
Northumbria Research Link

Citation: Liu, Zhiguang, Zhou, Liuyang, Leung, Howard and Shum, Hubert P. H. (2016)
Kinect posture reconstruction based on a local mixture of Gaussian process models. IEEE
Transactions on Visualization and Computer Graphics, 22 (11). pp. 2437-2450. ISSN 1077-
2626

Published by: IEEE

URL: http://doi.org/10.1109/TVCG.2015.2510000
<http://doi.org/10.1109/TVCG.2015.2510000>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/25559/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Kinect Posture Reconstruction based on a Local
Mixture of Gaussian Process Models

Zhiguang Liu, Liuyang Zhou, Howard Leung, and Hubert P. H. Shum

Abstract—Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular
recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data
derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic
framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the
Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We
also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive
frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint
reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when
dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a
local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the
significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the
prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our
system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to
run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high
quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming
and sport training.

Index Terms—Gaussian Process, Incremental Learning, Kinect, Posture Reconstruction

F

1 INTRODUCTION

HUman motion recognition is an important component
in interactive applications nowadays. Traditional

motion-based systems such as those for dance training
are based on motion capture technology, where the user’s
movement is captured by an optical motion capture
system [1]. While these applications can evaluate user
performance with the accurately captured motions, they are
not convenient since users have to wear capture suits with
reflective markers. Moreover, these devices are relatively
expensive and are not affordable for home use.

Depth image based motion sensing devices such as
the Microsoft Kinect [2] serve as an alternative to capture
human movement for interactive applications. Kinect is a
controller-free device that infers 3D positions of human
body joints from a single depth image with the help of
a data-driven machine learning algorithm [3]. With such
a device, it becomes possible to implement a natural
user interface for virtual reality applications and gesture
based systems [4]. While Kinect can robustly track the 3D
postures of the user, the captured data suffer from poor
precision due to self-occlusions and insufficient information
provided by the Kinect sensor. Therefore, Kinect based

• Z. Liu and H. Leung are with the Department of Computer Science, City
University of Hong Kong, Hong Kong SAR.
E-mail: zhigualiu2-c@my.cityu.edu.hk, howard@cityu.edu.hk

• L. Zhou is with the Wisers Research, Wisers Information Limited, Hong
Kong SAR. E-mail: leozhou@wisers.com

• H. P. H. Shum is with the Faculty of Engineering and Environment,
Northumbria University, United Kingdom.
E-mail: hubert.shum@northumbria.ac.uk

Manuscript received April 19, 2014; revised September 17, 2014.

interactive applications usually require the user to face the
device so that individual body parts are observable, which
greatly limits the system flexibility. In addition, the user
has to minimize self-occluded postures, or Kinect would
misrecognize body parts. As illustrated in Fig. 1, the blue
skeleton represents the tracked result by Kinect SDK [2]. We
can see the tracked arms are twisted due to self-occlusions.
Therefore, it is essential to develop effective posture
reconstruction strategies for interactive applications.

Fig. 1. Example of an inaccurately tracked posture from Kinect. The blue
skeleton is the tracked result by Kinect.

The occlusion problem and incompleteness of the
tracked joints remain challenging despite the posture
reconstruction research proposed in the past years.
Generating postures from low dimensional signals is

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

a potential solution for posture reconstruction [5], [6].
However, these methods assume the low dimensional
signal to be stable and accurate, while joints tracked by
Kinect are not. Hence, applying them to reconstruct Kinect
postures will create unsatisfying results. Shum et al. [7]
applies reliability measurement to improve the posture
reconstruction process. However, the reconstruction results
depend heavily on the similarity between database postures
and input ones. The system therefore requires a huge
posture database.

In this paper, we propose a probabilistic model based
on Gaussian Process (GP) to reconstruct postures captured
from Kinect, where the input motion belongs to one of
the action classes in the database. Unlike previous systems
that require a large motion database, GP based model can
be robustly trained from small training sets. Moreover, the
parameters of the kernel function can be optimized without
relying on experimental cross validation [8]. We constrain
the solution space such that the reconstructed posture is
accurate while maintaining the originality of the input
posture from Kinect. We adopt Gaussian Process model as a
spatial prior distribution to predict the offset between Kinect
and the ground truth, which aims at improving the accuracy
of the postures in the case where there is sensor error
from Kinect. Furthermore, since reconstructing each posture
independently cannot ensure the temporal smoothness of
the posture sequence, we introduce a temporal consistency
term to constrain the velocity variations between successive
frames. Inspired by [7], we embed the reliability of each
joint into the optimization framework to ensure that the
reconstructed posture resembles the accurate parts of the
Kinect tracked posture. Lastly, we propose a new method
based on local mixture of Gaussian Processes to alleviate
the cubic learning complexity of a regular GP model such
that our system can deal with a large variety of movement.
The experimental results demonstrate that the proposed
approach is effective in reconstructing a number of motions
containing self-occlusions. For example, as illustrated in
Fig. 5(a), our method accurately reconstructs the posture of
bending over with a number of joints occluded.

The major contributions of this paper are summarized as
follows:

1) We propose a new unified framework for posture
reconstruction using Kinect. The system optimizes
an occluded posture live captured by Kinect, which
maintains the correctness of the posture while
preserving temporal smoothness between frames.
The proposed system performs well with significant
smaller training sets comparing with previous work
in the field.

2) We propose three terms to constrain the solution
space. The Gaussian Process based spatial
prediction term utilizes motion capture data to
reconstruct input postures. The temporal prediction
term ensures the temporal consistency between
consecutive frames. Finally, the reliability term
guides the optimized postures toward the more
reliable parts of the Kinect postures, preserving the
property of the input postures.

3) We propose a new method based on local mixture of

Gaussian Processes that partitions training samples
into local regions to relieve the cubic learning
complexity problem of Gaussian Process. With
the proposed framework, the prediction speed is
enhanced as only a few local models are considered
for each input posture. It also enables incremental
updating of local models in real time, which
enhances the likelihood to adapt to the postures
that are different from those in the database.

Compared with our previous work [9], we have
significantly improved the spatial prediction algorithm.
Firstly, with the newly proposed method based on local
mixture of GP models, our method generates postures
of similar quality to that of [9] with significantly less
training data. Secondly, we design a new algorithm to
incrementally update a specific local Gaussian Process in
real time, which enables the system to adapt to run-time
postures that are different from those in the database. Lastly,
because of the use of local models, our new framework
only needs to consider a few local models that are close to
an input posture rather than the whole database. Such an
enhancement in efficiency allows us to combine all types of
motion as a single database, while in [9] a separate database
is built for each type of motion.

The rest of the paper is organized as below. We first
review the related work of posture reconstruction in Section
2. Section 3 explains the procedure of data acquisition
and pre-processing processes. In Section 4, we elaborate
the spatial prediction, temporal prediction, and reliability
term of the objective function, and the new method based
on local mixture of GP models for posture reconstruction.
Experimental analysis and evaluation are conducted in
Section 5. Finally, in Section 6, we conclude the paper,
as well as discuss the limitations and future research
directions.

2 RELATED WORK

With the advancement in real-time depth cameras such as
Kinect, human motion recognition and posture estimation
have become a popular research topic in recent years. Kinect
is based on motion recognition technology proposed by [3],
where they use per-pixel classification method to quickly
predict 3D joint positions from a single depth image. A
number of research domains have benefited from Kinect,
such as human-machine interaction [10], natural user
interfaces [4], and 3D reconstruction [11]. A recent review
on human activity analysis with Kinect can be found in [12].
Bailey and Bodenheimer [13] investigated the perceived
differences in the quality of animation generated using
motion capture data and a Kinect sensor, which clearly
showed that the data recorded from Kinect was of lower
quality compared with motion capture data from a Vicon
motion capture system. Hence, it is essential to develop
an effective posture reconstruction method to enhance the
posture quality of Kinect.

In this section, we first review previous work on
reconstructing postures from low dimensional signals.
We then discuss data-driven approaches for posture
reconstruction. We finally review the regression methods
applied to posture reconstruction.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

2.1 Posture Reconstruction from Low Dimensional
Signals

Full body postures can be represented by a set of low
dimensional signals [5]. Some research work has been
proposed to reconstruct a full posture with a subset of
the signals. [14] reconstructed human motion from 3D
motion sensors on a performer using kernel CCA-based
regression. Given the input data from sparse motion
sensors, they retrieve similar postures from the motion
capture database and transform the low dimensional signal
into the full posture space using an online local model. [5]
employed a small set of retro-reflective markers to capture
performance animation in real time. In their system, the low
dimensional control signals from the user’s performance
were supplemented by a pre-recorded human motion
database. At run time, the system automatically learned
some local models from the retrieved motion capture data
that were close to the marker locations recorded by the
camera. Their system only needs video cameras and a small
set of markers, which makes it low cost and practical for
home use. However, the majority of markers have to be
tracked by the cameras to provide enough information for
posture reconstruction.

Liu et al. [6] used a small number of motion sensors
to control a full-body human character. They constructed
online local dynamic models from pre-recorded motion
capture database and used them to construct full-body
human motion in a Maximum-a-Posteriori framework, in
which the system tried to find the most similar postures
from database for reconstruction. [15] adaptively fused
inertial and depth information in a hybrid framework for
posture estimation. Although these methods can be used
to reconstruct postures from low dimensional signals, there
is an assumption that these low dimensional signals are
reliable and stable. It is therefore not applicable to noisy
Kinect data.

2.2 Data-Driven Posture Reconstruction

Data-driven approaches usually reconstruct postures by
evaluating the similarity between the input posture and a
large posture database. [16] presented a data-driven model
based method for 3D torso posture estimation from RGB-D
image sequence. Although their method can extract the
upper body posture of users without an initialization phase,
they did not cope with full body posture recovery nor
handle the occlusion problem. [7], [17] proposed a unified
framework to control physically simulated characters
with live captured motion from Kinect by searching for
similar postures in a marker-based motion database.
They constructed a latent space with a small number of
retrieved similar postures, and applied optimization in the
space to reconstruct the input postures. [18] introduced a
data-driven approach for full body reconstruction from a
depth camera. They proposed an efficient algorithm for
extracting posture features from the depth data. However,
for fast movements, the proposed system required all five
extremities to be visible. [19] introduced an exemplar-
based method to correct the postures from Kinect using
marker-based motion data.

[20] introduced a model based framework for full
body reconstruction from 2D video data using motion
capture database as the prior knowledge. The postures
were reconstructed in an optimization framework, in which
similar motion capture postures were retrieved through
nearest neighbor searching. However, the accuracy is not
robust because the 2D features projected from 3D motion
induce posture ambiguity. [21] solved the reconstruction
problem by registering a 3D articulated model with depth
information. They formulated the registration problem
into a Maximum-a-Posteriori framework to register a 3D
articulated human body model with monocular depth via
linear system solvers. To tackle the problem of manual
initialization and failure recovery, they combined 3D pose
tracking with 3D pose detection.

In general, these data-driven methods requires large
database as prior, and the reconstruction results depend
heavily on the retrieved postures.

2.3 Regression based Posture Reconstruction

Structured regression models for posture estimation such
as [22] and [23] can model the correlations between
multivariate output and input. [22] presented the Twin
GP model that employs GP priors to model input and
output relations. The output postures were estimated by
minimizing the Kullback-Leibler divergence. [23] optimized
an output-associative functional that incorporates outputs
and inputs using primal/dual formulations and adapts
the model to kernel ridge regression and support vector
regression. Shakhnarovich et al. [24] estimated upper body
posture, interpolating k-nearest-neighbor postures matched
by parameter sensitive hashing. [25] presented an inference
machine to estimate articulated human pose. Their method
allows learning a rich spatial model and incorporating
high-capacity supervised predictors, which results in
substantially improved pose estimation performance.
Recently, it has been shown that deep learning methods
such as [26] and [27] generate high precision pose estimates
compared to state-of-art methods.

Gaussian Process (GP) models are flexible probabilistic
nonparametric models. [9] presented a new probabilistic
framework based on Gaussian Process to enhance the
accuracy of the postures live captured by Kinect. Their
method can generate high quality postures even under
severe self-occlusion situations. GP models are usually
applied to small data sets of a few hundred samples due
to its O(N3) training complexity, where N is the size of
training data. In contrast, our incremental sparsification
method can efficiently handle large data sets.

Previous attempts to solve the cubic learning complexity
problem of GP involve sparse Gaussian Process (SGP) [28],
[29], [30] and mixture of experts (ME) [31], [32], [33], [34].
SGP approximates the covariance matrix with a small subset
of training data [29] or a set of inducing variables [30]. While
SGP can greatly reduce the computational complexity, it
utilizes a global voting scheme in which all training samples
contribute to the prediction of a new test input. In contrast,
ME applies gating network to partition the input space
into different subspaces, where each GP expert is trained
independently [31]. Compared with a regular GP model,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

the computational complexity of ME is reduced due to the
significantly decreased sample size in each subspace [35],
[36]. However, for simple expert, the gating network has to
be more complicated to model the function, which results
in a higher risk of getting stuck in local minima or a slower
learning process [37].

Urtasun et al. [33] proposed a sparse regression scheme
for efficient inference of high dimensional and multi-modal
mappings. Their method was based on a local mixture
of Gaussian Processes defined on both appearance and
posture. Different from [33] in which local GP models were
defined separately in the input and output spaces, our
local GP models are defined in the common posture space.
Nguyen-Tuong et al. [36] proposed a method with local GP
models to speed up standard Gaussian process regression.
They grouped the training data into local regions by the
distance measurement. The prediction of a query point
was determined by the weighted prediction of nearby
local models. Our local GP models are similar to that
of [36] in the sense that we use the Gaussian kernel to
measure the similarity between a test joint and the centers
of local models. However, our framework also embeds
the temporal constraint into optimization, which ensures
the smoothness across consecutive frames. In addition,
compared with both work, we implement the incremental
updating of local models in real time, which enhances the
likelihood to adapt to run-time postures that are different
from those in the database. [38] proposed the shared
Kernel Information Embedding that can learn mappings
from image features to 3D postures. In spite of efficient
solutions, this method typically requires large training sets
to represent the variability of appearance of different people
and viewpoints.

In this paper, we use Gaussian Process to model the
prior distribution of postures from Kinect with marker-
based motion data. Our method draws inspiration from [35],
[36], which apply local GP models to speed up the training
and prediction. In addition to training local GP models, ME
needs to learn a gating network to select local models. We
use a kernel function to measure the similarity rather than
training a gating network. The parameters of the kernel can
be calculated during the learning of local GP models. Our
approach is effective even with small training data as GP
based model can robustly learn from small training sets.

3 DATA ACQUISITION AND PREPROCESSING

For brevity, in this paper we will use MOCAP to represent
human motion data captured by an optical motion capture
system. The postures obtained from Kinect are noisy and
incomplete while MOCAP is accurate and stable. Hence,
we can use MOCAP captured in an offline training stage
to reconstruct postures captured by Kinect in real time.

3.1 Data Acquisition

We build a motion database captured from an optical
motion capture system of Motion Analysis Corporation [39]
with 7 cameras. Our database consists of different types of
motions such as golf swinging and Tai Chi. The skeleton
of the MOCAP system is a superset of that of the Kinect

system, so we manually select 20 joints from the skeleton of
the MOCAP system to match those of Kinect. Each posture
in the database denotes a set of 3D positions of the body
parts.

In this paper, we model the relationship between Kinect
data and MOCAP with Gaussian Process. Specifically, we
capture motions with Kinect and optical motion capture
system at the same time to identify their correspondence.
The setup of this capturing procedure is shown in Fig. 2.
The posture of Kinect at time t is denoted as Xt =
(x1t , x

2
t , ..., x

n
t), xit ∈ R3, where xit represents the 3D joint

position of joint i over time t. There are 20 joints based on the
skeleton definition of Kinect, i.e. n = 20. The corresponding
MOCAP of Xt is denoted as Mt = (m1

t ,m
2
t , ...,m

n
t),mi

t ∈
R3.

Fig. 2. Human motion capture with Kinect and an optical motion capture
system.

To enhance the robustness of the spatial prediction
model (Section 4.1) and to make the system invariant
to different subjects, we follow [7] to conduct the
normalization and retargeting processes, as they are
simple yet effective. The posture normalization procedure
is done by removing the rotation along the vertical axis
and the global 3-D translation. The retargeting procedure
ensures the system to be invariant to the skeleton size of
the user.

3.2 Posture Budgeting
In this subsection, we introduce a data pruning scheme
called posture budgeting to discard redundant samples.

We employ the probabilistic GPs to determine the
samples that are informative to the model. We remove a
specific training sample if such a sample can be precisely
predicated by its neighbors in terms of the mean and
variance. Specifically, we iteratively check each training
sample (xit, y

i
t) of joint i and determine its redundancy

by calculating the relative entropy of the prediction of
the training sample (xit, y

i
t) with respect to the rest of the

database. Following [33], we compute the Kullback-Leibler
(KL) divergence by:

D
KL

(p(yit|Xi, Y i, xit)||p(yit|Xi − xit, Y i − yit, xit)) (1)

where (Xi, Y i) is a set of training samples, (xit, y
i
t) is one

of the samples in (Xi, Y i), and yit is the difference between

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

MOCAP data and Kinect data. Since both p(yit|Xi, Y i, xit)
and p(yit|Xi − xit, Y

i − yit, x
i
t) are Gaussian Processes, we

can solve the KL divergence in close form as:∫
p(yit|Xi, Y i, xit) log

p(yit|X
i,Y i,xi

t)

p(yit|Xi−xi
t,Y

i−yit,xi
t)
dx (2)

Further details of solving p(yit|Xi, Y i, xit) can be found
in section 4.1 and 4.2.

Fig. 3 shows the impact of posture budgeting. The
unfiltered Walking motion database includes 1120 training
samples, which is reduced to 681. Nearly 40% of the training
data can be pruned while maintaining a similar error level.
For the details of the reconstruction error definition, please
refer to Section 5.3.

0
20
40
60
80

100
120
140
160
180
200
220
240
260

100 95 90 85 80 75 70 65 60 55 50 45 40

R
ec

on
st

ru
ct

io
n

Er
ro

r (
m

m
)

Percentage of Training Samples

Fig. 3. Posture budgeting: We can shrink up to 40% of the training data
while the mean error almost remains constant.

4 POSTURE RECONSTRUCTION

To ensure that the reconstructed posture is accurate and
resembles the input data from Kinect, we formulate the
posture reconstruction as an optimization problem by
minimizing an energy function. Such an energy function
consists of three energy terms to constrain the solution
space, which are the spatial prediction term, the temporal
prediction term, and the reliability term. In the following,
we will elaborate the definition and purpose of each term.

4.1 Spatial Prediction

Assuming that the MOCAP posture Mt is the corrected
posture of the Kinect posture Xt, we design a spatial
prediction term to evaluate how well the reconstructed
posture fits with the MOCAP data, which implicitly favors
solutions that are more similar to the correct posture.

Due to self-occlusions and sensor error, there exists a
residual offset between Xt and Mt, which is calculated by
Yt = Mt − Xt, where Yt = (y1t , y

2
t , ..., y

i
t), y

i
t ∈ R3. During

run time, the objective is to predict the residual offset Yt
so that we can obtain the reconstructed posture Mt by
appending Yt to Xt.

In this paper, we adopt the non-parametric GP as the
predictor. More formally, letXi = [xi1, . . . , x

i
T]T be the input

data of an arbitrary joint i, where T is the total number of
frames. Let Y i = [yi1, . . . , y

i
T]T denote the output values

such that yit is the corresponding output of the input xit.
Here, we model the sensor error as the difference between
the Mocap data and the Kinect data using Gaussian process,

which transforms the input Xi of the ith joint into the
output Y i by:

yit = f(xit) + ε (3)

where ε ∼ N (0, β−1) is a noise variable, which is
independent for each data point. The joint distribution of
the output Y i conditioned on input Xi is given by:

p(Y i|Xi) =

∫
p(Y i|f i, Xi)p(f i|Xi)df = N (Y i|0,K) (4)

where K is the covariance matrix, in which the element
k(xia, x

i
b) is defined as:

k(xia, x
i
b) = θ0 exp

(
−1

2
(xia − xib)

T
W (xia − xib)

)
+ θ1 + β−1δab

(5)

where a and b are indices of training samples of joint i,
δab is Kronecker’s delta function, W is kernel width, θ0 is
signal noise, θ1 is a constant bias. At the training stage,
with the obtained training data from Kinect and MOCAP,
we can learn the hyper-parameters of Φ = {θ0, θ1,W, β} by
maximizing the log marginal likelihood:

log p(Y i|Xi,Φ) = −1

2
Y iTK−1Y i − 1

2
log |K|+ C (6)

where K is the covariance matrix defined in (5) and C is
a constant. Obviously, the computational cost of learning
GP is dominated by the cubic complexity of computing the
inverse of covariance matrix K−1.

Human body joints are highly coordinated and it is
important to take into account the relationship between
them. Here, given an arbitrary joint, we use its neighboring
joints for prediction. Specifically, given a joint i at time t, xit,
its neighboring joints N(xit) are defined as the set of joints
that are directly connected with the same bone segment
as joint i. Therefore, the input feature xit for obtaining
yit of joint i is the union set of x̃it and N(x̃it), where
N(x̃it) is the normalized position of the neighboring joints
for joint i. The input data of joint i is thus defined as
Xi = [(x̃it1 , N(x̃it1)), . . . , (x̃itn , N(x̃itn))]T , where t1, . . . , tn
are time slices. The output data Y i correspond to Xi of
the prediction model. To simplify notation, we use xi∗ =
(x̃i∗, N(x̃i∗)) to denote new input of the ith joint at time t∗
and use yi∗ to represent the corresponding output of xi∗ in
the remaining parts of the paper.

With the learned model, we formulate the above
prediction for yi∗ as a conditional probability distribution,
yielding the spatial prediction energy term of the ith joint
as defined below:

EiS = ln p(yi∗|Xi, Y i, xi∗) ∼ N (µ(xi∗), σ(xi∗)) (7)

where

µ(xi∗) = k(xi∗, X
i)K−1Y i = k(xi∗, X

i)α (8)

σ(xi∗) = k(xi∗, x
i
∗)− k(xi∗, X

i)K−1k(xi∗, X
i)T (9)

are the predicted mean and variance respectively, K is the
covariance matrix defined in (5), α = K−1Y i is the so-
called prediction vector that can be pre-calculated from
training samples, and the predicted mean is determined by
the vector k(xi∗, X

i).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

The term ES ensures that the reconstructed postures
are similar to the correct postures as much as possible.
Predicting the offset of each joint reduces the searching
space compared with inferring individual joints directly. The
use of the weighted local GP models allows synthesizing
variations in postures based on the motion database. There
are several publicly available implementations of Gaussian
Process. In this paper, we used the library developed by
Lawrence [40].

4.2 Incremental learning of local Gaussian Processes

The major problem of using full GP is its cubic learning
complexity of the inverse covariance matrix K−1 in (6).
Here, we propose a new method based on a local mixture
of Gaussian Processes that has the following advantages: 1)
The local GP models are created by partitioning the posture
space into Q local regions using clustering algorithm, and
training Q local GP models independently. This relieves the
cubic computational cost for learning the full GP model.
2) Since we use the weighted average prediction of nearby
local models in which only a small number of training
samples are involved, the prediction process is fast. 3) With
the use of local models, it becomes possible to incrementally
update a specific local GP with the complexity of O(S2),
where S is the size of local GP. With the newly added
predicted samples, the system accuracy can be enhanced
for run-time postures that are different from those in the
database.

Our algorithm consists of three major parts: 1) learning
the hyper-parameters of local GP models; 2) performing
the weighted prediction of local GP models; 3) incremental
updating of corresponding local GP models, that is, adding
a new sample into the closest local model and updating
the inverse covariance matrix K−1 in (8). Fig. 4 shows an
example of applying the local mixture of GP models. To
simplify illustration, we project the 3D joint positions onto
the XZ plane.

4.2.1 Learning of local Gaussian Processes
We cluster the training samples into Q regions and learn
the hyper-parameters at each local region. In our system,
Q is empirically set as 30. Similar to Section 4.1, the hyper-
parameters of Φ for each local model can be estimated by
maximizing the log marginal likelihood in each local region
as defined in (6).

Here, we explain how to partition the samples into
different local regions. Given a new input xi∗ of joint i,
assigning xi∗ to the qth local region is straightforward by
measuring the similarity between xi∗ and the center of
cluster Cq . Here, we use the Gaussian kernel to measure
the similarity, which is in the same form of (5):

similarity(q) = exp(−1

2
(xi∗ − Cq)TW (xi∗ − Cq)) (10)

where Cq is the center of the qth cluster (q ∈ Q) and W is
the kernel width.

To speed up the run-time computation, we learn these
hyper-parameters as an offline process named GP-offline.
Its computational complexity is the summation of the
complexity of clustering, O(QdN), and the complexity of

cluster_1

cluster_2

cluster_4

cluster_1

cluster_2

cluster_4cluster_3

cluster_1

cluster_2

cluster_4cluster_3

Training Process

Prediction Process

Motion Database

(a) (b) (c)

(d) (e) (f)

Fig. 4. Overview of the local mixture of GP models. (a-b) We capture
postures by the MOCAP system and Kinect at the same time to generate
the training samples. (c) At the training stage, we partition the samples
into Q = 4 local regions by K-means and learn Q local GPs with
S = 10 training samples independently. (d) During prediction, we extract
feature of the ith = 7 (left hand) joint, x7∗ = (x̃7∗, N(x̃7∗)). (e) For a
given test sample, xi∗, shown in red star, we find the nearby L = 3
local models by similarity measurement defined in (10). (f) We compute
the local predicted mean by the lth local GP model and then generate
the weighted mean prediction µ(xi∗) using L nearby local models given
by (13).

learning Q local GP models, O(QS3), where Q is the
number of local models, d is the dimension of input,N is the
total training data, and S is the size of each local model. The
first part of Algorithm 1 summarizes the training of local GP
models, where the kmeans(Xi, Q) function partitions the
Xi into Q clusters, and returns an index set ςq of samples
for the qth local model.

4.2.2 Prediction of local Gaussian Processes

Note that the mean of the prediction in (8) can be written as
a function of Y i:

µ(xi∗) =
∑T

t=1
wity

i
t (11)

where wit is the tth element of k(xi∗, X
i)K−1, T is the total

number of frames. In this view, the mean of the prediction
distribution is determined by the weighted combination of
the N training outputs. We therefore propose to interpret
the full GP as a global voting process, in which all weighted
training outputs contribute to the decision of the test sample
xi∗ of joint i. We observed that local neighborhoods behave
similarly such that nearby samples are likely to have similar
output. With this insight, the full GP could be locally
approximated by a small number of GPs near a given
feature xi∗ of joint i, which could significantly reduce the
computational cost and speed up the prediction.

Here, we explain how to determine the vote of local
models. Similar to the model in [41], the contribution of
each local model is determined by the distance to each
local model. Given a new input xi∗ = (x̃i∗, N(x̃i∗)) of joint
i, the weight of each local GP model can be determined by
the normalized distance to lth local model. Specifically, we
compute the averaged prediction of L nearby local models
by µ(xi∗) = E{µ

l
|xi∗} =

∑
l∈L

µ
l
(xi∗)p(l|xi∗) where µ

l
(xi∗) is

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

the predicted mean using the lth local model given by (11)
and p(l|xi∗) is the weight of each local GP, which is given by:

p(l|xi∗) = similarity(l)
/∑
η∈L

similarity(η) (12)

where similarity(l) measures the similarity between xi∗ and
the center of the lth local model given by (10). Hence, we
calculate the weighted prediction by:

yi∗ =
∑
l∈L

(similarity(l)∑
η∈L

similarity(η)

)
N (µ

l
(xi∗), σl

(xi∗))

=
∑
l∈L

∑
ς∈S

(similarity(l)∑
η∈L

similarity(η)

)
wilςy

i
lς

(13)

where L is total number of the nearby local models, S is
the size of training samples in each local model, ς is the
index of local training samples in S , wilς is the element of
k(xi∗, X

i
ς)K

−1
ς,ς , and yilς is one of the offsets in S that belongs

to lth local model. The prediction process is summarized in
the second part of Algorithm 1.

The prediction of our model is computationally
inexpensive as those local models are learnt from a very
small set of neighborhoods. L and S are parameters of our
model, and typical small values are sufficient to generate
satisfactory results. In our implementation, the size S of
each nearby local model is 50 and the number of nearby
local models L is 9. The influence of L and S are discussed
in Section 5.3.

4.2.3 Incremental updating of local Gaussian Processes

One limitation of the data-driven method for posture
reconstruction is that the reconstruction quality might
drop significantly if we cannot find similar postures in the
database. To relieve this problem, our model should be able
to learn from the newly estimated samples such that we are
more likely to adapt to unknown postures that are different
from those in the database.

Here, we explain the major process of incremental
updating of local GP models. During the local GPs learning
process, we learn the hyper-parameters of Φ and factorize
the covariance matrix K by (14). At the prediction stage, the
local models would predict the offset yi∗ given a new input
xi∗. During the incremental updating process, we preserve
the samples (xi∗, y

i
∗) with high reliability and low predictive

variance and append it into the nearest local model using
the similarity measurement given by (10).

We calculate the similarity between xi∗ and the mean of
each local Gaussian Process. If the similarity values with all
local GPs are smaller than a predefined threshold wsimilar,
we create a new local model centers at xi∗. Otherwise, we
update the local GP with the highest similarity value. Notice
that during the incremental learning process, the number of
newly added samples can be further reduced by posture
budgeting introduced in section 3.2.

To update a local GP, we need to first update both the
prediction vector and the mean of the local model. To update
the prediction vector α = K−1Y i, we adapt [42] in which
the K−1 is updated by adjusting Cholesky factorization. As

Algorithm 1: Local mixture of GP models and
prediction

1 Offline: Learning of hyper-parameters
2 Q: total number of local GP models
3 CQ: the center of each local GP model
4 ς

q
: the index set of samples for the qth local model

5
(
CQ, ςQ

)
= kmeans

(
Xi, Q

)
6 for q = 1 to Q do
7 {φ̄q} ⇐ max(ln p(Y iςq |X

i
ςq
, φ̄q))

8 end
9 Online: Prediction of a new input of joint i

10 Input: new input, xi∗, of joint i
11 L: the number of nearby local models
12 S : the size of training samples for each local GP model
13 for l = 1 to L do
14 Compute the similarity to the center of lth cluster:
15 similarity(l) = exp(− 1

2 (xi∗ − Cl)TW (xi∗−Cl))
16 Compute the local predicted mean by the lth local

model and ς
l

is the index set of lth local training
samples:

17 µ
l
(xi∗) = k(xi∗, X

i
ς
l
)K−1ς

l
,ς

l
Y iς

l

18 σ
l
(xi∗) =

k(xi∗, x
i
∗)− k(xi∗, X

i
ς
l
)TK−1ς

l
,ς

l
k(xi∗, X

i
ς
l
)

19 end
20 Compute the weighted prediction of new input xi∗ of

joint i by the L local models:
21 yi∗ =∑

l∈L
(similarity(l)

/∑
η∈L

similarity(η))N (µ
l
(xi∗), σl

(xi∗))

K is a symmetric, positive-definite matrix, we can uniquely
factorize K as:

K = UTU (14)

where U is a upper triangular matrix with positive diagonal
elements. We then update the mean of the corresponding
local model.

Given a new input xi∗ of joint i, we need to add
additional rows and columns to K and U as follows:

Knew =

[
K knew

kT
new knew

]
(15)

UTnew =

[
UT 0
uT u∗

]
(16)

where knew = k(Xi, xi∗), knew = k(xi∗, x
i
∗). Then, we can

solve u and u∗ by completing Knew = UTnewUnew as:

Uu = knew, u∗ =
√
knew − uTu (17)

Once we have solved Unew, we can update the
prediction vector α in UTnewUnewαnew = Y inew through
back-substitution. The cost of back-substitution for a local
model is O(S2), where S is the number of training samples
in a local model. Finally, we recalculate the corresponding
local model using (8).

Table 1 compares the complexity of the full GP and our
method. The computation of the Cholesky factorization
is O(QS3), where Q is the number of local GP models
and S is the number of training samples in a local model.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

The prediction cost is O(LS2), where L is the number
of nearby local GPs given an input. Thus, the offline
learning complexity, O(2QS3 + QdN), dominates the
main computational complexity of our method. The cost
of incremental updating is O(S2) due to the update
of Cholesky factorization, which enables our system to
incrementally update a specific local Gaussian Process in
real time. Algorithm 2 summarizes the incremental learning
of local models.

TABLE 1
Computational complexity: The main computational cost of our method

is the offline learning while the incremental updating is fast.

Proposed Method Full GP
Learning O(2QS3 +QdN) O(N3)
Prediction O(LS2) O(N2)
Incremental Updating O(S2) N/A

Algorithm 2: Incremental learning of local models

1 Input: new input, xi∗, of joint i
2 L: the number of nearby local models of xi∗
3 Cl: the center of the lth local model, where l ∈ L
4 Q: total number of local GP models
5 B: the training samples B = (Xi, Y i) and Bq

represents the samples of the qth local model
6 Predict the offset, yi∗, by L nearby local models (see

Algorithm 1)
7 for l = 1 to L do
8 similarity(l) = exp(− 1

2 (xi∗ − Cl)TW (xi∗ − Cl))
9 end

10 Find the most similar jth local model
11 max

similar
= max(similarity)

12 if max
similar

<= wsimilar then
13 Create a new local model:
14 CQ+1 = {xi∗}
15 BQ+1 = {(xi∗, yi∗)}
16 else
17 Append {xi∗, yi∗} to the nearest local model j
18 Bjnew

= {Bj ; (xi∗, y
i
∗)}

19 Update the mean of jth model
20 Cjnew = mean(Xi

jnew
)

21 Update α = K−1Y i of the jth local model:
22 Compute u , u∗, and Unew
23 Compute αinew by back-substitution
24 end

4.3 Temporal Prediction
The above spatial prediction considers each posture
independently. To ensure the temporal smoothness between
consecutive frames, the relationship between frames
is modeled as a second order temporal model, which
has been verified to be effective in preserving temporal
smoothness [43]. Specifically, we adopt a constant velocity
variation to smooth velocity, which is formulated as below:

ET = ln p(Mt|Mt−1,Mt−2) (18)

Mt, Mt−1, and Mt−2 are the reconstructed postures
at time slices t, t − 1, and t − 2. We have the following

relationship between the reconstructed posture, input
posture and the residual offset:

Mt = Yt +Xt (19)

Therefore, we can rewrite (18) as :

ET = ln p(Yt +Xt|Mt−1,Mt−2)
= ||(Mt −Mt−1)− (Mt−1 −Mt−2)||2
= ||Mt − 2Mt−1 +Mt−2||2
= ||Yt − (−Xt + 2Mt−1 −Mt−2)||2

(20)

which facilitates the continuity in the reconstructed motions.

4.4 Reliability Embedding

The accuracy of each tracked joint is different depending
on the degree of occlusion. The incorrectly tracked joints
from Kinect will incorrectly guide the system to infer the
joint positions. The residual offset, Yt = Mt − Xt, of the
correctly tracked joints should be smaller as they are closer
to the corrected posture, namely Mt. Thus, it is essential to
consider the reliability of each joint to constrain the residual
offsets of these joints with higher confidence during the
prediction of Yt. We use a reliability term ER to penalize
the residual offset of each joint based on its reliability, which
implicitly ensures that the reconstructed posture resembles
the input posture from Kinect as much as possible. More
specifically, the residual offset value yit of joint i should be
smaller if the corresponding joint is with higher reliability.

We adopt the strategy proposed by [7] to evaluate
the reliability of the tracked joints from Kinect. They
evaluate the reliability in three aspects: behavior reliability,
kinematics reliability, and tracking state reliability. The
behavior reliability refers to abnormal behavior of a tracked
joint, which is calculated by the cosine similarity between
two consecutive displacement vectors of one joint. The
kinematics reliability represents the kinematic correctness
of the tracked joints, which measures the change of bone
length for bones connecting with the joint. The tracking
state reliability tells if a joint is tracked, inferred or not
tracked when it is completely occluded. More details about
the calculation of the reliability of each joint can be found
in [7]. As a result, the reliability rate of each joint is a value
between 0.0 and 1.0 (inclusive). We embed the reliability of
each joint into the optimization framework and formulate
the following reliability term:

ER = ||RYt||2F (21)

|| · ||F is the Frobenius norm. The entry of R is the reliability
of each joint, which ensures the reconstructed posture does
not deviate from the input posture from Kinect. Intuitively,
while minimizing the objective function, the value of yit
tends to be small when its reliability value is large.

4.5 Energy Minimization Function

With the terms defined in the above sections, the posture
reconstruction problem is formulated as the following
optimization function:

E = arg min
Yt

{wSES + wTET + wRER} (22)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

where wS , wT , and wR are the weights of the energy
terms. In our implementation, they are empirically set to
be 0.6, 0.2, and 0.2, respectively. We optimize (22) by using
the gradient descent method. We sample a number of
potential postures in the solution space in each iteration. The
posture that minimizes the cost function will be considered
as the initial posture sample in the next iteration. Our
posture reconstruction system is frame-based. The initial
posture for optimization at each frame is defined as the
previous reconstructed posture, which allows the system
to have higher chance to find the optimized posture. The
optimization procedure stops when an optimal solution is
found or the number of iterations reaches a predefined
threshold.

There are some principles to tune the values of the
weights. The weight of the spatial prediction term should
be set the largest, since this term drags the reconstructed
posture to the corrected posture as closely as possible.
Second, the temporal prediction term ensures the temporal
stability of the posture sequences. The reliability term makes
sure the reconstructed posture is as similar as the Kinect
posture, since the primary purpose of the system is to
reconstruct Kinect postures. We will evaluate how these
terms affect the accuracy of the system in Section 5.5.

The proposed framework for posture reconstruction
is summarized here. At the offline stage, we learn a
spatial prediction model using Gaussian Process with
pairwise Kinect data and marker-based motion capture
data. It ensures that the reconstructed posture is as
accurate as the MOCAP data. We also embed the temporal
and reliability terms in offline process so as to generate
temporal smoothness and reliable postures. At the online
stage, the system obtains an optimized posture with live
captured data from Kinect, which ensures the reconstructed
posture resembles the input posture from Kinect while
maintaining the temporal smoothness between previous
frames.

5 EXPERIMENTAL RESULTS

In this section, we will show the experimental results
and present the comparisons with alternative approaches
including Kinect SDK [2], as well as the algorithms
proposed by [19] and [9]. We first show postures with severe
self-occlusions reconstructed by our approach. Qualitative
and quantitative analysis were conducted to evaluate the
accuracy.

The experimental results were conducted on a desktop
computer with Intel Core 2 Duo 3.17 GHZ processor.
If not otherwise mentioned, we use Kinect official SDK
[2] to obtain posture data. Here, we consider the Kinect
device as one additional reflective marker of the optical
motion capture system to eliminate the interference between
Kinect and the optical motion capture system. The setup
environment of Kinect and optical motion capture system is
shown in Fig. 2.

5.1 Posture Reconstruction

The proposed approach works for users with different body
sizes and proportions, because we normalize and retarget

the Kinect input posture as explained in Section 3.1. We
evaluate our system on a wide range of human motions,
including sports activity such as Tai Chi, bending, golf
swinging, and daily actions such as crossing arms, waving
right hand, clapping hands, rolling hands up and down,
rolling hands forward and backward. The number of frames
in the training database used in our method, [19] and [9] are
reported in Table 2, which shows that our database is 35%
smaller than that of Zhou et al. [9], and 83% smaller than
that of Shen. et al. [19]. In addition, our newly proposed
local mixture of GPs algorithm allows us to combine all
types of training motion in Table 2 as a single database,
while in [9] a separate training database is built for each
type of motion.

TABLE 2
The number of frames for each type of training motion database used

in our method, Shen et al. 2012, and Zhou et al. 2014.

Motions Our method Zhou et al.
2014

Shen et al.
2012

Tai Chi 411 650 2320
Bending 201 320 1580
Golf Swinging 296 460 1765
Crossing Arms 245 380 1685
Waving Right Hand 221 350 1650
Clapping Hands 270 420 1720
Rolling Hand Up and Down 308 480 1840
Rolling Hand Forward and
Backward 306 475 2050

Bending Leg 243 385 1890
Mixed motion database 2501 - 16500

We choose these motions because all these motions
contain severe self-occlusions, which are not well tracked
by the Kinect system. However, the proposed method can
well reconstruct these inaccurate postures even if a number
of joints cannot be tracked by the Kinect sensor. Fig. 5
showed several frames of our results, the lower right avatar
represents the postures reconstructed by our method and
the lower left avatar corresponds to the estimated posture by
Kinect SDK [2]. The upper half shows the RGB and depth
images respectively. We can observe that certain parts of
the postures from Kinect SDK are twisted when there exist
occlusions while our method can reconstruct the postures
very well.

5.2 Qualitative Analysis
In this section, we evaluate the perceptual score for the
correctness of postures reconstructed by our method,
postures from Kinect, postures by the method proposed by
[19], [9] and postures captured by an optical motion capture
system.

In order to evaluate the perceptual correctness according
to the user performed motion, we measure the perceptual
score for the postures of each method using a survey-based
evaluation. Such an experiment has also been performed
in [7] and [9]. Notice that while some recent research such
as [44] analyzes how viewers perceive interactions between
virtual characters, since the focus of our research is about
posture reconstruction process from noisy data, we do not
include detailed perceptual analysis in the scope of this
research.

A total of 15 participants were invited to conduct
this experiment. All of them had little or no experience

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Postures from Kinect and their corresponding reconstructed postures. In each picture, the upper half shows the RGB and depth images,
in which the blue skeleton is the tracked results from Kinect. The lower left and right parts represent the 3D Kinect posture and our reconstructed
posture respectively. (a) Bending over; (b) Crossing arms; (c) Rolling hands forward and backward; (d) Rolling hands up and down; (e) Clapping
hands; (f) Bending leg; (g) Golf swinging; (h) Waving left hand; (i) Walking.

about motion capture and 3D animation. The purpose of
this experiment is to assess the relative correctness of the
obtained postures from these five methods. We create a set
of posture sequences with these five methods together with
the RGB video so that the participants know what the actual
actions are. Participants were asked to give a score for each
motion based on its correctness according to the performed
motion without knowing what method is used. The score
ranges from 1 to 10 (inclusive), where 1 means the most
incorrect, and 10 means the most correct.

The score distribution for Kinect SDK [2], [19], [9],
our method and MOCAP is shown in Fig. 6. The overall
average scores of these five methods are 5.20, 6.42, 7.51,
7.49 and 9.16 respectively, and the standard deviations
are 1.187, 0.578, 0.236, 0.240, and 0.255. As expected,
MOCAP data achieve the best scores. We can see that our
method performs better than Kinect and [19] in general.
In particular, our method significantly outperforms Kinect
and [19] for motions with more occlusions such as bending
over and rolling hands, as shown in Fig. 5(a), Fig. 5(c),
Fig. 6(b) and Fig. 6(h). The reason is that we embed the

reliability term into our optimization framework, which
implicitly ensures the system to recover these joints more
than those with higher reliability. As shown in Table 2, our
method generates postures of similar quality compared
with [9] with a significantly smaller motion database. It
should be noted that for motion that involves a large range
of movement such as Tai Chi, our method could synthesize
postures that are closer to the ground truth compared to
[9]. This is because the weighted prediction of local models
allows synthesizing postures that are not available in the
motion database and more possible solutions are explored.

5.3 Quantitative Analysis

In this section, we quantitatively analyze the correctness
of the proposed method. We assume the data from optical
motion capture system is the ground truth data. To
evaluate the accuracy of the reconstructed postures, we
define an error function to measure the distance between

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

TABLE 3
Reconstruction error of Kinect, Shen et al. 2012, Zhou et al. 2014, and the proposed method on the testing data sets.

Motion Type Number of Frames
for Testing Kinect (cm) Shen et al. (cm) Zhou et al. (cm) Proposed Method (cm)

LGP-offline LGP-incremental
Crossing Arms 2052 12.5 9.8 7.2 7.9 7.4
Bending Over 1835 13.7 9.5 8.4 9.2 8.7

Tai Chi 2885 14.5 10.2 7.5 8.0 7.4
Waving Right Hand 1568 12.5 8.8 6.5 6.9 6.6

0

1

2

3

4

5

6

7

8

9

10

(a)
Tai Chi

(b)
Bending

(c)
Golf

Swinging

(d)
Crossing

Arms

(e)
Waving

Right Hand

(f)
Clapping

Hands

(g)
Rolling

Hands Up
and Down

(h)
Rolling
Hands

Forward and
Backward

(i)
Bending Leg

Pe
rc

ep
tu

al
 A

cc
ur

ac
y Kinect

Shen et al.

Zhou et al.

Proposed Method

MOCAP

Fig. 6. The perceptual score for the correctness of postures from Kinect,
Shen et al. 2012, Zhou et al. 2014, proposed method, and an optical
motion capture system.

reconstructed postures and ground truth postures:

E(F1, F2) =
1

IT

I∑
i=1

Ei(F1, F2) (23)

where F1 and F2 are the two sets of postures, I is the total
number of joints, and T is the total number of postures.
Ei is the reconstruction error of joint i between two set of
postures, which is defined as:

Ei(F1, F2) =
T∑
t=1

D(F i1t, F
i
2t) (24)

where F i1t is the ith joint of the posture at time t from F1. D
is the Euclidean distance between two joints of two postures:

D(P i1, P
i
2) =

√
(P i1x − P i2x)

2
+ (P i1y − P i2y)

2
+ (P i1z − P i2z)

2

(25)
With the error function defined in (23), we first study

the influence of the training size of each local model, S , and
the number of local models, L, on the reconstruction error.
Fig. 7 shows that when we fix the S for each local model, the
3D joint reconstruction error decreases as the L increases.
Similarly, for any specific L, the system accuracy can be
enhanced by increasing S . However, the improvement is not
significant when S is raised to 50 and L reaches 9, because
the postures become redundant and do not contribute to
the reconstruction process. Thus, the value of S and L are
empirically set to 50 and 9 respectively.

As an example, Fig. 8 shows the trajectory of the
left hand in a golf swinging movement using offline
local GPs (LGP-offline) and local GPs with incremental
updating (LGP-incremental). We can see that the ground
truth data (MOCAP) is smooth and the Kinect data is
noisy due to the self-occlusions and sensor error. The
mean error of Kinect, LGP-offline, and LGP-incremental
is 12.36, 8.1, and 7.7 cm. Compared with LGP-offline, the
LGP-incremental is closer to the ground truth in general,
which verify the effectiveness of the incremental learning

Fig. 7. Influence of the training size and the number of local GP models
on the 3D joint reconstruction error.

framework. We can also see that a small number of local GP
models (L = 9) is sufficient to reconstruct postures.

Fig. 8. Trajectory of the left hand when performing golf swinging motion.

More comparisons of different type of testing motions
between LGP-offline, LGP-incremental, [19], and [9] can
be found in Table 3. Here we choose 5 types of motion
for evaluation: clapping hands, crossing arms, bending,
Tai Chi, and waving right hand. As expected, the error
of Kinect was large in general. Our method outperforms
[19] as we take into account the reliability of each joint
such that the inaccurately tracked joints will not guide the
system to infer the postures. For all classes of motions,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

our method consistently outperforms the Kinect and [19],
which verifies the effectiveness of the proposed method in
terms of reconstruction accuracy. It should be noted that the
LGP-incremental can generate comparable system accuracy
compared to [9] while the running time is less than [9]. The
computational time of [9] and our system are 37 and 29 ms
per frame, respectively.

5.4 Comparison Between Randomized Forests and Our
Method
In this particular experiment, we do not use Kinect SDK to
extract joint positions. To ensure a fair comparison between
our method and randomized forests, which is the method
used to train Kinect, we construct a common training
database for both methods.

Our database contains a large number of synthetic depth
images that are created as follow. First, we create a 3D
mesh model in which each body part is labeled. Second, we
retarget Mocap data to drive the movement of the 3D mesh
model. Third, we render depth information of the scene into
depth images frame by frame. Since our 3D model comes
with body part labels, we can automatically label body part
information for each pixel in the rendered depth images.
Finally, we trained the randomized forests with the labeled
depth images and estimated the joint positions using mean
shift. We also trained our GP models with the same data and
the joint positions found by mean shift using the body parts
estimated by randomized forests. Our training database
consists of 17K synthesized depth images generated by
Mocap data, including actions such as golf swing, waving
hands, crossing hands and clapping hands.

We use five-fold cross validation to compare the
performance of randomized forests [3] and our algorithm.
Table 4 shows the comparison of average reconstruction
error. It can be observed that both methods have similar
performance for simpler motions such as T-pose. However,
for more challenging motions that involve self-occlusion
such as crossing hands and golf swing, our method
generates better reconstruction results with smaller
reconstruction error.

TABLE 4
Reconstruction error of randomized forests and our method using

five-fold cross validation (cm).

Motion Type

Number of

Frames for

Testing

Reconstruction Error with

Randomized Forests

Reconstruction Error

with Our Method

Crossing Hands 1512 13.7 8.1

Golf Swinging 731 14.8 9.2

Waving Hands 1264 13.3 7.2

Rolling Hand

Left and Right
1372 13.5 7.5

Clapping Hands 1156 14.2 8.3

T-pose 369 7.9 7.1

Motion Type
Reconstruction Error with

Randomized Forests

Reconstruction Error

with Our Method

Crossing Hands 13.8 8.1

Golf Swinging 14.9 9.4

Waving Hands 13.5 7.3

Rolling Hand

Left and Right
13.7 7.4

Clapping Hands 14.3 8.5

T-pose 7.8 7.1

5.5 Effects of Optimization Terms
In this section, we analyze the reconstruction accuracy
by examining the effectiveness of different terms in the
objective function of (22). We used Tai Chi motion, bending
over and crossing arms for evaluation because of their

complicated movement features. The results are reported in
Table 5.

TABLE 5
Reconstruction error of the proposed framework with different

constraint terms.

Setup Terms Used Reconstruction Error (cm)
(a) ES 12.0
(b) ES , ET 10.5
(c) ES , ER 9.7
(d) ES , ET , ER 7.9

We found that both the temporal prior term and
the reliability term improve the reconstruction accuracy,
especially for the movements with severe self-occlusions.
Although setup (c) achieves better results than setup (b), the
obtained movements are jerky, because setup (c) predicts
postures independently without considering relationship
between consecutive frames.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we present a probabilistic framework to
reconstruct live captured postures from Kinect. Postures
from Kinect are noisy, however, such a noise is not a random
signal and we observed that there are some underlying
patterns in it. In this research, we can thus assume that the
noisy data contain useful information in helping us to find
the solution. Then, we apply a machine learning algorithm
to learn the correlation between Kinect data and Mocap
data so as to predict the offset given Kinect data. Finally,
we verify our assumption with accurately reconstructed
posture results.

To overcome the problem of incorrectly tracked and
missing joints in Kinect, we adopt Gaussian Process
(GP) model as a spatial prior to leverage position data
obtained from Kinect and an optical motion capture system.
Specifically, we model the residual offset between postures
obtained from Kinect and MOCAP system instead of using
pairwise posture relationship. While GP works well in
small training data sets, it is not competent in systems that
require a large database, such as motion-based gaming,
due to its high computational complexity. To solve this
problem, we propose a new method based on the local
mixture of Gaussian Processes to speed up the learning and
prediction. Our system allows incrementally updating of
local models in real time, which boosts the reconstruction
accuracy of run-time postures that are different from those
in the database.

For our method to work well, the motion performed
by the user should belong to one of the action classes
in the database. The proposed method is useful for real-
time applications such as motion-based gaming and sport
training where the user is expected to perform a motion
from a set of common moves that are known in advance.
While our system utilizes neighboring joints for prediction,
it is difficult to deal with heavily occluded postures such as
turning around, in which there are only few valid joints. As
shown in Fig. 9, Kinect incorrectly recognizes the posture.
The incorrect joint positions and the decrease of reliability
of body joint greatly impact the recognition quality. In
such cases, the amount of correct data present is so little

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

(a) (b)

Fig. 9. Turning around motion. (a) The RGB image of turning
around motion (facing backward); (b) The tracking result of Kinect
corresponding to (a) (facing forward).

that our system cannot produce very good result. One
possible solution would be using multiple Kinects to capture
postures from different directions.

There is still room to improve the proposed
reconstruction system. The assigned weights for the terms
in the objective function are empirically set to be fixed in the
proposed system. However, the weights can be different for
different types of motion to obtain optimal reconstructed
postures. One possible improvement would be to formulate
the weights as a function of the residual offset, which is
used to measure the importance of each term. Therefore, the
weights can be adaptively determined according to the type
of motion. The incorporation of physical constraints into
the proposed framework is another interesting direction as
the reconstructed postures in this work are not necessary
physically correct. One possible implementation would be
modeling the physical attributes (i.e. force field) between
the Kinect data and MOCAP data as a prior distribution,
and embed them in the optimization framework to generate
physically valid postures. Last but not least, integrating
our system with other simple yet stable devices such as
inertia-based Mocap system would be an interesting topic,
because Kinect can only detect limited range of movements
while motion sensor can be used as a complement, e.g.
detecting the occluded body part.

ACKNOWLEDGMENTS

The work described in this paper was partially supported
by a grant from City University of Hong Kong (Project
No. 7004548) and the Engineering and Physical Sciences
Research Council (EPSRC) (Ref: EP/M002632/1).

REFERENCES

[1] J. Chan, H. Leung, J. Tang, and T. Komura, “A virtual reality
dance training system using motion capture technology,” Learning
Technologies, IEEE Transactions on, vol. 4, no. 2, pp. 187–195, April
2011.

[2] Microsoft Corporation, “Kinect for windows sdk programming
guide version 1.8,” 2013.

[3] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from single depth images,” in Proceedings of
the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
ser. CVPR ’11, 2011, pp. 1297–1304.

[4] T. Morgan, D. Jarrell, and J. Vance, “Poster: Rapid development
of natural user interaction using kinect sensors and vrpn,” in 3D
User Interfaces (3DUI), 2014 IEEE Symposium on, March 2014, pp.
163–164.

[5] J. Chai and J. K. Hodgins, “Performance animation from low-
dimensional control signals,” in ACM SIGGRAPH 2005 Papers, ser.
SIGGRAPH ’05, 2005, pp. 686–696.

[6] H. Liu, X. Wei, J. Chai, I. Ha, and T. Rhee, “Realtime human motion
control with a small number of inertial sensors,” in Symposium on
Interactive 3D Graphics and Games, ser. I3D ’11, 2011, pp. 133–140.

[7] H. P. H. Shum, E. S. L. Ho, Y. Jiang, and S. Takagi, “Real-time
posture reconstruction for microsoft kinect,” IEEE Transactions on
Cybernetics, vol. 43, no. 5, pp. 1357–1369, 2013.

[8] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2005.

[9] L. Zhou, Z. Liu, H. Leung, and H. P. H. Shum, “Posture
reconstruction using kinect with a probabilistic model,” in
Proceedings of the 20th ACM Symposium on Virtual Reality Software
and Technology, ser. VRST ’14. New York, NY, USA: ACM, 2014,
pp. 117–125.

[10] I. Tashev, “Kinect development kit: A toolkit for gesture- and
speech-based human-machine interaction [best of the web],”
Signal Processing Magazine, IEEE, vol. 30, no. 5, pp. 129–131, Sept
2013.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon, “Kinectfusion: Real-time 3d reconstruction and
interaction using a moving depth camera,” in Proceedings of
the 24th Annual ACM Symposium on User Interface Software and
Technology, ser. UIST ’11, 2011, pp. 559–568.

[12] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer
vision with microsoft kinect sensor: A review,” Cybernetics, IEEE
Transactions on, vol. 43, no. 5, pp. 1318–1334, Oct 2013.

[13] S. W. Bailey and B. Bodenheimer, “A comparison of motion
capture data recorded from a vicon system and a microsoft kinect
sensor,” in Proceedings of the ACM Symposium on Applied Perception,
ser. SAP ’12, 2012, pp. 121–121.

[14] J. Kim, Y. Seol, and J. Lee, “Human motion reconstruction from
sparse 3d motion sensors using kernel cca-based regression,”
Computer Animation and Virtual Worlds, vol. 24, no. 6, 2013.

[15] T. Helten, M. Muller, H.-P. Seidel, and C. Theobalt, “Real-time
body tracking with one depth camera and inertial sensors,” in
Computer Vision (ICCV), 2013 IEEE International Conference on, Dec
2013, pp. 1105–1112.

[16] M. Sigalas, M. Pateraki, I. Oikonomidis, and P. Trahanias, “Robust
model-based 3d torso pose estimation in rgb-d sequences,”
in Computer Vision Workshops (ICCVW), 2013 IEEE International
Conference on, Dec 2013, pp. 315–322.

[17] H. P. H. Shum and E. S. L. Ho, “Real-time physical modelling of
character movements with microsoft kinect,” in Proceedings of the
18th ACM symposium on Virtual reality software and technology, ser.
VRST ’12, 2012, pp. 17–24.

[18] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A
data-driven approach for real-time full body pose reconstruction
from a depth camera,” in Proceedings of the 2011 International
Conference on Computer Vision, ser. ICCV ’11, 2011, pp. 1092–1099.

[19] W. Shen, K. Deng, X. Bai, T. Leyvand, B. Guo, and Z. Tu,
“Exemplar-based human action pose correction and tagging,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, June 2012, pp. 1784–1791.

[20] H. Yasin, B. Krüger, and A. Weber, “Model based full body human
motion reconstruction from video data,” in Proceedings of the 6th
International Conference on Computer Vision / Computer Graphics
Collaboration Techniques and Applications, ser. MIRAGE ’13, 2013,
pp. 1:1–1:8.

[21] X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body motion
capture using a single depth camera,” ACM Trans. Graph., vol. 31,
no. 6, pp. 188:1–188:12, Nov. 2012.

[22] L. Bo and C. Sminchisescu, “Twin gaussian processes for
structured prediction,” International Journal of Computer Vision,
vol. 87, no. 1-2, pp. 28–52, 2010.

[23] L. Bo and C. Sminchisescu, “Structured output-associative
regression,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 2403–2410.

[24] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation
with parameter-sensitive hashing,” in Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on. IEEE, 2003,
pp. 750–757.

[25] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and
Y. Sheikh, “Pose machines: Articulated pose estimation via

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2015.2510000, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

inference machines,” in Computer Vision–ECCV 2014. Springer,
2014, pp. 33–47.

[26] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 1653–1660.

[27] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time
continuous pose recovery of human hands using convolutional
networks,” ACM Transactions on Graphics (TOG), vol. 33, no. 5, p.
169, 2014.

[28] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” The Journal of
Machine Learning Research, vol. 6, pp. 1939–1959, 2005.

[29] N. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse gaussian
process methods: The informative vector machine,” in Proceedings
of the 16th Annual Conference on Neural Information Processing
Systems, 2003, pp. 609–616.

[30] E. Snelson and Z. Ghahramani, “Sparse gaussian processes
using pseudo-inputs,” in Advances in Neural Information Processing
Systems. MIT press, 2006, pp. 1257–1264.

[31] V. Tresp, “Mixtures of gaussian processes,” Advances in neural
information processing systems, pp. 654–660, 2000.

[32] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of
gaussian process experts,” Advances in neural information processing
systems, vol. 2, pp. 881–888, 2002.

[33] R. Urtasun and T. Darrell, “Sparse probabilistic regression for
activity-independent human pose inference,” in Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE, 2008, pp. 1–8.

[34] L. Bo, C. Sminchisescu, A. Kanaujia, and D. Metaxas, “Fast
algorithms for large scale conditional 3d prediction,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on. IEEE, 2008, pp. 1–8.

[35] E. Snelson, “Local and global sparse gaussian process
approximations,” in Proceedings of Artificial Intelligence and
Statistics, 2007.

[36] D. Nguyen-Tuong, J. R. Peters, and M. Seeger, “Local gaussian
process regression for real time online model learning,” in
Advances in Neural Information Processing Systems, 2009, pp. 1193–
1200.

[37] S. Schaal and C. G. Atkeson, “From isolation to cooperation:
An alternative view of a system of experts,” Advances in neural
information processing systems, pp. 605–611, 1996.

[38] L. Sigal, R. Memisevic, and D. J. Fleet, “Shared kernel information
embedding for discriminative inference,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 2852–2859.

[39] Motion Analysis Corporation, http://www.motionanalysis.com.
[40] N. Lawrence, “Gaussian processes tool-kit, http://cran.r-

project.org/web/packages/gptk,” 2014.
[41] X. Zhao, Y. Fu, and Y. Liu, “Human motion tracking by temporal-

spatial local gaussian process experts,” Image Processing, IEEE
Transactions on, vol. 20, no. 4, pp. 1141–1151, 2011.

[42] M. Seeger, “Low rank updates for the cholesky decomposition,”
University of California at Berkeley, Tech. Rep, 2007.

[43] H. Sidenbladh and M. Black, “Learning image statistics for
bayesian tracking,” in Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on, vol. 2, 2001,
pp. 709–716 vol.2.

[44] L. Hoyet, R. McDonnell, and C. O’Sullivan, “Push it real:
Perceiving causality in virtual interactions,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 90:1–90:9, Jul. 2012.

Zhiguang Liu is currently a PhD student in
the Department of Computer Science, City
University of Hong Kong. His research interests
include character animation, computer graphics
and machine learning.

Liuyang Zhou is currently a Researcher of
Wisers Research, Wisers Information Limited,
Hong Kong. He received the Ph.D. degree
in Computer Science from City University of
Hong Kong in 2014. His research interests
include deep learning, computer vision and
computer animation, focusing on large-scale
object recognition and detection, human motion
retrieval and character animation synthesis.

Howard Leung is currently an Assistant
Professor in the Department of Computer
Science at City University of Hong Kong.
He received the B.Eng. degree in Electrical
Engineering from McGill University, Canada, in
1998, the M.Sc. degree and the Ph.D. degree
in Electrical and Computer Engineering from
Carnegie Mellon University in 1999 and 2003
respectively. He is supervising the 3D Motion
Capture Laboratory at City University of Hong
Kong. His current research interests include 3D

Human Motion Analysis and Retrieval, Intelligent Tools for Chinese
Handwriting Education, Web-Based Learning Technologies and Brain
Informatics. He has received the Best Paper Award during the 31st
Computer Graphics International (CGI 2014).

Hubert P. H. Shum is a Senior Lecturer
(Associate Professor) at Northumbria University.
Before joining the university, he worked as
a Lecturer in the University of Worcester, a
post-doctoral researcher in RIKEN Japan,
as well as a research assistant in the City
University of Hong Kong. He received his PhD
degree from the School of Informatics in the
University of Edinburgh, as well as his MSc and
BEng degrees from the City University of Hong
Kong. His research interests include character

animation, machine learning, human motion analysis and computer
vision.

