coefficient 

for nickel component, details of this method are given in chapter 5 section 5.6.1. The 

observed disagreement between the nickel numerical and experimental concentration 

profiles as shown in Figures 6.31 and 6.32 using the diffusion coefficient calculated 

from fminbnd can be ascribed to the fact that the initial guess in the diffusion coefficient 

range was not close to the optimum values. In GAs method the diffusion coefficient 

range are arbitrarily large range, that is, GAs method has a big advantage to reach the 

optimum diffusion coefficient whatever was the diffusion coefficient range. In Figures 

6.33 and 6.34 the agreement between the numerical concentration profiles for nickel 

using GAs and fminbnd methods was  good because the diffusion range used in 

fminbnd was  very close to the diffusion coefficient value , (accurate range), therefore 

reaching the optimum diffusion coefficient was possible with very strict condition 

(perfect range).   

The same system has also been modelled using the simplex search method to 

determine the nickel and platinum diffusion coefficients. The same problem appears in 

this method Figure 6.35, when the diffusion coefficient range was not the right range, 
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the disagreement between the experimental concentration profile and numerical 

concentration profile for nickel and platinum can be clearly seen. Therefore the concord 

between the experimental concentration profile and numerical concentration profile for 

nickel can be achieved only when the diffusion coefficient range (initial guess) is close 

to the optimum diffusion coefficient value. 

 Table 7.4 compares the values of diffusion coefficients of the components (Pt, Ni, 

and Al) previously determined by Darken’s method in our laboratory [41] with the 

values determined using GAs with the numerical modelling. 

 

Temperature [K] DAl DNi DPt 

1273 K Experimental 

Darken’s method [41] 

4.19x10-10 

cm2/s 

2.60x10-11 

cm2/s 

7.81x10-11 

cm2/s 

1273 K Numerical 3.001x10-10 

cm2/s 

4.724x10-11 

cm2/s 

6.973x10-11 

cm2/s 

 

Table 7.4 Calculated and numerical intrinsic diffusivities in the PtNiAl system 

 

 The above Table (7.4) shows that DAl calculated by Darken’s and GAs methods are 

about four orders of magnitude larger than the diffusion coefficient in binary system Ni-

Al (without platinum). 

 It is important now to consider the influence of temperature on the diffusion 

coefficients of the components in solid Pt-NiAl system. The effect of temperature on 

diffusion coefficients presents valuable information. This effect has been calculated 

using the following equation:    

 ⎟
⎠
⎞

⎜
⎝
⎛−=

RT
QDD o exp         (7.2) 
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where 

 Q  = the activation energy for Diffusion (J/mol) 

oD =a temperature – independent pre-exponential cm2/s 

R =the gas constant 8.314J/mol-K 

T =absolute temperature (K) 

It has been assumed that Q and Do do not change with temperature, and the values are in 

the following Table 8.5; 

Element Q[kJmol-1] Do[cm2s-1] 

Al 223 0.48 

Ni 297 50.97 

Pt 351 9.95*105 

 

Table 7.5 The activation energy Q and pre-exponential factor Do for the diffusion in 

Pt/β -NiAl system at 1073-1273 K [41] 

 

 Table 7.6 presents the calculated diffusion coefficients for the components (Pt, Ni, 

and Al) using the equation 7.2 for different temperature: 

Temperature (K) DAl DNi DPt 

1073 6.6903x10-12 1.7747x10-13 8.1451x10-12 

1123 2.0360x10-11 7.814x10-13 4.6953x10-11 

1173 5.6353x10-11 3.031x10-12 2.3312x10-11 

1223 1.4351x10-10 1.053x10-11 1.015x10-10 

1273 3.396x10-10 3.316x10-11 3.9392x10-10 

 

Table 7.6 Calculated diffusion coefficients for the three components (Al, Ni, and Pt) 

according to equation 8.2 for various temperatures 
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 Table 7.7 gives the diffusion coefficients for (Al, Ni, and Pt) calculated previously 

by Datta Fillipek, et al. [41]:  

  

Temperature (K) DAl DNi DPt 

1073 6.23x10-12 2.12x10-13 1.48x10-13 

1123 2.48 x10-11 3.29x10-13 1.07x10-12 

1173 4.64x10-11 4.94x10-12 6.44x10-12 

1223 1.04x10-10 1.07x10-11 1.78x10-11 

1273 4.19x10-10 2.60x10-11 7.81x10-11 

 

Table 7.7 Calculated diffusion coefficients for the three components (Al, Ni, and Pt) for 

various temperatures 

  The values in the Tables 7.6 and 7.7 have the same order of magnitude for both 

aluminum and nickel. For platinum the values in Table 7.7 are smaller than in Table 7.6 

one order of magnitude. In spite of differences and limitations improved by assumptions 

of constant Do and Q, these results are very important. 

 

7.5. Pt-aluminide Multicomponent Coatings on MAR M002 

Superalloys 

  

 The results on this system presented in chapter 6 section 6.4, are now discussed. As 

mentioned before this is the most complex multicomponent system studied in this 

project. In this system the optimum diffusion coefficients have been calculated for the 

elements in the coating/alloy system using GAs technique. In Figures (6.39- 6.42) the 

concentration profiles for Ni, Al, Co, and Pt respectively have been presented. There is 

some deviation between the experimental and numerical concentration profiles for Ni, 
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Al, and Co in Figures (6.39, 6.40, and 6.41). Attempts have been made to minimize the 

deviations by inclusion of the cross terms in the diffusion matrix with the two options: 

• constant cross and diagonal terms 

• variable cross and diagonal terms (second order polynomial has been used for 

concentration dependent diffusion coefficient calculation) 

 Figures 6.43 and 6.44 present the concentration profiles for all the components (Ni, 

Al, Co, and Pt) using constant and variable diffusion coefficients respectively. The 

absolute error in Figure 6.44 has been improved compared with the absolute error in 

Figure 6.43 as shown in Table 7.8. It is clear that the agreement between the 

experimental and numerical concentration profiles for Ni, Al, Co and Pt has been 

obviously improved using variable diffusion coefficients for the whole diffusion matrix; 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

DDDD
DDDD
DDDD
DDDD

 

and this diffusion matrix considered to be concentration dependence (equation 6.43). 

 

 Constant diagonal and 

cross terms 

Variable diagonal and 

cross terms 

Absolute Error 1.208 e+003 860.17 

 

Table 7.8 The absolute errors using constant and variable diffusion coefficients for the 

components Ni, Al, Pt, and Co 
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7.6. Discussion of a Critical Issue in Pt - Modified Ni-Al Systems  

 

The critical issue surrounding interdiffusion in Pt-modified Ni-aluminide coating is 

to examine the influence of Pt on the transport property of Al in Ni-aluminide coatings 

systems. As stated in section 4.4 the main rationale for incorporating Pt in the Ni-

aluminide coating system is to enhance Al diffusion leading to the formation of 

protective Al2O3. 

The results obtained in this work can be used to resolve this long standing issue. The 

first point is to note that in the simple solid Pt-β NiAl ternary system the diffusivity of 

Al is one order of magnitude higher than those of Ni and Pt in the temperature range 

(1073-1273K) studied [41], (see Table 7.9 below). To resolve further this issue of 

enhanced diffusion coefficient of Al through the incorporation of Pt. Table 7.9 giving 

DAl values obtained from various sources has been completed. 

Table 7.9 clearly shows the enhancement of DAl in Pt containing systems. This 

enhanced Al diffusion can be a factor that is responsible for the protective properties of 

Pt modified Ni-Al system. 

It is also important to note that the diffusivities of Al in Pt-modified β -NiAl 

coating on MAR M002 and in solid Pt- β NiAl ternary systems are different. These 

differences probably arose because of the differences in microstructures in the two 

systems. 

 

 

 

 

 



 363  

Diffusivities 

)/( 2 scm  

Binary system 

NiAl 

Solid system 

Ni-Al-Pt 

Pt-aluminide 

coating on MAR 

M002 

 

CrAl2%YN 

Al 141096.2 −× [116] 101019.4 −× [41] 

 

111049.2 −×  111093.5 −×  

 

Table 7.9 The diffusion coefficient values for aluminum obtained in various systems 

 

7.7. Discussion on Numerical Results obtained for of Ir and Ir/Pt Low-

Activity Aluminid / MAR M002 System 

 

Both the Ir-aluminide and IrPt-aluminide coatings on MAR M002 system have been 

considered for modelling interdiffusion using GAs technique after 100 hours at 1100oC. 

Figures 6.51 and 6.52 presented the aluminium numerical and experimental 

concentration profiles after 100 hours at 1100oC in Ir-aliminide and IrPt-aluminide 

coatings respectively. In these Figures the diagonal terms have been considered constant 

and the cross terms have been considered zero. Similarly Figures (6.53-6.58) 

demonstrated the concentration profiles for Cr, Ir, and Ni in both coatings Ir-aluminide 

and IrPt-aluminide respectively considering constant diagonal terms. However the 

results (numerical concentration profiles) were still not satisfactory because the cross 

terms considered to be zero. In the next parts diffusion modelling was performed using 

constant terms in the whole diffusion matrixes;   

⎥
⎥
⎥
⎥
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⎤

⎢
⎢
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⎡
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for the two coatings Ir and Ir-Pt low activity aluminide on MAR M002 system 

respectively (Figures 6.60 and 6.63). In Figures 6.66 and 6.68 the whole diffusion 

matrixes for the two coatings have been considered to be concentration dependent 

respectively. Considering concentration dependence of Ds the agreement between the 

experimental and numerical concentration profiles in Figure 6.66 for Ir low-activity 

aluminide on MAR M002 system has improved compared with the agreement in Figure 

6.60, (considering constant diagonal and cross terms). Similarly for Ir/Pt-low activity 

aluminide on MAR M002 system the agreement has been improved from Figure 6.63 to 

Figure 6.68. These improvements are explained in the Tables 6.10 and 6.11.  

 

Absolute error Al Cr Ir Ni 
Constant Diagonal 

terms 1945.3 385.8 544.6 752.1 
Constant Diagonal and 1680.3 197.6 355.8 327 

Cross terms         
Variable Diagonal and 1383.2 116.7 219.2 94.2 

Cross terms         
 

Table 7.10 The absolute error for the components in Ir/aluminide coating on MAR 

M002 system at 1100oC after 100 hours 

 

Absolute Error Al Cr Ir Ni Pt 
Constant Diagonal 

terms 1945.3 385.8 544.6 752.1 351.1 

Constant Diagonal and 1680.3 197.6 355.8 327 256.7 

Cross terms      

Variable Diagonal and 1383.2 116.7 219.2 94.2 198.3 

Cross terms      
 

Table 7.11 The absolute error for the components in IrPt/aluminide coating on MAR 

M002 system at 1100oC after 100 hours 



 365  

In Tables 7.10 and 7.11 the absolute errors between the experimental and numerical 

concentration profiles for the components (Al, Cr, Ir, and Ni), and (Al, Cr, Ir, Ni, and 

Pt), in Ir/aluminide and IrPt/aluminide coatings respectively have been presented.  

Therefore when the whole diffusion coefficient matrix considered to be variable 

(concentration dependent), comprehensible convergence between the experimental and 

predicted value can be noticed. It can be concluded that the diffusion coefficient of 

certain component depends on the concentration of the component at each point in the 

material. 

 

7.8. Aluminise Coating on Low Alloy Steels at 650oC 

 

The diffusion coefficients for aluminum and iron have been calculated using GAs 

technique. Figures (6.77-6.81) demonstrate Al concentration profiles (numerical and 

experimental) after 10, 26, 122, 290, and 554 hours diffusion treatments respectively. 

Similarly Figures 6.83, 6.84 and 6.85 present Fe numerical and experimental 

concentration profiles after 10, 26, and 122 hours diffusion treatments. However in 

these Figures only the diagonal terms from the diffusion matrix; 

⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

DD
DD

 

have been considered constant and the cross terms considered to be zero. Therefore the 

divergence between the experimental and numerical concentration profiles for both (Al, 

Fe) can be seen for some diffusion distance in Figures (6.77-6.79) and (6.83-6.85) 

respectively. 

In the second part of modelling interdiffusion for this system (section 6.6.6) the 

whole diffusion matrix has been considered to be constant, and in Figures (6.87,6.88, 

and 6.89) the concentration profiles for (Al, Fe) have been shown after 10, 26, and 122 
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hours diffusion treatment respectively. The numerical concentration profiles for Al and 

Fe have been converging to the experimental concentration profile since the cross terms 

have been taken into account. Although some divergence can still been seen in the 

ranges (3.5-5.5) mμ  diffusion distance for Al in Figures 6.87 and 6.88, and in (2.5-5) 

mμ  diffusion distance for Fe in Figure 6.87 because of considering constant terms in 

the diffusion matrix.  

The last part of this investigation was to look upon the composition dependence 

diffusion coefficient. First, second and third order polynomial (equations 6.58, 6.59, and 

6.60 respectively) for concentration dependence diffusion coefficients have been 

considered. The results (concentration profiles for Al and Fe) have been presented in 

Figures 6.90, 6.91, and 6.92 respectively after 10 hours diffusion treatment. The 

numerical concentration profile for Fe after 10 hours diffusion treatment have shown 

good convergence and small divergence for Al in the range (3.8-5) mμ  diffusion 

distance when the second order polynomial (equation 6.59) has used, since the order 

two can be considered as a standard number to use, and maybe the accumulative error 

could be smaller with the second order polynomial.  

 

  
7.9. Al2Au and TiAlCrY Coated Ti45Al8Nb Subjected to Air Oxidation 

at 750oC for 1000 Hours (Al2Au Coatings) and 500 Hours 

(TiAlCrY Coatings) 

 

From the results (the numerical concentration profiles for aluminum) obtained in 

sections 6.7.3 and 6.8.3, the optimum diffusion coefficients for aluminum are 

(determined by GAs method):  

DAl= scm /1010.3 212−×  and DAl = scm /1012.0 211−×    
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in the Al2Au and TiAlCrY respectively coated Ti45Al8Nb, considering only diagonal 

constant terms in the diffusion matrix (Figures 6.101 and 6.116).     

There were good agreements between the experimental and numerical concentration 

profiles for aluminum in the substrate for both coatings (due to the aluminum outward 

diffusion).  

For (titanium, gold) and (titanium, chromium) components in both (Al2Au and 

TiAlCrY) coated Ti45Al8Nb respectively the following Table 7.12 includes the 

diffusion coefficients for all the components in both coatings: 

 

Al2Au coating DAl DTi DAu 

Constant Diagonal terms 3.10x10-12 

cm2/s 

12106.2 −×  
cm2/s 

111001.1 −×  
cm2/s 

TiAlCrY coating DAl DTi DCr 

Constant Diagonal terms 111012.0 −×
scm /2  

0.16x10-11 

scm /2  
5.61x10-12 

cm2/s 

 

Table 7.12 Calculated diffusion coefficients for the components in both coatings 

Al2Au and TiAlCrY 

Figures 6.107, 6.108 and 6.111, (the absolute error against the component’s 

number), show the development of the agreement between the experimental and 

numerical concentration profiles for the components Al, Au, Ti, and Nb in Al2Au 

coated Ti45Al8Nb. The maximum error in Figure 6.107 was over 9000 for titanium 

while in Figure 6.108 was just over 5500 for the same component (Ti) when the whole 

diffusion matrix; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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was considered to be constant, and in Figure 6.111  the maximum error was just above 

4000 when the whole diffusion matrix considered to be variable (concentration 

dependence diffusion coefficients). The same improvement of the agreement between 

the experimental and numerical concentration profiles for the components  Al, Cr, and 

Ti can be seen for the other coating TiAlCrY on Ti45Al8Nb in Figures 6.121, 6.122, 

and 6.124 for constant diagonal terms, constant diffusion matrix, and variable diffusion 

matrix (concentration dependent) respectively. 

Therefore the significant point has been observed from studying the above systems 

(Al2Au and TiAlCrY coated Ti45Al8Nb) using GAs technique to optimise the diffusion 

coefficients for each component as follows: 

The agreement between the experimental and numerical concentration profiles was 

the most substantial when the complete diffusion matrix with concentration dependent 

diffusion coefficients (second order polynomial) have been considered. The second 

order polynomials are the equations 6.65 and 6.70 in sections 6.7.5 and 6.8.5 for the 

coatings Al2Au and TiAlCrY on Ti45Al8Nb respectively.    

 
 
7.10. Examination of the Feasibility of Applying A Transfer Matrix 

Method for the Solution of Interdiffusion   and Calculation of 

Concentration Profiles in the Present Work   

 

This section discusses the solution of diffusion problems and calculation of 

concentration profiles using an alternative technique. It is considered appropriate to 

include this method in the discussion chapter.  

A transfer matrix method was presented for the development of solutions for multi-

component diffusion couples containing number of components by Ram-Mohan et al 
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[117]. Expressions were derived for the transfer matrix and its integral; consequently 

the interdiffusion fluxes and concentrations of all components can be determined at any 

section in the diffusion zone from the initial values of either interdiffusion fluxes or 

concentration gradients available at some other section. This method used interdiffusion 

coefficients evaluated as average values over various regions of the diffusion zone. 

The efficacy of this method has been examined in this work. 

In the following section 7.8.1 the concentration profiles for the independent 

components (Ni and Pt) in the ternary system (NiPtAl) have been explained using the 

diagonalization technique for the diffusion matrix. 

 

 
7.10.1. Diagonalization the Diffusion Matrix (Transfer Matrix) 

 

In this section the diffusion matrix for the ternary system (NiPtAl) has been 

considered to be a 2x2 matrix, as nickel and platinum components have been considered 

to be independent components and the third component (aluminum) has been 

considered to be the dependent component (see section 6.3). So the diffusion matrix 

becomes a 2x2 matrix: 

⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

DD
DD

        (7.4) 

Using the GAs method in section 6.3.4 equation 6.36, all the D terms have been 

determined as given below: 

 

scmD
scmD

scmD

scmD

/10193216.3
/10700810.0

/10494231.2

/104.594001

211
22

211
21

211
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11

−

−

−

×=

×=

×=

×=

       (7.5) 
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The diagonalization of the above matrix led to: 

 
⎥
⎦

⎤
⎢
⎣

⎡

22
*

11
*

D
D

          (7.6) 

Where 11
*D  and 22

*D  have been calculated analytically using the eigenvalues and 

eigenvectors as follows: 

scmD
scmD

/103989.2
/103886.9

211
22

*

211
11

*

−

−

×=

×=        (7.7) 

 

In the following Figure 7.2 the numerical and the experimental concentration 

profiles for the components nickel and platinum have been presented:   

 

 
Diffusion Distance )( mμ  

 
Figure 7.2 Nickel & platinum concentration profiles after 1 hour diffusion treatment at 

1273 K with diagonalizable the diffusion matrix 
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In Figure 7.2 the diffusion matrix (equation 7.4) has been diagonalized to obtain the 

diagonal terms 11
*D  and 22

*D , (equation 7.6, which represents the diffusion coefficients 

for nickel and platinum respectively).  

The red stars show the calculated concentration profile for nickel and the black stars 

give the experimental concentration profile for nickel. The red and the black points 

show the calculated and experimental concentration profiles for platinum respectively. 

Disagreement exists between the nickel numerical concentration profile using equation 

7.6 and the experimental concentration profile, although there is an agreement between 

the platinum numerical concentration profiles calculated using equation 7.6 and the 

experimental concentration profile. This agreement is for (1-1.4) mμ310−×  diffusion 

distance.     

Figure 7.3 presents the aluminum concentration profile calculated from the 

equation; 

 

C1+C2+C3=100%         (7.8) 

  

 where 321 ,, CCC are the numerical nickel, platinum, and aluminium concentration 

profiles respectively, So the numerical Al concentration ; 

C3=100% - (C1+C2)        (7.9) 

 

 



 372  

 
Diffusion Distance )( mμ  

 
 

Figure 7.3 Aluminum concentration profiles after 1 hour diffusion treatment at 1273 K  

 

Figure 7.3 shows the aluminum concentration profiles after 1 hour diffusion 

treatment. Again a divergence between the aluminum experimental concentration and 

the calculated concentration profiles using equation 7.9 is seen. 

 

 
7.10.1.1. Conclusions 

 

The diffusion matrix (equation 7.4) has been transferred into diagonal matrix 

(equation 7.6), using the mathematical method. Figure 7.4 shows the concentration 

profiles for nickel and platinum using equation 7.6. There is a divergence between the 

experimental concentration profiles and numerical concentration profiles for both nickel 

and platinum; while in Figure 6.27 better agreement can be observed between the 

numerical concentration profiles and experimental concentration profiles for both nickel 
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and platinum using the constant whole diffusion matrix D values calculated from GAs 

method (equation 7.5). Figure 6.27 is presented below for clarification. Thus the 

Genetic Algorithms optimization method until now is the superior way to optimize the 

diffusion coefficients for the components in any system. Consequently the transfer 

matrix method [117] is not suitable to determine the numerical concentration profiles 

for nickel and platinum compared with the Genetic Algorithms method.  

 

 
Diffusion Distance )( mμ  

 
 

Figure 6.27 Nickel and platinum concentration profiles after 1 hour diffusion treatment 

(constant cross and diagonal terms) using equation 7.5  

 

 

 

 

 

 
 



 374  

7.11. Life Time Modelling 

7.11.1. Calculation of Life-time of (TiAlCrY) Coating Deposition on 

Ti45Al8Nb using Concentration Profiles Simulation of Critical 

Elements by Interdiffusion Modelling 

 

This subsection presents the results on life-time calculation of TiAlCrY coating 

studied in this research. In calculating the life-time of this coating it has been assumed 

that only high temperature oxidation controls the life-time and the most important factor 

in governing the life-time is the formation of Al2O3 from the oxidation of Al. Thus Al is 

the critical element and its concentration profile determines its ability to form Al2O3.  

Regarding the formation Al2O3 the following observation has been made: 

The lifetime modelling was performed on the basis of Interdiffusion modelling which 

used a numerical optimisation method as discussed in chapter 4. 

 Briefly the concentration profiles of the critical elements have been calculated using 

Runge – Kutta method with Genetic Algorithms technique. In calculating the life–time 

of TiAlCrY coating, it has been assumed that the critical element in this coating is Al, 

and between 0 and 20 at% there is no possibility to form protective Al2O3 oxide scale. 

When the concentration of aluminium is around 25 at% the formation of Al2O3 is 

possible [118]. Therefore the higher concentration of Al (over 25 at %) reflects 

formation of an alumina sub layer in the oxide scale, which protects against high 

temperature oxidation.  

 

7.11.2. Background Information Underpinning the Life-time 

Calculation 

 
In the formation of Al2O3 further assumptions have been made: 
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1. Oxidation and diffusion mechanism and model parameters do not vary with 

time. 

2. The oxide scale formation occurs at the boundary x1. 

3. The diffusion coefficients of the Al alloying element DAl are constant. 

 
Figure 7.4 shows a cross – sectional image of as deposited TiAlCrY coated 

Ti45Al8Nb  

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 

Figure 7.4 as deposited TiAlCrY coated Ti45Al8Nb alloy 

  

 

Figure 7.5 shows a cross – sectional EDS concentration profiles performed on 

oxidised TiAlCrY coated Ti45Al8Nb alloy after 500 hours oxidation at 750oC 
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Figure 7.5 EDS concentration profiles obtained from TiAlCrY coated Ti45Al8Nb alloy 

after 500 hours of oxidation at 750oC (1023 K) 

 

The model of the material degradation after 500 hours at 750oC is shown below:

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 5 10 15 20 25 30 35 40

Distance [um]

C
on

ce
nt

ra
tio

n 
[a

t%
]

at%O at%Al at%Ti at%Y at%Nb at%Cr

1)
 A

l/T
i/C

r o
xi

de
 

sc
al

e 

2)
 M

od
ifi

ed
 

co
at

in
g 

(T
iA

lC
rY

) 

5)
 S

ub
st

ra
te

 
(T

i4
5A

l8
N

b)
 

4)
 P

re
-d

ep
le

tio
n 

zo
ne

 

3)
 D

ep
le

tio
n 

zo
ne

 



 377  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where: 

α – Al2O3 phase 

β – TiO2 phase 

γ - depletion zone of Al and Ti 

γ’ – pre-depleted zone of in the substrate near to the scale/alloy interface, the pre-

depleted zone of Ti ions is related to the faster diffusion of Ti ions  in the bulk material, 

an increase of Al concentration in pre-depleted zone. 

Cα+β – average concentration of phase α and β 

X1, X2, X3 and X4 – regions of different concentration and different mass transport in 

the system 

 
Figure 7.6 shows a cross – sectional EDS concentration profiles performed on oxidised 

TiAlCr coated Ti45Al8Nb alloy after 5000 hours oxidation at 750oC 
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Figure 7.6 EDS concentration profiles obtained from TiAlCr coated Ti45Al8Nb alloy 

after 5000 hours of oxidation at 750oC (1023 K) 

 
 Figure 7.7 shows a mass transport diagram through the oxide scale 

developed on TiAlCrY –coated Ti45Al8Nb alloy after 5000 hours of oxidation at 750oC 
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Figure 7.7 Schematic diagram of the oxidation mechanism and scale development on 

TiAlCr coated Ti45Al8Nb after 5000 hours oxidation at 750oC 

 

Schematic model of the degradation of TiAlCr coated Ti45Al8Nb after 5000 

hours oxidation at 750oC is presented: 
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Figure 7.8 Schematic model of degradation of TiAlCrY after 5000 hours of oxidation at 

750oC 

 
Where: 

α – Al2O3 phase 

β – TiO2 phase 

γ - depletion zone of Al and Ti 

γ’ – pre-depleted zone of in the substrate near to the scale/alloy interface, the pre-

depleted zone of Ti ions is related to the faster diffusion of Ti ions  in the bulk material, 

an increase of Al concentration in pre-depleted zone. 

Cα+β – average concentration of phase α and β 

X1, X2, and X3, – regions are different concentration and different mass transport 

in the system. 
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7.12. Lifetime Prediction by Interdiffusion Modelling 

 

Figure 7.9 shows interdiffusion modelling of Al concentration after 5000 hours 

oxidation at 750oC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.9 Aluminum concentration profiles of interdiffusion modelling performed on 

TiAlCrY coated Ti45Al8Nb alloy after 5000 hours of oxidation at 750C 

 
Modelling curve (red line) shows good agreement with experimental data obtained 

for oxidised sample at 750oC, at the atmosphere/oxide scale interface and scale/substrate 

interface. The following regions are:  

1) Oxide scale 

2) Substrate 

 

However the numerical concentration profiles of Al decreased to 26 at% which is 

near to the critical concentration which allows the development of Al2O3 oxide. Figure 

8.10 shows Al numerical concentration profiles after 5000, 8500 and 10000 hours 

oxidation at 750oC. 
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Figure 7.10 The concentration profiles of interdiffusion modelling performed on 

TiAlCrY coated Ti45Al8Nb alloy after 5000, 8500 and 10000 hours of oxidation at 

750oC 

The following regions indicate: 

1) Oxide scale 

2) Substrate 

3) Critical level of Al 

 

Figure 7.10 shows Aluminium numerical concentration profiles and prediction of 

development Al2O3, the red thick line designates the critical concentration of Al which 

allows formation of Al2O3 protective scale according to Welsch [118]. Under this level 

as modelling curves indicate (8500 and 1000 hours) that the concentration profile of Al 

is not enough to develop protective Al2O3 oxide scale. Thus life-time modelling 

performed for TiAlCrY coated Ti45Al8Nb alloy shows that the life-time of this coating 

is correspondent to 5000 hours at 750oC. At higher temperatures 800, 850oC the life-

time will be reduced, due to the faster diffusion processes. 
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7.12.1. Conclusions 

 

The life time of the deposited coatings on Ti45Al8Nb with modelling studies was 

studied. The following remarks are postulated: 

 

1) TiAlCrY coating after 5000 hours oxidation developed multilayered scale consisted 

of TiO2 and Al2O3 alternative layers 

 

2) Life-time predication for TiAlCr coating was estimated using Interdiffusion 

Modelling Studies performed by Genetic Algorithm Method. 

 

3) Life-time of TiAlCrY coating is equivalent to 5000 hours at 750oC. 
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CHAPTER EIGHT 

 

8.1. Conclusions and Suggestions for Future Work 

   

This chapter summarises the main conclusions from the work undertaken in this 

thesis. Additionally some suggestions for future work are included. 

 

8.2. Conclusions 

8.2.1. Some General Points 

 

The systems considered for (microstructural and numerical) diffusion modelling 

included: 

1. Iron carburized at 950oC for 7.1 hours; 

2. A copper-nickel diffusion couple subjected to 300 hours of treatment at 

temperature 1054oC; 

3. Three component NiPt − - aluminide system subjected to diffusion anneal at 

1273K for 1 hour; 

4. Multicomponent NiPt − -aluminide coatings on MAR M002 subjected to 150 

hours of diffusion treatment at temperature 1273K; 

5. Ir and IrPt low-activity aluminide / MAR M002 system subjected to 100 hours 

of diffusion treatment at temperature 1100oC; 

6. Four component TiAlTiAlCrY /  system (subjected to oxidation at 750oC for 

500 hours), TiAlAuAl /2   (subjected to oxidation at 750oC for 1000 hours),  

7. Formation of aluminised coatings on low alloy steels at 650oC. 
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Numerical technique with Genetic Algorithms (GAs) for optimising diffusion 

coefficients Ds has been used. The GAs method has been applied to optimise the 

diffusion coefficients for each component in each system studied.  The numerical 

technique used was Runge-Kutta method of order four to solve Fick’s second law to 

find the concentration profile for each component in each system studied. The 

experimental and numerical concentration profiles have been compared using the Least 

squares method.  

The strategy used in the numerical technique involved the following steps:  

• constant diagonal terms; 

• all constant terms (diagonal and cross terms in the diffusion matrix);  

• all variable terms (diagonal and cross terms in the diffusion matrix). 

First second and third order polynomial have been considered for concentration 

dependence diffusion coefficient. 

Where possible microstructural description of the diffusion processes involved has 

been considered, explained and discussed constituting the microstructural modelling.    

 

8.2.2. Iron Carburized at 950oC for 7.1 Hours 

 

The numerical methods that have been used in this system were Runge-Kutta 

method of order four and order two using the carbon diffusion coefficient 

( sm /106.1 211−× ) determined analytically. Very good agreement between carbon 

analytical and numerical concentration profiles using Runge-Kutta method of order four 

as shown in Figure 6.5 (carbon numerical and analytical concentration profiles after 7.1 

hours diffusion treatment at 950oC). RK method of order two did not yield the desired 

agreement. As shown in Figure 6.5 the carbon concentrations at 0.5 x10-3 m diffusion 

distance that have been obtained by different methods are given below: 
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0.8002 wt % C    at    0.5 x10-3 m       analytical   

0.7832 wt % C    at    0.5 x10-3 m       RK method of order four 

0.6878 wt % C    at    0.5 x10-3 m       RK method of order two 

 

8.2.3. Copper-Nickel Diffusion Couple after 300 Hours Diffusion 

Annealing 

 

Darken’s equations (equations 6.11 and 6.14) have been used to calculate copper 

and nickel diffusion coefficients. The copper analytical diffusion coefficient (8.35x10-10 

cm2/s) has been used to calculate the copper concentration profiles using Runge-Kutta 

method of order four. However some divergence between the numerical and 

experimental concentration profiles for copper occurred. In order to decrease the 

maximum error (22.514) between the experimental and numerical concentration profiles 

for copper, GAs method has been used to optimize the copper constant diffusion 

coefficient. The maximum error (18.61) has been decreased but still there remained 

some divergence between the copper experimental and numerical concentration profiles. 

Therefore variable diffusion coefficients were considered in this step as shown in 

equation 6.23. The agreement between the experimental and numerical concentration 

profiles for copper was very good (the maximum error was 10.61) for the entire range of 

diffusion distance (0-0.2cm) when second order polynomial has been used for the 

copper concentration dependence diffusion coefficient.   

 

8.2.4. Pt-Ni-Al Solid Alloy System Containing Three Elements 

Subjected to Diffusion Annealing at 1273K for 1 Hour 

Trial and error technique was used to calculate the diffusion coefficients of nickel 

and platinum components ((DNi=4.7241x10-11, DPt=6.973241x10-11) cm2/s) of the 
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sample. Figures 6.21 and 6.22 show reasonable agreement (see Table 7.3) between the 

experimental and numerical concentration profiles for nickel and platinum respectively; 

Table 7.3 gives the absolute error between the experimental and numerical 

concentration profiles for nickel and platinum).  In Figures 6.24 and 6.25 for nickel and 

platinum respectively the differences between the experimental and numerical 

concentration profiles were reduced using the optimum constant diagonal diffusion 

coefficients (D11, D22) for nickel and platinum determined using GAs method, D11, D22 

are as follows: 

scmDNi /107619.6 211−×= , DPt=3.38712x10-11cm2/s 

Further good agreement was obtain between the numerical and experimental 

concentration profiles for nickel and platinum when all the terms (though constant) in 

the entire diffusion matrix ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

DD
DD

  were considered. This diffusion matrix has 

given below: 

./10193216.3

/107008.0,/1049423.2,/104.5940
211

22

211
21

211
12

2-11
11

scmD

scmDscmDscmD
−

−−

×=

×=×=×=
 

 Further improved agreement was achieved using variable diffusion coefficient (second 

order polynomial equation 6.37) for the whole diffusion matrix; 

scmD

scmDscmDscmD

/103519.4

/101451.0,/100013.1,/103497.1
211

22

211
21

211
12

211
11

−

−−−

×=

×=×=×=
 

In the whole range of temperature 1073-1273 K the aluminum diffusion coefficient 

determined using GAs and Darken’s methods (Table 7.4) is approximately one order if 

magnitude higher than the diffusion coefficients of nickel and platinum. These results 

show that the fast diffusion of aluminum in PtNiAl alloy system can be a factor that is 

responsible for the very good protective properties of the platinum-aluminde coatings 

on superalloys.   
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8.2.5. Nickel-Aluminide and Platinum-Aluminide Coatings on MAR    

M002 Subjected to 150 Hours of Diffusion Treatment at 

Temperature 1273K 

 

The Genetic Algorithms method allowed optimization of the values of diffusion 

coefficients, in the diffusion matrix. Only the constant diagonal terms in the diffusion 

matrix were used to calculate the concentration profiles for Ni, Al, Co, and Pt. These D 

values were as follows: 

scmDscmxDscmD CoAlNi /106412.3,/109181.5,/10368.12 213213213 −−− ×==×=  

scmDPt /100297.8 213−×=  

As expected there was a divergence between the experimental and numerical 

concentration profiles for these components. Further improvements occurred 

considering the cross terms in the diffusion matrix as shown in Figure 6.43 (the 

numerical and experimental concentration profiles after 150 hours of diffusion 

annealing for all the components Co, Ni, Al, and Pt with constant diffusion 

coefficients). The absolute error for the entire components was 1.2089e+003 when the 

whole diffusion matrix was constant.   

 Still better agreements were found when the diffusion matrix was considered 

concentration dependent as shown in Figure 6.44 (the numerical and experimental 

concentrations after 150 hours of diffusion annealing for all the components Co, Ni, Al, 

and Pt with variable diffusion coefficients(equation 6.43). The absolute error for these 

entire components was 860.1731. 
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8.2.6. Ir and Ir/Pt Low-Activity Aluminide / MAR M002 System 

Subjected to 100 Hours of Diffusion Treatment at Temperature 

1100oC 

The agreements between the experimental and numerical concentration profiles for 

Al, Cr, Ir and Al, Cr, Ir, Pt in Ir and Ir/Pt low-activity aluminide coatings respectively 

on MAR M002 were improved from considering constant diagonal terms in the 

diffusion matrix to include constant cross terms in the diffusion matrix and finally 

considering the variable diffusion matrix. Therefore when the whole diffusion matrix 

was considered concentration dependent the agreements between the numerical and 

experimental concentration profiles for these components considerably improved. 

For the Ir-aluminide coating, the Ir-rich layer was contained the substrate elements-

W, Ta. While for the Ir-Pt aluminide coatings the substrate elements were excluded 

from the coating. The XRD analysis showed that the outer layers of the systems had a 

structure similar to that of β -NiAl. 

 

8.2.7. Four Component Systems – TiAlCrY/TiAl System (Subjected to 

Oxidation at 750oC), Al2Au/TiAl (Subjected to Oxidation at 

750oC) and Formation of Aluminised Coatings on Low Alloy 

Steels at 650oC 

 

The agreement between the experimental and numerical concentration profiles 

improved progressively using the following conditions: 

• constant diagonal terms; 

• constant diagonal and cross terms; 

• variable diagonal and cross terms.  
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The D values for these coatings (TiAlCrY, Al2Au) on Ti45Al8Nb have been shown in 

Table 7.12 (chapter 7 section 7.9). As expected the agreement between the numerical 

and experimental concentration profiles was the best when all terms in the diffusion 

matrix were considered concentration dependent as shown in Figures 6.123 (the 

numerical and experimental concentration profiles in TiAlCrYTiAl −  after 500 hours 

diffusion treatment for Al, Ti, and Cr considering variable cross terms) and 6.109 (the 

numerical and experimental concentration profiles in TiAlNb – Al2Au after 1000 hours 

diffusion treatment considering variable diagonal and cross terms) for TiAlCrY and 

Al2Au coatings respectively. Second order polynomial has been considered to be the 

best function for the concentration dependence diffusion coefficient (equations 6.70 and 

6.65 for TiAlCrY and Al2Au coatings respectively).  

The conclusions from the microstrructural model indicated that for the TiAlCrY 

coating a thick oxide scale consisting of Al, Cr, and Ti oxides was observed to form at 

the top. Below the top scale we developed a modified coating TiAlCrY. The modified 

coating/substrate interface showed a depletion zone of Al and Ti. Beneath the depletion 

zone was a zone depleted in Ti (pre-depletion zone); where Al concentration increased 

due to the faster outward diffusion of Ti ions from the bulk material. For the Al2Au 

coating a thin outer Al2O3 scale with Au inclusions was developed, underneath this scale 

pure Al2O3 without inclusions of Au was formed, and a little amount of Ti was detected. 

Both these layers were extremely porous and brittle (Figure 6.98). Beneath two Al2O3 

layers were existed the modified coating (Al2Au). At the scale/substrate interface a large 

diffusion zone of Al, Au, and Ti was formed.  
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8.2.8. Simplex Search and fminbnd Optimisation Methods Applying on 

NiPtAl Alloy Subjected to Diffusion Annealing at 1273K for 1 

Hour 

 

 Simplex search and fminbnd optimisation methods were also used to optimize 

the diffusion coefficients for nickel in three component system NiPtAl. These diffusion 

coefficients for nickel have been compared with the diffusion coefficient calculated 

from Genetic Algorithms method ( scmDNi /107619.6 211−×= ) by calculating the 

numerical concentration profile for this component and use least squares method to 

compare between the numerical and experimental concentration profiles. The numerical 

concentration profiles obtained using GAs diffusion coefficients 

( scmDNi /107619.6 211−×= ) showed better agreement with the experimental 

concentration profile than the numerical concentration profiles relating with the 

diffusion coefficients calculated from Simplex search and fminbnd methods. Therefore 

the calculated errors between the experimental and numerical concentration profiles for 

nickel show the efficiency of using Genetic Algorithms technique. Therefore using the 

other two methods (Simplex search and fminbnd optimisation methods) we need to be 

careful when choosing the diffusion range while GAs method does not need this 

consideration. 
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8.3. Suggestions for Further Work 

 

One of the principal reasons for the disagreement between the experimental and 

numerically predicted concentration profiles is that numerical technique cannot take into 

account the local perturbation in compositions in the system. This violates the 

assumption of the existence of single phase/homogeneous compositions. It is suggest 

that some ideal systems consisting of a single phase need to be considered. 

2. In the present work considered no definitive identification of the formation of 

second phases was carried out. Clearly the formation of second phases / 

precipitation formation need to be identified.  

3. If the second phase formations are extensive then knowing the temperature 

range of the phase formation separate modelling can be performed for each 

phase. 

4. Low temperature homogenization heat treatment can be considered to apply. 

5. Many diffusion anneal experiments need to be performed. This would allow 

modelling of the close system. Diffusion treatment can also eliminate oxide 

phase formation. 

6. GAs method needs to be improved (to optimize the order of the polynomial, 

concentration dependence diffusion coefficients). 

7. Improved numerical procedure needs to be formed to describe the composition 

dependence of the terms in the diffusion matrix. 

8. Improved microstructural description of the diffusion processes involved need to 

be achieved.    
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APPENDIX A 
 
 
Nernst-Einstein Relation 

 

Suppose that an external driving force F proceeds on diffusing particles. After a 

short transition period, a steady state particle flux develops. The drift velocity 
~
v of the 

particles under the action of the driving force is, 

 

uFv =
~

         (A1) 

 

where u is called the mobility. The mobility is the drift velocity for a unit driving force, 

i.e. for 1=F . The particle flux is FuCvC =
~

. The total flux due to diffusion plus the 

action of the driving force is: 

 

Cv
x
CDj

~
+

∂
∂

−=         (A2) 

 

The first term is the well-known Fickian term and the second term is the drift term. 

We consider a system with one mobile component, where the flux resulting from an 

external driving force exactly balances the diffusion flux. The shared effect of a 

concentration gradient and of a driving force can lead to a steady state, if the 

corresponding fluxes are equal and opposite in sign, that is means if the total flux 

vanishes. Then, we get from equation (A2): 

Cv
x
CD

~~
0 +

∂
∂

−=         (A3) 
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The diffusion coefficient 
~
D  in equation (A3) refers to a chemical composition gradient 

as will become evident below. It is definitely conceived as a chemical diffusion 

coefficient not as a tracer diffusion coefficient.  

Let the diffusing substance be contained in a cylinder and let us suppose that uFv =
~

  

is the stationary velocity in negative x-direction due to an external field. Then, the 

solution of equation (A3) is: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= x

D

vCC o ~

~

exp         (A4) 

where  oC  denotes the initial concentration at 0=x . Let us further assume that the 

external force is the derivative of a potentialU : 

x
UF
∂
∂

−=          (A5) 

At thermodynamic equilibrium, the distribution of non-interacting particles must also 

follow the Boltzmann distribution, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Tk
UxC
B

exp)( α         (A6) 

where Bk  indicates the Boltzmann constant, T absolute temperature, and α  a constant. 

Differentiation with respect to x  gives up: 

Tk
CF

x
U

Tk
C

x
C

BB

=
∂
∂

−=
∂
∂

       (A7) 

 

Substituting this equation in equation (A3), we obtain: 

A
BB N

RTuTukTk
F
vD ===

~
~

       (A8) 
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AB NkR =  denotes the gas constant and AN  the Avogadro number. Equation (A8) 

relates the chemical coefficient 
~
D  and the mobility u  of the diffusing particles. This 

relation is called the Nernst-Einstein relation. 
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APPENDIX B 
 

Application of Runge-Kutta Method on Fick’s Second law 

 

Runge-Kutta method of order four; 
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1,

2
1
),,(
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⎟
⎠
⎞

⎜
⎝
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      (B1) 

( ) ( ) ( )4321,, 22
6
1 KKKKCC txhtx ++++=+  

 
where 
 

( )
( )tx

nn t
CCtf

,

, ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

 
From Euler method: 
 

'
),(),(),( oooooo txtxhthx hCCC +=++       (B2) 

Where  ),( oo txC  is the initial concentration at 0=t , h is the step size and 

 ( )
[ ] ),,2,1(2 112

),(

'
),( niCCC

x
D

t
CC iii

tx
tx

oo

oo
L=+−

Δ
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

= −+    (B3) 

 

1K  is the equation (B2), to find  2K  as follows the steps: 

 
'

),( hthx oo
C ++  has to be calculated in order to apply the following equation: 

 

2

'
),(

'
),(

),(),(
hthxtx

txhthx
oooo

oooo

CC
hCC ++

++

+
+=     (B4) 
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Equation (B4) is modified Euler method, ( 2K ). We cannot calculate 
'

),( hthx oo
C ++ with 

),( hthx oo
C ++  unknown, so applying equation (B2) using the new concentration from 

equation (B1) instead of initial concentration at 0=t .  

( )
[ ] ),,2,1(2 112

),(

'
),( niCCC

x
D

t
CC iii

hthx
hthx

oo

oo
L=+−

Δ
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

= −+
++

++  (B5) 

while ),,2,1( niCi K= is the new concentration from equation (B1). 

So 2K can be calculated because each term in equation (B3) is become known. 

The same procedure can be followed to calculate 3K and 4K . 
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APPENDIX C 

 

Flowchart for Determine Optimum D and Calculating Concentration 

Profiles   

 
 
 
 
 
 

 
 
 

Compare these concentrations profiles with the 

experimental profiles using Least Square method 

Errors for each D 

Select the value closed to the minimum error value set  

Best D 

Boundaries within which lies the D values 

A range of valued of D 

Calculate the concentration profiles from each D values using 

Runge-Kutta with Fick’s second law 

Use best D to select the best numerical concentration 

profile
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APPENDIX D 
 

 
Calculating the Interdiffusion Coefficient in Cu-Ni Diffusion Couple 

 
 

Cu

N

C
M

Cu
Cu dNXx

N
x

t
ND

Cu

R

)(
2
1)(

~

∫ −
∂
∂

−=  [91] 

where 71.0=CuN , 0=MX , Matano interface, and 69.12=
∂
∂

x
NCu , so the diffusivity at 

the composition 0.71 is, 

 

( ))71.0(
69.12

1
2
1)71.0(

~

RCx
t

D −−=  

 

If the diffusion time is assumed to be 300 hour (1080000s), the result of applying the 

above analysis at Matano interface is that, 

./1016.3)71.0( 210
~

scmxD −=   
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