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Abstract 
Cycling has long been known to have significant physical and mental health 

benefits for its participants. It has the potential to significantly reduce the 

carbon footprint of a city, increase personal mobility, improve transportation 

equality, improve air quality, and reduce congestion. While cycling has seen a 

major increase over the recent past, it is still a relatively small proportion of 

overall transportation.  One significant factor in inhibiting the growth of cycling 

in many UK cities has been the lack of sufficient dedicated cycle routes. This 

deficiency is partly due to the lack of any recognized method of forecasting 

the practicability of future dedicated cycle lane provision. 

Historically, the prediction of movement rates for cyclists, using space syntax 

methods, has been weaker than that achieved for pedestrian rates. This 

paper theorizes that cyclists’ route choice is primarily dominated by the 

momentum of the cyclist rather than route complexity. In this paper we 

introduce momentum integration as an alternative mechanism to understand 

cyclist movement. Momentum integration unifies multiple aspects of 

movement (specifically angular complexity, elevation change, traffic lights 

position) into a singular system, which can be computed using traditional 

syntax methods.  

This paper describes the methods of momentum integration and introduces 

new software known as ‘Momentum Mercury’, which uses open source, 

centre-line data to compute momentum integration maps. The paper then 

continues to produce a movement rate analysis comparison between 

traditional space syntax methods and momentum integration using a survey of 
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cycle usage in a major UK city. Analysis of this data shows that they are 

momentum method improves upon previous pedestrian correlation.  

 

Keywords: Keywords: Transport planning, Cycling and pedestrian movement 

studies, momentum 

Introduction 
Over the last 10 years there has been a spectacular growth in utility cycling In 

Europe and other countries. Utility cycling is the use of a bicycle as a means 

of transport for non-exercise or leisure activities. This includes cycling as a 

means of commuting both to school and work, and also includes travel to use 

local facilities such as retail and entertainment, as well as social journeys to 

visit friends and relatives. Utility cycling differs from an aligned term used in 

the health community of ‘active commuting’ as it does not include walking and 

includes non work trips.  In this paper we do not include the use of cycling to 

deliver goods and services (such as courier services, Velotaxis and cycle 

freight based delivery) as utility cycling.  

Benefits of cycling 
The benefits of utility cycling has been extensively researched (Fraser & Lock 

2010). This type of non‐exercise activity thermogenesis (NEAT) (Levine et 

al. 1999) expenditure is known to have significant long-term health benefits 

(Oja et al. 2011).  There have been a number of studies which have shown 

that utility cycling or active commuting reduces the risk of cardiovascular 

events (heart attacks) (Oja et al. 2011)(Garrard et al. 2012) Type II diabetes, 

hypertension, improved fitness and decreases in cancer risk including colon 

cancer. Gordon-Larsen et al. reported ‘Active commuting was positively 

associated with fitness in men and women and inversely associated with BMI, 

obesity, triglyceride levels, blood pressure, and insulin level in men’ (Gordon-

Larsen et al. 2009). It is because of these benefits that health studies like 

those of Woodcock (Woodcock et al. 2009) suggest that active commuting 

has extensive health benefits for cities beyond that achievable by the 

introduction of low emission vehicles. Obesity is one of the leading 

preventable causes of death worldwide (Barness et al. 2007)(Mokdad et al. 
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2004)(Allison et al. 1999). This has been largely attributed to changes in diet 

and a move towards a more sedentary lifestyle (Kopelman et al. 2009)(Seidell 

2005).  Studies such as (Bassett Jr et al. 2008)(Wen et al. 2006), has shown 

that utility cycling or active transport has been associated with reduced levels 

of obesity, as well has having positive effects on body fat markers and body 

mass gain (Wagner et al. 2001).  One major constraint on the participation in 

physical activity has generally been reported as lack of time or money to 

engage in organized sports or fitness programs or other structured exercise 

programs (Trost et al. 2002)(Kavanagh et al. 2012)(Bauman et al. 2008) i.  

Utility cycling overcomes this barrier by introducing small amounts of regular 

exercise and interleaving it with commuting tasks. This also has positive 

benefits with adherence to the maintenance of a regime of regular exercise. 

(Hillsdon & Thorogood 1996) Reported that activities that become part of 

everyday life are more likely to be sustained than those that require 

attendance at specific venues.    

Beyond health there are other benefits gained by a switch to the use of 

cycling is transportation. In the UK, government figures assert that 

transportation is responsible for 27% of green house gas emissionsii with 

domestic cars and taxis representing 58% of domestic, transportation-related 

CO2 production. If a significant switch to cycling from road transport could be 

achieved then this could be a significant contribution to the reduction in 

energy and pollution. Undoubtably congestion to could also be relieved if a 

large switch to cycling could be achieved. 

TfL research shows that 61% of Central London journeys can easily be 

cycled”.  These benefits have led the UK government, amongst others, to 

promote cycling as ‘the natural choice for shorter journeys, or as part of a 

longer journey, regardless of age, gender, fitness level or income' and set the 

ambition ‘To double cycling, where cycling activity is measured as the 

estimated total number of bicycle stages made each year, from 0.8 billion 

stages in 2013 to 1.6 billion stages’ iii 

The importance of separated cycle paths to increase cycle mode switch 
In the UK, driving led to the death of 1,850 people and 208,648 casualties in 

2010. 45% of these deaths were of car occupants.iv vA substantial increase in 
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utility cycling on segregated tracks may lead to a reduction in car usage and 

hence to a long term reduction in these figures.  

 

 

Walking and cycling carry a 5 to 10 times higher risk of injury per kilometer 

travelled than driving in a car (World Health Organization 2009)(Elvik 2009). 

The British Medical Association published a study identifying the health 

benefits of cycling as 20 times the injury risks (British Medical Association et 

al. 1992) . Despite this, the perception of safety remains an important 

consideration for an individual’s journey mode split. In a report, TfL suggested 

that provision of a suitably located cycle route would be an important factor in 

the travel mode split by reporting ‘Between two and three in ten of those 

cycling on these [Barclays Cycle Superhighway] routes had switched to 

cycling their trip as a result of the scheme’ vi. In a study to walking and cycling, 

(Pooley et al. 2011) Pooley suggested that ‘poor safety was one of the key 

reasons for not cycling expressed by approximately 80% of respondents’. 

 

Studies such as (Buehler & Pucher 2012)  suggest that cities in the USA with 

a greater supply of bike paths and lanes have significantly higher bike 

commute rates—even when controlling for land use, climate, socioeconomic 

factors, gasoline prices, public transport supply, and cycling safety. Studies of 

the lessons learned from cycling in Holland, Denmark and Germany show that 

cycle lane provision is one of the key factors involved in the promotion of 

cycling in these countries (Pucher & Buehler 2008). If we wish to promote 

cycling as an activity for younger people, who are also at risk of obesity, then 

it seems important that segregated facilities are designed into the urban fabric 

they use.  

 

Current UK spending per head of population on cycle lane provision is 

relatively low. Given the exemplar of government spending on major structural 

transportation projects such as Crossrail and the high speed rail route, HS2, it 

is clear that transport can attract considerable capital. Given the very high 

benefit-to-cost ratio described above and the very low per-mile cost of cycle 

lane provision it seems necessary to look elsewhere to explain the low 
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funding provision of cycle lanes in the UK. We would like to take space in this 

paper to suggest that one of the barriers to the introduction of cycle lanes into 

major UK urban cities is the lack of planning tools.  Vehicular traffic planning 

has the benefit of well-developed analytic tools, which allow accurate 

predictions of traffic flows for given network proposals. This permits the 

control of risk on high capital expenditure road building projects. By 

comparison there are no such tools at the level of cycle lane provision (Taylor 

& Davis 1999). While there are excellent resources on the design of the 

material qualities of cycle lanes, we would argue that there is no equivalent, 

empirically tested resource at the strategic level. The objective of our current 

research is to establish the underlying theoretic methods to allow accurate 

forecasting of cycle lane usage. We hope by doing this we will be able to shift 

the burden of design from intuition to scientific analysis.  

Previous work 
It seems natural that to create a cycle usage prediction model it is reasonable 

to begin by extending from another field. From a theoretical basis given that 

drivers are free to engage in discretionary travel behavior and free route 

choice, The two closest models are that of vehicular transport (Smith et al. 

1995) and pedestrian movement (Hillier & Iida 2005). 

Current transportation theories have been applied to cycle usage (Turner et 

al. 1997). While it seems natural to regard a cyclist as a very small slow car, 

the methodologies used for vehicular traffic have some practical problems 

when applied to utility cycling. On a practical basis there is the difficulty of 

collecting sufficient data of existing cyclists to make accurate urban models.  

Additionally it is well known that the current cycling population is a radically 

different demographic to that of the general public (and the target of utility 

cycling). Current urban cyclists, sometimes dismissively known as the ‘lycra 

generation’, are typically young male, risk-taking, licensed drivers (Daley & 

Rissel 2011). Data obtained from the use of rented bicycles in London clearly 

shows a different spatial usage primarily indicated by gender (Beecham & 

Wood 2014). As such, stopping and interviewing current cyclists is 

questionable in terms of its accuracy of predicting wider population behaviors.  

On a more theoretic ground, the four-step model algorithms fundamentally 
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assume that distance or rather time is one of the fundamental influences on 

driver behavior via the impedance function (Turner et al. 1997). We would 

argue that, in the case of London, given that many trips would already be 

quicker by bicycle, then journey time clearly isn't the dominating factor. We 

would also like to suggest that most traffic models assume that congestion is 

already a significant problem. For cyclists, at present, congestion from other 

cyclists or drivers isn’t a principal deciding factor. 

 

The alternative process is to begin to consider a cyclist as a ‘fast’ pedestrian. 

This has been the basis of previous consideration by the field of space syntax 

(McCahil & Garrick 2008). There has already been work done by Radford 

(Raford et al. 2007)(Raford et al. 2005) suggesting a strong correlation with 

aggregate movement methods using a multiple variable regression framework 

Further, Radford’s work suggested route choices for an individual cyclist are 

not consistent with taking the metric shortest path or the topologically shortest 

path.   

 

Law et. al. (Law et al. n.d.) investigated a multiple regression model including 

a number of factors of which the most significant was that of Normalized 

Choice Radius N and Presence of the London Cycle Superhighway. While 

they reported a correlation of .62 adjusted R-square between observed cyclist 

movement and their predictive values it seems natural to object to the 

underlying theoretical position. Any model based on a linear regression model 

suggests an independence between elements of a route choice. Traditionally 

space syntax has promoted the use of a ‘global’ and holistic approach to a 

route choice, which a multiple regression model cannot represent. Take, for 

example, a cyclist traveling from North London over the river to South London. 

The multiple regression model suggests that the presence of a perfect cycling 

super highway, meticulously maintained and pleasantly aligned with a number 

of attractive features on a dead end leading to the rivers edge would attract 

cyclists to it which clearly is not so. If we consider changes of elevation the 

direction of travel is an important factor in this. Multiple regression can only 

look at a segment in isolation and can have no knowledge of whether the 

cyclist is going up or down hill, regression can take no account of the direction 
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of movement and the resultant asymmetries (Dalton 2003).  We would argue 

that the presence of cycle lane provision, no matter the quality, would not 

influence many cyclists, if it were not part of a viable route choice. So while 

the presence of facilities may cause cyclists to switch from other routes (and 

implicitly defect from other forms of transport) it cannot be considered in 

isolation of the wider configurational properties as is assumed in regression.  

We would argue it is this lack of consideration of deep structural issues, which 

suggests that a more structural approach to the understanding of cycle route 

choice is required.  

 

Previous work by (Asami et al. 2003) introduced the notion of ‘extended axial 

curves’ to permit the integration of changes of elevation in the space syntax 

graph representations. While promising, this work was principally centred on 

the notion of neighbourhood and differs from the momentum method by 

having a different purpose and using the axial line as the core representation. 

The extended axial curve method primarily uses breaks in co-visibility as the 

principle method of function rather than changes in elevation as this paper 

argues is important when considering cycling. In a similar vein (Jiang & 

Claramunt 2002)  proposed a new method of node-based integration which 

could include elevation information but failed to present any empirical data on 

either pedestrian movement or cycling which might justify the approach.  

The momentum method 
In this paper we would like to suggest that a cyclist is neither a slow car nor a 

fast pedestrian. We would suggest that the mental models used by cyclists 

are unique to that particular form of transport and are not adequately 

understood in all their subtleties by extensions from other models or other 

models augmented by multiple regression. In Fajans et al.’s paper (Fajans & 

Curry 2001) they suggest that a cyclist’s frame of mind is dominated by the 

energy expenditure they must make to reach somewhere. From experience, 

for a cyclist travelling along a long flat well-maintained surface, distance is 

suddenly a much less significant factor. What then does limit behavior while 

cycling?  Steep inclines were identified in a meta study by (Fraser & Lock 

2011)  as an environmental factor negatively associated with cycling. There 
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have also been several ad hoc reports of cyclists not stopping at traffic lights. 

Our working hypothesis is that cyclists resemble early steam engines: that it is 

the power-to-weight ratio which is limited whereas rolling resistance is not. 

From this point of view, it is gradient change which is a influence on route 

choice, as is the necessity to stop and start. By integrating several route 

factors into the graph-theoretic structure of space syntax what we are 

attempting to do is to merge the factors that are normally applied 

retrospectively via multiple regression and knit them into the global structural 

framework. Using the above example, the presence of an incredibly flat and 

traffic light free dead end would have little contribution to the wider scale 

structure.  

 

 We have produced a model that we call the momentum model, That is, route 

choices are dominated by the avoidance of shifts in acceleration or the desire 

to preserve momentum. This model holds at its core three primary elements: 

changes in direction, which maps back to the space syntax notion of least 

angular change; changes in elevation or gradient, a factor mentioned by 

(Fraser & Lock 2011) in relation to route choice; presence of traffic lights and 

other junctions. This suggests that if two paths exist, from the same origin to 

the same destination, that the cyclist would prefer the one with a lower 

potential probability for the necessity to stop (either for traffic lights or other 

traffic). This, in theory, partly explains the phenomena of cyclist preference for 

the use of London’s canal cycle paths and the success of ‘rails to trails’ in the 

USA (since, by their origins, they are flat and contain no traffic lights).  

 

In this paper we have taken the initial concept of momentum to be a linear 

combination of elements. So the ‘distance’ from node A to node B is  

𝐷!" =   𝑘!𝛼!" +   𝑘!𝐺!" + 𝑘!𝑇!" 

Equation 1  

Where 𝑘!𝛼!" is the angular distance from node A to node B as commonly 

used in space syntax. 𝑘!𝐺!" is the change in elevational distance between A 

and B, and 𝑘!𝑇!" is the number of traffic lights and junctions encountered 
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between A and B.  𝑘!  𝑘!  𝑘!  are effectively combinations of weights and 

conversion factors.  

 

From this perspective it is possible to compute the equivalent of momentum 

integration and momentum choice. Given 𝑑!" which is the distance of shortest 

route by considering the path with the minimum distance 𝐷!"  Momentum 

Integration (Mc) can be considered as:  

 

𝑀!(𝑃!) =    𝑑!"
!

!!
 

Equivalently Momentum Choice (Mb) can be considered as:  

 

𝑀! 𝑃! = 𝑔!"(𝑝!)/𝑔!"(𝑗 < 𝑘)
!!

 

  

In this paper, we have not used the normalized angular choice of (Hillier et al 

2012), but given that the measures break the fundamental assumptions for 

the normalization of choice we have instead elected to use the more general 

formulation of local relativisation by using both vicinity (Dalton 2006) and 

depth decay (Conroy Dalton & Dalton 2007).  Technically  given the current 

lack of relativisation this then should not be regarded as Momentum 

momentum integration & Momentum choice, but momentum centrality and 

momentum betweenness. However future work will introduce relativisation of 

the total momentum day and at that point the mentum integration label will be 

accurate. Momentum integration also seems to siting near the dividing line 

between the theoretic measures and simulation. The system certainly 

includes a description of cyclist mentality (minimizing change in momentum) 

yet at the same time it does not use the Montecarlo sampling method typical 

of much simulation research. From this point of view we would regard the 

system as still being largely theoretic in nature. 

 

We wrote specifically designed software called Momentum Mercury to 

implement these calculations. This software uses open source, Open Street 

Map data using road centerlines (Haklay & Weber 2008). While road 
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centerline data has only a colloquial definition and while the road centerline 

data is not reproducible (no two people will digitize road centerlines of the 

same area in the same way), road centerline data is commonly available for 

almost all urban locations and is commonly used in many traffic route 

guidance programs/Apps/devices. As such, while road centerline data is a 

poor substitute for the more theoretically sound axial maps, it does permit us 

to geolocate the road segments which permits cross referencing the position 

of traffic lights and the presence of cycle lanes. While open street map data 

does not contain elevation information this can be derived from Shuttle Radar 

Topography Mission (SRTM) (Farr et al. 2007) data. It is reasonable to use 

digital elevation model data (DEM), since it has a fairly high resolution (1 arc-

second, or around 25 meters, for the United States, and 3 arc-second, or 

around 90 meters at the equator, for the rest of the world), has near-global 

coverage (from 56°S to 60°N), and is in the public domain. While both the 

road centerline and digital elevation data is coarse it does permit a 

comparative analysis of traditional space syntax measures against 

momentum integration using movement observations.  

 

Momentum Mercury software. 

 

The Momentum Mercury software allows regions of open street map data to 

be imported along with the appropriate SRTM elevation data. The software is 

written in the Java language permitting cross platform usage of the tool, see 

figure 1 for an image of the software in use.  The software is capable of 

reading sections of exported Open Street Map data (Haklay & Weber 2008) 

and future work is planned to extend the importing mechanism to import 

higher quality road centerline and elevation data. Momentum Mercury imports 

both road centerline, rail, underground rail (light grey in figure 1) and building 

outline data (black figure 1). The system uses advanced Binary Partition tree 

data structures (Thibault & Naylor 1987) to permit real time interaction with 

multi-gigabyte data using a fluid and uncluttered zoomable user interface 

(ZUI)(Bederson et al. 2000). Interaction is via intention base menus on the top 

left corner augmented by command key combinations. For the images 

presented in this paper all the information has been transformed using the 
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Web-Mercator (Favretto 2014) transformation from their original latitude and 

longitude data.  All data for this paper was processed on a 2.3 GHz Intel Core 

i7 Macbook Pro.  

 

 
Figure. 1 section of open street data coloured by angular step depth from origin 

 
Fig. 1 shows an angular segmental map taken from open street map data. 

These segments have been interconnected at junctions with any turning 

restrictions ignored. In the figure, a segment in Charlton Street has been 

selected (pink). The segments are coloured by angular depth from the 

selected segment (pink). With red representing zero depth through the 

spectrum to blue as maximum depth (Magenta is used for segments beyond 

current radius or are unconnected from the system). Grey lines represent 

building walls or rail tracks.  Purple unconnected segments, with numbers, 

represent cycle observations. 
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Figure 2. Traffic lights 
Fig. 2 shows yellow, open circles representing the locations of traffic lights in 

the test area. The map has been coloured by depth from the pink starting 

segment. As can be seen from the image, the (red) segment above the 

starting segment (pink) is at depth zero (red) while the depth below the 

segment (green) is at an increased depth due to the necessity to stop at traffic 

lights to reach it.   

 

 
 

Figure 3. Elevation  
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Fig. 3 shows elevation information plotted at junctions as filled circles. Here 

we can see depth gain is limited below the selected segment as this requires 

the cyclist to gain elevation after crossing the Euston Road (large, two-lane 

left-to-right diagonal). Above the selecting segment, red represents the loss of 

elevation.  Elevation points are plotted form lowest (red) to highest (blue). In 

Mercury Momentum, elevation loss (going down hill) is regarded as a zero 

change in elevation. This is partly to avoid negative weights on segments and 

partly to represent the fact that energy cannot be ‘absorbed’ by a cyclist.  

 

 
Figure.4 Segmental Angular Integration of the central London area used.  
 

Fig. 4 shows an angular segment integration map of central London based 

around the Euston Train station (the centre of the software-training 

observations). Using the standard colour scheme introduced in Axman 

(Dalton 1997), and Depthmap (Turner 2004), the global integration core can 

be seen to be focused on Euston road (the long red diagonal). Open Street 

Map errors, where building outlines have been miss-labeled as road 

centerlines, can be see adjacent to Euston Road on figure 4. as thick black 

lines. As with any analysis using road centerline data, errors in base line data 

can be reduced but not fully eliminated by automatic means. One of the 

dangers of using road centerline data over axial maps data is the lack of data 

provenance and quality control found in normal axial models.  
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EVALUATION	  
The hypothesis of this evaluation is that a system of momentum integration, 

which incorporates both elevation and the presence of traffic lights should 

predict better, in a manner which reflects reality to a greater degree, than a 

simple regression model. 

 

In this evaluation we used cycle observation data kindly supplied by Space 

Syntax Ltd.  This geo-located data represented a number of high quality 

studies taken at number of locations within London. The observations were 

supplied as geo-located data attached to segments.  While the data was 

collected for many periods over a day with separate observations for 

weekdays and weekends, in this analysis the weekday averages were used. 

The observations were made using the gate counting method. Gate count 

observations are parsed from GML data and allocated to the nearest segment 

within a limiting radius of 10m.  

 

In this pilot study, we used a method of segmental integration as the primary 

means of syntactical computation. It was known in advance that the 

parameter estimation procedure would require multiple runs of the model to 

get accurate results. Segmental Integration was chosen as a computationally 

rapid method, which was also a simple enough method to verify as correct. 

While a method similar to angular choice (Turner & Dalton 2005) but including 

traffic lights and elevation would undoubtedly produce more accurate results it 

would be computationally more intensive and time consuming in this early 

evaluative period. Angular integration is known to strongly correlate with 

Angular Choice and the use of Angular integration, as the basis of this paper, 

should be seen as an initial probe into a more complex methodology.  

 

Clearly, to perform an evaluation, it is necessary to fix the values of both 𝑘!, 

𝑘!and 𝑘!. To do this we split observation data into two components, the set Q 

which would be used to fix the values of both 𝑘!, 𝑘!and 𝑘! and W which would 

be used to evaluate the final outcome. It should be noted that 𝑄   ∩𝑊 =
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  ∅  𝑎𝑛𝑑  𝑄 ∪𝑊 = 𝑃  were P is the entire data set. To create the parameter set Q 

observations of daytime movements were selected from the observation 

datasets P. To ensure observational consistency we began with a set around 

Euston station as the training set.  In this case we used 93 observations. We 

used a method of linear gradient descent to optimize the parameters 𝑅, 𝑘!and 

𝑘!  (R is the angular radius 𝑘!and 𝑘!  weights on gradient and traffic lights) 

against observed cycle movement leaving 𝑘! = 1.  To optimize, we looked at 

both the Person’s r-squared and Spearman’s Rank Correlation Coefficient rho 

between observed movement and the weighted contributions of angular 

integration, elevation and traffic factor.  Spearman’s Rank Correlation 

coefficient is less sensitive to outliers and power factors (linear, square or log)  

and is a good indicator of underlying methods.  Once the reasonable value 

was established, a high discrepancy between the Pearson and Spearman 

factors (0.4 and 0.696) led us to look at the model produced. By plotting, we 

adjusted the model to work with the log of observation and the reciprocal of 

normalized total depth (i.e. angular integration). 

 

 
Figure 5 – Plot of change of Pearson correlation r2 against angular radius 
 
Figure 5 shows the plot of the Pearson correlation coefficient, r2, between 

momentum integration, with angular radius r, and the log of observations for 

0.41!
0.42!
0.43!
0.44!
0.45!
0.46!
0.47!
0.48!
0.49!

0.5!
0.51!

0! 2! 4! 6! 8! 10! 12! 14!

Person r2(momentum-integration r) 
against log(observations)!

Person R sq !
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the test area (significance, p value, was always <0.001). Spearman’s Rank 

correlation showed a smoother change confirming the more accurate Pearson 

correlation improvement shown. Using the log of observation of movement is 

a common process in space syntax to allow for a feedback effect from urban 

multipliers. From this model, a new correlation r2-value was computed and it is 

this model which will be reported. For the base case, pure angular integration, 

the gradient descent method found an optimal radius of 9.5 radians with a 

Person r-squared of 0.51 (see figure 5). A plot of the values for the Person r 

squared correlation against radius is shown in figure 5. This shows that there 

is a curve with a peak correlations at R= 9.5 radians. When examining the 

map, this radius appears to match the limit that one might intuitively correlate 

with the radius of a cyclist in that area of London.  

 

 
Figure 6 Correlation between observed cycle movement and optimized 

parameters.  

Introducing both elevation and the presence of traffic lights leads the method 

to create an optimal correlation of r2= 0.573 with angular radius R= 9.5 and 

gradient factor  𝑘!= 0.01868 and traffic factor = 0.000185.  

 

Testing these against the observations for a second area (Saint Luke’s 

containing 100 observations), not used to optimize the model parameters, 

gave a correlation against predicted movement of r2= 0.503 (roe= 0.676) for 
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the pure angular case and r2= 0.534 with df = 98, p-value < 2.2e-16 for the 

case combined with traffic lights and elevation.  It should be noted that the 

presence of both elevation and traffic lights cause a 6% increase in correlation 

with observed movement. For the multiple regression case, we calculated the 

model in the R language giving an Adjusted R-squared of 0.504 when 

including all factors (depth, elevation and presence of traffic lights). This 

suggests that, for this dataset, the correlation is improved via the use of the 

momentum-based model.  

Conclusion 
The objective of this paper was to examine the route momentum model over 

classic route angular complexity. The results of test data of r2=0.504 for the 

pure angular case and r2= 0.534 with p <<0.001 supports the hypothesis that 

incorporating elevation and traffic lights into the syntactical model is an 

improvement over not including them and over including them in a multiple 

regression model. This should be seen as a conservative pilot approach to the 

inclusion of factors that effect cyclists into an urban cycling model. It should 

be remembered that this pilot approach uses angular integration, as a ‘proof 

of concept’ measure, rather than the more accurate but resource-consuming 

angular segmental choice. This approach also uses raw open source data 

and satellite observed digital elevation data. Given the limitations of the 

source data it seems reasonable to assume that more accurately collected 

street & elevation models and a change to the use of angular segmental 

choice should result in a concomitant improvement in the final observed 

correlation. As important as these findings, this paper has seen the 

introduction of the Momentum Mercury software as a tool to provide an 

analytic approach to the design of cycle lane provision. Such tools may close 

the gap between cycle lane provision, as it stands, and future cycle lane 

provision as it deserves to be. 

Future work 
While considerable strides have been made in this pilot work, it does leave a 

large amount of work uncompleted. Clearly, any use of segmental-like 

methods within a space syntax framework suggests the use of choice 

measures as being those which most likely correlate highly with observed 
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cycle movement. Other improvements could include the use of high fidelity 

road centerline data, which would be expected to improve the correlation with 

observed movement. The elevation data used was from the public domain, 

and was quite coarse, and future work should seek to use far more accurate 

urban elevation data. Further experiments need to be conducted in locations 

of low and high elevation change. Finally, this model does not include the 

presence or absence of cycle lane data. From a cycle facility planning view, 

future models should include cycle lane presence (or proposed presence) and 

other elements such as the presence of cycle friendly road markings at traffic 

lights.   
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