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 

Abstract—In this paper, a novel discrete-time estimator is 

proposed, which is employed for simultaneous estimation of 

system states, and actuator/sensor faults in a discrete-time 

dynamic system. The existence of the discrete-time simultaneous 

estimator is mathematically proved. The systematic design 

procedure for the derivative and proportional observer gains is 

addressed, enabling the estimation error dynamics to be 

internally proper and stable, and robust against the effects from 

the process disturbances, measurement noises and faults. On the 

basis of the estimated fault signals and system states, a discrete-

time fault-tolerant design approach is addressed, by which the 

system may recover the system performance when 

actuator/sensor faults occur. Finally, the proposed integrated 

discrete-time fault estimation and fault-tolerant control 

technique is applied to the vehicle lateral dynamics with real 

data, which demonstrates the effectiveness of the developed 

techniques.  

 
Index Terms—Discrete-time systems, fault estimation, fault 

tolerant control, robustness, vehicle lateral dynamics 

 

I. INTRODUCTION 

NGINEERING systems are usually safety-critical systems, as 

any faults in actuators, sensors and processes may lead to 

system performance degradation, system breakdown,  

economic loss, and even disastrous situations. Therefore, the 

reliability plays a crucial role in the system design and 

operation. The evident solution to the reliability is to add the 

redundancy of the system. Except for the hardware 

redundancy in some key components, information redundancy 

has gained more and more attention in both academic 

community and industries for the last four decades owing to 

the convenience for implementation and significant saving in 

the cost.  The fruitful theoretic results produced by a variety of 

fault diagnosis methods such as model-based methods [1-5], 

signal based methods [6-8] and data-driven methods [9-11], 

and their applications in wind energy systems, robotic 

manipulators, power electronics, motor drive, power quality,  
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vehicles and so forth [12-17], have been reported in the above 

mentioned references and the references therein. It is noted 

that all the above approaches can be unified within a 

framework from the viewpoint of data processing [18]. 

Generally, there are three tasks for fault diagnosis, that is, 

fault detection, fault isolation and fault identification. Fault 

detection is to find a fault at the very early stage and trigger an 

alarm. Fault isolation is to find out which component is being 

subjected to malfunction or deviation from its normal working 

status. Fault identification is to determine the size and shape of 

the fault concerned.  It is noticed that fault estimation is an 

interesting and powerful technique, which may accomplish the 

tasks of the fault detection, fault isolation and fault 

identification within a step.  The well-known fault estimation 

methods include adaptive fault estimation method [19, 20], 

sliding mode fault estimation approach [21, 22], proportional 

and integral (PI) and proportional and multiple-integral (PMI) 

observer method [23, 24]. Recently, descriptor observer 

approach was addressed by [25, 26] to simultaneously 

estimate system states and system faults, which much facilities 

fault tolerant control design.  In [27], an integrated high-gain 

descriptor observer based fault diagnosis and fault-tolerant 

design method is proposed for a gas turbine engine system. 

The estimation accuracy can be ensured by selecting 

reasonable high-gains of the estimator to effectively attenuate 

the effects from the process disturbances. The fault tolerant 

design avoids the on-line actuator/sensor switching, enabling a 

satisfactory operation performance even when a fault occurs. 

However, the work in [25-27] is for continuous systems. It is 

evident that some fault estimation methods for continuous 

systems cannot be transplanted to discrete-time systems. In 

particular, there has not got a clue on how to derive a discrete-

time high-gain descriptor simultaneous state/fault observer 

following the design way of that for continuous system. On 

the other hand, real-time monitoring and control are 

essentially on the basis of discrete-time dynamic systems. 

Recent developments on fault estimation and fault-tolerant 

control for discrete-time systems can be found in [28, 29]. It is 

worthy to point out the results reported were either focused on 

actuator faults [28] or sensor faults [29]. Moreover, sensor 

noises were not taken into account in [28], and measurement 

noises were assumed to be the same as the process 

disturbances in [29]. In [30], a discrete-time PI observer was 

addressed to estimate both input and output disturbances, 

where the disturbances were assumed to be in the same types 

and robustness issues were not taken into account. Therefore, 
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the results [28-30] have a limit capacity for applications. This 

motivates us to reformulate fault estimation and fault tolerant 

design for discrete-time dynamic systems with multiple faults 

(including actuator faults and sensor faults) subjected to 

measurement noises and process disturbances where the 

measurement noises and process disturbances are allowed to 

be in different types.   

In this paper, a novel simultaneous state and fault discrete-

time estimator is proposed by synthesizing descriptor system 

theory and linear matrix inequality technique, enabling the 

internal properness and stability of the estimation error 

dynamics and robustness against the effects from process 

disturbances and faults. The fault-tolerant design method is 

then addressed by using actuator/sensor signal compensation. 

A vehicle dynamic system with real data is finally employed 

to demonstrate the effectiveness of the proposed methods. The 

symbols used in this paper are rather standard. 𝑅 denotes the 

set of all real numbers;  𝑍+ denotes the set of all positive 

integers;  A− denotes the inverse of A ;   A+ denotes the 

generalized inverse of A ;  A𝑇  denotes the transpose of A ; 

𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔 (𝐴1, 𝐴2) denotes [
𝐴1 0
0 𝐴2

] ; P > 0 (or P < 0) 

indicates the symmetric matrix P is positive (or negative) 

definite; |a| denotes the modulus or absolute value of the 

scalar a.  ∥. ∥ denotes the standard norm symbol; L2  is the 

Lebesgue space consisting of all discrete-time vector-valued 

function that are square-summable over 𝑍+;  ‖z‖2 denotes the 

L2  norm of a discrete-time signal z, which is defined as 

‖𝑧‖2
2 = ∑ 𝑧𝑇(𝑘)𝑧(𝑘)∞

𝑘=0 . 

II. DISCRETE-TIME FAULT ESTIMATION  

A. The Novel Discrete-Time State and Fault Estimator 

Consider a discrete-time dynamic system subjected to 

actuator faults, sensor faults, process disturbances and sensor 

noises in the form of 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑎 𝑓𝑎(𝑘) + 𝐵𝑑𝑑(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝐷𝑎𝑓𝑎(𝑘) + 𝐷𝑠𝑓𝑠(𝑘) + 𝜔(𝑡)
   (1) 

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑘) ∈ 𝑅𝑚 represents the 

control input vector, 𝑦(𝑘) ∈ 𝑅𝑝 is the measured output vector, 

𝑑(𝑘) ∈ 𝑅𝑙𝑑 is the process disturbance vector, 𝜔(𝑘) ∈ 𝑅𝑝 is 

the measurement noise, and 𝑓𝑎(𝑘) ∈ 𝑅
𝑙𝑎  and 𝑓𝑠 ∈ 𝑅

𝑙𝑠  are the 

actuator fault and sensor fault, respectively. The discrete-time 

instant 𝑘 is a simplified representation of 𝑘𝑇, where 𝑇 is the 

sampling period. 

In this section, a novel discrete-time estimator design 

technique is to be developed in order to simultaneously 

estimate the system state, actuator fault, sensor fault, and 

measurement noise, and to attenuate the process disturbance. 

For this purpose, we define  

∆𝑓𝑎(𝑘) = 𝑓𝑎(𝑘 + 1) − 𝑓𝑎(𝑘), 
∆𝑓𝑠(𝑘) = 𝑓𝑠(𝑘 + 1) − 𝑓𝑠(𝑘)                        (2) 

 and denote 

𝑥𝑒(𝑘) = [

𝑥(𝑘)

𝑓𝑎(𝑘)
𝑓𝑠(𝑘)

𝜔(𝑘)

]   

 𝑑𝑑𝑒(𝑘) =

[
 
 
 

𝑑(𝑘)

𝛼𝑓𝑎(𝑘) + ∆𝑓𝑎(𝑘)

𝛽𝑓𝑠(𝑘) + ∆𝑓𝑠(𝑘)

𝜔(𝑘) ]
 
 
 

 

𝐸𝑒 =

[
 
 
 
𝐼𝑛 0 0 0
0 𝐼𝑙𝑎 0 0

0 0 𝐼𝑙𝑠 0

0 0 0 0𝑝×𝑝]
 
 
 

   

𝐴𝑒 =

[
 
 
 
 
𝐴 𝐵𝑎 0 0

0 (1 − 𝛼)𝐼𝑙𝑎 0 0

0 0 (1 − 𝛽)𝐼𝑙𝑠 0

0 0 0 −𝐼𝑝]
 
 
 
 

   

  𝑁𝑒 =

[
 
 
 
 
0𝑛×𝑝
0𝑙𝑎×𝑝
0𝑙𝑠×𝑝
𝐼𝑝 ]

 
 
 
 

                   𝐵𝑒 =

[
 
 
 
𝐵

0𝑙𝑎×𝑚
0𝑙𝑠×𝑚
0𝑝×𝑚 ]

 
 
 

              

𝐵𝑑𝑒 =

[
 
 
 
𝐵𝑑 0 0 0
0 𝐼𝑙𝑎 0 0

0 0 𝐼𝑙𝑠 0

0 0 0 𝐼𝑝]
 
 
 

      

𝐶𝑒 = [𝐶 𝐷𝑎 𝐷𝑠 𝐼𝑝]                                                    (3) 

where 𝛼 and 𝛽 are scalars which are not equal; and 𝑥𝑒(𝑘) ∈
𝑅𝑛𝑒 is the extended state vector with the dimension of 

𝑛𝑒 = 𝑛 + 𝑙𝑎 + 𝑙𝑠 + 𝑝. In this context, the disturbance signals 

and fault terms 𝑑(𝑘), 𝜔(𝑘), 𝑓𝑎(𝑘), 𝑓𝑠(𝑘), ∆𝑓𝑎(𝑘) and ∆𝑓𝑠(𝑡) 
are all assumed to be bounded in the sense of 𝐿2 norm. As a 

result, the signal 𝑑𝑑𝑒(𝑘) is thus bounded in the sense of 𝐿2 

norm. 

In terms of (1)-(3), an augmented descriptor system can be 

obtained as follows: 

{
𝐸𝑒𝑥𝑒(𝑘 + 1) = 𝐴𝑒𝑥𝑒(𝑘) + 𝐵𝑒𝑢(𝑘) + 𝐵𝑑𝑒 𝑑𝑑𝑒(𝑘)

𝑦(𝑘) = 𝐶𝑒𝑥𝑒(𝑘) + 𝐷𝑢(𝑘).
         (4) 

It is noted that the augmented descriptor state vector 

𝑥𝑒(𝑘) is composed of the original system state 𝑥(𝑘), actuator 

fault 𝑓𝑎(𝑘), sensor fault 𝑓𝑠(𝑘), and measurement noise 𝜔(𝑘). 
As a result, we can get the simultaneous estimations of the 

original system state, actuator fault, sensor fault and 

measurement noise if we can construct an estimator to 

estimate the augmented state vector.  

In this context, the discrete-time descriptor estimator can be 

constructed in the form of: 

{

𝑆𝑒𝜂(𝑘 + 1) = (𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝜂(𝑘) + 𝐵𝑒𝑢(𝑘)

              −𝑁𝑒(𝑦(𝑘) − 𝐷𝑢(𝑘))

𝑥̂𝑒(𝑘) = 𝜂𝑒(𝑘) + 𝑆𝑒
−1𝐿𝑒(𝑦(𝑘) − 𝐷𝑢(𝑘))

               (5) 

where 𝜂(𝑘) ∈ 𝑅𝑛𝑒 is the descriptor state vector of the above 

dynamic system, 𝑥̂𝑒(𝑘) ∈ 𝑅
𝑛𝑒 is the estimate of the augment 

state 𝑥𝑒(𝑘) ∈ 𝑅
𝑛𝑒 , 𝑆𝑒 = 𝐸𝑒 + 𝐿𝑒𝐶𝑒 , and 𝐿𝑒 ∈ 𝑅

𝑛𝑒×𝑝 and  

𝐾𝑒 ∈ 𝑅
𝑛𝑒×𝑝 are respectively the derivative gain and 

proportional gain of the estimator to be designed. 

Theorem 1: If the pair (A, C) is observable, that is, 

𝑟𝑎𝑛𝑘 [
𝑧𝐼𝑛 − 𝐴
𝐶

] = 𝑛 , for any complex number 𝑧   (6a) 

 and there are scalars 𝛼 and 𝛽 satisfying  

𝑟𝑎𝑛𝑘 [
𝐴 + (𝛼 − 1)𝐼𝑛 𝐵𝑎

𝐶 𝐷𝑎
] = 𝑛 + 𝑙𝑎             (6b) 
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𝑟𝑎𝑛𝑘 [
𝐴 + (𝛽 − 1)𝐼𝑛 0

𝐶 𝐷𝑠
] = 𝑛 + 𝑙𝑠            (6c) 

where 𝛼 ≠ 𝛽, there exists an estimator in the form of (5) such 

that the estimation error dynamics 𝑒𝑒(𝑘) = 𝑥𝑒(𝑘) − 𝑥̂𝑒(𝑘) is 

internally stable for any 𝑘 when 𝑑𝑑𝑒(𝑘) = 0, that is, the error 

dynamics 𝑒(𝑘) → 0 as 𝑘 → ∞. 
Proof:   

(i) The existence of 𝐿𝑒 for the internal properness of the 

error dynamics. 

Since 

𝑟𝑎𝑛𝑘 [
𝐸𝑒
𝐶𝑒
] = 𝑟𝑎𝑛𝑘

[
 
 
 
 
 
𝐼𝑛 0 0 0
0 𝐼𝑙𝑎 0 0

0 0 𝐼𝑙𝑠 0

0 0 0 0𝑝×𝑝
𝐶 𝐷𝑎 𝐷𝑠 𝐼𝑝 ]

 
 
 
 
 

 

= 𝑛 + 𝑙𝑎 + 𝑙𝑠 + 𝑝 
= 𝑛𝑒 ,                                                                              (7) 

then there is a 𝐿𝑒 ∈ 𝑅
𝑛𝑒×𝑝 such that 𝑆𝑒 = 𝐸𝑒 + 𝐿𝑒𝐶𝑒 is 

nonsingular. Specifically, we can select 

𝐿𝑒 = [

0𝑛×𝑝
0𝑙𝑎×𝑝
0𝑙𝑠×𝑝
𝑀

]                                                             (8) 

where 𝑀 ∈ 𝑅𝑝×𝑝 is a nonsingular matrix. We can thus 

calculate 

 

𝑆𝑒
−1 =

[
 
 
 
𝐼𝑛 0 0 0
0 𝐼𝑙𝑎 0 0

0 0 𝐼𝑙𝑠 0

−𝐶 −𝐷𝑎 −𝐷𝑠 𝑀−1]
 
 
 

                                              (9) 

𝐶𝑒𝑆𝑒
−1𝐿𝑒 = [0 0 0 𝑀−1] [

0
0
0
𝑀

] = 𝐼𝑝                               (10) 

𝐴𝑒𝑆𝑒
−1𝐿𝑒 = −𝑁𝑒 .                                                                      (11) 

   Substituting the second equation into the first equation in (5) 

and using (10) and (11), one can obtain 

𝑆𝑒𝑥̂𝑒(𝑘 + 1) 

= 𝑆𝑒𝜂(𝑘 + 1) + 𝐿𝑒(𝑦(𝑘 + 1) − 𝐷𝑢(𝑘 + 1)) 

= (𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝑥̂𝑒(𝑘) + 𝐾𝑒(𝑦(𝑘) − 𝐷𝑢(𝑘)) 

+𝐵𝑒𝑢(𝑘) + 𝐿𝑒(𝑦(𝑘 + 1) − 𝐷𝑢(𝑘 + 1)).            (12) 

   Noting that 𝐾𝑒𝐶𝑒𝑥𝑒(𝑘) = 𝐾𝑒(𝑦(𝑘) − 𝐷𝑢(𝑘)) and 

𝐿𝑒𝐶𝑒𝑥𝑒(𝑘 + 1) = 𝐿𝑒(𝑦(𝑘 + 1) − 𝐷𝑢(𝑘 + 1)), the first 

equation in (4) can be rewritten as 

𝑆𝑒𝑥𝑒(𝑘 + 1) 

= (𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝑥𝑒(𝑘) + 𝐾𝑒(𝑦(𝑘) − 𝐷𝑢(𝑘)) 

 +𝐵𝑒𝑢(𝑘) + 𝐿𝑒(𝑦(𝑘 + 1) − 𝐷𝑢(𝑘 + 1)) + 𝐵𝑑𝑒𝑑𝑑𝑒(𝑘).  (13) 

   Letting 𝑒𝑒(𝑘) = 𝑥𝑒(𝑘) − 𝑥̂𝑒(𝑘), and subtracting (12) from 

(13), we can obtain the error dynamic equation as follows: 

𝑆𝑒𝑒𝑒(𝑘 + 1) = (𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝑒𝑒(𝑘) + 𝐵𝑑𝑒𝑑𝑑𝑒(𝑘).    (14) 

Since 𝑆𝑒 is nonsingular, the error dynamic can be rewritten 

as 

𝑒𝑒(𝑘 + 1) = 𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝑒𝑒(𝑘) + 𝑆𝑒

−1𝐵𝑑𝑒𝑑𝑑𝑒(𝑘)    (15) 

which indicates the error dynamics is internally proper. 

(ii) The existence of 𝐾𝑒 for the internal stability of the error 

dynamics. 

Observe that for any complex number 𝑧, 

𝑟𝑎𝑛𝑘 [
𝑧𝐼𝑛𝑒 − 𝑆𝑒

−1𝐴𝑒
𝐶𝑒

] 

= 𝑟𝑎𝑛𝑘 [
𝑧𝐸𝑒 − 𝐴𝑒
𝐶𝑒

]

= 𝑟𝑎𝑛𝑘

[
 
 
 
 
 
𝑧𝐼𝑛 − 𝐴 −𝐵𝑎 0 0

0 (𝑧 − 1 + 𝛼)𝐼𝑙𝑎 0 0

0 0 (𝑧 − 1 + 𝛽)𝐼𝑙𝑠 0

0 0 0 𝐼𝑝
𝐶 𝐷𝑎 𝐷𝑠 𝐼𝑝]

 
 
 
 
 

 

=

{
 
 
 
 

 
 
 
 𝑟𝑎𝑛𝑘 [

𝑧𝐼𝑛 − 𝐴
𝐶

] + 𝑙𝑎 + 𝑙𝑠 + 𝑝,

                             𝑤ℎ𝑒𝑛 𝑧 ≠ 1 − 𝛼 ≠ 1 − 𝛽

𝑟𝑎𝑛𝑘 [
𝐴 + (𝛼 − 1)𝐼𝑛 𝐵𝑎

𝐶 𝐷𝑎
] + 𝑙𝑠 + 𝑝,

                            𝑤ℎ𝑒𝑛 𝑧 = 1 − 𝛼, 𝑧 ≠ 1 − 𝛽

𝑟𝑎𝑛𝑘 [
𝐴 + (𝛽 − 1)𝐼𝑛 0

𝐶 𝐷𝑠
] + 𝑙𝑎 + 𝑝,   

                             𝑤ℎ𝑒𝑛 𝑧 = 1 − 𝛽, 𝑧 ≠ 1 − 𝛼.

                 (16) 

 

Substitution (6a)-(6c) into (16) yields 

𝑟𝑎𝑛𝑘 [
𝑧𝐼𝑛𝑒 − 𝑆𝑒

−1𝐴𝑒
𝐶𝑒

] = 𝑛 + 𝑙𝑎 + 𝑙𝑠 + 𝑝 = 𝑛𝑒              (17) 

indicating the pair (𝑆𝑒
−1𝐴𝑒, 𝐶𝑒) is observable. Therefore there 

exists a gain 𝐾𝑒∗ ∈ 𝑅
𝑛𝑒×𝑝 such that 𝑆𝑒

−1𝐴𝑒 − 𝐾𝑒∗𝐶𝑒 is 

internally stable. Therefore, 𝐾𝑒 can be calculated as 

𝐾𝑒 = 𝑆𝑒𝐾𝑒∗ such that the error dynamics in (15) is internally 

stable.  

As a result, when 𝑑𝑑𝑒(𝑘) = 0, the error dynamics 𝑒(𝑘) → 0 

as 𝑘 → ∞. This completes the proof. 

Remark 1: The novelty of the estimator is to introduce the 

scalars  𝛼 and  𝛽 to ensure the simultaneous estimation 

capability of the original system states, actuator faults, sensor 

faults and measurement noises.  

Remark 2: It is desired to find scalars 𝛼 and 𝛽 which satisfy 

(6b) and (6c) and have small sizes, for instance, 0 < |𝛼| < 1 

and 0 < |𝛽| < 1. In this case, the components 𝛼𝑓𝑎(𝑘) and 

𝛽𝑓𝑠(𝑘) in the disturbance/fault signal 𝑑𝑒(𝑘) may be reduced. 

Remark 3: The matrix 𝑀 in the derivative gain 𝐿𝑒 in (8) 

provides more design freedom. The no-singularity of 𝑀 can 

ensure that the matrix 𝑆𝑒 = 𝐸𝑒 + 𝐿𝑒𝐶𝑒 is non-singular, leading 

to the properness of the estimation error dynamics. 

Furthermore, a high-gain matrix 𝑀 may reduce the effect from 

the measurement noise which will be shown in the next 

subsection. 

Remark 4:  In order to find a proportional gain 𝐾𝑒 such that 

the estimation error dynamics is internally stable, one can 

either use the eigenvalue assignment method or Lyapunov 

equation solving method. It is noticed that the error dynamic 

equation (15) is subjected to the disturbance/fault signal 

𝑑𝑑𝑒(𝑘). Therefore there is an incentive to find a gain 𝐾𝑒 not 

only to ensure the error dynamics to be stable, but also to 

attenuate the adverse effect from the disturbance/fault, which 

will be dealt with in the next subsection. 
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B. Discrete-Time Robust State and Fault Estimator 

In this subsection, we will discuss how to design observer 

gains to attenuate the effect from the disturbance/fault signals 

to the estimation error dynamics, which is called robust 

observer design. 

Let 

𝑁𝑑𝑒 =

[
 
 
 
𝐵𝑑 0 0 0
0 𝐼𝑙𝑎 0 0

0 0 𝐼𝑙𝑠 0

−𝐶𝐵𝑑 −𝐷𝑎 −𝐷𝑠 𝐼𝑝]
 
 
 

, 𝜔𝑒 =

[
 
 
 

𝑑(𝑘)

𝛼𝑓𝑎(𝑘) + ∆𝑓𝑎(𝑘)

𝛽𝑓𝑠(𝑘) + ∆𝑓𝑠(𝑘)

𝑀−1𝜔(𝑘) ]
 
 
 

, 

One can obtain 

𝑆𝑒
−1𝐵𝑑𝑒𝑑𝑑𝑒(𝑘) = 𝑁𝑑𝑒𝜔𝑒(𝑘).                                      (18) 

Form 𝜔𝑒(𝑘) in (18), one can see the effect from 

measurement noise can be reduced by selecting a high-gain 

constant matrix 𝑀. In order to further attenuate the effect from 

𝜔𝑒(𝑘), the proportional gain 𝐾𝑒 will play a key role. 

From (15) and (18), the error dynamic equation can be 

rewritten as: 

𝑒𝑒(𝑘 + 1) = 𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒)𝑒𝑒(𝑘) + 𝑁𝑑𝑒𝜔𝑒(𝑘).    (19) 

The plant (19) is internally stable if 𝜔𝑒(𝑘) is bounded and 

the matrix 𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) is stable, i.e., the eigenvalues of 

the matrix 𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) are within the unit circle. The 

design goal here is to ensure the estimation error dynamics in 

(19) to be robustly stable against the effect from the 

disturbance/fault signal 𝜔𝑒(𝑘),  that is,  

‖𝑒𝑒‖2 ≤ 𝛾𝑜‖𝜔𝑒‖2                                 (20) 

                       

Theorem 2: The estimation error dynamic system (19) is 

internally stable, and the robust performance index (20) is met 

if the following optimization problem is solvable: 

minimize 𝛾𝑜 
subject to   0 < 𝛾𝑜, 0 < 𝑃𝑒 ∈ 𝑅

𝑛𝑒×𝑛𝑒 ,   𝑌𝑒 ∈ 𝑅
𝑛𝑒×𝑝, and 

[

−𝑃𝑒 + 𝐼 0 𝐴𝑒
𝑇𝑆𝑒

−𝑇𝑃𝑒 − 𝐶𝑒
𝑇𝑌𝑒

𝑇

0 −𝛾𝑜
2𝐼 𝑁𝑑𝑒

𝑇 𝑃𝑒
𝑃𝑒𝑆𝑒

−1𝐴𝑒 − 𝑌𝑒𝐶𝑒 𝑃𝑒𝑁𝑑𝑒 −𝑃𝑒

] < 0    (21) 

where 𝑆𝑒 = 𝐸𝑒 + 𝐿𝑒𝐶𝑒 and 𝐿𝑒 is in the form of (8).  

The gain 𝐾𝑒 can thus be calculated as 𝐾𝑒 = 𝑆𝑒𝑃𝑒
−1𝑌𝑒 . 

Proof.   

(i). Internal stability. 

Noticing that 𝑌𝑒 = 𝑃𝑒𝑆𝑒
−1𝐾𝑒 and pre-multiplying and post-

multiplying 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝐼, 𝐼, 𝑃𝑒
−1) on both sides of (21), one 

has equivalently  

[

−𝑃𝑒 + 𝐼 0 (𝐴𝑒 − 𝐾𝑒𝐶𝑒)
𝑇𝑆𝑒

−𝑇

0 −𝛾𝑜
2𝐼 𝑁𝑑𝑒

𝑇

𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) 𝑁𝑑𝑒 −𝑃𝑒

−1

] < 0.   (22) 

Let 

Ω𝑒 = [
𝛺𝑒11 (𝐴𝑒 − 𝐾𝑒𝐶𝑒)

𝑇𝑆𝑒
−𝑇𝑃𝑒𝑁𝑑𝑒

𝑁𝑑𝑒
𝑇 𝑃𝑒𝑆𝑒

−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) 𝑁𝑑𝑒
𝑇 𝑃𝑒𝑁𝑑𝑒 − 𝛾𝑜

2𝐼
], 

Ω𝑒11 = (𝐴𝑒 − 𝐾𝑒𝐶𝑒)
𝑇𝑆𝑒

−𝑇𝑃𝑒𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) − 𝑃𝑒 + 𝐼.     (23) 

Applying the well-known Schur complement theory [31] to 

(22), one can obtain: 

0 > [
−𝑃𝑒 + 𝐼 0

0 −𝛾𝑜
2𝐼
] 

       − [
(𝐴𝑒 − 𝐾𝑒𝐶𝑒)

𝑇𝑆𝑒
−𝑇

𝑁𝑑𝑒
𝑇 ] (−𝑃𝑒

−1)−1[𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) 𝑁𝑑𝑒] 

= Ω𝑒                                                                              (24) 

Define a Lyapunov function as 

𝑉𝑜(𝑒𝑒(𝑘)) = 𝑒𝑒
𝑇(𝑘)𝑃𝑒𝑒𝑒(𝑘).                      (25) 

For 𝜔𝑒(𝑘) = 0,  using (19) and (25), one has 

∆𝑉𝑜(𝑒𝑒(𝑘)) 

= 𝑒𝑒
𝑇(𝑘 + 1)𝑃𝑒𝑒𝑒(𝑘 + 1) − 𝑒𝑒

𝑇(𝑘)𝑃𝑒𝑒𝑒(𝑘) 
= 𝑒𝑒

𝑇(𝑘)Γ𝑒𝑒𝑒(𝑘)                                                   (26) 

where 

Γ𝑒 = (𝐴𝑒 − 𝐾𝑒𝐶𝑒)
𝑇𝑆𝑒

−𝑇𝑃𝑒𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) − 𝑃𝑒       (27) 

From (23) and (24), it is evident that Γ𝑒 < 0.  Therefore, one 

has 

∆𝑉𝑜(𝑒𝑒(𝑘)) ≤ −𝜖𝑜‖𝑒𝑒(𝑘)‖
2 ,  when 𝜔𝑒(𝑘) = 0         (28) 

where 𝜖𝑜 = 𝜆𝑚𝑖𝑛(−Γ𝑒). 
As a result, the error dynamic system (19) is internally 

stable when 𝜔𝑒(𝑘) = 0. 
(ii). Robust performance. 

Now we consider the case when 𝜔𝑒(𝑘) ≠ 0. In terms of 

(19) and (25), one has 

∆𝑉𝑜(𝑒𝑒(𝑘)) 

= 𝑒𝑒
𝑇(𝑘 + 1)𝑃𝑒𝑒𝑒(𝑘 + 1) − 𝑒𝑒

𝑇(𝑘)𝑃𝑒𝑒𝑒(𝑘) 
= 𝑒𝑒

𝑇(𝑘)[(𝐴𝑒 − 𝐾𝑒𝐶𝑒)
𝑇𝑆𝑒

−𝑇𝑃𝑒𝑆𝑒
−1(𝐴𝑒 − 𝐾𝑒𝐶𝑒) − 𝑃𝑒 + 𝐼]𝑒𝑒(𝑘) 

     +2𝑒𝑒
𝑇(𝑘)(𝐴𝑒 − 𝐾𝑒𝐶𝑒)

𝑇𝑆𝑒
−𝑇𝑃𝑒𝑁𝑑𝑒𝜔𝑒(𝑘) 

     +𝜔𝑒
𝑇(𝑘)(𝑁𝑑𝑒

𝑇 𝑃𝑒𝑁𝑑𝑒 − 𝛾𝑜
2𝐼)𝜔𝑒(𝑘) 

      −𝑒𝑒
𝑇(𝑘)𝑒(𝑘) + 𝛾𝑜

2𝜔𝑒
𝑇(𝑘)𝜔𝑒(𝑘) 

= (𝑒𝑒
𝑇(𝑘) 𝜔𝑒

𝑇(𝑘))Ω𝑒(𝑒𝑒
𝑇(𝑘) 𝜔𝑒

𝑇(𝑘))𝑇 − 𝑒𝑒
𝑇(𝑘)𝑒(𝑘) 

      +𝛾𝑜
2𝜔𝑒

𝑇(𝑘)𝜔𝑒(𝑘)                                                            (29)    

where  Ω𝑒 is given in (23). 

Substitution (23) into (29) yields 

∆𝑉𝑜(𝑒𝑒(𝑘)) ≤ −𝑒𝑒
𝑇(𝑘)𝑒(𝑘) + 𝛾𝑜

2𝜔𝑒
𝑇(𝑘)𝜔𝑒(𝑘).     (30) 

Under zero initial conditions, it is followed from (30) 

0 ≤ 𝑉𝑜(𝑒𝑒(𝑛 + 1)) 

≤ −∑ 𝑒𝑒
𝑇(𝑘)𝑒𝑒(𝑘)

𝑛
𝑘=0 + 𝛾𝑜

2∑ 𝜔𝑒
𝑇(𝑘)𝜔𝑒(𝑘)

𝑛
𝑘=0       (31) 

which implies ‖𝑒𝑒‖2 ≤ 𝛾𝑜‖𝜔𝑒‖2 . This completes the proof. 

C. Design Procedure of State and Fault Estimator 

The design procedure of the proposed discrete-time 

estimator can be summarized as follows. 

Procedure 1: Discrete-time state and fault estimation 

(i).  Select the scalars 𝛼 = 𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, … 𝛼𝑙𝑎) and 

𝛽 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2, … 𝛽𝑙𝑠)  such that (6b) and 

(6c) are satisfied where 𝛼 and 𝛽 have reasonably 

small amplitudes. For instance, 𝛼𝑖 and 𝛽𝑗 may be 

selected as 0 < |𝛼𝑖| < 1, 𝑖 = 1, 2, … , 𝑙𝑎 and 0 <

|𝛽𝑗| < 1, 𝑗 = 1, 2, … , 𝑙𝑠 such that (6b) and (6c) are 

satisfied. 

(ii). Calculate the augmented matrices 𝐸𝑒 , 𝐴𝑒 , 𝐵𝑒 , 𝐶𝑒, 𝑁𝑒 

and 𝐵𝑑𝑒  in terms of (3). Therefore, the augmented 

plant (4) has been formed. 

 

(iii). Select the derivative gain 𝐿𝑒  of the estimator in the 

form of (8), where the matrix 𝑀 is chosen as a 

reasonably high-gain nonsingular matrix. For 

instance, the matrix 𝑀 can be selected as 𝜃𝐼𝑝, where 

𝜃 > 1. As a result, the matrix 𝑆𝑒 = 𝐸𝑒 + 𝐿𝑒𝐶𝑒 can be 

ensured to be nonsingular and the effect of the 
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measurement noise to the error dynamics can be 

attenuated to some extent. 

(iv). Calculate the modified disturbance/fault matrix 𝑁𝑑𝑒 in 

(18) and compute 𝐾𝑒 = 𝑆𝑒𝑃𝑒
−1𝑌𝑒 , where 𝑃𝑒 and 𝑌𝑒 can 

be obtained by solving the linear matrix inequality 

(21). 

(v). Build the estimator (5) where the parameters are 

obtained from the steps (i)-(iv), and implement the 

estimation to get the estimated vector 𝑥̂𝑒(𝑘). As a 

result, the estimated signals for system state, actuator 

fault, sensor fault, and measurement noise can be 

readily formulated as follows: 

{
 
 

 
 𝑥̂(𝑘) = [𝐼𝑛 0𝑛×𝑙𝑎 0𝑛×𝑙𝑠 0𝑛×𝑝]𝑥̂𝑒(𝑘)

𝑓𝑎(𝑘) = [0𝑙𝑎×𝑛 𝐼𝑙𝑎 0𝑙𝑎×𝑙𝑠 0𝑙𝑎×𝑝]𝑥̂𝑒(𝑘)

𝑓𝑠(𝑘) = [0𝑙𝑠×𝑛 0𝑙𝑠×𝑙𝑎 𝐼𝑙𝑠 0𝑙𝑠×𝑝]𝑥̂𝑒(𝑘)

𝜔̂(𝑘) = [0𝑝×𝑛 0𝑝×𝑙𝑎 0𝑝×𝑙𝑠 𝐼𝑝]𝑥̂𝑒(𝑘).

       (32) 

 

III. DISCRETE-TIME FAULT-TOLERANT DESIGN 

A. Fault Compensation-Based Fault-Tolerant Method 

On the basis of the estimated signals in the previous section, 

we will deal with fault-tolerant design issues in this section. 

Using the estimated state vector 𝑥̂𝑒(𝑘),  a closed-loop 

feedback control strategy can be employed: 

𝑢(𝑘) = −𝐹𝑒𝑥̂𝑒(𝑘),    𝐹𝑒 ∈ 𝑅
𝑚×𝑛𝑒                      (33) 

where 𝐹𝑒 = [𝐹 𝐹𝑎 𝐹𝑠 𝐹𝜔]; and 𝐹 ∈ 𝑅𝑚×𝑛 ,  𝐹𝑎 ∈ 𝑅
𝑚×𝑙𝑎 ,

𝐹𝑠 ∈ 𝑅
𝑚×𝑙𝑠  and 𝐹𝜔 ∈ 𝑅

𝑚×𝑝 are the gain matrices for estimated 

state, estimated actuator fault signal, estimated sensor fault 

signal and estimated measurement noise signal, respectively. 

In terms of (1) and (33) and noticing that  𝑥̂𝑒(𝑘) = 𝑥𝑒(𝑘) −
𝑒𝑒(𝑘), the closed-loop dynamic plant can be described by 

𝑥(𝑘 + 1) 
= 𝐴𝑥(𝑘) − 𝐵𝐹𝑒𝑥̂𝑒(𝑘) + 𝐵𝑎𝑓𝑎(𝑘) + 𝐵𝑑𝑑(𝑘) 
= (𝐴 − 𝐵𝐹)𝑥(𝑘) + (𝐵𝑎 − 𝐵𝐹𝑎)𝑓𝑎(𝑘) − 𝐵𝐹𝑠𝑓𝑠(𝑘) 

−𝐵𝐹𝜔𝜔(𝑘) + 𝐵𝐹𝑒𝑒𝑒(𝑘) + 𝐵𝑑𝑑(𝑘),         (34) 

and  

𝑦(𝑘) 
= 𝐶𝑥(𝑘) − 𝐷𝐹𝑒𝑥̂𝑒(𝑘) + 𝐷𝑎𝑓𝑎(𝑘) + 𝐷𝑠𝑓𝑠(𝑘) + 𝜔(𝑡) 
= (𝐶 − 𝐷𝐹)𝑥(𝑘) + (𝐷𝑎 − 𝐷𝐹𝑎)𝑓𝑎(𝑘) 
     +(𝐷𝑠 − 𝐷𝐹𝑠)𝑓𝑠(𝑘) + (𝐼 − 𝐷𝐹𝜔)𝜔(𝑘) + 𝐷𝐹𝑒𝑒𝑒(𝑘).  (35) 

Suppose 

𝑟𝑎𝑛𝑘 [
𝐵𝑎 𝐵
𝐷𝑎 𝐷

] = 𝑟𝑎𝑛𝑘 [
𝐵
𝐷
]                 (36) 

and select 

𝐹𝑎 = [
𝐵
𝐷
]
+

[
𝐵
𝐷
].                                     (37) 

Therefore one has 

𝐵𝑎 − 𝐵𝐹𝑎 = 0,   𝐷𝑎 − 𝐷𝐹𝑎 = 0.          (38) 

 Furthermore, we choose 

𝐹𝑠 = 0𝑚×𝑙𝑠 ,   𝐹𝜔 = 0𝑚×𝑝.                    (39) 

As a result, the system can be written as 

{
𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝐹𝑒𝑒𝑒(𝑘) + 𝐵𝑑𝑑(𝑘)

𝑦(𝑘) = (𝐶 − 𝐷𝐹)𝑥(𝑘)+𝐷𝑠𝑓𝑠(𝑘) + 𝜔(𝑘) + 𝐷𝐹𝑒𝑒𝑒(𝑘).
 (40) 

From (40), the effects from the actuator faults to the closed-

loop plant have been removed successfully provided that the 

estimation error 𝑒𝑒(𝑘) is small enough. The technique above 

is called actuator fault compensation, which is employed to 

remove the adverse effects from actuator faults to the system 

dynamics and output.  

However, the output 𝑦(𝑘) is still subjected to the effect 

from the sensor fault and measurement noise. In order to 

eliminate the effect caused by the sensor fault and 

measurement noise, we implement the sensor fault signal 

compensation as follows: 

𝑦𝑠(𝑘) 

= 𝑦(𝑘) − 𝐷𝑠𝑓𝑠(𝑘) − 𝜔̂(𝑘) 
= (𝐶 − 𝐷𝐹)𝑥(𝑘) + 𝐷𝐹𝑒𝑒𝑒(𝑘) + 𝐷𝑠𝑝𝑒𝑒(𝑘) 

= (𝐶 − 𝐷𝐹)𝑥(𝑘) + (𝐷𝑠𝑝 + 𝐷𝐹𝑒)𝑒𝑒(𝑘).                          (41) 

where 𝐷𝑠𝑝 = [0𝑝×𝑛 0𝑝×𝑙𝑎 𝐷𝑠 𝐼𝑝]. 

From (41), one can see the sensor signal compensation is 

carried out by using the actual output to subtract the estimated 

signals of sensor faults and measurement noises. In the new 

output 𝑦𝑠(𝑘), the effects from the sensor faults and 

measurement noises are successfully removed/offset.  

According to (40) and (41), the closed-loop after the fault 

compensation can be described by 

{
𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝐹𝑒𝑒𝑒(𝑘) + 𝐵𝑑𝑑(𝑘)

𝑦𝑠(𝑘) = (𝐶 − 𝐷𝐹)𝑥(𝑘) + (𝐷𝑠𝑝 + 𝐷𝐹𝑒)𝑒𝑒(𝑘).
   (42) 

Remark 5:  From (42), the effect from actuator faults, 

sensor faults and measurement noise to the system dynamics 

and output have been removed via the actuator and sensor 

signal compensations. The state-feedback gain 𝐹 can be 

employed to stabilize the system, and attenuate the effect from 

process disturbance, which will be investigated by the 

following two theorems. 

Theorem 3: The closed-loop system (42) is internally stable, 

and satisfies the following robust performance index 

(‖𝑦𝑠‖2)
2 ≤ 𝛾𝑐1

2 (‖𝑑‖2)
2 + 𝛾𝑐2

2 (‖𝑒𝑒‖2)
2               (43) 

if the following sequential optimization problems are solvable: 

(a).                                minimize 𝛾𝑐1 
subject to   0 < 𝛾𝑐1, 0 < 𝑋 ∈ 𝑅

𝑛×𝑛, 𝑌 ∈ 𝑅𝑚×𝑛, and 

[

−𝑋 0 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 𝑋𝐶𝑇 − 𝑌𝑇𝐷𝑇

0 −𝛾𝑐1
2 𝐼 𝐵𝑑

𝑇 0
𝐴𝑋 − 𝐵𝑌 𝐵𝑑 −𝑋 0
𝐶𝑋 − 𝐷𝑌 0 0 −𝐼

] < 0.                   

(44) 

(b).                         minimize 𝛾𝑐2 
subject to   0 < 𝛾𝑐2, and 

[
 
 
 
 
 

−𝑋 0 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 𝑋𝐶𝑇 − 𝑌𝑇𝐷𝑇 0
0 −𝛾𝑐1

2 𝐼 𝐵𝑑
𝑇 0 0

𝐴𝑋 − 𝐵𝑌 𝐵𝑑 −𝑋 0 𝐵𝐹𝑒
𝐶𝑋 − 𝐷𝑌 0 0 −𝐼 𝐷𝑠𝑝 + 𝐷𝐹𝑒

0 0 𝐹𝑒
𝑇𝐵𝑇 𝐷𝑠𝑝

𝑇 + 𝐹𝑒
𝑇𝐷𝑇 −𝛾𝑐2

2 𝐼 ]
 
 
 
 
 

 

< 0                                                                                   (45) 

where the parameters 𝑋, 𝑌 and 𝛾𝑐1 are obtained by solving 

(44); 𝐹𝑒 = [𝐹 𝐹𝑎 𝐹𝑠 𝐹𝜔], 𝐹𝑎, 𝐹𝑠 and 𝐹𝜔 are given in (37) 

and (39), respectively; and 𝐹 = 𝑌𝑋−1. 
Proof.   

(i). Internal stability. 

 We consider the case when  𝑑(𝑘) = 0, and 𝜔𝑒(𝑘) = 0.  
Noticing that 𝐹 = 𝑌𝑋−1, and pre-multiplying and post-

multiplying 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝑋−1, 𝐼, 𝑋−1, 𝐼) on both sides of 
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(44), and letting 𝑄 = 𝑋−1, one has 

[

−𝑄 0 (𝐴 − 𝐵𝐹)𝑇𝑄 (𝐶 − 𝐷𝐹)𝑇

0 −𝛾𝑐1
2 𝐼 𝐵𝑑

𝑇𝑄 0

𝑄(𝐴 − 𝐵𝐹) 𝑄𝐵𝑑 −𝑄 0
𝐶 − 𝐷𝐹 0 0 −𝐼

] < 0 (46) 

Applying the Schur complement to (46), one has 

[
Θ𝑐11 (𝐴 − 𝐵𝐹)𝑇𝑄𝐵𝑑

𝐵𝑑
𝑇𝑄𝑇(𝐴 − 𝐵𝐹) 𝐵𝑑

𝑇𝑄𝐵𝑑 − 𝛾𝑐1
2 𝐼
] < 0                        (47) 

where 

Θc11 = (𝐴 − 𝐵𝐹)
𝑇𝑄(𝐴 − 𝐵𝐹) − 𝑄⏟                

Γ𝑐

 

+(𝐶 − 𝐷𝐹)𝑇(𝐶 − 𝐷𝐹)                     (48) 

It is evident that Γc < 0 in terms of (47) and (48). 

Define a Lyapunov function as 

𝑉𝑐(𝑥(𝑘)) = 𝑥
𝑇(𝑘)𝑄𝑥(𝑘).                      (49) 

From (42) and (49), one has  

∆𝑉𝑐(𝑥(𝑘)) 

= 𝑥(𝑘 + 1)𝑄𝑥(𝑘 + 1) − 𝑥(𝑘)𝑄𝑥(𝑘) 
= 𝑥𝑇(𝑘)Γ𝑐𝑥(𝑘) + 2𝑥

𝑇(𝑘)(𝐴 − 𝐵𝐹)𝑇𝑄𝐵𝐹𝑒𝑒𝑒(𝑘) 
             +𝑒𝑒

𝑇(𝑘)(𝐵𝐹𝑒)
𝑇𝑄(𝐵𝐹𝑒)𝑒𝑒(𝑘)  

≤ −𝜖𝑐‖𝑥(𝑘)‖
2  + 2𝑥𝑇(𝑘)(𝐴 − 𝐵𝐹)𝑇𝑄𝐵𝐹𝑒𝑒𝑒(𝑘) 

             +𝑒𝑒
𝑇(𝑘)(𝐵𝐹𝑒)

𝑇𝑄(𝐵𝐹𝑒)𝑒𝑒(𝑘)                              (50) 

where 𝜖𝑐 = 𝜆𝑚𝑖𝑛(−Γ𝑐). 
Let 

𝑉𝑜𝑐(𝑥(𝑘)) = 𝑉𝑐(𝑥(𝑘)) + 𝜃𝑉𝑜(𝑒𝑒(𝑘)).                  (51)                

From (28), (50) and (51), one has 

∆𝑉𝑜𝑐(𝑥(𝑘)) = ∆𝑉𝑐(𝑥(𝑘)) + 𝜃∆𝑉𝑜(𝑒𝑒(𝑘)) 

≤ −𝜖𝑐‖𝑥(𝑘)‖
2  + 𝜖𝑥‖𝑥(𝑘)‖‖𝑒𝑒(𝑘)‖ 

+𝜖𝑒‖𝑒𝑒(𝑘)‖
2 − 𝜃𝜖𝑜‖𝑒𝑒(𝑘)‖

2                       (52) 

where 

𝜖𝑥 = 2‖(𝐴 − 𝐵𝐹)
𝑇𝑄𝐵𝐹𝑒‖                                 (53) 

𝜖𝑒 = ‖𝑄‖‖𝐵𝐹𝑒‖
2                                             (54) 

Selecting  

𝜃 ≥
𝜖𝑥
2+𝜖𝑐𝜖𝑒

𝜖𝑐𝜖𝑜
,                                                (55) 

it is followed from (52): 

∆𝑉𝑜𝑐(𝑥(𝑘)) ≤ −
𝜖𝑐

2
 ‖𝑥(𝑘)‖2 −

𝜃

2
(𝜖𝑜 −

𝜖𝑒

𝜃
) ‖𝑒𝑒(𝑘)‖

2     (56) 

which indicates 𝑒𝑒(𝑘) → 0, 𝑥(𝑘) → 0 as 𝑘 → ∞ for 𝑑(𝑘) = 0 

and 𝜔𝑒(𝑘) = 0. 
(2). Robust performance index. 

Now we consider the case when 𝜔𝑒(𝑘) ≠ 0 and 𝑑(𝑘) ≠ 0. 
Noticing that 𝐹 = 𝑌𝑋−1, and pre-multiplying and post-

multiplying 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝑋−1, 𝐼, 𝑋−1, 𝐼, 𝐼) on both sides of 

(45), and letting 𝑄 = 𝑋−1, one has 

[
 
 
 
 
 

−𝑄 0 (𝐴 − 𝐵𝐹)𝑇𝑄 (𝐶 − 𝐷𝐹)𝑇 0

0 −𝛾𝑐1
2 𝐼 𝐵𝑑

𝑇𝑄 0 0

𝑄(𝐴 − 𝐵𝐹) 𝑄𝐵𝑑 −𝑄 0 𝑄𝐵𝐹𝑒
𝐶 − 𝐷𝐹 0 0 −𝐼 𝐷𝑠𝑝 + 𝐷𝐹𝑒

0 0 𝐹𝑒
𝑇𝐵𝑇𝑄 𝐷𝑠𝑝

𝑇 + 𝐹𝑒
𝑇𝐷𝑇 −𝛾𝑐2

2 𝐼 ]
 
 
 
 
 

 

<0.                                                                                       (57) 

Let 

𝑊 =

[
 
 
 
 
𝐼 0 0 0 0
0 𝐼 0 0 0
0 0 0 𝐼 0
0 0 0 0 𝐼
0 0 𝐼 0 0]

 
 
 
 

.                                    (58)                             

Pre-multiplying WT and post-multiplying W on the left-

hand side and right-hand side of (57), respectively, one can 

obtain: 

[
 
 
 
 
 

−𝑄 0 0 (𝐴 − 𝐵𝐹)𝑇𝑄 (𝐶 − 𝐷𝐹)𝑇

0 −𝛾𝑐1
2 𝐼 0 𝐵𝑑

𝑇𝑄 0

0 0 −𝛾𝑐2
2 𝐼 𝐹𝑒

𝑇𝐵𝑇𝑄 𝐷𝑠𝑝
𝑇 + 𝐹𝑒

𝑇𝐷𝑇

𝑄(𝐴 − 𝐵𝐹) 𝑄𝐵𝑑 𝑄𝐵𝐹𝑒 −𝑄 0
𝐶 − 𝐷𝐹 0 𝐷𝑠𝑝 + 𝐷𝐹𝑒 0 −𝐼 ]

 
 
 
 
 

 

< 0.                                                                                                (59) 

Applying the Schur complement to (59), one has 

Π = [

Π11 Π12 Π13
Π12
𝑇 Π22 Π23
Π13
𝑇 Π23

𝑇 Π33

] < 0                                (60) 

where 

Π11 = (𝐴 − 𝐵𝐹)
𝑇𝑄(𝐴 − 𝐵𝐹) + (𝐶 − 𝐷𝐹)𝑇(𝐶 − 𝐷𝐹) − 𝑄 

Π12 = (𝐴 − 𝐵𝐹)
𝑇𝑄𝐵𝑑  

Π13 = (𝐴 − 𝐵𝐹)
𝑇𝑄𝐵𝐹𝑒 + (𝐶 − 𝐷𝐹)

𝑇(𝐷𝑠𝑝 + 𝐷𝐹𝑒) 

Π22 = 𝐵𝑑
𝑇𝑄𝐵𝑑 − 𝛾𝑐1

2 𝐼 

Π23 = 𝐵𝑑
𝑇𝑄𝐵𝐹𝑒 

Π33 = 𝐹𝑒
𝑇𝐵𝑇𝑄𝐵𝐹𝑒 + (𝐷𝑠𝑝

𝑇 + 𝐹𝑒
𝑇𝐷𝑇)(𝐷𝑠𝑝 + 𝐷𝐹𝑒) − 𝛾𝑐2

2 𝐼 

From (42), (49) and (60), one has 

∆𝑉𝑐(𝑥(𝑘)) 

= 𝑉𝑐(𝑥(𝑘 + 1)) − 𝑉𝑐(𝑥(𝑘)) 

= 𝑥(𝑘 + 1)𝑄𝑥(𝑘 + 1) − 𝑥(𝑘)𝑄𝑥(𝑘) 

= [(𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝑑𝑑(𝑘) + 𝐵𝐹𝑒𝑒𝑒(𝑘)]
𝑇𝑄 

× [(𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝑑𝑑(𝑘) + 𝐵𝐹𝑒𝑒𝑒(𝑘)] − 𝑥
𝑇(𝑘)𝑄𝑥(𝑘) 

+[(𝐶 − 𝐷𝐹)𝑥(𝑘) + (𝐷𝑠𝑝 + 𝐷𝐹𝑒)𝑒𝑒(𝑘)]
𝑇
[(𝐶 − 𝐷𝐹)𝑥(𝑘) 

 +(𝐷𝑠𝑝 + 𝐷𝐹𝑒)𝑒𝑒(𝑘)] − 𝛾𝑐1
2 𝑑𝑇(𝑘)𝑑(𝑘) − 𝛾𝑐2

2 𝑒𝑒
𝑇(𝑘)𝑒𝑒(𝑘) 

−𝑦𝑠
𝑇(𝑘)𝑦𝑠(𝑘) + 𝛾𝑐1

2 𝑑𝑇(𝑘)𝑑(𝑘) + 𝛾𝑐2
2 𝑒𝑒

𝑇(𝑘)𝑒𝑒(𝑘) 

= (𝑥𝑇(𝑘) 𝑑𝑇(𝑘) 𝑒𝑒
𝑇(𝑘))Π(𝑥𝑇(𝑘) 𝑑𝑇(𝑘) 𝑒𝑒

𝑇(𝑘))𝑇 
 −𝑦𝑠

𝑇(𝑘)𝑦𝑠(𝑘) + 𝛾𝑐1
2 𝑑𝑇(𝑘)𝑑(𝑘) + 𝛾𝑐2

2 𝑒𝑒
𝑇(𝑘)𝑒𝑒(𝑘) 

≤ −𝑦𝑠
𝑇(𝑘)𝑦𝑠(𝑘) + 𝛾𝑐1

2 𝑑𝑇(𝑘)𝑑(𝑘) + 𝛾𝑐2
2 𝑒𝑒

𝑇(𝑘)𝑒𝑒(𝑘).     (61) 

Under zero initial conditions, it is followed from (61) 

0 ≤ 𝑉𝑐(𝑥(𝑛 + 1)) 

≤ −∑𝑦𝑠
𝑇(𝑘)𝑦𝑠(𝑘)

𝑛

𝑘=0

+ 𝛾𝑐1
2 ∑𝑑𝑇(𝑘)𝑑(𝑘)

𝑛

𝑘=0

 

+𝛾𝑐2
2 ∑ 𝑒𝑒(𝑘)𝑒𝑒(𝑘)

𝑛
𝑘=0 .                                  (62) 

 

From (20) and (62), one has 

(‖𝑦𝑠‖2)
2 ≤ 𝛾𝑐1

2 (‖𝑑‖2)
2 + 𝛾𝑐2

2 (‖𝑒𝑒‖2)
2.         (63) 

This completes the proof.  

   Remark 6:  In Theorem 3, the state-feedback gain 𝐹 is 

designed to mainly attenuate the effect from the process 

disturbance 𝑑(𝑘) to the dynamic system (42). However, the 

design of 𝐹 above seems not to have essential contribution in 

attenuating the effect from estimation error to dynamic 

system. It is reasonable for this kind of design if the error 

dynamics 𝑒𝑒(𝑘) has been made sufficiently small against the 

disturbance/fault signal 𝜔𝑒(𝑘)  by the design of the estimator 
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gains 𝐾𝑒  and 𝐿𝑒  shown in Section II. Nevertheless, we will 

further discuss how to simultaneously attenuate 𝑑(𝑘) and 

𝑒𝑒(𝑘) during the design of the state-feedback gain 𝐹. 
Let  

𝑒𝐹𝑒(𝑘) = [
𝐹𝑒𝑒𝑒(𝑘)
𝑒𝑒(𝑘)

],  𝐵𝐹𝑒 = [𝐵 0𝑛×𝑛𝑒],    

𝐷𝐹𝑒 = [𝐷 𝐷𝑠𝑝].                                                           (64) 

The system (42) can be written as  

{
𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝑑𝑑(𝑘) + 𝐵𝐹𝑒𝑒𝐹𝑒(𝑘)

𝑦𝑠(𝑘) = (𝐶 − 𝐷𝐹)𝑥(𝑘) + 𝐷𝐹𝑒𝑒𝐹𝑒(𝑘).
   (65) 

Theorem 4: The closed-loop system (65) is internally stable, 

and satisfies the following robust performance index 

(‖𝑦𝑠‖2)
2 ≤ 𝛾𝑚1

2 (‖𝑑‖2)
2 + 𝛾𝑚2

2 (‖𝑒𝐹𝑒‖2)
2               (66) 

if there exists scalars 𝛾𝑚1 and 𝛾𝑚2, a positive define 

symmetric matrix 𝑋 ∈ 𝑅𝑛×𝑛 and a matrix 𝑌 ∈ 𝑅𝑚×𝑛 such that             

[
 
 
 
 

−𝑋 0 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 𝑋𝐶𝑇 − 𝑌𝑇𝐷𝑇 0
0 −𝛾𝑚1

2 𝐼 𝐵𝑑
𝑇 0 0

𝐴𝑋 − 𝐵𝑌 𝐵𝑑 −𝑋 0 𝐵𝐹𝑒
𝐶𝑋 − 𝐷𝑌 0 0 −𝐼 𝐷𝐹𝑒

0 0 𝐵𝐹𝑒
𝑇 𝐷𝐹𝑒

𝑇 −𝛾𝑚2
2 𝐼]
 
 
 
 

< 0      

                                                                              (67) 

The feedback gain can thus be calculated as 𝐹 = 𝑌𝑋−1.  
Proof.  This proof is similar to Theorem 3, which is omitted 

for the limit of space. 

Remark 7:  In Theorem 4, the state-feedback gain 𝐹 is 

designed to attenuate the effect from the process disturbance 

𝑑(𝑘) and the estimation error dynamics 𝑒𝑒(𝑘) to the dynamic 

system (65).  

B. Design Procedure of Fault-Tolerant Control 

The design procedure of the proposed discrete-time fault-

tolerant controller can be summarized as follows. 

Procedure 2: Discrete-time fault-tolerant control 

 (i). Select 𝐹𝑠 = 0𝑚×𝑙𝑠 ,   𝐹𝜔 = 0𝑚×𝑝, and calculate 𝐹𝑎 =

[
𝐵
𝐷
]
+

[
𝐵
𝐷
]. 

(ii). Solve the LMIs (44) and (45) (or solve the LMI (67)) 

to get 𝑋 𝑎𝑛𝑑 𝑌, leading to the state-feedback gain 

𝐹 = 𝑌𝑋−1. 
(iii). Apply the control law 𝑢(𝑘) = −𝐹𝑒𝑥̂𝑒(𝑘), where 

𝐹𝑒 = [𝐹 𝐹𝑎 𝐹𝑠 𝐹𝜔] to implement actuator fault 

signal compensation.  

(iv). Implement sensor fault signal compensation as 

follows:  
𝑦𝑠(𝑘) = 𝑦(𝑘) − 𝐷𝑠𝑓𝑠(𝑘) − 𝜔̂(𝑘) 

        where 𝑓𝑠(𝑘) and 𝜔̂(𝑘) are the estimated signal of the 

sensor fault and measurement noise, which are 

obtained in Procedure 1 of Section II. 

IV. FAULT ESTIMATION AND FAULT-TOLERANT DEIGN FOR 

VEHICLE LATERAL DYNAMICS 

Vehicle lateral dynamics plays a key role in the stability, 

safety and maneuverability of the vehicle. The vehicle 

dynamics can be modelled as the second order system, which 

is formulated as follows: 

{
 
 
 
 
 
 

 
 
 
 
 
 

   

⌈
𝛽𝑠(𝑘 + 1)

𝑟𝑦(𝑘 + 1)
⌉ = ⌈

−
𝑐𝑎𝑣+𝑐𝑎ℎ

𝑚𝑣𝑟𝑒𝑓

𝑙ℎ𝑐𝑎ℎ−𝑙𝑣𝑐𝑎𝑣

𝑚𝑣𝑟𝑒𝑓
2 − 1

𝑙ℎ𝑐𝑎ℎ−𝑙𝑣𝑐𝑎𝑣

𝐼𝑧
−
𝑙𝑣
2𝑐𝑎𝑣+𝑙ℎ

2𝑐𝑎ℎ

𝐼𝑧𝑣𝑟𝑒𝑓

⌉

⏟                  
𝐴

[
𝛽𝑠(𝑘)

𝑟𝑦(𝑘)
]

+ [

𝑐𝑎𝑣

𝑚𝑣𝑟𝑒𝑓

𝑙𝑣𝑐𝑎𝑣

𝐼𝑧

]

⏟    
𝐵

𝛿𝑙(𝑘) + [
1
0
]

⏟
𝐵𝑑

𝑑(𝑘)

[
𝛼𝑦(𝑘)

𝑟𝑦(𝑘)
] = [

−
𝑐𝑎𝑣+𝑐𝑎ℎ

𝑚

𝑙ℎ𝑐𝑎ℎ−𝑙𝑣𝑐𝑎𝑣

𝑚𝑣𝑟𝑒𝑓

0 1
]

⏟              
𝐶

[
𝛽𝑠(𝑘)

𝑟𝑦(𝑘)
] + [

𝑐𝑎𝑣

𝑚

0
]

⏟
𝐷

𝛿𝑙(𝑘)

   

(68) 

where 𝛽𝑠(𝑘) denotes the vehicle side slip angle, 𝑟𝑦(𝑘) is the 

yaw rate, 𝛿𝑙(𝑘) is the steering wheel angle as the input, 𝛼𝑦(𝑘) 

is the lateral acceleration, 𝑣𝑟𝑒𝑓  is the vehicle reference 

velocity, 𝑚 is the total mass, 𝑐𝑎𝑣  is the front tire cornering 

stiffness, 𝑐𝑎ℎ is the  rear tire cornering stiffness; 𝑙𝑣  is the 

distance from the vehicle centre of the gravity to the front 

axle, 𝑙ℎ is the distance from the vehicle centre of the gravity to 

the rear axle, 𝑙𝑧 is the moment of the inertia about the z-axis of 

the vehicle. In addition, 𝑑(𝑘) is the process disturbance, 

denoted by  

𝑑(𝑘) = −
𝑔

𝑣𝑟𝑒𝑓sin (𝛼𝑥)
 

where 𝑔 is the gravity constant, and 𝛼𝑥 is the road bank angle.  

 

When the vehicle speed is 150km/hour and the sampling 

time is 0.01s, the discrete-time dynamic model can be 

described as follows. 

{
 
 
 
 

 
 
 
 ⌈

𝛽𝑠(𝑘 + 1)

𝑟𝑦(𝑘 + 1)
⌉ = ⌈

0.9617 −0.0091
0.4328 0.9544

⌉
⏟            

𝐴

[
𝛽𝑠(𝑘)

𝑟𝑦(𝑘)
] +

                       [
0.009586
0.3692

]
⏟      

𝐵

𝛿𝑙(𝑘) + [
1
0
]

⏟
𝐵𝑑

𝑑(𝑘)

[
𝛼𝑦(𝑘)

𝑟𝑦(𝑘)
] = [

−153.9 2.413
0 1

]
⏟          

𝐶

[
𝛽𝑠(𝑘)

𝑟𝑦(𝑘)
] + [

48.07
0

]
⏟    

𝐷

𝛿𝑙(𝑘)

       

(69) 

 (a). Robust fault estimator design. 

Here we consider the scenario when the actuator of the 

steering angle and the sensor of the lateral acceleration both 

have faults. The actuator fault occurs at 50s with 80% offset of 

the input signal. The acceleration sensor fault happens at 10s 

with the slope rate −0.1, then keeps the value at −1 from 20s 

to 30s, next increases at 30s with the slope rate 0.1, and finally 

disappears at 40s. 

In terms of the original system matrices 𝐴, 𝐵, 𝐶, 𝐷 and 𝐵𝑑  

defined by (68), we can easily construct the augmented 

matrices 𝐸𝑒 , 𝐴𝑒, 𝐵𝑒 , 𝐶𝑒 , 𝐵𝑑𝑒 , 𝑁𝑒 , and 𝑁𝑑𝑒  in the form of (3) and 

(18). 

Choose the derivative observer gain as 

𝐿𝑒 = [
0 0 0 0 0 50 0
0 0 0 0 0 0 50

]
𝑇

 .               (70) 

Selecting α = 0.001, β = diag(0, 0.01) and solving the 

matrix inequality (21), we can obtain the proportional gain: 
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 𝐾𝑒 =

[
 
 
 
 
 
 
−0.0103 −0.1786
−0.0102 7.3043
−0.0110 1.6314
6.4656 −85.8152
0.0160 −0.2123
6.6208 28.7726
0.0236 5.7595 ]

 
 
 
 
 
 

                    (71)                                 

Therefore, using the estimator in the form of (5) and real 

data from a vehicle company, we can get simulated curves of 

the states, faults and their estimates. Fig. 1 and Fig. 2 are 

states 𝛽𝑠 and 𝑟𝑦  and their estimates, which have shown 

excellent state estimation performance.  

 
Fig. 1. State 𝛽𝑠 and its estimation. 

 

 
 

Fig. 2. State 𝑟𝑦 and its estimation. 

 

Fig. 3 and Fig. 4 are the actuator fault, sensor fault and their 

estimates, respectively. The curves have shown that the faults 

have been tracked successfully. The lateral acceleration sensor 

noise is a band-limited noise signal, and Fig. 5 exhibits the 

noise signal and its estimation. 

 

 
 

Fig. 3. Steering wheel angle actuator fault and estimation. 

 

From Fig. 6, one can see the actuator fault and sensor fault 

have seriously distorted the system output signal 𝛼𝑦(𝑘).  In 

the meanwhile, the actuator fault has significantly distorted the 

output signal 𝑟𝑦(𝑘), seen from Figure 7. Therefore, there is a 

motivation for fault tolerant control. 

 
 

Fig. 4. Lateral acceleration sensor fault and estimation. 

 

 
 

Fig. 5. Lateral acceleration noise and estimation. 

 

 
 

Fig. 6. System output 𝛼𝑦 with and without faults. 

 

 
 

Fig. 7. System output 𝑟𝑦 with and without faults. 

 

(b). Robust fault tolerant design. 

As the actuator fault is the offset of the input signal, one has 
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𝐵𝑎 = 𝐵 and 𝐷𝑎 = 𝐷. Therefore, one can obtain 𝐹𝑎 = 1 in 

terms of (37). It is noted the system matrix of (69) is stable, 

therefore we can simply choose 𝐹𝑒 = [𝐹, 𝐹𝑎, 𝐹𝑠, 𝐹𝜔] =
[0 0 1 0 0 0 0]. After implementing actuator and sensor signal 

compensation following (iii) and (iv) of the procedure 2, we 

obtain the compensated output response curves in Fig. 8 and 

Fig. 9. It is shown that the distortion has been removed and the 

system performance has been recovered after the fault tolerant 

design. 

 
 

Fig. 8. System output 𝛼𝑦 after fault tolerant control. 

 
 

Fig. 9. System output 𝑟𝑦 after fault tolerant control. 

 

In order to attenuate the influence of the process disturbance 

(70), we obtain the gain matrix 𝐹 = [−3.1923    0.0472] by 

solving the matrix inequality (68). Furthermore, the control 

matrix can be selected as  

𝐹𝑒 = [−3.1923 0.0472 1 0 0 0 0]. 
After the implementation of the fault tolerant control (see 

(iii) and (iv) of the procedure 2), we can obtain the 

compensated system outputs in Fig. 10 and Fig. 11, which 

indicate the system output performances are consistent with 

and without faults under the proposed fault-tolerant design 

schemes. 

 
Fig. 10. System output αy after robust fault tolerant control. 

 
 

Fig. 11. System output ry after robust fault tolerant control. 

 

Remark 8:  The above simulated results have shown that the 

estimation and fault-tolerant control methods proposed in the 

paper have excellent robustness performance against process 

disturbances and measurement noises, which are in an 

advantageous position compared with the known techniques 

that did not take into account the robustness issue or assumed 

the input disturbances and measurement noises were in the 

same forms [28-30].  

Remark 9: Different selection of the values of α and 𝛽 may 

affect the fault estimation performance, which would further 

affect the quality of fault-tolerant control. Generally speaking, 

the lower are the values 𝛼 or 𝛽, the better estimates are the 

concerned faults. For the multiple faults concerned, there are 

trade-offs of the estimation performance when adjusting 𝛼 and 

𝛽.   

V. CONCLUSION 

An integrated fault estimation and fault tolerant control 

approach has been proposed for discrete-time dynamic 

systems, which has been mathematically proved and real-data 

demonstrated in a vehicle lateral dynamic system. The 

proposed design is motived by real-time monitoring and fault-

tolerant design, which may find a wide scope of applications 

in various engineering systems.  

Further results are anticipated by extending/applying the 

proposed fault estimation and fault tolerant control techniques 

to more complex systems such as Markovian jump processes 

[32], time-varying systems [33], distributed systems [34], 

swarm systems [35] and hybrid systems [36].    
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