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Abstract 

This paper reviews recent advances in photovoltaic devices based on nanostructured materials 

and film designs, focusing on cadmium telluride (CdTe), copper zinc tin sulphide (CZTS), dye-

sensitized solar cells (DSSCs) and perovskite solar cells. The current major challenges associated 

with the development of thin film solar cells are the reduction in manufacturing cost and increase 

in efficiency and performance. The CdTe and CZTS films have been investigated extensively 

due to its cheap and abundant elemental constituents and better physical properties. Solar cells 

based on the nanostructured technology including the DSSCs have also made wide impact into 

the solar cell industry in terms of manufacturing cost and improved efficiency. Perovskite solar 

cells have received significant interest recently due to its potential high efficiency.  
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1. Introduction 

Due to the rapid growth of population and extensive usage of newly developed electricity-

consuming devices, the energy consumption throughout the world is predicted to be increased at 

the rate of 1.5% per annum from 2010 to 2040 as shown in Figure 1 [1-4], and it is estimated 

that 30 TW of energy is needed globally by the year 2050. This need will lead to a significantly 

increased energy demand from 16,999 to 42,655 Terawatt-hours (TWh) in the years from 2007 

to 2050 respectively, with an annual increase rate of 2.0% [5]. The electricity demand in the non-

Organization for Economic Co-operation and Development (non-OECD) countries grows by 

3.1% a year, which is almost three times faster than that in the OECD countries [5]. More than 

ten million people from the developing countries will need to get access to electricity up to year 

2050, and large amount of energy up to 36,948 TWh will be needed [6]. Renewable energy 

resources play a critical role in coping with this huge demand of energy consumption. Among 

these, solar cell energy is regarded as one of the best solutions, and the decrease in the 

manufacturing cost of the solar cell devices is boosting the solar energy market, which will be 

comparable with the other available renewable energy resources. The annual market share of the 

photovoltaic technologies from year 2000 to 2015 is shown in Figure 2 and the growth rate for 

the photovoltaics (PV) industry is ~30% per annum in the last decade and is increasing 

consistently [7]. The PV modules have contributed considerable power to the market annually 

which is 61400 GW by the end of 2015 [8] 

 

http://en.wikipedia.org/wiki/Organisation_for_Economic_Co-operation_and_Development
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Figure 1. World energy consumption, 2010-2040 (quadrillion BTU) 

  

Figure 2. Annual market share of PV modules  
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Today 80 to 90% of the solar cell technology is dominated by silicon-based materials [9], and 

silicon technology is the main-stream and proven to be robust technology in the PV modules. 

The reason behind is that the silicon is the leading material used in bulk (1
st
 generation), thin film 

(2
nd

 generation) and some of the nano-structured (3
rd

 generation) solar cells for photovoltaics. 

However, the highest efficiency for non-concentrated silicon solar cell design reported so far is 

25% only [10]. It is difficult to further increase the efficiency, although following methods have 

been employed:  

 Use of hydrogenated silicon [11] 

 Use of nano particles as the back electrodes [12] 

 Use of textured back surface reflector [13] 

 Use of ZnO based back reflector in triple junction thin film solar cell [14] 

 Use of concentrators on different substrates [15] 

 Use of double and triple junctions [16] 

 Incorporation of oxygen in Si, etc. [17]  

 Nanostructured designs, such as p-n junction Si micro/nano-wire arrays and quantum dots 

[18], or  nano-scale honeycomb structures [19]. 

 

There is also another concern about the high price of silicon wafers due to its extraction from the 

raw materials [20]. In order to reduce the cost and achieve high potential efficiency in the solar 

cells, it is critical to apply new materials with accompanying advantages such as abundant 

availability, less-toxicity, stability and growth with easy deposition techniques [21]. Generally, 

the recently extensively investigated solar cell materials include; thin films of CdTe, CZTS, 

SnSbS, CIGS, etc.; Dye-sensitized TiO2 and ZnO and their nanostructures; composite material 

CuO/ZnO, CIS/TiO2, etc., homojunction materials, such as Cu2O; and perovskite based solar 

cells, etc. Figure 3 shows the efficiencies plot for the key materials published in the current 

review from 2010 onward (modified from NSL website). It can be inferred from the figure that 

the efficiency of the pervoskite solar cell  increases significantly.  
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Figure 3. Solar cell efficiency chart (2010-2015) [22-26] 

2. Hetero-junction thin film solar cells  

2.1 CdTe thin films 

The research on CdTe thin film solar cell started since 1950's, and the current research efforts are 

devoted for improving efficiency of the CdTe thin film solar cells. Since CdTe has an optimal 

band gap of 1.49 eV for single-junction devices, efficiencies above 20% should be achievable in 

the commercial CdTe solar cells [27]. For example, in August 2014, First Solar reported a device 

with 21.0% conversion efficiency [28]. The efficiency of the CdTe/CdS thin film solar cells was 

reported to be 22% [29]. However, the stability of efficiency could be a potential problem for the 

CdTe based solar cells due to existence of defects in grain boundaries and intra-grain 

dislocations. It is presumed that the carriers recombine, and reduce the average life time of 

minority carriers [30]. The photovoltaic performance of the CdTe solar cells depend not only on 
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efficiency but also on many other factors such as open circuit voltage Voc, fill factor (FF), choice 

of substrate, close circuit current Jsc and area of deposition. The configuration of the solar cell 

also influences the performance of the solar cell for example, the superstrate solar cell has been 

applied  in order to improve the absorption capability of the solar cell  [31]. The maximum 

efficiency values of the laboratory and commercial scale, and the associated solar cell parameters 

with respect to different preparation methods are listed in Table 1 [31-46] 

 

Table 1.  CdTe solar parameters fabricated with close space sublimation (CSS), vapor transport 

deposition (VTD) and high vacuum evaporaton (HVE) in substrate and superstrate configuration 

 

           Superstrate configuration (Laboratory scale)  

 Method Efficiency Voc 

(mV) 

Jsc 

(mA/cm
2
) 

FF Area Substrate Ref 

 CSS 19.6% 857 28.6 80.0 1.04 Glass [47] 

 VTD 19% 872 28.0 78.0 0.48 Glass [41] 

 VTD 16.4% 835 23.8 82.5 0.36 Glass [42] 

Substrate configuration (Laboratory scale)  

 HVE 13.6% 852 21.2 75.3 0.3 Glass [43] 

Commercial technology  

 VTD 16.1% 68.7 2.25 74.8 0.72 N/A [48] 

 

 

The values of Voc and FF for the optimized deposition and fabrication technologies of the CdTe 

solar cells are around 1000 mV and 85% respectively. These optimized values of fill factor (FF) 

and open circuit voltage (Voc) along with the short circuit current density (Jsc) ~27 mAcm
-2

, can 

result in 21±0.5% efficient laboratory scale CdTe solar cell [48]. It is possible to increase Voc by 

increasing the built-in voltage and maximizing the net acceptor density in the absorber region of 

the CdTe thin film materials. It was observed that a higher value of Voc can be obtained by 

increasing the doping level (Cu dopant), but with the increase in Voc the value of FF was reduced 

which affected the overall performance of the solar cell [48]. The increase in the acceptor density 
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will decrease the width of the space charge region. Effect of compensating acceptors was also 

observed due to the probability of Cu involvement into the window layer [49]. These effects 

cause the reduction in space charge width which increases the probability of light absorbance in 

the undepleted region [50].  

 

Kim et al. [51] studied the environmental issues of CdTe thin film solar cell. Carbon emission 

from the CdTe device is 62.5% lower than a-Si PV system and 83.5% lower than a single crystal 

silicon photovoltaic panel [52]. For each gram of CO2 emission in the energy production from 

the grid, 0.03 μg arsenic, 0.01 μg of cadmium, 0.09 μg of chromium, 0.1 μg of lead (Pb) and 0.01 

μg of mercury (Hg) are emitted. Such emissions can be reduced 95-98% by using the CdTe 

based photovoltaic devices. Once the CdTe PV system is synthesized, it could be served as a 

durable and environmental friendly device for photovoltaics [53].  

 

2.2 CdTe based Quantum dots  solar cells 

 

Nanotechnology and quantum dots (nano-sized semiconductor particle) have been introduced 

into solar cells in order to further increase their efficiency above the theoretical limit set by 

Shockley-Queisser thermodynamics [54]. The properties of quantum dots are size dependent 

with extraordinary tunable band gaps, high extinction coefficient, and most importantly multiple 

exciton generation [55]. It was reported that the the band gap of CdTe can be tuned to a desirable 

value by altering the size of the quantum dot to match the desired band gap range [56]. 

 

In a quantum dot solar cell, synthesized quantum dots are subjected to illumination for the 

generation of electron hole pair inside the quantum dots. The electrons from the exciton will 

enter into the conduction band of the quantum dot where it is captured by the conduction band of 

a wide band gap semiconductor (such as AlN, GaN and TiO2) and percolates in the wide band 

gap network and eventually reaches the conducting glass (an example is shown in Figure 4). The 

electron travels through the load thus completing the circuit as it enters the device through back 

electrode. This electron after passing through different stages recombines with the hole left 

behind in the valance band of quantum dot and thus equilibrium is maintained [57]. Wang et al 

reported that multicrystalline Si solar cells with quantum dots are expected to have a maximum 
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efficiency of 77%.[58-59]. Further increase in the efficiency can be obtained from multiple 

exciton generation (MEG) from a single photon in a few materials such as PbS and PbSe [60]. 

The generation of multiple excitons has not been accomplished in the CdTe quantum dots. 

However, there are some latest investigations which revealed the generation of such multiple 

excitons [61]. The generation of multiple excitons is possible when many excitons are generated 

from a single photon upon impact ionization. The excess energy equals to the difference between 

photon energy and band gap, and this will provide a surplus temperature, which is higher than 

the lattice temperature [62]. 

 

 

 

 

Figure 4. Quantum dot solar cell (A) the electron is excited into the conduction band; (B) 

electron enters into the conduction band of TiO2; (C) electron-hole recombination after passing 

through electrolytic solution. 

 

CdTe materials show a bit higher toxicity levels than many other materials used in photovoltaics, 

and its toxicity increases as the size of the particle decreases and therefore quantum dots of CdTe 

are found to be more toxic. Song et al. [63] compared the relative toxicity of gold (Au) and 

carbon (C) nano particles with CdTe nano particles based on its metabolic activity in living cells 

and plants growth, and indicated the relative toxicity in a sequence of CdTe quantum dots, to Au 
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nano particles, and then to carbon nano dots. Xiao et al. [64] studied the toxicity of cadmium like 

materials and found that CdTe is less toxic than Cd, based upon the damage of multiple cellular 

cites of mice prompted by the quantum dots. The issue of toxicity is of great importance and how 

to handle such materials during synthesis might be a million dollar question. 

 

2.1 CZTS thin films 

Similar to the CdTe, copper indium gallium selenide (CIGS) is one of the most investigated 

candidates among the second generation or thin film solar cells with a reported maximum 

efficiency of XX%.. However, there are some issues regarding to its cost of raw materials and 

toxicity. CZTS, with a kesterite structure, is considered to be an alternative material to the CIGS 

which is currently under extensively development. CZTS is assumed to be analogous to CIGS 

when Indium (III) is replaced by Zn (II), Ga (III) is replaced by Sn (IV) and Se (VI) by S (VI). 

The first principles calculation about crystal energy suggested that both the structures can co-

exist as the crystal energy for stannite structure is only 2.86 meV per atom larger than that for the 

kesterite structure [65].  Optoelectronic and structural properties of both the CIGS and CZTS can 

be enhanced by replacing its constituent elements with earth abundant and nontoxic elements, 

such as SnSbS4 and CuS, etc [66]. For the CZTS, the high absorption coefficient (10
4 

cm
-1

) and 

optimum band gap (1.0–1.5 eV) covers the maximum solar spectrum and opens a gateway for 

economic and ecological thin films device fabrication. The highest achieved efficiency (12.7%) 

was reported via hydrazine based non-vacuum particle solution approach, although the 

theoretical efficiency value is 32.4% [52,67].  

 

CZTS has been synthesized using different techniques in the form of thin films and nano crystal 

quantum dots. The available techniques include thermal evaporation, hybrid sputtering, atomic 

beam sputtering, electron beam evaporation, pulsed laser deposition, photochemical deposition, 

iodine vapor transport method, one-pot synthesis of colloidal nanoparticles, a modified 

Bridgman technique, chemical vapor deposition, photochemical deposition, electroplating, spray 

pyrolysis, sulfurization of precursors and electrochemical route for deposition [68-69]. In the 

above stated techniques, electrochemical deposition method is a non-vacuum technique with a 

low cost and low temperature. However, the material utilization for such non-vacuum process is 

very high. The best method according to our literature survey for deposition of the uniform 
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CZTS thin films on a large scale is non-vacuum electro-deposition technique [70-71]. By 

optimizing the process parameters, the defects in the film can be reduced, which ultimately 

enhance the crystal quality as well as the performance of the device. Due to technological 

interest in the CZTS solar cells, the number of research publications (obtained from Elsevier) has 

been tremendously increased from 2000 to 2015 as shown in Figure 5.  

 

 

Figure 5. Publication chart for CZTS (obtained from Elsevier 2000-2015) 
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Figure 6. Abundance of different materials in earth crust [72-73] 

 

The abundance of different elements in earth crust used in the CZTS and CIGS solar cell 

materials as compared to others is shown in Figure 6.  Ga and In are the rare elements in the 

earth crust therefore their prices almost get doubled every year due to the market demand. The 

price comparison of a few key elements is shown in Figure 7, and clearly among them In, Ga 

and Se are the most expensive materials in use. Indium is used as an important element in the 

CIGS solar cell and the efficiency of the CIGS solar cell is highest (20.9%) in thin film 

technologies approaching to c-Si solar cells. Due to this reason, indium based cell (CIGS) are 

gradually dominating the solar energy market which is supposed to increase the manufacturing 

price of the photovoltaic modules. The scarcity of the materials is a consistent problem for the 

technology and there is no immediate solution for overcoming this issue. The reason is that 

cadmium (Cd) and In are the by-products of Zn refining while selenium (Se) and Te are the by-

products of Cu refining. It means that these rare materials are subjected to the demand of Zn and 

Cu. The use of In in ITO as transparent conducting oxide (TCO) is also important to serve as 

front contact in photovoltaic devices. It is possible to replace the ITO by other TCOs such as Al 
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doped zinc oxide (AZO) or Al doped tin oxide (ATO). The price of the device has a negative 

impact on the future ambitions for developing a technology which can be subtly dependent on 

the social economic profile of PV market business. The reprocessing of old PV modules is 

reducing the demands of raw materials. It is therefore presumed that the PV modules should be 

replaced after usage for 20-30 years uses and can be recycled for recovering the materials for 

further usage [74-75]. 

 

 

Figure 7. Price chart for solar cell materials [http://www.lesker.com] 
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Figure 8. General thickness profile of absorber layer (for most solar cells) 

 

The thickness of the CZTS thin films and other related materials is strongly related to the 

properties of thin films. It was observed that the fill factor and short circuit current density 

decreased with the increase in the film thickness [75]. The increase in the series resistance of the 

thicker layers of the fabricated thin film is responsible for the deterioration of the properties. The 

increase in the thickness of thin film with the substrate temperature [76] is related with the 

decrease in sticking coefficient as well as the increase in the density of the film due to 

crystallization. The absorber layers in PV technology are categorized according to their thickness 

represented in Figure 8 [77-81]. The thinnest material used in thin film PV technology is 

CuInSe2 while the thickest one is c-Si. However, CuInSe2 due to its usage of rare elements is not 

the preferred material in solar cell technology. 

 

2.2.3 Tin antimony sulphide thin films 

Tin antimony sulphide (Sn-Sb-S), one of the sulfosalts, is also an emerging material and a 

possible replacement of the toxic and expensive materials, and has plenty of potential 

applications in photovoltaics and optoelectronic devices [61]. Tin antimony sulphide has 

different phases such as SnSb2Se4, Sn3Sb2S, Sn3Sb2S6, Sb2Sn5S9, SnSb2S4, Sn4Sb6S13 and 
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Sn6Sb10S21, etc. [68]. Gassoumi and Kanzari [82] used the Sn-Sb-S as an absorber layer, and 

observed that the material possesses an n-type conductivity and a high resistivity with excellent 

absorption ability. The band gap value of the Sn-Sb-S thin films lies in the range of photovoltaic 

materials, and it can be tuned further to be more suitable for solar cell. Post annealing of the Sn-

Sb-S thin films in an inert atmosphere was reported to reduce the voids and increase the grain 

size which further improves the electrical and optical properties. Abdelkader et al. [83] reported 

that the variation in the energy band gap of the Sn-Sb-S thin films is due to the variation in Sn 

content which changes the average coordination number. A high absorption coefficient (10
5
 cm

-

1
) was reported for this emerging material with a high photoconductivity in visible and near 

infrared region [83]. The effect of oxygen annealing on the properties of Sn-Sb-S thin films was 

studied by Fadhli et al. [84]. They reported that the extra phases of SnO2 appeared at a high 

annealing temperature and the incorporation of oxygen in Sn-Sb-S reduces the resistivity of the 

material due to paramagnetic nature of the oxygen, which increased the photoconductivity and 

optical properties of the obtained thin films [85]. Sn-Sb-S was reported to be an n-type material, 

and thus mostly p-type material is used as an absorber layer in the fabrication of solar cells. It 

was reported that at high (above 300°C) annealing temperature, the conductivity of Sn-Sb-S 

changed from n to p-type, therefore Sn-Sb-S has dual conductivity  (p and n-type) [86].  

 

 

 

3. Dye sensitized solar cells 

Recently DSSCs have gained extensive attention because of their low production cost, ease of 

fabrication and tunable optical properties, such as color and transparency. The amendable 

aesthetic features (color and transparency), ease of fabrication and earth abundance of many 

compositional materials for the DSSCs are special properties for photovoltaic applications [87].  

 

The main components of the DSSCs are dye sensitized photo anode, counter electrode and redox 

electrolyte. In photo-electrochemical systems, many semiconductor materials have been used as 

photoelectrodes, including single crystal and poly crystalline material of Si, InP, GaAs, CdS, etc. 

The efficiency of these materials with a suitable redox electrolyte is generally limited to 10% 
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under sunlight irradiation. The photo degradation of the electrolyte under irradiation reduces the 

life of the cell by destabilization. ZnO, TiO2 and SnO2 are wide band gap oxide semiconductor 

materials, and widely used as photo-electrodes in the DSSCs. After using photosensitizers, 

various inorganic/organic dyes can be adsorbed on the surface of photoanode , thus absorbing 

visible light [88]. Gong et al. [44] presented a review on the fundamental concept of DSSCs, and 

discussed the novel materials for DSSCs. They examined the basic working principle, recent 

developments and future prospects of the DSSCs technology. Effects of various parameters like 

sensitizer, semiconductor oxides, contacts, morphology, electrolyte and substrate etc. on the 

performance of DSSCs have been explained. It has been concluded that DSSCs are more 

sensitive to visible light than crystalline silicon, which made them as a reliable power source in 

low intensity environment like dawn and dusk and also the overall efficiency is not seriously 

affected by high temperature. With the continued research efforts DSSCs could become a 

reliable power provider in the future [46].  

 

Li et al. [46] have given the basic principle solid state dye sensitized solar cells and discussed the 

different types of solid or quasi solid state hole conductors such as p-type semiconductors, ionic 

liquid electrolytes and polymer electrolytes. The solid state cells containing p-type 

semiconductors were considered to possess the advantage of easy fabrication and higher 

stability, whereas the DSSCs based on the polymer electrolytes showed the higher efficiency and 

wide future applications [46]. 

 

The methods to increase the efficiency of DSSCs include:  

1. To develop new photosensitizers with a higher molar extinction coefficient. 

2. To improve open-circuit voltage of DSSC. The open-circuit voltage is the difference 

between the quasi-Fermi levels of the electrons in semiconductor and the redox couple in 

electrolyte. 

3. To reduce the losses in the solar cell caused by charge recombination, electron trapping, 

and optical reflection, etc.   
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3.1 TiO2 films and nanostructures 

TiO2 is used as thin film solid state DSSCs (SS-DSSCs) and nanostructured DSSCs. In the thin 

films SS-DSSC, TiO2 is normally deposited on conducting transparent glass as an electrode in 

the solar cell , generally using “doctor blading” method [89]. The dye molecules are attached to 

the surface of TiO2 particles by a chemical bond, i.e., or generally called sensitization.  In 

nanostructured TiO2 DSSCs (nano particles, nano wires, nanotubes, nano rods), TiO2 provides a 

large surface area for dye molecule anchoring. The absorbed photons are split at the surface of 

the nanostructure and the band alignment of dye, and the photo-generated electrons are injected 

into TiO2 and the hole is scavenged by redox species (see Fig. 9). The electrolyte solution 

(iodine or tri-iodide) is often used to neutralize the electron and hole after passing through the 

load [90].  

 

SS-DSSCs show that their open circuit photovoltages (Voc) often exceed those of electrolyte-

based DSSCs due to a smaller energy loss during the dye regeneration process. However, the 

overall photovoltaic conversion efficiency of SS-DSSCs attained, currently with standard 

ruthenium complexes [91-92], or organic dyes [88], remains significantly below those of 

electrolyte-based devices. The smaller Jsc values arise from the fact that the SS-DSSC employs 

only 1.5 to 3 μm-thick nanocrystalline TiO2 films to ascertain quantitative collection of the 

photogenerated charge carriers and complete pore filling by the hole conductor. As the solar light 

harvesting by such thin films depends strongly on the optimized cross-section of the sensitizer, 

the use of a high-molar extinction-coefficient dye in combination with thin mesoporous TiO2 

electrodes is advantageous. 

 

Recent advances in the photovoltaic performance of the SS-DSSC have augmented the power 

conversion efficiencies from the initial 0.74% [94], to in the range of about 5-7% [95-98]. 

Recently this maximum value was reported to be 15% for the SS-DSSC.  
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Figure 9. Schematic of TiO2 based dye sensitized solar cell.  

 

 

Liu et al. [99] recently reported 3.2% conversion efficiency for the SS-DSSC by using poly (3-

hexylthiophene) (P3HT) as organic dye sensitizer (hole transport material). They used spin 

coating and doctor blade techniques to prepare 2 µm thick layer of TiO2 as a dense layer to 

control short circuiting and nanoscale thin film as electrode. The calcination was carried out at 

500°C and a cell was obtained with enhanced properties of Voc, Jsc, FF and efficiency values of 

880 mV, 8.22 mA/cm
2
, 0.44, and 3.21%, respectively. Xue et al. [100-101] recently studied the 

properties of TiO2 SS-DSSCs fabricated on flexible Ti foil. Platinum was used as the cathode 

and poly (3-hexylthiophene) as electrolyte which significantly increases the absorption of the 

light incident from back side. The reflective and absorptive properties of platinum and electrolyte 

were utilized to attain an SS-DSSC with 1.27% efficiency, 0.94 V open circuit voltage (Voc), 

2.85 mAcm
-2

 short circuit current density (Jsc), and 0.47 fill factor (FF). The lower efficiency 

was attributed to the reflective properties (80% transmittance) of platinum coupled with the 

electrolyte.  Umar et al. [102] reported the synthesis of proliferous TiO2 micro-tablets (PTM) 

with surface decorated by nanowires grown on the ITO surface. It was observed that the 

performance of the nanostructured (nanowires on surface and nano-cuboids in the interior) 

device depended on the density of the PTM, and the best results were achieved with a high 
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density of PTM and low inter-PTM overlapping. However, the efficiency is quite low compared 

to those reported TiO2 based DSSCs. The limitation of electron transport, the chemical stability 

of the electrolyte and dye are the main issues related to low efficiency.    

 

The efficiency of the DSSCs can be enhanced by preventing the back electron flow using a 

blocking layer of TiO2 between FTO and electrolyte [103]. Sangiorgi et al. [104] reported the 

importance of this blocking layer in DSSC by comparing the electrical properties of the device 

with and without a blocking layer.  

 

In addition to TiO2, ZnO, Au, graphene oxide and Nb2O5 layers were also reported as blocking 

layers by a number of groups. Liu et al. [105] reported the effect of all blocking layers on the 

properties of DSSC and reported that ZnO is advantageous over TiO2 and other layers. The 

thickness of the blocking layer must not exceed 300 nm in order to prevent the blocking layer 

from charge trap [105]. 

 

The introduction of foreign dopant in TiO2 was also reported for enhancing the properties of the 

DSSC device  [106]. The effect of doping Zn on TiO2 was studied by Niaki et al. [107] and 

stated that Zn
2+

 has lower numbers of valance electrons than those of TiO2
4+

, therefore, excess of 

holes are created by generating an accepter band near TiO2 valance band which helps in 

migration of electrons between bands.  

 

Kuang et al. [108] reported that the length of TiO2 nanotubes influences the properties of the 

DSSCs, and they studied 5-14 µm long nanotube arrays whose length was controlled by the 

anodization duration. The nanotubes reduce the adsorption of dyes on TiO2 surface due to 

decrease in the surface area which reduces the properties of the DSSCs. Yang et al. [109] 

reported the treatment of TiCl4 on TiO2 nanotubes (TNT) to overcome this problem. The study 

was also carried out for a composite film of TNT (10 wt%) and TiO2 nanoparticles dipped for 30 

minutes in 60 mM solution of TiCl4 at 70°C for 30 minutes and annealed at 450°C for 15 min. 

 

Mathew et al. [110] recently reported the DSSCs with an efficiency of 13% by engineering the 

structure of TiO2. In nanostructured materials, the nanoparticles of TiO2 are predominant in 
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achieving a maximum efficiency attributing to the large surface area of nano particles. Further 

decreasing the size of the particle is expected to decrease the pore size and increase the defect 

sites as well as the grain boundaries, which will lower the solar cell performance. An optimum 

size of the particle must be identified along with the suitable dyes that will be helpful in attaining 

the maximum efficiency for the DSSCs [111].  

 

3.2 ZnO nanowires 

Nano structured zinc oxide is recently used as a multi-function material in solar cells. ZnO has a 

wide band gap with higher electron mobility than TiO2 which can overcome a high electron 

recombination.  However, the efficiency of nanostructured ZnO material is lower than that of the 

TiO2, and few studies on ZnO nanostructured DSSC solar cells have achieved a high conversion 

efficiency [112]. Martinson reported that the surface morphologies of ZnO are more amenable in 

comparison to TiO2 which increases the dye loading capacity and decreasing the recombination 

effect inside the DSSC. Many ZnO nanostructures have been fabricated, including nanowires, 

nanoparticles, nanocombs, nanoflowers, nanobelts, nanoflakes, nanoclusters, nanotubes, porous 

nano-sheets, nano-colloids, and nano-powders [113-118]. The results of the DSSCs were made 

by the ZnO nanotubes, nanowires and other 1D to 2D nanostructured photoanodes indicated that 

the special morphology can provide a unique advantage for electron transport. Instead of  

random/zigzag pathway in the particle-based photoanode, they provide  unidirectional 

conduction paths for electrons inside the photo anode [118]. Cheng et al. [118] reported the 

synthesis of ZnO nanowires using a modified aqueous solution method for the DSSC on seeded 

fluorine-doped tin oxide (FTO) substrates. The nano wires were coated with the ZnO 

nanoparticles by dip coating techniques followed by the growth of branched ZnO nanowires. The 

DSSCs using standard nanowire was also studied in comparison with the branched ZnO 

nanowires DSCC. 

Choi et al. [119] reported yttrium doped zinc oxide (ZnO) nanowires for DSSC on seedless ITO 

substrates. It was observed that the yttrium ions inhibited the nucleation of ZnO which caused a 

decrease in the density of ZnO nanowires. When the concentration of the yttrium ions was 

increased, the increase in the diameter of the ZnO nanowires was observed. [113]. Hsu and 

Chang [120] reported that Ag doped ZnO nanorods grown on stainless steel (SS) mesh were an 

efficient visible-light photo-catalysts with high activity and stability.  Ag doped ZnO nano rods 
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not only increased  the  surface  area  of  photocatalysts but  also enhanced  red-shift  in  the  

absorption  band  and  improved  the  visible  light  absorption  capacity [120].  Chae et al. [121] 

reported ZnO nanorods grown hydrothermally with fast growth rate and high packing density on 

SS wire for making the DSSC. They observed the long durability of the device attributed to the 

strong adhesive properties between ZnO and SS wire. It was reported that a longer dye loading 

time degraded ZnO nano rods which ultimately affected the solar cell parameters. The ideal dye 

loading time was optimized to be two hours [122] which leads to an efficiency of 2.57 %.  

 

Gondoni et al. [123] reported the Al doped ZnO nano and meso-architectures for enhancing light 

harvesting properties using a pulsed laser ablation method. The use of Al doped ZnO as the TCO 

for ZnO nanostructured DSSCs can reduce the lattice mismatching and improve adhesion for 

obtaining a durable and sustainable DSSC. ZnO was also applied as a hole blocking layer in 

DSSC [122]. A thin compact ZnO layer (<200 nm) with high electron mobility and high 

transmittance (100%) of visible light has increased the efficiency and degradation time. The 

performance of such a cell was maintained reliably even after 200 days. Chou et al. reported 

[124] ZnO nanowires with an average length of 6 µm and diameter of 100 nm and ZnO nano 

particles of average size of 50-60 nm . Thin films of ZnO nanowires immersed in an inert 

solution of ethanol containing ZnO nanoparticles could serve as a semiconductor layer and CdS 

(or CdS/CdSe) as sensitizing layer for fabrication of the DSSCs. The efficiency of composite 

layer ZnO/CdS showed  an  efficiency  of  0.24%,  which  is  twice  as high as that of the bare  

ZNW/CdS  (0.12%) and ~33%  higher  than  with  bare  ZNP/CdS (0.18%).  

 

Law et al. [125] reported core-shell ZnO nanowires DSSC with alumina shell as insulating 

blocking layer to improve the short circuit voltage. The blocking layer can efficiently tunnel 

electrons and thus can enhance efficiency to 2.25%. This enhanced efficiency could be due to the 

single crystalline nature and radial surface electric field for each nanowire. An efficiency of 

4.8% has been reported by Xu et al. [126] using hierarchical structure nanowires and nano-sheet 

photo-anode. The maximum efficiency for ZnO nanostructured (5.41%) reported by C.-Y. Lin et 

al. [127] using the ZnO nanosheet synthesized by chemical bath deposition technique. Similarly 

some researchers modify the ZnO nanostructures for improving injection efficiency and reducing 

the recombination effect caused by Zn
2+

/dye complex. Core-shell structured TiO2-ZnO 
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nanostructures have been considered as promising candidates to solve this problem. With TiO2 

shell, the electron injection efficiency can be maintained at normal level for most of commonly 

used dye. Additional, by applying TiO2 shell on ZnO can not only improve the structure stability 

but also form an n-n+ heterojunction which can prevent the injected electrons from accumulating 

at the top surface of the ZnO nanostructures [128-129]. 

 

Chao et al. [130] recently used two sequential low-temperature processes to achieve a core-shell 

structure. To reduce and/or the process temperature, combination of hydrothermal growth of 

ZnO and plasma ion assisted evaporation of crystalline TiO2 shell were employed. By adjusting 

deposition parameters, ZnO nanorods can be homogeneously covered with a layer of anatase 

TiO2 nanostructure to form core-shell nanorods and nano-sculptured foxtail-like patterns (In Fig. 

11 (a) and (b)). Power conversion efficiency of DSSCs were improved from 0.3% to 1.8% after 

using the ZnO/TiO2 hybrid structure due to reduced recombination as well as dye loading. By 

using these low temperature techniques with a self-designed in-situ microfluidic control unit 

assistant hydrothermal process, flexible DSSCs based on turntable ZnO/TiO2 to Al doped 

ZnO/TiO2 nanostructures (see Fig. 10 (c) and (d)) with highest average PCE of 4.5% was 

achieved. [131]  The Al doped ZnO nanostructure core improved the accessible surfaces (i.e. 

benefit from improving dye loading) with a demand for a long range electronic connectivity (i.e. 

reducing recombination), thus improve  the power conversion efficiency.  

 

 

 

Fig 10, Represented SEM images of the as synthesized ZnO/TiO2 hybrid (a) nanorods (b) foxtail-liked 

nanostructure; and (c) hybrid nanostructure composite Al doped ZnO nanoflakes with ZnO nanorods (d) 

Al doped ZnO nanoflakes. 
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4. Perovskite solar cell 

4.1 Recent progress in efficient hybrid lead halide perovskite solar 

cells 

The DSSCs are promising low cost solar cells with merits of simple and clean fabrication, low 

cost and abundant raw material, and offer the possibilities to design solar cells with a large 

flexibility in shape, color, and transparency. Integration into different products opens up new 

commercial opportunities [103,132]. However, concern over leakage of the liquid electrolyte has 

caused a bottleneck in rapid development and commercialisation, therefore, there need new 

designs of solid-state sensitized solar cells to replace the liquid electrolyte with hole-transporting 

material (HTM). Currently molecular HTM of 2,2’,7,7’-tetrakis (N,N-di-p-

methoxyphenylamine)-9,9’-spirobifluorene (spiroMeOTAD) are the most popular in solid-state 

DSSCs. However, the photovoltaic performance of solid-state DSSCs containing polymeric 

HTMs was generally inferior to those containing molecular spiro-MeOTAD because of the 

difficult infiltration of the long-chain polymers into the mesopores. In order to absorb most of the 

incident sunlight, the porous TiO2 film is required to be as thick as 10 μm to provide sufficient 

internal surface area to adsorb sufficient dyes. That is impractical for the SS-DSSCs. 

Alternatively, the sensitizers with a high extinction coefficient or wide absorption spectrum such 

as quantum dots enable more sufficient sunlight absorption in much thin films. In 2012, a 

breakthrough in the DSSCs was achieved using organometallic halides CH3NH3PbI3 having a 

perovskite structure. The reported photo-to-electron conversion efficiency (PCE) for mesoporous 

TiO2 film adsorbed with perovskite CH3NH3PbI3 nanocrystals was 9.7% under AM1.5 

illumination in 2012 [133]. Such a revolution encouraged the scientists and researchers to focus 

their attention on perovskite structured material. Currently, the perovskite material has become a 

new development in the field of photovoltaic with over  20.1% conversion efficiency [134]. 

The general stoichiometry of the perovskite structure consists of ABX3, where “A” and “B” are 

cations and X is anion. A and B consist of the following elements such that A being larger than B 

[135-136]. 

A= LA
3+

, Ce
3+

, Nd
3+

, Sm
3+

, Eu
3+

, Gd
3+

, Tb
3+

, Dy
3+

, Ho
3+

, Er
3+

, Yb
3+

, Lu
3+
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B= Al
3+

, Cr
3+

, Fe
3+

, Ga
3+

, In
3+

, Sc
3+ 

Perovskite is an organometallic halide used as a sensitizer as well as a hole and electron 

conductor. By combining these two approaches in a solar cell, the efficiency of perovskite 

material increases abruptly. CsSnI3 perovskite as solid state DSSC with 8.5% efficiency was 

reported by Chung et al. [136] soon after the discovery of the perovskite in photovoltaics. In the 

same year, another group reported efficiency of 8.0% using perovskite methylamonium lead 

iodide chloride (CH3NH3PbI2Cl) as light absorber and TiO2 as a transparent n-type counterpart. 

The same group reported 11% efficiency by replacing the photo-electrode (TiO2) by an 

insulating Al2O3 in combination with perovskite material  [137]. The use of thin film 

configuration of the perovskite solar cell was introduced to deposit the film directly on TiO2 

compact layer in order to avoid any mesoporous layer. Liu et al. [138] used vapour deposited 

perovskite film onto TiO2 films and reported an efficiency of 15.4%. Kumar et al. [139] 

employed two different approaches for the deposition of ZnO as a blocking layer on FTO and 

ITO coated substrates. The CH3NH3PbI3 was spin-coated on electrodeposited ZnO on FTO and 

ITO substrates in the 1
st
 approach. In the 2

nd
 approach, 5 nm ZnO nanoparticle thin films was 

utilized in the assembly of planner solar cell based on ITO and FTO substrate. 15.7% and 10.2% 

efficiencies were recorded for the perovskite devices on the FTO and ITO substrates respectively 

[138, 140]. Burschka et al. [141] reported 15% efficiency for perovskite sensitized hybrid solar 

cell employing two different techniques, spin coating and sequential deposition on mesoporous 

TiO2. It is noted that the high efficiency is however precluded with the sensitive nature of 

organic absorber. For planar heterojunction perovskite solar cell conversion efficiency of 15.4% 

was also reported [133, 142]. Seok’s group in 2013 reported 16.2% efficiency for perovskite 

solar cell by using CH3NH3PbI3−xBrx (10–15% Br) and a poly-triarylamine hole transporting 

medium. Two additional discrete layers of perovskite materials were used in the solar cell 

structure instead of one continuous perovskite layer to provide scaffolding. This scaffolding is 

the key in enhancing the efficiency of the solar cell [142].  

 

Perovskite materials were initially utilized as sensitizer in DSSC because of the ionic nature of 

perovskite. The liquid hole transmitting medium (HTM) was recently replaced by solid HTM for 

long term stability of the solar cell by a Korean group, and they reported an efficiency of 17.9% 
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[145]. Recently, slightly over 20% efficiency was claimed to be achieved with a solid state 

CH3NH3PbX3 based solar cell device [146]. The organometallic halide perovskite absorbers have 

better properties than metal chalcogenide quantum dots, though they have the same absorption 

coefficient [120, 136]. 

4.2 Hysteresis and stability 

Perovskite solar cells have achieved a great success with efficiencies now exceeding 20%. 

However, a certain class of perovskite solar cell, particularly organometal trihalide perovskites, 

exhibits photocurrent hysteresis. Therefore, it is essential that the origins and mechanisms of the 

I–V hysteresis are fully understood to minimize or eradicate these hysteresis effects for practical 

applications. This hysteresis has been tentatively attributed to the para-electric or ferroelectric 

properties of perovskites at room temperature and above [147-148]. Simulations suggest that the 

internal electrical fields associated with microscopic polarization domains contribute to 

hysteretic anomalies in the current-voltage response of PSCs due to variations in electron-hole 

recombination in the bulk [147]. However, others would suggest that, because of its low lattice 

energy, organometal halide perovskite tends to possess a strong ionic characteristics, which is 

sensitive to polarization in an electric field [148]. Impedance study shows that a high value of the 

dielectric constant at low frequencies results from a combination of dipolar, ionic and electronic 

contributions is the main reason for the J/V hysteresis [149]. 

 

In general, CH3NH3PbI3 crystals are prepared using solution process via one-step or two-step, 

depending on whether the precursor solution (PbI2 and CH3NH3I) are deposited onto the 

substrate once or sequentially. In using a one-step processing technique it is difficult to achieve 

optimal single crystal perovskite thin films due to multiple CH3NH3PbI3 seed clusters [150], 

whereas with the sequential deposition method it is hard to ensure purity of the resultant 

CH3NH3PbI3 as the residual organic component introduces a poor stability [151]. Finally, good 

crystallite characteristics of CH3NH3PbI3 is crucially important to benefit device performance 

and material stability since defects within perovskite crystallites and at the interfaces can trap 

photogenerated charges or accelerate the mobile species migrating through CH3NH3PbI3 [152].  
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The stability of CH3NH3PbI3 films also depend significantly on a variety of environmental 

factors including temperature, radiation, oxygen and moisture [153]. In this case, a proper 

encapsulation or layer-by-layer approach should be applied to improve device stability by 

avoiding any contact with these egregious factors. However, it is not sufficient to guarantee their 

long-term stability since the CH3NH3PbI3 has an intrinsic nature of thermal instability  [154]. 

Thermo-gravimetric analysis and chemical analysis results indicated that CH3NH3PbI3 suffers 

from an irreversible photo-degradation and a subsequent loss of organic cation component even 

in absence of oxygen and moisture with temperature higher 85° [154]. 

To date, Spiro-OMeTAD is widely used as the hole selective material in solid-state perovskite 

devices. However, the pristine spiro-OMeTAD suffers from low carrier mobility due to 

amorphous nature. Thus, Li ions are used as additives to increase conductivity of spiro-

OMeTAD as well as allow a stable doping level in the oxygen atmosphere, and cobalt complexes 

have also been used as p-type dopants. However, such additives still bring several disadvantages, 

including long-term stability in spiro-OMeTAD and moisture-induced degradation in 

CH3NH3PbI3 [155]. As a result, tremendous efforts have been focused on replacing spiro-

OMeTAD. Besides organic molecule HTMs, inorganic materials such as CuSCN [156], CuI 

[157], and NiO [158] have also been employed to serve as low cost hole extraction materials 

with long-term stability indicating practical potential. Among them, NiO has been one successful 

candidate due to its ideal energy level, high carrier mobility and various approaches for synthesis 

and processing including sol-gel, sputtering and doctoral blading.  

 

 

5. Conclusions and Future   

The present review focuses on the recent development of highly efficient solar cells using 

nanoscale materials and tailoring desired nanostructures using new materials, new structures 

and band-gap engineering. The efficient solar cell material for commercialization requires 

more resources apart from the current materials available in the market. Currently, CZTS and 

CdTe are commericallised thin film based solar cells.  
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 The selenization of the CZTS film is promsing to increase the efficiency of solar cells 

and can be carried out by annealing the sulfurized (CZTS) film in selenium containing 

atmosphere. It is also possible to increase the efficiency of CZTS-based solar cell to 

include uniform and adherent back contact and side-stepping of the carbon which will 

decrease the crystallinity and optical transmission in the solar cell. The improvement in 

the cell efficiency can be boosted in three potential ways. One way is to develop a new 

powerful photosensitizer with broad spectral range and higher molar extinction 

coefficient than the existing sensitizers. Secondly, the improvement in open circuit 

voltage which is the difference between quasi fermi level in semiconductor and redox 

couple in electrolyte. The use of suitable electrolyte can boost the value of open circuit 

voltage for a particular semiconductor. The loss of energy must be controlled in solar cell 

operation and this is also a viable option to increase the efficiency of the solar cell. It is 

possible to reduce energy losses from charge recombination, electron trapping, optical 

reflections etc. 

 For the DSSCs, the nanostructured metal oxides have ability to attain high efficiency as 

they have several scales of pores which can adsorb dye for nonporous scaffold 

configuration. The dyesensitized solar cell efficiency is 10-11% for many years, and this 

value is very far from the theoretically speculated value, while the reported efficiency for 

perovskite cell is 20.1%, thus perovskite based solar cells become dominant.  

 The rapid rate of progress in p-type DSSC combined with the existence of clear avenues 

for device optimization, suggested the promising future of p-type DSSC. The p-type 

DSSC is a new and exciting photovoltaic field for research.  

 The nanostructured solar cell is also a revolutionary change in the field of photovoltaics. 

In perovskite materials, CH3NH3PbI3, Pb is a toxic element. Replacing Pb by Sn or Sb 

can reduce the toxicity in the perovskite materials. The result must be verified by Ab-

initio calculations for the identification of new families.    

 Perovskite is one of the most promising candidates for the future photovoltaics 

technology with advantages of low processing costs and simple execution for attractive 

products, such as flexible and transparent. Perovskite tandem cell modules are promising 

for commercialization along with direct integration with other cell technologies with Si 

and SIGS for high-performance tandem cells.. 
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