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Abstract 

Objective: To examine the effects of consuming a galactose carbohydrate (CHO) drink on 

substrate oxidation, post-exercise satiety and subsequent energy intake.   

Methods: Nine recreationally active eumenorrheic females undertook three trials, each 

consisting of running for 60-minutes at 65% VO2peak followed immediately by a 90-minute rest 

period.  Prior to (300 ml) and at every 15 minutes during exercise (150 ml), participants 

consumed either a glucose (GLU: GI 89) or galactose (GAL: GI 20) drink each containing 45g 

of CHO, or an artificially-sweetened placebo (PLA).  Following the rest period, participants 

were provided with an ad-libitum test lunch and asked to record food intake for the remainder 

of the day.   

Results: Plasma glucose was significantly greater throughout exercise and rest following the 

GLU trial compared with the GAL and PLA trials (P<0.05), however there were no differences 

in CHO oxidation.  Hunger was significantly lower (P<0.05) throughout the GAL compared to 

the GLU and PLA trials.  There were no significant differences between trials for energy intake 

during the post-exercise meal.  Overall net energy balance for the 24-hours was negative in 

both the GAL (-162±115 kcal; P<0.05 vs. GLU) and PLA trials (-49±160 kcal).   

Conclusions: Results demonstrate that ingesting a solution containing galactose before and 

during exercise can positively impact post-exercise satiety and energy balance throughout the 

day, compared to a more readily available and widely consumed form of CHO.  Despite this, 

there appears to be no apparent benefit in consuming a CHO beverage on fuel utilization for 

this moderate exercise intensity and duration. 
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INTRODUCTION 

As the global prevalence of overweight and obesity continues to rise, the prevention of 

weight gain through restricted energy intake and increased physical activity are 

continually investigated [1].  It is well known that aerobic exercise is effective at 

preventing weight gain [2] and altering substrate metabolism during and following 

exercise.  Several studies have reported increases in fat oxidation following exercise 

[3-5], which is known to protect against long-term weight gain [6].  Studies have also 

reported that post-exercise energy intake is related to substrate metabolism during 

exercise, such that increased fat oxidation during exercise has been associated with 

significantly lower post-exercise energy intake [7, 8].  Despite this, exercise has also 

been reported to enhance an individual’s desire to compensate for the energy 

expended [9] as well as manipulating the sensitivity of satiety signals [10] whereby 

hunger and food palatability following exercise are increased [11].  Despite these 

findings, the influence of nutritional status on appetite regulation and energy intake 

following exercise is not entirely understood. 

 

The ingestion of CHO before exercise has been shown to modify the relative 

contributions of substrates as well as post-exercise energy intakes.  Studies have 

shown that consuming a low glycemic index (GI) meal before exercise results in a 

higher rate of fat metabolism and maintenance of blood glucose levels  [12-14].  While 

it may be intuitive that a low CHO diet (<20g per day) would lead to better glycemic 

control, studies have reported lower exercise-induced reductions in blood glucose 

whilst participants consumed a low GI meal.  This approach may be safer in terms of 

reducing hypoglycemic risk during exercise following meal-induced hyperinsulinemia 

[15].  A number of short-term intervention studies have also shown that low GI meals 

increase satiety (feeling full) [14] and delay the return of hunger, and/or reduce energy 

intake at a later meal compared with high GI meals [16].  However, it has been reported 
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that the GI concept lacks clinical utility because the differences in glycemic indexes of 

foods are lost once these foods are consumed in a mixed meal [17].   

 

The majority of studies that have investigated the impact of exercise on substrate 

utilization and post-exercise energy intake have only fed participants before exercise 

[18, 19].  Indeed, the GI literature has focused on pre-exercise feeding, typically 2-3 

hours before exercise [13, 20, 21]. However, the consumption of CHO drinks during 

exercise has become commonplace not only in elite performers, but also recreational 

athletes in order to maintain hydration and delay fatigue. In addition, King et al. [22] 

reported that ingesting a CHO beverage during exercise was compensated for through 

a subsequent lowering of post-exercise energy intake.  The vast majority of research 

regarding CHOs used in sports drinks has focused on the monosaccharide’s glucose 

and fructose, the disaccharide sucrose and the synthetic polymer maltodextrins 

(glucose polymers) [23, 24].  A third primary sugar, galactose, is rapidly absorbed at 

similar rates to glucose by the same sodium co-transport system (SGLT1, [25]) and is 

unlikely to cause gastrointestinal distress; unlike other low glycemic CHOs such as 

fructose [26].  Galactose has no primary insulin drive [27] so is unlikely to suppress fat 

oxidation and much like low GI foods, provides a more stable plasma glucose profile 

over time [28].  

 

To date, the effects of exercise and ingestion of a CHO solution on substrate 

metabolism, appetite and subsequent energy intake has received little attention.  

Whilst it may appear counterintuitive to consume excess calories during exercise as a 

form of weight maintenance, Melby et al. (2002) reported that consuming a glucose-

based CHO drink during moderate-intensity (65% maximal oxygen uptake) exercise 

resulted in a lower energy intake throughout the remainder of the day[29].  This may 

have important implications for weight control.  However, energy balance was not 

calculated and therefore further investigation is warranted. In addition, the 
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consumption of glucose was shown to elevate insulin concentrations thus suppressing 

fat oxidation during exercise, an undesirable effect for those utilising diet and exercise 

as a weight-loss tool.  Achten and Jeukendrup [30] have outlined that when CHO is 

ingested before the start of exercise, fat oxidation is significantly lower than during 

fasting conditions in most studies, but that the magnitude of this is reduced when low 

glycemic formulations are consumed pre-exercise.  Thus, formulations including 

galactose, which deliver exogenous CHO as well as having the potential to maintain 

or increase fat oxidation and reduce subsequent food intake, may have important 

implications for those who wish to exercise to lose weight or maintain weight loss. 

Given that the majority of research has been carried out with males, little is known 

about the nature of such responses in females. This is despite the fact that women are 

more likely to seek a diet or exercise programme for weight loss purposes [31].  Studies 

have consistently demonstrated that gender differences exist in postprandial glucose 

metabolism, and the utilization of CHOs and lipids as fuel sources [32, 33]. Therefore, 

there is a clear need for further research into the impact of supplementation before and 

during exercise on substrate utilization in females, post-exercise satiety and energy 

balance. 

 

The purpose of the present study was to investigate the effects of consuming a 

galactose CHO drink versus a glucose CHO drink or placebo drink before and during 

exercise on substrate oxidation, post-exercise satiety and subsequent energy intake 

in recreationally active females.  

 

MATERIALS AND METHODS 

Participants 

Eleven healthy, moderately active females were recruited to participate in this study; 

Only 9 participants completed the experimental trials due to cannulation difficulties in 

one participant and an injury occurring in another. Their mean (SD) age, height, 
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weight, body mass index (BMI) and VO2peak were 21.83.4 years, 170.00.6 cm, 

63.37.6 kg, 22.72.31 kg/m2 and 50.77.0 ml/kg/min respectively.  None of the 

participants were pregnant or lactating or reported any medical conditions, and all had 

normal resting hemoglobin levels (11.5-16.5 g/dl).  All trials were carried out during the 

follicular phase (days 1-14) of the menstrual cycle (eliminating the influence of 

hormone interaction on substrate utilization) [34].  A criterion for inclusion in the study 

was that participants exercised regularly, scored at least 2 on the International Physical 

Activity Questionnaire (IPAQ [35]) and were able to run for one hour continuously at 

about 65% VO2peak. Analysis of the IPAQ led to the classification of the sample as 

recreationally active and none were trained runners.  Leeds Beckett University Faculty 

Ethics Committee approved the protocol and all participants gave their written informed 

consent. 

 

Preliminary measurements 

Following familiarisation with treadmill running and experimental procedures, 

participants undertook two preliminary tests in order to determine: 1) the relationship 

between running speed and oxygen uptake using a 16 min incremental test and 2) 

their VO2peak using an uphill incremental treadmill test to exhaustion. All preliminary 

tests were conducted according to procedures previously described [36]. Using 

regression analysis, oxygen uptake, running speed and VO2peak were used to 

determine the running speed equivalent to 65% of each participant’s VO2peak (average: 

8.6 ±1.0 km/h).  

 

Experimental Protocol 

All participants completed three experimental trials in a randomised crossover design 

double-blind procedure separated by at least 5 days.  For 2 days prior to the first trial, 

participants recorded their diet and exercise routine so that it could be repeated before 
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the following trials to minimise differences in pretesting intramuscular substrate 

concentrations between experimental trials [21]. 

 

After an overnight (12 hour) fast and having refrained from any strenuous activity, 

alcohol and caffeine consumption in the previous 24 hours, participants were provided 

with their breakfast to consume at home on the morning of the experiment (at 0800 

hours). Participants were asked to complete a check list to ensure these procedures 

and timings were accounted for.  Following this, participants were asked to refrain from 

eating or drinking (apart from water which was recorded on the first occasions and 

repeated for subsequent trials) until they arrived at the laboratory at 1000 hours.   

 

On arrival at the laboratory, anthropometric variables and blood pressure were 

recorded before participants were asked to complete subjective scales for hunger, gut 

fullness and thirst.  Basal blood samples were drawn from an indwelling cannula and 

participants were then provided with one of the three test drinks (GLU, GAL or PLA).  

They were asked to consume 300ml of the test drink within 5 minutes.  Participants 

then completed a 5-minute warm up at 60% VO2peak on a motorised treadmill (Model 

ELG 70, Woodway, Weilam Rhein, Germany) after which the speed was increased to 

that which represented 65% of their VO2peak.  All participants then completed 60 

minutes running at this speed.  Each exercise session was designed to be equal both 

in intensity and duration. These exercise sessions have been shown to induce a 

significant increase in fat oxidation [37, 38] and have been used in previous studies in 

healthy women [14, 39].  During the exercise period, heart rate was monitored 

continuously by a radio telemetry monitor (Polar vantage NV, Kemple, Finland); blood 

samples drawn and subjective scales were taken at 15 minute intervals; and expired 

air samples were obtained continuously.  At the end of the exercise period, participants 

removed surface sweat and were weighed in minimal clothing.  Participants were then 

asked to rest in the laboratory lounge for a further 90 minutes and blood and expired 
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air samples were taken at regular intervals (15, 30, 60 and 90 minutes post-exercise).  

Participants were instructed not to eat or drink anything other than water, which was 

available ad-libitum throughout the first trial, and matched for volume during the 

following trials. 

 

At the end of the rest period, participants were provided with a standard pasta-based 

test meal to consume.  Following the voluntary termination of the meal, participants 

were free to leave the laboratory and were asked to record all foods and drinks 

consumed and activity performed for the remainder of the day in a food and exercise 

diary provided.  An estimated food diary method was chosen as opposed to a weighed 

inventory in order to reduce participant burden as well as to maintain the quality of the 

data [40].  Data was analyzed using the dietary analysis software Netwisp (version 8.0, 

Tinuviel Software, Warrington, UK).   

 

All trials were performed at the same time of day and under similar experimental 

conditions.  The same motorised treadmill was used throughout the study.  Ambient 

temperature (mean±SD: 19.0±0.9 °C) and relative humidity (41.6±5.2 %) were 

recorded each morning during the trials.   

 

Blood sampling and analysis 

Following baseline anthropometric measures and subjective scales, participants 

rested on a bed for at least 10 minutes.  A cannula (Venflon, 18G, Becton Dickinson 

Ltd, Helsingborg, Sweden) was inserted in an antecubital vein and a slow running 

infusion of a sterile saline solution (0.9%) was started to keep the cannula patent.  

Blood samples were drawn via a vacutainer tube; at least the first 2mL was discarded 

to avoid contamination with saline’.  Blood samples drawn for both plasma glucose and 

plasma lactate were collected in fluoride oxalate tubes, while those for serum insulin 

and serum free fatty acids were collected in plain tubes. Serum samples were left for 
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at least 30 minutes to clot at room temperature, and all other samples were stored on 

ice until the end of the rest period and spun within three hours of sampling.  Whole 

blood was spun at 3000rpm at 4°C for 10 minutes and plasma/serum was aliquoted 

into tubes as required for analysis.  Aliquots were frozen at -80°C until further analysis.  

Plasma samples were analyzed enzymatically for glucose and lactate concentration 

on a semiautomatic analyzer (ILab 2300 stat plus analyzer, Instrumentation 

Laboratories, Warrington, UK). Serum FFA concentrations were analyzed using a 

WAKO enzymatic colorimetric kit (Alpha Laboratories, Eastleigh, UK) adapted to an 

ILab 2300 stat plus analyzer.  Serum insulin concentrations were transported to the 

Department of Chemical Pathology at Leeds General Infirmary and analyzed by an 

ADVIA sandwich immunoassay using chemiluminescent technology (Siemens ADIVA 

Centaur, IL, USA).  All analyses were made in duplicate. To eliminate inter-assay 

variation, samples from each participant were analyzed in the same run. The within-

run precision (coefficient of variation) for plasma glucose, plasma lactate, serum insulin 

and serum free fatty acids was 0.5 to 0.6%, 1.0 to 1.9%, 3.2 to 4.6% and 1.1 to 2.7%, 

respectively. 

 

Expired air samples and substrate oxidation 

Samples of expired air were collected continuously throughout the exercise period 

using an online automated gas analysis system (Meta-Max 3B, Cortex, Leipzig, 

Germany) to determine oxygen uptake and carbon dioxide production. Samples of 

expired air were collected continuously throughout the exercise period, but samples 

were averaged for 5-minute periods at 10-15, 25-30, 40-45 and 55-60 minutes during 

exercise.  During the rest period (R), 5-minute samples of air were collected but 

participants wore the mask for 5 minutes previous to this collection period for 

stabilisation of measures.  The digital triple V volume transducer was calibrated using 

a 3-L syringe (Hands Rudolph, Inc., Shawnee KS) and the gas analyzers were  

calibrated using room air and a mass standard gas mixture (alpha-gravimetric 
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standard: BOC gases, Guildford, United Kingdom) of oxygen and carbon dioxide in 

nitrogen equivalent to expired air (15% O2 and 5% CO2).   

 

Total fat and CHO oxidation (g/min) were calculated using the following non-protein 

stoichiometric equations [41], with the assumption that protein oxidation during 

exercise was negligible:  

 

Fat oxidation rate (g/min) = (1.695 x VO2) – (1.701 x VCO2)  

CHO oxidation rate (g/min) = (4.585 x VCO2 ) – (3.226 x VO2) 

 

Energy Balance 

Each individual’s energy expenditure (EE) was calculated using the Schofield equation 

[42] to estimate basal metabolic rate (BMR) and physical activity levels from the 

exercise diary.  Participants were asked not to exercise outside of the laboratory-

controlled condition; however other daily activities such as walking were taken into 

account.  The respective energy potential from CHO (4.1 kcal/g) and fat (9 kcal/g) was 

calculated to estimate expenditure during the exercise protocol and added to EE to 

compute total energy expenditure (TEE) throughout the day.  Relative energy balance 

was calculated for the exercise and rest period as the energy intake (test drink + ad-

libitum test meal) minus the energy expended (during exercise + rest period). In 

addition, the total 24-hour energy balance was computed, using the total energy intake 

(breakfast + drink + test meal + self-reported intake) minus the TEE (BMR + during 

exercise + rest period +self-reported exercise). 

 

Subjective scales 

Prior to cannulation and thereafter during each blood sampling period, subjective 

assessment of hunger, thirst and gut fullness was recorded. These assessments were 

made using a modified 6-20Borg Scale [43] with revised anchors.   
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Test meals 

Each individual’s daily energy requirement (DER) was calculated using the Schofield 

equation [42] to estimate basal metabolic rate (BMR) and physical activity levels from 

the IPAQ. The nutritional content of each meal was calculated from information 

provided by the manufacturer.  On the morning of each trial, participants were provided 

with a standardised breakfast consisting of Rice Krispies (Kellogs, Manchester, UK) 

and semi-skimmed milk.  The cereal:milk ratio was 30g:125ml.  This meal was 

equivalent to 10% of the individuals DER and the proportion of energy from protein, fat 

and CHO was 14, 14 and 72% respectively.  Participants were given 15 min to 

consume the entire contents of the breakfast meal.  The prescription of breakfast for 

this study, compared to participants arriving in a fasted state, looked to replicate real-

world habitual circumstances for recreational exercisers. 

 

A standard pasta-based lunch was provided to participants for all three trials as 

outlined previously [14].  Participants were initially provided with a dish containing 300g 

to which 200g was added by the experimenter before the dish became empty and the 

participant continued to eat.  This process was repeated until the participant indicated 

that they wished to terminate the meal.  This ensured that the cue of an empty dish did 

not prompt the termination of eating.  

 

Test drinks 

Participants ingested solutions containing glucose (D-Glucose monohydrate, Thornton 

and Ross, Huddersfield, UK) galactose (D-galactose, Hollandche, Melk & Suiker, 

Fabrique, The Netherlands) or an artificially sweetened placebo (distilled water). The 

CHO drinks provided 45g of CHO for 750ml consumed (approximately 0.71 g/kg/BM/h 

CHO) at pre (300ml), 15 min (150ml), 30 min (150ml) and 45 min (150ml) during 

exercise.  The GI of the CHOs was approximately 89 and 20 for the GLU and GAL 
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drinks respectively based on previous calculations [44].  All three solutions contained 

1.5g sodium chloride (Premier Foods, Hertfordshire, UK), and 1.0ml of lemon flavoring 

(Sainsburys Ltd, London, UK) all dissolved in 1000 ml of distilled water.  The aim was 

to provide the same amount of CHO in both the GLU and GAL drinks.  As glucose 

monohydrate contains one extra H2O molecule, 67.11g of glucose monohydrate was 

given in the GLU trial and 60.00g of galactose in the GAL trial.  The placebo (PLA) 

solution was indifferent from the CHO solutions in taste and appearance and contained 

exactly the same ingredients, except that the CHOs were replaced by a non-caloric 

sweetener (Sweetex, Reckitt Benckiser U.K. Ltd).   An independent triangle sensory 

test revealed 25% correctly identified drinks; less than would be expected to occur 

purely by chance.  Drinks were prepared by an independent researcher. 

 

Statistical analysis  

Data were analyzed using PASW software (version 17; IBM SPSS Statistics, Chicago, 

IL, USA).  All data are presented as means with their standard errors unless otherwise 

stated.  Prior to analysis, data were checked for acceptable values of normality 

(Kolmogorov-Smirnov test) and homogeneity of variance (Levene’s test); all data were 

identified as normally distributed.  The alpha was set to 0.05 for all statistical analysis.   

Paired samples t-tests were used to check for differences in baseline values for all 

variables.  A two- way (time x trial) repeated measures analysis of variance (ANOVA) 

was used to determine differences in physiological, metabolic and subjective 

responses between all three drinks trials. Where suitable, a Holm-Bonferroni stepwise 

post hoc test was utilised to determine differences between conditions and time 

interactions (alpha level of 0.0166 per test (0.05/3)).  Incremental area under the curve 

(AUC) was calculated according to Wolever and Jenkins [45] using the trapezoidal rule.  

ANOVA with a within subjects factor of treatment was used to identify any differences 

in incremental area under the curve (IAUC) for glucose, insulin and total CHO and fat 

oxidation between trials, calculated for both the exercise and complete trial periods.  
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Data are reported as mean ±SEM.  ANOVA with a within subjects factor of treatment 

was used to identify any differences in incremental area under the curve (IAUC) for 

glucose, insulin and total CHO and fat oxidation between trials, calculated for both the 

exercise and complete trial periods.  Data are reported as mean ± standard error of 

the mean (SEM).   

 

RESULTS 

Plasma glucose and serum insulin 

There was a significant main trial effect for plasma glucose concentrations which were 

higher in the GLU trial compared to the GAL (P<0.05) and PLA (P<0.05) trials (Figure 

1A).  This was true for both exercise and resting periods.  Main effects of time were 

apparent for both GLU and GAL trials (P<0.05).  The incremental area under the curve 

(IAUC) for plasma glucose was greater for the GLU trial (341.2±10.1 mmol/l/h) 

compared to the GAL (315.1±6.3 mmol/l/h) and the PLA trials (303.5±7.1 mmol/l/h) 

(P<0.05). 

 

There was a main trial effect for serum insulin concentrations to be higher throughout 

the GLU trial when compared to GAL (P<0.05) and PLA trials (P<0.0001) and 

throughout the GAL trial compared to the PLA trial (P<0.05) (Figure 1B).  Post-hoc 

analysis revealed significant differences at several time points.  The IAUC for serum 

insulin throughout the trial was significantly greater in the GLU trial (692.9±50.2 mU/l) 

compared to the GAL (543.2±67.1 mU/l) and PLA (314.0±29.1 mU/l) trials (P<0.05) 

again confirming the main trial effect.               

 

Serum free fatty acid (FFA) 

There was a main trial effect for serum FFA concentrations (P<0.0001), such that 

concentrations in the PLA trial were significantly greater than GLU and GAL trials at 
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several time points (P<0.05) (Figure 1C).  No significant differences were apparent 

between the GLU and GAL trials.   Main effects of time were apparent for all trials 

(P<0.05). 

 

 

 

Blood Lactate 

Throughout the exercise and subsequent rest period, there were no significant 

differences between trials (Figure 1D).  At the end of the rest period, blood lactate had 

returned to baseline levels or below for all trials.   

 

Respiratory Exchange Ratio (RER) and estimated CHO and fat oxidation rates 

There were no significant differences between trials for RER (0.97±0.08, 0.96±0.07 

and 0.96±0.08 for GLU, GAL and PLA trials respectively) during exercise (Table 1).  

During the rest period, RER was significantly greater for the PLA trial compared to both 

GLU and GAL trials at 15R and 30R min (P<0.05).  IAUC measures indicated there 

were no differences between complete trials for CHO oxidation (63.3±4.1 g/h, 62.9±5.5 

g/h and 58.7±3.8 g/h for GLU, GAL and PLA trials respectively) (Figure 2A).  Main 

effects of time were apparent for all trials (P<0.05).  IAUC measures indicated that fat 

oxidation was greater in the PLA (9.8±0.9 g/h) compared to the GLU trial (6.9±0.9 g/h) 

(P<0.05) throughout the duration of the exercise, however there was no main trial effect 

for the full duration of the trial (Figure 2B).   

 

Hunger, gut fullness and thirst scales 

Throughout the exercise period following the drinks ingestion, ratings of hunger 

remained similar to that at baseline in the GLU and PLA trials, and reduced below 

baseline levels for the GAL trial such that there was a significant main trial effect for 

hunger values (P<0.05) (Table 1).  During the rest period, hunger increased (time 
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effect, P<0.05) in all three trials.  Gut fullness values increased steadily throughout the 

exercise period for all three trials, after which values declined to below baseline (time 

effect, P<0.05).  Thirst values remained within a small range for all three trials 

throughout the exercise and rest periods (between 7.5 and 10.0) and there were no 

differences between trials (Table 1). 

 

Rating of perceived exertion (RPE) and heart rate 

RPE increased throughout the exercise period (P<0.05) across all conditions, from 

average values of 10.4±0.1 to 11.2±0.1.  There were no significant differences between 

trials overall or at any timepoint. 

No differences were observed in heart rate during the 60 min exercise period between 

trials (161.9±17.5 bpm, 157.1±17.7 bpm and 161.5± 11.8 bpm for GLU, GAL and PLA 

trials respectively). 

 

Energy balance for the exercise and rest period and estimated 24 hour period  

Table 2 reports the energy intake and expenditure throughout the course of the 

exercise and rest periods, whereby intakes and expenditure were controlled, as well 

as during the self-reported periods, whereby intake and expenditure were estimated.  

The overall mean energy expenditure during exercise was 583±30 kcal, 607±57 kcal 

and 624±35 kcal for GLU, GAL and PLA trials respectively, and was not significantly 

different between trials (P=0.578).  In addition, the impact of the drinks ingestion on 

energy intake at the test meal revealed no significant differences between the three 

trials (838±139 kcal, 818±103 kcal and 847±111 kcal for GLU, GAL and PLA trials 

respectively).  Relative energy balance was calculated for the exercise and rest period 

as the energy intake (test drink + ad-libitum test meal) minus the energy expended 

(during exercise + rest period) as these were controlled. Results demonstrated a 

positive energy balance in all three conditions, however there was a significant 
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difference (P<0.05) between energy balance for the GLU (261±143 kcal) and PLA trials 

(27±65), but not when compared to the GAL trial (196±108 kcal). 

 
In addition, the total 24-hour energy balance was computed, using the total energy 

intake (breakfast, drink, test meal and self-reported intake) minus the TEE (during 

exercise + rest period + self-reported exercise).  Energy balance results demonstrated 

the net daily energy balance to be 308±204 kcal, -162±115 kcal and -49±159 kcal for 

GLU, GAL and PLA trials respectively.  The average difference of 468±147 kcal 

between GLU and GAL/PLA trials was significantly different (P<0.05).   
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DISCUSSION 

The aim of the present study was to investigate the effects of consuming a galactose 

CHO drink versus a glucose or placebo drink before and during exercise on substrate 

oxidation, post-exercise satiety and subsequent energy intake in recreationally active 

females.  The main findings of the study were that there was a significant improvement 

in metabolic profile for the GAL and PLA trials compared to the GLU trial (sustained 

blood glucose and reduced insulin response), however there were no differences in 

fuel utilization for the duration of the trial (exercise and rest).  Throughout the controlled 

exercise and rest period, there was a positive energy balance for all trials, which was 

lowest for the PLA trial.  It therefore appears that there is no apparent benefit to 

consuming a CHO beverage for this duration and intensity of exercise in recreational 

females. 

 

No differences in fuel utilization during exercise were observed between GAL and GLU 

CHO trials, despite significant differences in plasma glucose concentrations during 

exercise.  These findings are in agreement with previous studies reporting no 

differences in whole body substrate utilization during exercise at 65% VO2peak, after 

pre-exercise consumption of glucose, galactose or trehalose [46] or galactose, glucose 

and fructose combinations [47].  It is therefore likely that the continuous intake of the 

drinks throughout the exercise period, or the moderate intensity of the exercise 

protocol, resulted in a reduction in glucose requirements as the main fuel substrate.  

Previous studies have reported a reduced thermogenic effect after consumption of a 

sugary beverage.  The energy expenditure between conditions during exercise was 

583±30 kcal, 607±57 kcal and 624±35 kcal for GLU, GAL and PLA trials respectively, 

was not significantly different between trials, but does indicate some thermogenic 

effect between the CHO and non-CHO beverages.  There appears to be no previous 
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studies reporting the thermogenic effect of beverages containing different 

carbohydrates, which warrants further investigation over a longer period. 

 

In addition, the consumption of GAL prior to and during exercise had no significant 

effect on fat oxidation during exercise or the subsequent resting period.  However, in 

assessing the total IAUC for all trials, it is evident that ingesting GAL resulted in a 

12.1% greater oxidation of fat when compared to ingesting GLU, likely to be due to the 

reduced insulinemic response.  For the purposes of this study, in assessing the effects 

of these CHO formulations on energy balance, the exercise intensity and duration was 

kept constant.  However, previous studies have reported that ingestion of CHO 

corresponds with an increase in self-selected exercise intensity [48].  Other studies 

have consistently demonstrated that ingesting CHO leads participants to feel better 

during treadmill exercise and report lower rating of RPE [49, 50].  Indeed, we have 

reported such findings in the same population [51].  Thus, such observations whereby 

optimal CHO availability and better glycemic control is accompanied with an increased 

fat oxidation may be particularly pertinent for those wanting to exercise for weight loss 

or maintenance purposes.   

 

Similar findings are reported in studies when a low GI meal is consumed up 2-3 hours 

prior to exercise, compared to consuming a high GI meal [12-14, 52, 53].  Given the 

observed shifts in substrate oxidation in the present study with a relatively small sample 

size, it would be of interest to investigate the manipulation of CHOs in pre-exercise 

feeding in addition to supplementation during exercise.  It is yet to be determined what 

effect this would have on self-selected exercise, however the current study looked to 

replicate recommended habitual submaximal fixed-duration exercise in females [54]. 

 

As expected, perceived hunger increased and gut fullness decreased following 

exercise in all trials.  There were differences evident between the trials, with 
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consumption of the GAL drink suppressing appetite to a greater extent (lower levels of 

hunger and subsequent reduced ad-libitum energy intake).  However, these results 

were not significant.  When taking into account energy intake and expenditure, 

throughout the controlled exercise and subsequent rest periods, there was a positive 

energy balance in all trials.  These energy balance values were significantly greater in 

the GLU trial when compared to the PLA trial.  It is therefore apparent, that the energy 

intake that was offset by consumption of the PLA drink containing no energy, was not 

compensated for with an increase in energy intake at the subsequent meal.  Thus, the 

present data imply that when exercise is performed and the energy expended is 

replaced, energy balance is more favourable for weight loss when a PLA solution is 

consumed before and during exercise.  Although the consumption of a GAL CHO 

beverage elicited a more favourable metabolic profile in the exercising females, there 

appears to be no apparent benefit to consuming a CHO beverage for this moderate 

intensity exercise, as the endogenous supply of CHO energy stores to exercising 

muscles was not significantly impacted as a result of the exercise task.   For physically 

active adults who exercise for health and fitness, or for those concerned with achieving 

weight loss, ingestion of a high-energy sports drink appears counterintuitive  It so 

appears that individual variation exists regarding energy intakes in response to energy 

expenditure, as previously reported by Gonzalez et al. [55].  This may be due to 

hedonic processes driving an individual to eat [56].  Therefore, despite the drink 

consumed and energy expended, some individuals may increase energy intake to a 

greater extent following exercise (mean range of 1050 kcal for the test meal intake).  

Yet, there was a small range within individuals’ energy intake at the test meal across 

the three trials (182 kcal).  Previous research has demonstrated that moderate intensity 

exercise does not influence immediate energy intake [57-59] yet others have reported 

the possibility of the existence of a delay in the compensatory augmentation of energy 

intake in response to exercise over 3 days [18] or 7 days [60, 61].  Pomerlau et al. [18] 

observed that daily relative energy intake after low intensity exercise (40% VO2peak for 
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65 minutes) tended to be lower than no exercise at all.  With the addition of breakfast 

intake improving overall appetite responses to foods consumed later in the day [55], 

assessing the impact of formations consumed during exercise, a replication of current 

practice in recreational exercisers appeared warranted.  Despite this minimal reduction 

in the net energy deficit from each exercise bout, these data should be considered 

alongside the potential of CHO ingestion to increase self-selected intensity and thus 

overall energy expenditure, better long term adherence to exercise regimes, and 

potential reductions in energy intakes from subsequent meals [29] 

 

In assessing daily energy balance, taking into account all energy expenditure and 

intake, the mean net energy balance was negative for both the GAL and PLA trials and 

positive for the GLU trial, due to the reductions in hunger and post-exercise energy 

intake as well as a greater overall fat oxidation.  These results must be interpreted with 

caution given that they take into account self-reported energy intakes, the limitations 

and individual variations of which have been outlined previously [62].  Despite this, 

these findings could conceivably have implications for long-term regulation of body 

weight in females, given that the daily difference in energy balance between the 

consumption of GAL and PLA solutions (357 kcal) is equivalent to completing an 

additional 36 minutes of exercise (based on a female weighing 65 kg, running at 6 mph 

jogging pace).  Such an increase in activity levels is greater than the current UK 

recommendations of 30 minutes of physical activity per day [63].  Very few studies 

have reported findings on energy compensation following CHO ingestion during 

exercise.  Thus, these findings warrant further exploration in a controlled environment 

to assess energy balance accurately. 

 

CONCLUSION 

In conclusion, our findings demonstrate that ingestion of a CHO-containing beverage 

during moderate intensity exercise could be counterintuitive given that there were no 
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differences between trials in fuel utilization evident.  In addition, a more positive energy 

balance was associated with the consumption of a CHO beverage when compared to 

the consumption of a non-CHO beverage; an undesirable effect for those utilising 

exercise as a weight-loss tool.  Despite this, findings indicate that the ingestion of a 

solution containing galactose before and during exercise can positively impact energy 

balance throughout the day compared to a more readily available and widely 

consumed form of CHO, as well as eliciting a more favourable metabolic profile.  Thus, 

the present findings provide insight into a potential mechanism by which consumption 

of a solution influences appetite and feeding behavior, although further studies are 

needed to determine whether these observations extend over the longer term.   
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TABLE 1  Effects of GLU, GAL and PLA trials on RER, hunger, gut fullness and thirst scale ratings. Values are means±SEM. 
 

 Trial Time (mins) 

Variable  Pre 15 30 45 60 15R 30R 60R 90R 

RER GLU 0.79±0.05 0.94±0.02 0.94±0.03 0.99±0.03 1.00±0.03 0.94±0.07 0.91±0.07 0.88±0.06 0.95±0.08 

 GAL 0.80±0.02 0.93±0.02 0.94±0.03 0.99±0.03 1.01±0.02 0.89±0.04 0.89±0.04 0.84±0.04 0.87±0.08 

 PLA 0.82±0.02 0.94±0.02 0.94±0.02 0.99±0.03 1.00±0.04 0.81±0.03b,c 0.78±0.03b,c 0.79±0.03 0.77±0.02 

Hunger GLU 7.9±0.5 7.7±0.3 7.7±0.3 7.9±0.5 8.2±0.5 9.9±0.8 10.7±0.8 11.8±0.9 13.7±0.5 

 GAL 7.6±0.3 7.2±0.2 7.2±0.1 6.8±0.3 7.2±0.3 8.4±0.5 9.2±0.8 11.2±0.7 12.9±0.9 

 PLA 7.6±0.4 8.3±0.6 8.6±0.7 7.6±0.4 7.9±0.6 8.9±0.5 10.0±0.6 12.2±0.8 13.4±0.9 

Gut fullness GLU 11.2±0.1 12.1±08 13.0±0.7 12.9±0.7 12.4±1.0 11.7±0.7 10.2±0.8 9.3±0.4 8.7±0.6 

 GAL 12.4±1.0 11.9±0.8 12.9±0.8 13.6±0.6 13.7±0.6 12.8±0.6 11.8±0.8 9.7±0.6 9.1±0.5 

 PLA 12.8±1.4 12.4±1.2 12.4±0.8 12.8±0.7 12.9±0.6 11.1±0.5 10.9±0.6 9.0±0.5 8.2±0.4 

Thirst GLU 8.3±0.7 7.9±0.4 7.7±0.4 8.1±0.4 8.3±0.5 8.9±0.8 9.3±0.6 9.2±0.6 9.6±0.5 

 GAL 8.0±0.5 8.4±0.5 8.9±0.7 9.0±0.6 8.2±0.4 9.1±0.5 9.2±0.4 9.3±0.3 8.9±0.4 

 PLA 9.2±0.8 7.9±0.4 8.6±0.7 8.3±0.6 8.7±0.8 8.9±0.5 9.6±0.5 9.8±0.5 9.4±0.4 

bsignificant difference between GLU and PLA trials (P<0.05).  csignificant difference between GAL and PLA trials (P<0.05). 
1 



 27

TABLE 2  Energy balance for the exercise and rest periods, and estimated 24 hour period. Values are means±SEM. 2 

 

Trial    DER                   ENERGY INTAKE                                                                             ENERGY EXPENDITURE                         ENERGY BALANCE             

  A B C D E F G H Controlled 

 

Inc. self-

report 

  Breakfast 

(kcals) 

Drink 

(kcals) 

Test meal 

(kcals) 

Self 

reported 

intake 

(kcals) 

Total 

energy 

intake 

(kcals) 

BMR Exercise + 

Rest 

(kcals) 

Self-

report 

exercise 

(kcals) 

(B+C)-(G+H) (A+B+C+D)

-(F+G+H) 

GLU 2282.69 
± 41.38 

 
 

221.59 
± 5.86 

201.33 
 

837.86 
± 138.82 

1399.61 
± 118.71 

2660.39  
± 207.72 
  

1426.31  
± 37.60 

777.92 
± 35.90 

148.44 
± 14.77 

261.26 
± 143.24 

307.71 
± 203.84 

GAL 2282.69 
± 41.38 

221.59 
± 5.86 

189 818.49  
± 102.52 

998.93 ± 
87.17 

2228.01  
± 131.64 

1426.31  
± 37.60 

812.02  
± 62.88 

152.11  
± 14.89 

195.47 
± 108.31 

-162.43 
± 115.12 

 

PLA 

 
 
2282.69 
± 41.38 

 
 
221.59 
± 5.86 

 
 
0 

 
 
846.58  
± 332.53 

 
 
1307.84 ± 
165.32 

 
 
2376.00 ± 
173.56 

 

1426.31  
± 37.60 

 

819.25 
± 34.98 

 
 
179.89 
± 23.31 

 
 
27.33 
± 65.12 

 
 
-49.44  
± 159.82 

            

            

 3 
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Figure titles and legends 

 

Figure titles 

 

FIGURE 1 Effects of GLU, GAL and PLA trials on concentrations of blood glucose (A), 

serum insulin (B), serum FFA (C) and blood lactate (D) during exercise and rest (R). 

Values are means ± SEM.   

asignificant difference between GLU and GAL trials (P<0.05).  bsignificant difference 

between GLU and PLA trials (P<0.05).  csignificant difference between GAL and PLA 

trials (P<0.05). 

 

FIGURE 2 Effects of GLU, GAL and PLA trials on estimated rates of carbohydrate 

oxidation (A) and fat oxidation (B). 

 

Figure legends 
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