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Abstract 

While large-scale wind farms and solar power stations have been used widely as 

supplement to the nuclear, fossil fuels, hydro and geothermal power generation, at 

smaller scales these resources are not reliable to be used independently and may 

result in load rejection or an over-size design which is not cost effective. A possible 

solution to solve this issue is using them as a parts of a hybrid power system. 

Complexity in design and analysis of hybrid renewable energy systems (HRES) has 

attracted the attention of many researchers to find better solutions by using various 

optimisation methods. Majority of the reported researches on optimal sizing of HRES 

in the literature are either only considering one objective to the optimisation problem 

or if more than one objective is considered the effect of uncertainties are ignored. 

 

This dissertation work investigates deterministic and stochastic approach in design of 

HRES.  In deterministic approach it shows how adding a battery bank to a grid-

connected HRES might result in more cost effective design depending on different 

grid electricity prices. This work also investigates the reliability of HRES designed 

by conventional deterministic design approach and shows the weakness of common 

reliability analysis. To perform the stochastic approach the renewable resources 

variation are modelled using time series analysis and statistical analysis of their 

available historical meteorological data and the results are compared in his work. 

Chance constrained programming (CCP) approach is used to design a standalone 

HRES and it is shown that the common CCP approach which solves the problem 

based on the assumption on the joint distribution of the uncertain variables limits the 

design space of problem. This work then proposes a new method to solve CCP to 

improve the size of design space.  This dissertation comprises multi-objective 

optimisation method based on Non-dominated Sorting Genetic Algorithm (NSGA-II) 

with an innovative method to use CCP as a tool in estimating the expected value of 

the objective function instead of Monte-Carlo simulation to decrease the 

computational time. 
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  confidence level 

t  
the time step (one hour in this study) 

PV  efficiency of the PV array and corresponding converters 

Bat  battery efficiency 

  Mean 

  standard deviation 

  air density (1.225 Kg/m
3
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2
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MOC &  present value of maintenance cost ($) 

repC  the present value of replacement cost ($) 

BatUnitC ,  unit Cost of battery bank ($/Ah) 

PVUnitC ,  unit Cost of PV panel ($/m
2
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WTUnitC ,  unit cost of the wind turbine($/m
2
) 

pC  wind turbine power coefficient, 

1F  
inverse of the joint cumulative distribution function 

I  horizontal solar irradiance in (W/m
2
) 

BatI  battery current (A) 

dk  annual real interest rate (%) 



 

X 

 

pL  system life period (years) 

BatN  total number of batteries 

repN  number of replacements of the battery over the system life period 

BatP  battery bank available power (W) 

PVP  the  PV array output power (W) 

WTP  wind turbine  power (W) 

NomPVP ,  PV panel nominal  power (W) 

SOC  state of the charge of the battery 

TC  the total cost of the system ($) 

BatV  battery voltage (V) 

Z  inverse of the cumulative normal probability distribution 

ARMA auto-regressive moving average 

DOD  depth of discharge  

DPSP  deficiency of power supply probability 

GA  genetic algorithm 

HRES  hybrid renewable energy systems 

LPSP  loss of power supply probability 

MSE  mean squared error 

IINSGA  non-dominated sorting genetic algorithm 

PSO particle swarm optimisation 

RSM  response surface methodology 

SA simulated annealing 

TS  Time Series  
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1.1 Need for Renewable Energy 

A great part of energy supply of the today world is provided from conventional 

energy resources. These energy resources are finite and fast depleting and are 

provided at a very high cost [1]. At the same time the energy demand around the 

world is increasing exponentially and conventional energy resources would not be 

able to supply it for long. In addition to high cost and the limitations in supply 

resources of conventional energy resources, their negative impact on environment and 

global warming have attracted the attention to other alternative power sources those 

are environmental friendly, reliable and cost effective. Renewable resources appear to 

be one of the most sustainable energy resources available. Wind energy, solar energy, 

biomass, hydropower, ocean tidal and wave energy are examples of renewable energy 

resources. Renewable energy sources can particularly be the best electricity provider 

in small scale applications such as street lighting, household electricity and also 

energy supply for remote places and islands [2-4]. Using renewable energy resources 

can decrease the cost of transmission and transformational costs although common 

drawback of using renewable resources is constant challenge with their unpredictable 

nature which is completely dependent on climate changes and may result in load 

rejection at some points [5]. A possible solution to solve this issue is using them as a 

parts of a hybrid power system. 

 

1.2 Hybrid Renewable Energy Systems 

Hybrid renewable energy systems (HRES) combine two or more renewable energy 

sources to generate power [6-8] such that each of them can cover the weakness of 

another one in load demand coverage and the power generation system can provide 

continuous power supply in various weather statuses and potentially improves the 

system efficiency and reliability of power supply [9-11]. Obviously the combination 

of different renewable resources needs to be adapted based on the conditions of each 

specified location. 
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The hybrid power systems can be designed as the stand-alone or grid-connected 

systems. Many parameters such as attainable power from grid, cost of providing 

power from grid and individual meteorological characteristic of the desired site. The 

grid-connected systems are designed in the way that they are able to cover their local 

demand and depending on the grid capacity, the excess produced power can be sold 

to the grid to be transferred to other places of demand. Additionally in case of power 

shortage in the production of renewable resources the remaining required power can 

be provided by grid thus these systems do not require a separate storage system to 

maintain the reliability because the grid will perform as an infinite backup system. 

On the other hand, stand-alone hybrid renewable systems are the most promising 

solution to bring electricity to remote places. However since there is no grid 

connection available for these systems they require to have a backup or auxiliary unit 

such as battery banks or conventional diesel generators for assistance in maintaining 

the reliability. 

 

In both grid connected or stand-alone cases, investment costs of providing electricity 

from renewable sources and reliability of the designed system are usually problems 

with main importance in long term planning of energy systems and as a result 

selecting the best renewable energy resource; optimal solution among different 

possible combination of renewable energy sources is important. Depending on the 

number of objectives a single-objective or multi-objective problem is defined to find 

the optimal solution or a set of trade-off solutions in design of HRES for decision 

making. 

 

1.3 Design Decision Support System 

As mentioned before hybrid renewable energy systems have been proved as a viable 

solution to bring electricity to remote places where it is expensive or impossible to 

extend the grid. Considering that the renewable power generators are reliant on the 

climate conditions which makes them inherently intermittent, the fact that these 
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systems either need to be able to provide electricity without the support of grid 

connection and maintain the certain reliability if stand-alone or the cost-effectiveness 

of produced power for grid-connected systems, can sometimes result in overdesign of 

these systems or the outcome may become less efficient economically.  The goal of 

providing electricity from combining renewable resources at a reasonable cost and 

reliability, optimal design of HRES in terms of operation and combination of the 

components is essential[12] . Complexity in design and analysis of hybrid renewable 

energy systems has attracted the attention of many researchers to find better solutions 

in the design of HRES, which mostly are focused on cost reduction and efficiency 

improvement of these systems [13]. 

 

In the design process there are often more than one alternative for each design 

component and there are many design possibilities to be considered and evaluated. 

This is the main reason for optimisation process and providing quantitative 

assessment of different design solution to support and facilitate the decision making 

process [14-16]. Decision making problems can be categorized to two classes based 

on the number of objective functions that are involved in the problem; single 

objective and multi-objective. In a single objective problem the aim is to identify the 

best solution corresponding to minimising or maximising a single objective function. 

However many real world decision making processes involve more than one 

objective function at the same time like minimising cost and maximising the 

reliability. Clearly this category of problems does not have a single solution 

achieving contradicting objectives. That is why multi-objective problems do not have 

a single optimal solution but they have a set of compromised solutions between 

different objective functions known as Pareto sets. Providing a set of solutions to an 

optimisation problem introduces three major advantages [17] a wider set of solutions 

are identified; selecting between different alternatives enquires the necessity of an 

analyst to produce different solutions and the decision maker to evaluate the solutions 

provided by the analyst and make decisions; models of a problem would be more 

realistic by considering several objectives. However, multi objective problems can be 
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changed to a single objective problem by integrating multiple objectives in one or by 

considering an objective as main objective and the rest as design constraints. 

However in this approach the analyst makes most of the decisions by deciding the 

weight that each of the multiple objectives would have in the integrated single 

objective or by the level of compromise he defines for the design objectives as 

constraints. This approach would take away the evaluation and deciding between 

different alternatives from the decision maker. On the other hand the interaction 

between different objectives yields to a set of design candidates known as Pareto-

optimal solutions.  The main characteristic of Pareto set members is that they are not 

dominated by other solutions, meaning that it is not possible to improve on one 

objective without worsening another objective function. 

 

In optimal design of HRES several objectives need to be optimised, most of them 

contradicting (e.g. cost & reliability), therefore in design of HRES a multi-objective 

optimisation approach should be followed. However selection among design 

candidates is subjective and depends on decision maker’s judgement, which in turn 

depends on his knowledge, background. A Design Decision Support System (DDSS) 

is required to help decision makers to choose among different design alternatives. 

This is achievable by taking into account all the technical & economic considerations 

and providing the user with facilities like sorting, filtering, and visual figures to 

compare and finally select the more suitable design. 

 

1.4 Optimal Sizing of HRES 

Designing a power generation plant is very important from economic, environmental 

and quality of production point of view. Considering the worldwide increase in 

energy demand, increasing the capacity of existing grid networks or adding new 

micro grids has become a problem of interest in many aspects. The unavoidable 

discontinuity in the generation of power production systems with a single renewable 

resource has caused design of HRES more popular in the recent years. Despite of the 
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number of research reported in design of HRES, the majority of them are considering 

a single objective. Garcia and Weisser [18] compared two models to determine the 

optimal size of wind-diesel power system with hydrogen storage in a grid-connected 

system. Both models are designed with considering either the cost or reliability as the 

main objective. Design of HRES for remote place makes the system availability the 

main objective rather than the cost. In this case finding the proper storage system is 

also considered to maintain desired availability. Balamurugan et al. [19] optimised a 

hybrid power system of wind, biomass, solar photovoltaic with battery bank storage 

considering availability as the main objective. The hybrid energy system is sized 

considering a suitable storage system to provide the power at periods when there is no 

solar power available or during minimum wind speed periods. 

 

As mentioned two important contradictory objective functions in optimal sizing of 

HRES are usually cost and reliability and since these objectives are contradicting a 

single optimal solution cannot be found with minimum cost and maximum reliability 

and multi-objective optimisation should be performed to find the trade-off set; Pareto 

set of the solutions. Many studies have been reported in multi-objective optimisation 

of HRES considering different objection functions, using various optimisation 

techniques. Katsigiannis [20] used  a multi-objective algorithm to minimise the cost 

of produced power of the system and total green house gas emission during the 

system. Kaabeche, Belhamel and Ibtiouen [21] recommended an optimisation model 

based on iterative technique to optimise the size of hybrid wind/photovoltaic system 

combining with a battery bank minimising het deficiency of power supply and 

levelised unit electricity cost. However, despite  the claim of considering more than 

one objective in design of HRES in mentioned studies, they are in fact single 

objective, as either objectives are not contradicting or all-but-one are treated as 

constraints. 
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1.5 Optimisation Methods 

This section briefly explains some of the optimisation methods used in design of 

HRES. 

 

1.5.1 Particle swarm optimisation 

Particle swarm optimisation (PSO) is a population-based stochastic optimisation 

technique in evolutionary computation. This technique was developed in 1995 by 

Kennedy and Eberhart and is based on movement of swarms, looking for food. Each 

potential solution to the optimisation problem is called a particle and the co-ordinates 

of each particle are defined by its velocity vector and its position. Initially each 

particle is flown through the search space at a random velocity. Assuming that the 

population have good knowledge about other particles and their own position, at each 

iteration the particles examine the search area, modify their velocity and move 

towards the best solution among them. Since all the particles in the population follow 

the same approach at each iteration a group movement toward the optimum solution 

is reached. The process continues until the constraint on the maximum iteration is 

reached. 

 

The implementation of PSO is based on simple equations and thus the process time is 

short and efficient however since the movement of the particles in three directions 

coordinates with the number of design variables, where there are more than three 

design variables it would be more suitable to use another optimisation technique. 

Mahor et al. [22] applied particle swarm optimisation to solve same problem 

concluding that the  proposed PSO method had better performance comparing to the 

conventional optimisation techniques.  Kaviani et al. [23] used a PSO to optimise a 

hybrid photovoltaic-wind-fuel cell generation system minimising the annual cost of 

the hybrid system providing desired reliability in maintain the load demand. More 

samples in use of PSO can be addressed in [24-26]. 
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1.5.2 Simulated annealing 

The simulated annealing (SA) process is a general optimisation technique which was 

first introduced by Kirkpatrick et al [27]. At each iteration of the SA process, a 

candidate move is selected randomly and this move is evaluated. If the move leads to 

a better solution which means the new solution has better fitness value then the move 

is accepted otherwise it might be rejected with a probability that depends on the 

difference between its fitness value and the best fitness value. The annealing process 

based on decreasing the temperature allows wider search area by choosing faster 

temperature decrement at the start of the iteration process and slower temperature 

decrement to reach the local search in the next iterations. The cooling schedule 

procedure is the main structure of the SA method. SA method has not been very 

popular in the design of HRES. Giannakoudis et al. [28] performed an optimisation 

method based on SA to design and operate a hybrid power generation system that 

includes wind turbine, photo voltaic panels, , hydrogen storage tanks, a compressor, a 

fuel cell and a diesel generator.[29-31] can be referred as they have also worked 

based on SA.  

 

1.5.3 GA 

Genetic Algorithm (GA) is developed based on biological principles of genetics. GA 

was first introduced by Holland [32] and has been widely used in solving 

optimisation problems in variety of real world problems in different research areas. 

Following the biological process, such as crossover, and mutation in the optimisation 

process, GA is capable of solving complex real world problems [33]. The algorithm 

starts by creating a “Population” of “chromosomes” which are randomly generated 

and each can be possible solution to the optimisation problem. Each “Chromosome” 

is measured against the value of the objective function and assigned a value of 

“Fitness” and the least favourable chromosomes in terms of fitness would be 

discarded. At each generation the chromosomes are sorted and some are selected as 

the parents to “Crossover” and form offspring. The offspring might replace the 

parents in case they have better characteristics; better fitness value. Another 
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important biological operator in genetic algorithm is “Mutation”. At each generation 

a number of chromosomes undergo mutation in which essentially a random section of 

chromosome is changed to generate a different chromosome. The process of 

implementing crossover, mutation operators and selection on chromosomes are 

iterated until the population is converged and the optimal solution is found or the 

maximum number of generation is reached. The main advantage of the GA is that it 

can easily jump out of a local optima and reach the global optima. Unlike PSO 

method GA does not put any limit on the number of design variables however it 

might be more challenging to implement the GA code. 

 

Genetic algorithm may not always be the quickest way to find the optimum solution, 

when it comes to complex problems with many constraints; it is a very effective 

method to solve the problem. Overall advantages that GA has over other optimisation 

methods have attracted many researchers to use GA in reported researched in design 

of HRES [34-40]. Ould et al. [41] proposed a real multi-objective GA in optimal 

sizing of a hybrid wind-solar-battery system with the objective of minimising the 

yearly cost system and the loss of power supply probability. However the effect of 

uncertainties in renewable resources is ignored in this research. Yang et al. 

[42]proposed optimal sizing method based on GA technique using the Typical 

Meteorological Year data. This proposed optimisation model calculates the system 

optimum configuration which is able of achieving the desired LPSP with minimum 

Annualized Cost of System. 

 

The genetic algorithm follows below steps. 

 

 Generate initial population 

As described the population consists of a number of members, chromosomes that 

each have the possibility to be a solution to the optimisation problem. A chromosome 

is made up by the design variables.  
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The initial population is generated randomly by selecting a random value for each 

design variable between defined bounds using below equation. 

 

).( lhl vvvv          (1.1) 

 

where v would be the random value of the design variable,  a randomly generated 

number between 0 and 1. lv , hv  are the lower and higher bound of the design 

variable respectively. 

 

 Crossover 

Crossover is the main genetic operator in the genetic algorithm. This operator 

operates on a pair of chromosomes, combines parts of the parent chromosomes 

features to produce offspring. To perform this operator two individuals are randomly 

selected from sampling pool. The number of individuals undergoing the crossover is 

determined by crossover probability cp . A high crossover probability allows 

exploration on more solution space which reduces the chance of convergence of the 

algorithm to a local optimum. Although choosing a very high crossover probability 

would increase the computation time in exploring unpromising regions of solution 

space [43]. 

a)N-point crossover: This form of crossover is the simplest form of crossover. 

According to it, based on the number of cut points the parents are divided to the 

different segments those would be exchanged to form new individuals (children). The 

number of cut point can be chosen randomly however it cannot exceed the number of 

control variables. 

b)Uniform crossover: in this method each gene of the child would be randomly 

selected between the respective genes of the parents. The genes of both parents would 

have equal chance to be selected as genes of the child. 
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c)Arithmetical crossover: This type of crossover is defined as a linear combination 

of vectors and is very useful in real representation. Below equations represent the 

arithmetical crossover: 

 

211 )1(. ParentParentchild         (1.2) 

122 )1(. ParentParentchild         (1.3) 

 

where  is a random number between 0 and 1. 

d)Blend crossover: This type of crossover is the most common form of 

recombination and is the general form of arithmetical crossover. It can be expressed 

using below equations. 

 

211 )1(. ParentParentchild         (1.4) 

212 ).1( ParentParentchild         (1.5) 

 

and  is determined as: 

 

  u)21(         (1.6) 

 

where u is a random number generated for each gene with uniform distribution in the 

interval of 0 and 1. Parameter  is chosen as a once for all the genes and its value 

changes between 0 and 1. 

If  is set as 0 the blend crossover would work as arithmetical crossover. 

 

 Mutation 

Unlike crossover the mutation operator aims in producing new individual from only 

one parent. By making spontaneous changes to the structure of chromosome the 

mutation operator introduces new solution to the optimisation problem. A simple way 

to implement the mutation operator would be to alter one or two genes in the 
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chromosome. Every gene in the structure of the parent chromosome has equal chance 

to be mutated. This operator serves the GA by introducing new genes to the set of 

solution that might have been lost through the selection process or have not been 

presented in the initial population. Similar to crossover probability, mutation 

probability defines the percentage of the population that would undergo the mutation. 

However choosing a proper value for mutation rate is very important as if it is very 

low many new genes that might be useful would not be introduced to the solutions 

and if it is very high the offspring would lose their resemblance to their parents and 

the algorithm would lose the ability of learning from the past of the search. 

 

 Selection 

In Holland’s original GA [32] selection was referred to choosing parents to 

recombination and in that method the parents where always been replaced by their 

produced offspring despite of the possibility that offspring might be less fitter than 

the parents. With this strategy might result in losing some fitter chromosomes [43]. 

Although the term Selection is also used to form new generation [44]. Generally 

selection is implemented two times in genetic algorithms: selection for reproduction 

and selection for next generation. 

 

a)Selection for reproduction 

This kind of selection is performed to choose the chromosomes within the current 

population those would be taken to reproduction. There are three selection methods; 

roulette wheel, rank based and tournament selection and all of them use the 

chromosomes fitness values to perform the selection process. The selected 

individuals would be added to a sampling pool. 

 

 Roulette-wheel selection 

This selection method is a proportionate selection based on the fitness value. All the 

individuals of the population would have the chance of being selected. This method is 
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emphasized to the fitter individuals in the population and the individuals with lower 

fitness value would have slimmer chance to be selected. At the population with 

popn chromosomes, each individual of ix  with the fitness of )( ixfitness is assigned a 

probability of selection which is calculated as: 

 





popn

i
i

i

xfitness

xfitness
i

1

)(

)(
)Pr(        (1.7) 

 

In this method the chance of an individual being selected is proportional to the value 

of its probability of selection. The advantage of this method is that it does not discard 

any of the chromosomes in the selection process and gives the chance however the 

chromosomes with higher fitness value would occupy bigger segment in the wheel 

and would have higher chance of being selected. This might cause the diversity of the 

population to decrease and the algorithm to converge to a local optima point. A 

sample procedure of implementing roulette-wheel selection is shown below: 

 

While sampling pool is full 

Number=Random number (0, 1) 

For each member in population 

If Number>Fitness (member) select member 

End for 

End 

 

 Rank-based selection 

Rank-based selection is another form of proportionate selection. In this method the 

rank of the chromosomes is used to calculate the selection probability. This method 

gives higher chance to the individuals with lower fitness to be chosen and participate 

in reproduction process which could help to prevent the algorithm from premature 

convergence. 
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To implement the ranking-based selection the chromosomes in the population are 

first sorted in ascending order based on their fitness value so that the chromosome 

with lowest fitness value would be the first in order and would be assigned the rank 

of 0 and the last chromosome on the list with the highest value of fitness would have 

the rank of 1popn . 

 

Generally, there are different approaches for calculating selection probabilities, using 

different type of ranking; Linear ranking and Square ranking and in both of them the 

selective pressure   is used to calculate the selection probability [45]. 

- Linear ranking: in this method the value of the selection probability each 

individual ix  is proportional to the value of its rank. 

 

pop

popi
iranklin

n

nxrank
x

))](1/()([
)(Pr

 
     (1.8) 

 

In this equation the value of the selective pressure  presents the expected number of 

the offspring to be allocated to the individual with the highest rank and the   

presents the expected number of the offspring to be allocated to the individual with 

the lowest rank. The value of   changes 21    and   2 . When 1 , all 

individuals in the population would get similar chance to be selected and if 2  the 

individuals with higher rank would obtain higher selection probability comparing to 

lower ranks. 

 

- Square ranking: in this method the selection probability is calculated based on the 

square of the rank. 

 

c

nxrank
x

popi
iranksq

)]()1/()([
)(Pr

22  
    (1.9) 
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Similar to linear ranking the value of  changes 21    however here the value 

of is arbitrary choosing in the boundaries  0 . Normalization factor c  is 

calculated as: 

 

 poppoppoppop nnnnc  )1(6/)12()(     (1.10) 

 

In both linear and square ranking methods, after calculating the selection probability 

the sampling process to choose individuals is done using roulette-wheel selection. 

 

 Tournament selection 

The selection in this method is based on the fitness function. A q  number of 

individuals of the population are selected randomly to form a tournament and among 

them the individual with the highest fitness value would be selected as the winner of 

the tournament and would be added to the sampling pool for reproduction. The size 

of the tournament q can vary from 2 to the population size popn however the default 

number would be 2. The larger the tournament size gets the more biased the selection 

would become. The tournament selection is repeated until the sampling pool is full. 

 

b)Selection for replacement 

Selection for replacement is performed after implementing the genetic operators; 

crossover and mutation on the individuals in the sampling pool that are selected for 

reproduction process. There are different approaches for selecting the individuals to 

form the new population. A method that keeps the elitism in the selection is done by 

adding the offspring to the existing population to make sure the first m  individuals 

with high fitness values are not missed. The mn pop  individuals can be chosen 

randomly to keep the diversity in the next population. 
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1.5.4 NSGA-II 

As the GA method has been proved to be a popular and effective method in solving 

multi-objective optimisation problems, the non-dominated sorting genetic algorithm 

(NSGA-II) [46] is a method of performing multi-objective evolutionary algorithms 

(MOEA) in which the best individuals of the population would be given the 

opportunity to be directly transferred to the next generation by an elite-preserving 

operator. By doing this a good solution found in any generation is never removed 

from the population unless a better solution is found. 

 

The non-dominated sorting genetic algorithm (NSGA-II) improves the performance 

of GA by reducing the computational complexity and introducing elitism. The elitism 

favours the best individuals in the population so wherever the superior individuals are 

produced the elitism ensures that they would remain within the next population. 

Therefore a good individual would never be removed unless it is dominated by a 

better solution. This technique improves the convergence of GA [46] in single 

objective problem to the global optima and in multiple objective to the Pareto set. In a 

single objective problem the best solution would be identified by the value of its 

fitness which would be highest among the individuals. However since in multi-

objective problem there is more than one objective function, sometimes conflicting, 

there would not be a single prominent solution as the optimum solution. In these 

types of problems solutions can be classified based on their non-dominance rank 

comparing to the other individuals in the population. There would be more than one 

non-dominated solution in each non-dominant set. Although the presence of elitism 

would improve the performance of multi-objective GA, the level of elitism should be 

defined very carefully otherwise it may decrease the diversity in the solutions [47]. 

NSGA-II provides an effective method in considering elitism while it guaranties the 

required diversity. It also proposes a better sorting algorithm in optimisation process. 

The initial population is produced similar to usual GA, however before commencing 

implementation of GA operators, Cross over and Mutation; the population individuals 

are first sorted based on non-domination into different fronts. 
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 Non-dominated sort 

The individuals of population are sorted based on non-domination sort. If an 

individual have objective function values not worse than the other and at least one of 

its objective function values is better, it would be called the dominate individual. 

With that definition, the first front members are non-dominant set in current 

population and the second front members are dominated only by the first front 

individuals and so on. A rank is assigned to the individuals based on the front they 

belong, for instance the individuals in first front would be ranked as 1 and so on. The 

sorting algorithm follows below steps [46]: 

 For each individual p  in the main population P : 

- Initialise pS . This set would contain the dominated individuals by p . 

- Initialise 0pn  which would be the number of the individuals dominating p . 

- For each individual q in P  

 If p dominated q then  qSS pp   

 Else if q dominated p then 1 pp nn  

- If 0pn  then p  belongs to first front;  pFF  11  and set the rank of p  to 

1. 

 Initialise the front counter to one; 1i . 

 While the thi front is not empty; following is carried out 

- Q . This set is defined to sort the individuals for thi )1(  front. 

- For each individual p  in front iF  

 For each individual q  in front pS  

o Decrement the domination count for individual q ; 1 qq nn  

o If 0qn then none of the individuals in subsequent front dominates q . Set the 

1 iqrank and  qQQ   

- Increase the front counter by one 1 ii . 
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- QFi  . 

 

Following the above algorithm; at each generation individuals are assigned to 

different fronts based on their domination by other individuals. 

 

 Crowding distance 

In addition to the fitness value each individual has another parameter called the 

crowding distance. Crowding distance is a measure which is calculated for 

individuals in the same front to show how close they are to each other. Larger 

average value of crowding distance shows better diversity in the population. The 

crowding distance is calculated following below algorithm: 

 For each front iF with the individual numbers of n  

- Initialise the initial value of crowding distance to zero for all individuals. As an 

example 0)( ji dF means the crowding distance of thj individual in front iF is 

set to zero. 

- For each objective function m  

 Sort the individuals in front iF based on the objective function m ; i.e. 

), msort(FI i  

 Assign the infinite distance to the boundary individuals in iF . This means 

these individuals are always selected. 

 For 2k to )1( n  

minmax

).1().1(
)()(

mm

kk
ff

mkImkI
dIdI




      (1.11) 

 

where mkI ).( is the value of the thm objective function of the thk individual in I . 
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 Selection process 

Once the individual are ranked and their crowding distance is calculated the selection 

process is carried out to select the parent chromosomes for evolution process. To do 

the selection a binary tournament selection is employed. In a binary tournament 

selection process two randomly selected individuals are compared in terms of their 

fitness and the individual with better fitness is selected as a parent. Tournament 

selection is carried out until the pool size is filled where pool size is the number of 

parents to be selected. Selection is based on rank and if individuals with same rank 

are encountered, crowding distance is compared. A lower rank and higher crowding 

distance is the selection criteria. 

 

 Recombination and Selection 

After implementing the crossover and mutation operators on the selected parents, the 

offspring are added to the current generation and the next generation individuals are 

selected. As selection is performed on a population consisting previous and new 

individuals, it is assured that all the best solutions are always contained. The process 

of non-domination sorting, crowding distance calculation, and selection is continued 

until the population individuals contain the first front individuals or when the 

maximum number of generations is reached. 

 

Katsigiannis [20] used NSGA-II to design a small stand-alone hybrid power system 

that contained both renewable and conventional diesel generator with the objectives 

of minimising the energy cost of the system and total greenhouse gas emission during  

life time of the system. 

 

1.5.5 Other optimisation methods reported in literature 

There are several other optimisation methods reported in the literature in design of 

HRES. Agustín and Dufo-López introduced an evolutionary algorithms for the 

optimal design and determination of control strategy of a hybrid system consisting of 

a wind-photovoltaic–diesel–batteries–hydrogen system [48]. Bernal-Agustín and 
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Dufo-López [49] put effort in analysing the main reported research strategies on 

optimisation of hybrid systems consisting battery energy storage. The results showed 

that the EA has the ability to maintain satisfactory results within low computational 

time. Based on their previous researches, Bernal-Agustín et al.[50] applied the 

MOEA to the multi-objective optimal design of stand-alone hybrid wind-

photovoltaic–wind–diesel system minimising the total pollutant emissions and the 

total cost during its life time of the system. These authors later proposed a three-

objective optimisation method based on MOEA adding minimum amount of unmet 

demand as the new objective to the previous problem [51] . Diaf et al. [52]analysed 

the optimum configuration of a stand-alone hybrid wind-photovoltaic system that 

provides the energy demand of a typical remote consumer with the minimum 

levelised cost of energy.  The search method was used to analyse different 

combinations and running several simulations. 

 

Montoya et al. [53] proposed a multi-objective MOEA to minimise voltage variations 

and power losses in power networks. Ekren et al [54]used Response Surface 

Methodology (RSM) which is a collection of statistical and mathematical methods 

which relies on optimisation of response surface with design parameters. In the study 

the output performance measure is a hybrid system cost and the design parameters are 

PV size, wind turbine rotor swept area and the battery capacity. 

 

1.6 Available Software Tools for Sizing HRES 

In addition to the different optimisation techniques  used in optimal sizing of HRES, 

there are many software tools developed to use in this area such as iHOGA, 

COMPOSE, HYBRID2, SOMES, Dymola/Modelica, TRNSYS, iGRHYSO, 

RAPSIM …. Some of this software which is commercially available is explained 

here. 
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HOMER 

HOMER is one of the most famous and popular program which is developed by 

National Renewable Energy Laboratory (NREL). HOMER is widely used in 

prefeasibility studies and optimisation of hybrid systems. To start the design process, 

the software requires inputs such as resources data, component type, storage 

requirements, economical constraints and efficiency. Homer gives the option of 

choosing the components among wind turbine, photovoltaic panels, hydro, batteries, 

diesel, and fuel cells and is able to evaluate suitable options based on cost and 

available resources [55]. This software is widely used in reported literature in optimal 

design of hybrid renewable energy systems [56-62]. However it only allows single 

objective optimisation to minimise the cost and multi-objective problems cannot be 

formulated in HOMER and it does not consider the effect of DOD of the battery 

which has a significant role in lifetime of the battery bank. 

 

iHOGA 

Improved Hybrid Optimisation by Genetic Algorithm (iHOGA) developed by 

university of Zaragoza, Spain is able to perform the single or multi objective 

optimisation with a low computational time using GA. The free version of the 

software can only be used for training purposes and not for the project with the 

limitations on the total average daily load and probability analysis. 

 

COMPOSE 

Compare Options for Sustainable Energy, COMPOSE is developed by Aalborg 

university in Denmark and is a techno economical that can be used in to assess how 

the energy systems can support intermittency while offering a realistic evaluation of 

cost and benefits under uncertainty. The software is free to download however a three 

day training is required [63] 
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HYBRID2 

HYBRID2 is developed by Renewable Energy Research Laboratory (RERL) of the 

University of Massachusetts with the support of NREL [64] HYBRID2 uses 

statistical methods to analyse the inter step variations . It allows the user to run 

simulations and do the economic evaluation. The software has limited parameters and 

is not flexible however it has a library with variety of resource data files. 

 

SOMES 

This software has been developed by Utrecht University, Netherlands in 1987 and it  

is able to simulate the average electricity production of renewable energy systems and 

perform the optimisation to find the lowest electricity cost. 

 

Dymola/Modelica 

Fraunhofer Institute for Solar Energy used Dymola/Modelica to model the hybrid 

systems consisting of wind turbine, PV panel, Fuel cells and batteries with the input 

of weather data to evaluate the lifecycle cost and levelised cost of the produced 

energy. 

 

TRNSYS 

Transient Energy System Simulation Program (TRNSYS) was initially developed in 

1975 jointly by University of Wisconsin and University of Colorado for thermal 

systems but over the years is has been upgraded to a hybrid simulator. Although 

TRNSYS does not have optimisation tool it is a powerful simulation tool. The 

software is not free to use. 

 

iGRHYSO 

Improved Grid-connected Renewable Hybrid Systems Optimisation (iGRHYSO) is 

an optimisation tool for grid-connected systems and is able to consider the effect of 

the temperature rise on PV panel output and also can analyse the output power of the 

wind turbine. 
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RAPSIM 

Remote Area Power Simulator (RAPSIM) was developed by University Energy 

Research Institute, Australia in 1996. This software is a simulator for hybrid systems 

consisting of wind turbine, PV panel, and diesel generator and battery bank. It is not 

clear if there are any updated versions of the software developed in 1997. 

 

It should be noted that most of these software are only simulators and are not able to 

solve the optimisation problem and those which have the optimisation ability either 

ignore the effect of uncertainties in resources (follow deterministic design approach) 

or as COMPOSE software does; they only enable the user to specify uncertainty 

ranges for example for wind production which is not a realistic design approach. 

 

1.7 Deterministic and Stochastic Design Approaches 

The performance of a HRES depends on proper design and sizing of its components. 

Generally there are two design approaches in design of HRES: deterministic and 

stochastic. 

 

1.7.1 Determinstic design approach and problem formulation 

In deterministic approach all the system parameters are deterministic values and their 

variation through the time is assumed to be known and there are no uncertainties 

involved. The system is designed based on the average values of meteorological data 

and load demand for each step of the design period. To maintain the system reliability 

a factor of safety is usually added to the average values or the system is designed 

based on the worst case scenario, for example the system is designed based on the 

month with minimum renewable resources and maximum load demand, or the battery 

bank is sized based on two or three days of non-availability of renewable resources 

called as days of autonomy.[21, 65] 

As mentioned before, in a deterministic design approach all the input data are average 

values and the system is designed based on worst case scenario. The renewable power 
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generators are highly vulnerable to external environmental variations which directly 

affect their performance in terms of maintaining the desired reliability. To overcome 

this issue, the battery bank is usually sized based on worst case scenario which is 

unavailability of renewable resources for several days known as days of autonomy, 

usually two or three days. The size of other components of HRES is then determined 

by solving a single objective optimisation problem with the objective of minimising 

the system total cost using average values for wind speed, solar irradiance and load 

demand. Each design candidate is evaluated throughout the design period; whole 

year; and would consider as feasible solution if it complies with reliability constraint. 

The feasible solution with minimum total cost would be then introduced as the 

optimum solution. Although the assumption of nonexistence of renewable resources 

for two or three days seems unlikely to happen and sizing the battery bank. 

 

 Deterministic design approch problem formulation: 

The single-objective optimisation problem of HRES design can be defined as: 

 

}{min Re&,, placementMOICNAA CCC
BatPVWT

     (1.12) 

s.t. 

DPSP           (1.13) 

minSOCSOC          (1.14) 

 DemandAASOCfSOC PVWTtt ,,,11       (1.15) 

where 

 BatPVWTIC NAAfC ,,2        (1.16) 

 BatPVWTMO NAAfC ,,3&        (1.17) 

 BatPVWTtreplacemen NAAfC ,,4       (1.18) 
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1.7.2 Stochastic design approach  

In stochastic design approach, one or more than one design variables are involving 

uncertainties, here the wind speed and solar irradiance as a result the power generated 

by these resources are random values. Considering the uncertainties during the design 

process can result in more reliable design output. However in this design method the 

main challenge would be modelling the uncertainties in the most accurate way. The 

first step in stochastic design approach is to find the best suited model for uncertain 

variables 

 

 Modelling uncertainties: 

Here two different approaches in modelling uncertainties are discussed. 

a) Time series analysis, Auto Regressive Moving Average models 

Time series analysis could be a viable method to model the uncertainties with 

unknown variations. The special feature of time series analysis is the fact that 

successive observations are not usually independent. Most time series are stochastic 

and there would not be the possibility of exact prediction so the accuracy of future 

values is conditioned by the knowledge of past values. Having sufficient historical 

data on wind speed and solar radiation values in desired location, an Auto Regressive 

Moving Average (ARMA) model can be fitted to the historical data of wind speed 

and solar irradiance data to be used as the random generator in performance 

evaluation of HRES design candidates. 

 

The ARMA model is usually fitted to correlated time series data and is a way in 

predicting the future value of time series. This model has two parts; autoregressive 

(AR) and moving average (MA). The mathematical formulation of ARMA is: 

 

qtqttptpttt ccyayayay    ...... 112211    (1.19) 
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where p  and q are ARMA model orders, paa ,...,1 are the autoregressive parameters, 

qcc ,....1 are the moving average parameters and qtt  ,..., are random variables with 

mean value of zero and standard deviation of .  

 

The ARMA model orders and parameters are estimated as follow: 

 Transformation of  the historical data 

Transformation of input data is performed if required in order to stabilize the variance 

and make the data more normally distributed. To check the necessity the 

transformation the skewness of the data set can be used as a measure of normality. 

Skewness is a measure of asymmetry of the data around the sample mean and is 

defined as the third standardised moment and is calculated as: 

 

3

3)(






xE
s         (1.20) 

 

where  is the mean value of x ,  is the standard deviation of x , and )(tE represents 

the expected value of quantity of t . The negative value of skewness means the data 

are spread out more to the left of the mean and if the data are more spread out more to 

the right of the mean the value of the skewness would be positive. The skewness of 

the normal distribution is zero. There are various methods to transform the data set to 

Gaussian form. 

 Power Transformation 

Brown [66] introduced a method to transform the Weibull distribution into Gaussian 

form as : 

 

m
ttT UU )()(   with nt ,...,2,1       (1.21) 
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where )(tU is the original data set and )(tTU is the transformed time series with 

Gaussian PDF, and m is the power transformation. Dubey [67] showed that Weibull 

PDF is very similar to Gaussian PDF for the values of Weibull distribution shape 

factor; k between 3.26 and 3.6. Lujano-Rojas et al [68] varied the value of m  

between 6.3/k  to 26.3/k  in order to find the best power transformation value, 

resulting in the closest PDF to the Gaussian by calculation the coefficient of 

skewness for each data set. Coefficient of skewness of the data as is calculated by 

[69]: 
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


          (1.22) 

 

where )25.0(1
1

 AQ , )5.0(1
2

 AQ  and )75.0(1
3

 AQ  are first, second and third 

quantiles respectively. 1A is the inverse of the Cumulative Distribution Function 

(CDF) of the data set. 

 

This method can only be performed on wind speed data as the solar irradiance does 

not follow a Weibull PDF. 

 

 Box-Cox transformation 

Another method of transformation is Box-Cox transformation that transforms non-

normally distributed data to a set of data that has approximately normal distribution. 

If  is not zero: 

 




 1
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


data
data          (1.23) 

 

if  is zero: 
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)log()( datadata           (1.24) 

 

To find the best form of transformation in this study, the results of performing Power 

transformation and Box Cox transformation and the original data set of wind speed 

are compared in terms of the value of skewness and the series with the closest value 

to zero of skewness is chosen. For solar irradiance the result of Box cox 

transformation is compared to the original data and the series with the absolute value 

of skewness closer to zero is selected. 

 

 Dickey-Fuller test 

To evaluate the stationarity of the data the Augmented Dickey Fuller test is used [70, 

71]. This test checks whether a unit root is present in autoregressive model. 

 

ttt yy   1         (1.25) 

 

where ty is the variable of interest;  is a coefficient and t is the error term. A unit 

root is present if   is 1. In case of the presence of unit root in the model the data 

would be non-stationary and needs to transform to a stationary data set by performing 

de-trending process. The non-stationary data can be transformed to stationary by. 

 Fitting a smooth curve to the existing trend. 

 Differentiate the curve until the remaining trend is negligible. 

 

 Order of ARMA model 

The method for estimation of order of ARMA model  was first introduced by Box 

and Jerkins [72] which was based on judging the orders by visual appearance of 

autocorrelation function (acf) and partial autocorrelation function (pacf) plots. 

However, identifying the ARMA models orders by this method is very difficult and 

requires a lot of experience even for simplest models. 
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Another method in ARMA model order identification is based on fitting a set of trial 

candidate models and computing the goodness of fit of the models. The goodness of 

fit of the models can be computed by  Akaike Information Criterion (AIC) and Final 

Prediction Error (FPE) [73]. The goodness of the fitted model is measured by 

evaluation the models residuals. 
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where V is the variance of model residuals N is the length of the time series and 

qpn   is the number of estimated parameters in ARMA model. The model with 

lowest FPE and AIC value is then selected as the model of best fit. 

 

 Ljung-Box Test 

If a good model is chosen and effectively describes the original data, it is expected 

that the residuals to be random or uncorrelated because if the residuals are correlated 

the prediction error would increase by time. Ljung-Box Test [74] is used to examine 

the existence of correlation between the fitted ARMA model residuals[75]. If the 

model is appropriate, then Q should be approximately distributed as 2  with 

qpm  degrees of freedom. 
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where N is the time series size, kr is the correlation if residuals at lag k . The null 

hypothesis is rejected if Q is higher than chi-square distribution )(2 qpm  . 

 

 Simulation and back-transformation 

The data is simulated using fitted ARMA model and then back transformed to its 

original scale [76]. 

 

Using this method an Auto Regressive Moving Average (ARMA) model is fitted to 

the historical data of wind speed and solar irradiance data which can be used as the 

random generator in performance evaluation of HRES design candidates. 

The results obtained using this method is discussed in chapter 5. 

b) Fitting the historical data to known distributions 

One of common approaches is fitting the uncertainties to known distributions such as 

Weibull or Beta distributions [77]. 

The performance of this method in modelling wind speed and solar irradiance are 

compared to the output of performing time series analysis in chapter 6. 

 

 Stochastic design approch problem formulation: 

Using either of discussed methods in modelling uncertainties in stochastic design of 

HRES two approaches are followed in this work. 

 

Stochastic design, approach 1 problem formulation 

In this approach the wind speed and solar irradiance variations are modelled with 

ARMA model. Using Monte-Carlo simulation the design candidates are evaluated in 

terms of reliability and the optimum solution with minimum cost is obtained. The 

optimisation problem is defined as: 
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BatPVWT



     (1.29) 

s.t. 

  DPSPE          (1.30)        

minSOCSOC          (1.31)  

 Demand,A,A,SOCfSOC PVWTt11t       (1.32) 

where 

 BatPVWTIC NAAfC ,,2
       (1.33) 

 BatPVWTMO NAAfC ,,3& 
      (1.34) 

 BatPVWTtreplacemen NAAfC ,,4       (1.35) 

 

where  DPSPE  is the expected value of DPS . 

The results obtained by using this method are discussed in chapter 5. 

 

Stochastic design, approach 2 problem formulation 

By replacing the expected value of the DPSP with the probability of deficiency in 

generated power, the optimisation problem would change to an optimisation problem 

with probabilistic constraint which can be solved by using chance-constrained 

programming. Chance constrained programming is been used in various fields of 

engineering where there is uncertainties involved. 

In this approach the wind speed and solar irradiance variations are fit to known 

distribution and chance constrained programming is used to obtain the optimum 

solution. Here the generated power by wind turbine and PV panel are dependent 

random variables following known distributions and the power of battery bank is 

dependent random variable. Here the optimisation problem is defined as: 

 

}{min Re&,, placementMOICNAA CCC
BatPVWT

     (1.36) 

s.t. 
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 )DemandPPr( tt        (1.37)     

tBattPVWTt PPPP
t


       (1.38)

 

minSOCSOC 
        (1.39) 

 Demand,A,A,SOCfSOC PVWTt11t       (1.40)  

where 

 BatPVWT2IC N,A,AfC 
       (1.41) 

 BatPVWT3M&O N,A,AfC 
       (1.42) 

 BatPVWT4treplacemen N,A,AfC 
      (1.43) 

 

Chance constrained programming 

Various optimisation problems in design and planning areas need to deal with 

constraints involving random parameters, which are required to be satisfied within a 

pre-defined probability. Mathematical formulation for designing reliability 

constrained optimisation problems lead to chance constrained programming or 

probabilistic programming. Chance Constrained Programming  (CCP) was first 

introduced by Charnes and Cooper [78] in 1959and later Miller and Wagner [79] and 

Prekopa [80] introduced chance constrained programming for multivariate variables. 

The main feature of CCP is that this method uses an effective way of modelling 

uncertainty in optimisation problems in which the inequality constraints are satisfied 

with a probability which is defined at the beginning of the process.  The predefined 

probability ensures a certain level of reliability [81]. Due to its high performance in 

the solving the problems with high level of uncertainty, CCP is been widely used to 

model reliability of technical and economic problems real time optimization [82]. The 

general form of a chance constrained problem can be formulated as: 

 

),(min xf          (1.44) 

s.t. 
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  )0),(Pr( xG         (1.45) 

 

where ),( yf is the objective function which contains random variables, 

y represents the vector of decision variables,  represents the vector of k random 

variables with given cumulative density functions that kjzzF jj
,...,1),Pr()(    

and krgr ,...,1,   represents set of constraints involved with random variables. The 

chance constrained method  programming demands that the joint probability of k  

individual constraints to be satisfied with a given probability level [83] of  . There 

might be some deterministic constraints in the problem which are shown with ip . 

To solve the chance constrained problem if the ),( yg j can be expressed linearly in 

the form of  
i

jijij kjyTyg ,....,1,),(   it can be shown that each of 

individual chance constraints can be re-written as: 

 

 ZVarEyT jjiji  )()(       (1.46) 

)
1

1(1

k
Z





          (1.47) 

 

where  ()E and ()Var are the expected value and variance of the random variable and 

the standard normal cumulative density function is shown by () . 

This method has been used for optimal sizing of HRES in the desired site and the 

results are presented in chapter 6. 

 

1.8 Scope of thesis and contribution to the knowledge 

This thesis will focus on the different design approaches in optimal sizing of HRES. 

Following a deterministic design approach: 

 an economic analysis on optimal sizing of a grid-connected HRES shows that 

based on grid electricity price; considering a small storage, battery bank, to 
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supply the deficit of produced power in renewable resources may prove to be 

more cost effective than conventional method of buying from grid. 

 it is shown that although the HRES components might be sized based on 

worst case scenario, the system might not be able to perform satisfactory if 

only the overall performance of the system is considered without a detailed 

study on the time and period of blackout occurrence although its overall 

reliability measure might meet the design constraint. 

 

In order to maintain a high performance HRES which is cost effective, green, and 

durable and with good output quality, instead of deterministic design approach which 

is traditionally used in design of HRES, different stochastic design approaches are 

proposed. The effect of uncertainties in the renewable resources during the design are 

considered by 

 time series analysis which is performed on historical data of wind speed and 

solar irradiance and fitted ARMA models to each hour of a typical day of 

each month of the year is used to as the random data generator in Monte 

Carlo simulation for a realistic design output.  

 through a case study it is shown that the choice of modelling method for the 

wind speed and solar irradiance should be done by comparing the statistical 

characteristic of different approaches; fitting an ARMA model to using the 

known distributions; and it is completely dependent on the location of the 

desired site.  

 through a comparison between common method of chance constrained 

programming with the assumption of the random variables following a bi-

variant Gaussian distribution and the novel proposed method that solves the 

chance constrained problem based on calculating the joint CDF of the 

unknown joint distribution  of the random variables, it is shown that the 

common method is limiting the feasible region of  solutions and results in a 

more conservative and naturally less cost effective optimum solution. 
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Majority of the reported researches on optimal sizing of HRES in the literature are 

either single-objective optimisation or if more than one objective is considered the 

effect of uncertainties are ignored. In this thesis 

 a multi-objective optimisation based on NSGA-II is proposed that considers 

the uncertainties with a novel method based on chance constrained 

programing instead of Monte Carlo simulation in estimation of the expected 

value of the hourly wind speed and solar irradiance data. It is shown that the 

proposed method improves the computational time while maintaining the 

acceptable performance.The optimisation algorithm, time series analysis, 

chance constrained programming and the presented analysis have all been 

developed by the author using MATLAB software. 

 

In order to present the performance of proposed methods in this project a concept 

configuration of HRES is considered which is shown in Figure 1-1. Figure 1-2 shows 

a load profile which is a typical load profile, adopted based on the load profile 

presented in [84] to suit the case study. The specifications of the components are 

presented in Table 1-1 [21]. 

PV Panel

Load

Wind Turbine

++ --

++ --
Dump load

 

Figure 1-1 Concept diagram of HRES 
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Figure 1-2 Summer and winter load profiles 

 

Table 1-1 Components design parameters 

Efficiency  

(%)

Lifetime 

(year) Initial Cost O&M Cost

Interest 

Rate(%)

Inflation rate 

(%)

Feed-in Tariff 

(c/kWh)

PV panel 12.3 25 600 ($/m2) 1% of price 8 4 27

WT 20 700 ($/m2) 3% of price 8 4 44

Battery Bank 90 8 1.5 ($/Ah) 1% of price 8 4  - 1 

1.9 Structure of this thesis 

Chapter 2 provides the mathematical models of the components considered in Figure 

1-1. The economic cost and income modelling for stand-alone and grid-connected 

HRES are presented in this chapter. Chapter 3 investigates the cost effectiveness of 

adding a battery bank to grid-connected HRES to maintain shortage of produced 

power by renewable resources comparing to buying the electricity from grid through 

a deterministic design approach. Chapter 4 is dedicated to analysis of reliability of 

output power supply in deterministic design approach and it is shown that a more 

detailed analysis is required to ensure the reliability constraint is met in deterministic 

approach.  Next chapters are dedicated to stochastic design approach and different 

design methods in modelling uncertainties are investigated and improved. Following 

stochastic design approach the historical weather data are modelled using time series 
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analysis and used to design a HRES for desired site. The methodology and results are 

presented in Chapter 5. Chapter 6 compares the results of conventional approach in 

solving chance constrained problems which is based on the assumption of 

considering the Gaussian distribution to present the randomness of uncertain 

variables with a proposed method which solves the chance constrained problem 

considering the joint distribution of random variables as unknown. Chapter 7   

performs a multi-objective optimisation based on NSGA-II with a novel method in 

integrating the uncertainties in design based on chance constrained programming. 

Chapter 8 concludes the thesis with several remarks of the finished project along with 

future research directions. 
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2 Modelling 
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2.1 HRES components 

The HRES design is crucially dependent on the performance of its individual 

components. In order to analyse the overall system performance the individual 

components need to be modelled first. Different mathematical models are proposed 

by researchers to estimate the output power of wind turbine, photovoltaic panel and 

batteries. The models implemented in this study are chosen with consideration of 

giving a realistic estimation of the output of each system without being too 

complicated with details. 

 

2.1.1 Wind Turbines 

Wind energy has been a popular alternative power source in recent years and many 

researches have been done to demonstrate the potential of this renewable power 

source around the world [85]. Although the power production from wind energy is 

challenging due to its dependency to weather conditions studies show that wind is a 

periodical phenomenon for large geographical areas [86].  However wind energy may 

not be available everywhere because of low wind speed, it can be an attractive and 

economically viable energy resource in many locations around the world. A wind 

turbine converts available power in the wind into electricity. The capacity of wind 

turbines varies from a few watts which can be used in residential and commercial 

application to Megawatts in wind plants. Nowadays, wind turbines are categorized to 

horizontal-axis wind turbines (HAWT) and vertical-axis wind turbines (VAWT). The 

shaft and electrical generator are located on top of the tower of HAWT and the 

turbine is pointed to the wind direction, where the main rotor of the VAWT is set 

vertically and is not pointed to the wind.  Although the VAWT have a simple 

installation and control, since they cannot produce as much power of HAWT, they are 

not as favourable as HAWT so the majority of installed HAWTs today are from the 

HAWT type. Figure 2-1 presents a two configuration of wind turbine. 
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Figure 2-1 Wind Turbine Configurations 

 

Design of wind turbines contains determining the number and size of blades, the rotor 

diameter, material, chord size, height of the tower, gear box and etc. The height of the 

tower and the rotor size are both depending of the diameter of the rotor. And the 

parameters such as aerodynamic efficiency, cost and noise have an essential role in 

determining the number of the blades. The today market is dominated by two-blade 

and three-blade wind turbines. Although the two blade has lighter weight and it is 

easier to install, since the three-blade design increases the efficiency by 5-10% and 

smoother output power however they have higher cost and weight. Considering other 

parameters such as control system and gear box the optimum designs with high-

efficiency and minimum cost is chosen by designer of the wind turbines. 

 

2.1.2 Wind Turbine Model 

The wind power generated by a wind turbine can be represented by: 

 

WTwpWT AVCP 3

2

1
          (2.1) 
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where WTP  is the wind turbine output power in W , 3/225.1 mkg is the air 

density, pC is the wind turbine power coefficient, WTA is the rotor disk area in 2m  

and wV is the hourly average wind velocity in sm at the hub elevation. 

 

The wind speed varies with the height and the wind data measurement equipment is 

installed at different heights so it is crucial to calculate the wind speed at the wind 

turbine hub. The wind speed wV at the hub height can be calculated as: 
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where hubz  is the hub height; refV is the wind speed at the reference height  refz  and 

0z is the surface roughness length in m . Wind speed at any given height of the tower 

can be found if the surface roughness and wind measurements at different height are 

available. The value of 0z  in logarithmic law for open farm is assumed as 0.03. 

 

The power coefficient depends on the wind turbine characteristics and varies with the 

wind speed. In this study, the power curve of the different wind turbines are used to 

calculate the corresponding Cp value to different wind speeds.  Using the least square 

method a mathematical model is fitted to the points to model the PC value variation 

at different wind speeds as:  

 

1
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A least-square problem is a category of optimisation problem which does not include 

constraints. The objective of this optimisation problem is to minimise the sums of 

squares of the form i
T
i bxa  [87]. The optimisation problem can be written as  

 

2
1 )()(min i

k
i

T
i bxaxf           (2.4) 

 

where nkA  , T
ia are the rows of A and the vectors nx  is the optimisation 

variables. The optimisation problem 2.4 can be solved by solving a set of linear 

equations. 

 

bAxAA TT )(         (2.5) 

 

And from 2.5 we would have  

 

bAAAx TT 1)(          (2.6) 

 

Using least square curve fitting to extract the best fitted curve to the observed Cp vs. 

wv for the WTn observed wind turbines and vn wind speeds that the Cp values are 

known the elements of for a polynomial of the order of q Equation 2.6 can be written 

as: 

  1)1(  qCx           (2.7) 
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Using the curve fitting tool in MATLAB software a polynomial is fitted to extract a 

generic Cp equation to be used in the calculations. 

Following described method on the data of different wind turbines in the range of 

kW1  to kW15 ; Figure 2-2; applied to the case study used in this project the PC  

variation is modelled by: 
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   (2.10) 

 

2.1.3 Photovoltaic Panels 

Solar energy is one of the most significant energy resources available to be used in 

producing the increasing power demand of the world. Solar energy can be used in 

solar thermal systems which convert the solar energy into required thermal energy  
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Figure 2-2  Cp curves of different wind turbines in the range of kW1  to kW15  

 

form or they can be used in photovoltaic systems that convert the solar energy to 

electricity. Among these two main uses of solar energy, converting to electricity is the 

interest of this study. The efficiency of the photovoltaic panels has improved 

significantly from 4% for first model which was developed in 1954 by Chaplin, 

Fuller and Pearson to over 40% recently [88]. 

 

The semiconductors in structure of photovoltaic panels produce electricity by 

absorbing the solar irradiation coming through them.  Solar cells consist of large-area 

semiconductor diode [89].  The p-n junction is created by adding impurity to the 

semiconductor crystal. Since there are four electrons required to fit an atom to the 

crystal structure if the impurities are phosphorus-atoms with five outer electrons, four 

would be used to fit to the crystal structure and one would remain free. In this case 

there would be a region with majority of free negative charge which is called n-
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region. On the other if the impurities are from boron atoms with three electrons, one 

electron would be missing. The missing electron is considered as a hole and the 

region is called p-region. Due to the charge differences at the frontier of two regions, 

the electrons move to p-region and holes in to n-region until a neutral junction is 

produced, called as space-charge-region. 

 

The solar radiation falling into the semiconductor produces electron-hole pairs. These 

pairs diffuse into space-charge-region where they are divided by the electric field 

between n-region and p-region. If a resistor is connected between the two regions the 

electrical power starts flowing. Figure 2-3 shows the principle of power generation in 

photovoltaic panels. 

 

 

Figure 2-3  Principles of PV energy conversion 

 

2.1.4 Photovoltaic(PV) Panel Model 

The PV array model used in this study is given by: 
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PVPVPV IAP           (2.11) 

 

where PVP is the PV array output power inW , I  is the horizontal solar irradiance in 

2/ mW , PVA is the PV panel area in 2m and PV is the efficiency of the PV array and 

is calculated as [11]. Although the total solar irradiation of depends on position of the 

sun that varies from month to month, instead of estimating the amount of total solar 

radiation with the deterministic method which use the direct normal and diffuse solar 

radiations, in this study the historical data which is actually measured is used in 

stochastic approaches to implement the factor of uncertainty in estimating the solar 

power in the desired site. 

 

The effect of the temperature on the efficiency of the PV panel is considered using: 

 

 )(1 rcrPV TT          (2.12) 

 

where r is the module reference efficiency,   is the array efficiency temperature 

coefficient, rT is the reference temperature for the cell efficiency and cT is the 

monthly average cell temperature [90] and can be calculated as follows: 
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where aT is the instantaneous ambient temperature, 
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NOCT  is normal operating cell temperature, CT NOCTa  20, and 

2
, /800 mWI NOCTT  , for a wind speed of sm /1 . 

 

2.1.5 Storage System 

Energy storage system has an important role in maintaining energy balance in HRES 

production and load demand. As it enables the system to store the excessed energy 

when the production is high and demand is low for example during the day and use it 

at times when there is deficit of supply. Different type of energy storages can be used 

in HRES such as Compressed Air Energy Storage, Hydrogen Fuel cells and Batteries. 

Among them batteries are more popular in HRES as they do not enquire any auxiliary 

systems to be run in conjunction to them and they offer best technology for required 

reliability and efficiency and cost in HRES. 

 

Batteries are available in variety of types such as Lithium Ion (LiIon), Sodium 

Sulphor (NaS), Nickel Cadmium (NiCd) and Lead Acid batteries. LiIon batteries 

have the characteristic of high efficiency and lifespan at high depths of discharge 

however they are currently too expensive. NaS batteries have temperature constraint 

for their optimal use and NiCd batteries have high rate of self-discharge which make 

them less ideal for use in HRES. So far Lead Acid batteries have been the most 

popular type of storage in HRES [91, 92]. 

 

2.1.6 Battery bank Model 

Common drawback of using renewable resources is their unpredictable nature which 

is completely dependent on weather conditions and may result in load rejection at 

some points. In standalone HRES, the balance between demand and generation is 

obtained by an auxiliary power source such as a diesel generator or a battery bank. 

The battery used in this study is a lead acid battery. The selection of an appropriate 

size of a battery bank requires complete analysis on the charge and discharge process 

of the battery which depends on the load profile and the output of wind turbine and 
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PV panels. The property of the battery related to the performance of HRES is the 

state of charge ( SOC ) of the battery at each analysis time step. SOC  is simulated 

during the charging process as [93]: 

 

Bat
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tt1t
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ΔtI
 )δ(1SOCSOC


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      (2.15) 

 

where, )(t is the hourly self-discharge rate (an average value of 0.02% is used in this 

study). t is the time step for calculating  the SOC (in this study, t is equal  to one 

hour). Batc is the nominal battery bank capacity in Ahand C is the charge efficiency 

factor. The battery current BatI  can be calculated as: 
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where, BatV is the battery voltage. 

During the discharge, SOC is calculated as [93]: 
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in which 
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Charge and discharge processes are subjected to the following constraints: 

 

maxmin 1 DODSOC          (2.19) 



 

49 

 

where maxDOD is the maximum depth of discharge of the battery. 

 

maxmin SOCSOCSOC t          (2.20) 

 

and 
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The constant c is considered 1 if battery is charging and 0 if the battery is 

discharging. 

 

2.1.7 Battery lifetime 

Lifetime of the battery is limited by two independent factors, the battery’s float and 

the life battery’s cycle life. The battery’s float life is the maximum duration that the 

battery will last before being replaced even if it has not been used at all. Dispatch 

strategy has direct effect on battery’s lifetime, and by each charge and discharge 

cycle some depletion happens in battery. Ashari et al. [26] used equivalent full cycles 

(EFC) for measuring battery’s lifetime taking in to account the depth of discharge in 

each charge and discharge cycle. 

 

DODcyclesofNoEFC DOD__       (2.22) 

 

where EFC  is the Equivalent Full Cycles, DOD  is Depth of Discharge and 

DODcyclesofNo __  is number of charge–discharge cycles at the given DOD .  

 

An average avEFC  is calculated and after all the equivalent cycles the battery needs to 

be replaced. 
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 In this study the best fitted curve which is obtained based on to Ashari et al [94]  data 

is employed to reach more precision in battery’s EFC calculation, Figure 2-4. In each 

individual discharge and charge’s cycle battery’s equivalent No. of cycle is calculated 

first and the total EFC of the battery is then calculated. When the EFC reached to 

battery’s maximum number of cycles specified by the manufacturer the battery needs 

to be replaced. 

 

 

Figure 2-4 Battery’s lifetime vs. DOD 

 

So the battery needs to be replaced either because of the use or its age depending on 

which of them reached to its limits faster. 

 

2.1.8 Economic Analysis 

Economic analysis has a leading role in size optimisation of HRES to result in a 

reasonably profitable investment.  Based on the HRES components and also if the 

HRES is grid connected or stand-alone, all or some of below mathematical models 

are used in economic analysis of design candidate. 
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2.1.9 Income Modelling 

a) Income of feed-in tariff 

In some countries based on the amount of the power HRES generates and used 

domestically, the owner receives some income, called as feed-in tariff which is 

calculated with: 

 

)( ,, loadPVPVloadWTWTPFIT PFITPFITLI      (2.23) 

 

where WTFIT and PVFIT are feed-in tariff of wind turbine and PV panels respectively 

. loadWTP ,   and loadPVP , are the wind turbine and PV panels’ production which is used 

domestically. 

 

b) Income of selling to grid 

In case that the HRES is connected to the grid and there is the capacity in the grid to 

buy the electricity from micro girds, the excess of generated power can be sold to the 

grid and the income can be calculated by: 

 

)( ,,,, excessPVexcessWTtgridsellPgridSell
PPTLI 

    
(2.24) 

 

where gridsellT , is tariff of selling unit power to the grid. excessWTP , and excessPVP , are 

excess power of wind turbine and PV panel which are calculated after load 

satisfaction and charging the battery (if existed). 

 

2.1.10 Cost Modelling 

Economic analysis is an important factor to consider in size optimisation of HRES in 

order to achieve a reasonably profitable investment.  In this study the total cost of the 

system TC (of the design candidates) is calculated as the economical measure taking 
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into account the initial capital cost ( ICC ),  replacement cost ( treplacemenC ) and 

present value of maintenance cost ( MOC & ). That is: 

 

MOtreplacemenIC CCCTC &        (2.25) 

 

 

a) Initial Capital Cost 

The initial capital cost consists of the cost of components and their installation cost. 

 

    0,,, )( CCcNCACAC BatUnitBatBatWTUnitWTPVUnitPVIC     (2.26) 

 

PVA and PVUnitC ,  are the total PV Area 2m and unit cost 2/$ m of the PV array, 

respectively. WTA  and WTUnitC ,  are the total rotor disk area and unit cost of the wind 

turbine, respectively. BatN , Batc  and BatUnitC ,  are the total number, nominal capacity 

Ah and the unit cost Ah/$ of the battery bank, respectively. 0C
 
is the total 

installation constant cost including the cost of installation of the wind turbine and PV 

panels and is considered to be 20% of the component cost of the wind turbine and 

40% of the component cost of the PV system [21]. 

 

b) The Present Value of Replacement Cost 

In this study the only component which needs to be replaced during life time of the 

HRES is assumed to be the battery bank so this cost is only calculated when the 

battery bank exists in the configuration. 

The replacement cost of the battery bank can be calculated as [21]: 
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where BatN , Batc  and BatUnitC ,  are the total number, nominal capacity and the unit 

cost of the battery bank, respectively. 

repN  is the number of replacements over the system life span, f   inflation rate; dk  

annual real interest rate. The value of repN is calculated based on the number of 

charge and discharge cycles; EFC . 

 

c) The Present Value of Operation and maintenance Cost 

The present value of operation and maintenance cost of the hybrid system is 

expressed as[21]: 
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where Y  is the system life span in years, 
0)&( MOC is the operation and maintenance 

cost in the first year. 

0)&( MOC  can be given as a fraction ( k ) of the initial capital cost ICC  as: 

 

ICMO kCC 0)&(         (2.29) 

 

The value of k  is assumed to be  1% for the PV system, 3% for wind turbine and 1% 

for battery bank  [21]. 
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d) The present value of buying electricity from grid 

In grid-connected HRES, grid can provide the shortage of the power to satisfy the 

demand the cost of maintaining the power shortage from grid can be calculated by: 
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a

          (2.30) 

pL  system life period in years 

)(a  if there is no battery bank 

)(b  when there is battery bank 
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3 Optimal sizing of grid-

connected hybrid wind-

PV systems with battery 

bank 
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3.1 Introduction 

Conventionally a battery bank is used as the backup system in standalone Hybrid 

Renewable Energy Systems (HRES) while in grid-connected systems the grid 

performs as the backup during power shortage periods. For the latter, different prices 

of electricity during peak and off-peak hours raises a question about the cost 

effectiveness of using the grid as a backup. Adding a small storage system to 

maintain the shortage of electricity produced by renewable resources at peak hours 

may prove to be more cost effective backup. This chapter focuses on the design of an 

optimised grid connected small-scale HRES, incorporating a battery bank to store 

electricity during off-peak periods and uses this storage to support the HRES during 

peak demands. This system is intended to be cost effective (taking into consideration 

the Feed-In-Tariff) and make building self-sufficient with regard to energy use. 

The performance of the proposed design method is evaluated based on a case study 

for a typical household in UK. 

 

Increase in energy demand has made the renewable resources more attractive. 

Common drawback of using renewable resources is constant challenge with their 

unpredictable nature which is completely dependent on climate changes and may 

result in load rejection at some points. Conventionally the balance between demand 

and HRES is obtained by grid in grid-connected systems and overproduction is sent 

into the grid. In these systems, the grid performs as the storage system with infinite 

capacity which makes the HRES reliable at any time. However different grid 

electricity prices in peak and off-peak hours could become an economical challenge 

in maintaining power shortage in peak hours from the grid. In this chapter a new 

method in design of HRES is introduced by adding a small battery storage system to 

cover the power shortage during peak hours. 

 

Normally battery bank is used as a backup in standalone systems. Bernal-Agustín and 

Dufo-López [48, 49] put their effort in analysing the main  strategies in optimisation 

of hybrid systems with battery bank as storage. Balamurugan et al. [19] proposed a 
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hybrid energy system consisting of biomass, wind, solar photovoltaic and battery to 

deliver energy at optimum availability, considering proper energy storage to meet the 

peak load demand during low or no solar radiation periods or during low wind 

periods. Ould Bilal et al. [41] & Yang [93] & Kaabeche [21] proposed  methods for 

sizing a hybrid solar–wind-battery system with the aim of minimising cost system 

with maximum reliability. 

 

Recently some research has been carried out in which the hybrid system is grid-

connected but still includes a battery bank as storage. Castillo-Cagigal et al [95] 

developed a prototype of a self-sufficient solar house equipped with grid connection, 

PV generation, lead–acid batteries, controllable appliances and smart metering. 

Mudler [96] proposed a method to determine the optimal storage size for grid-

connected dwelling with PV panels. Particularly increase in grid electricity prices for 

example in peak hours will change the status of complete dependency on grid during 

shortage times. 

 

The presented study addresses the optimisation of a grid-connected HRES based on 

wind and solar energy considering different grid electricity prices with a storage 

system to cover the power shortages during peak hours. 

 

3.2 Economic analysis 

Economic analysis has a leading role in size optimisation of HRES to result in a 

reasonably profitable investment.  In this study the Return On Investment (ROI) of 

the design candidates is calculated as the economical measure which is calculated 

using: 

 

100



TC

TCTI
ROI         (3.1) 
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TI , the total income of the system takes into account the present value of feed-in tariff 

income FITI  and present value of selling excess electricity to the grid gridSellI , . 

 

gridSellFIT IITI
,


        

(3.2) 

 

TC , the total cost of the system takes into account the initial capital cost ICC , the 

present value of replacement cost repC and present value of maintenance 

cost MOC & and present value of buying electricity from grid gridbuyC , . 

 

gridbuyMOrepIC CCCCTC ,&         (3.3) 

 

3.3 Problem formulation & design scenarios 

The objective is to find the optimum configuration of a grid-connected HRES with 

maximum ROI while satisfying the load demand. The optimisation problem can be 

formulated as: 

 

100max 



TC

TCTI
ROI

       
(3.4) 

 

In this chapter the wind turbine/PV system sizing optimisation is performed 

following a deterministic design approach. The averages hourly of weather data and 

load profile are used as inputs of the design. The power from each resource is 

calculated at each time step (every hour) based on the capacity of power generator. 

The overall performance of each design candidate configuration is simulated during 

the entire year. 

 

In sizing of HRES components, two design scenarios are followed. 
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Scenario 1: Considering grid as the backup system in peak and off-peak hours and 

selling excess of produced electricity to the grid. The total power of HRES is 

calculated with below equation: 

 










gridPVWT

PVWT
HRESTotal PPP

PP
P ,  

)(

)(

b

a
     (3.5) 

 

)(a if total power generated by wind turbine and PV is sufficient to cover the load 

demand. 

)(b if WTP  and PVP is not sufficient to cover the load demand. 

 

Scenario 2: Considering grid as the backup system in off-peak hours and battery bank 

for peak hours. 

The flow of excess power in this scenario is toward the battery bank if the battery is 

not fully charged and in case that the battery is fully charged then the excess will be 

sent to the grid. 

 

To size the battery bank the amounts of excess energy and the peak hour power 

shortage of each individual day is calculated and based on that data the battery bank 

is sized. The battery is sized based on the worst day data using Equation 3.6. 

 

BatBat

shortage
Bat

CDODV

tP
N

max


        (3.6) 

 

where Load is maximum daily load )(Wh ; DS is the number of autonomy or storage 

days in this study considered as 3days; BatV is the battery bank voltage in )(V ; 

maxDOD is the maximum depth of discharge and Bat  is the battery efficiency. 

 

The performance of whole system is then simulated with equation: 
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)(a if total power generated by wind turbine and PV is 

sufficient to cover the load demand otherwise 

)(b where WTP  and PVP is not sufficient during off-peak hours 

)(c  where WTP  and PVP is not sufficient during peak 

hours and  state of charge the battery : 

 

minSOCSOC          (3.8) 

 

Feasible solutions of scenario 2 are compared with scenario 1 solutions and the most 

satisfactory solution is then selected. 
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Figure 3-1 Average Hourly Solar Irradiance: 
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Figure 3-2 Average Hourly Wind Speed 
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3.4 Case study 

The proposed methodology is used to design a grid-connected HRES for a household 

in Kent; UK. Inputs of the design are typical summer and winter load profiles 

presented in Figure 1-2 and hourly average of wind speed and solar irradiance data 

for 12 months of the year which are presented in Figure 3-1 and Figure 3-2. 

 

Technical and economical characteristics of the system components and grid prices 

are given in Table 1-1 & Table 3-2. 

 

As can be seen in Table 3-2 , the grid electricity has similar price during peak and 

off-peak hours in the UK [97]. Therefore in this study the system is designed under 

different assumptions for the peak hour’s price. Comparing the results comparison the 

peak hour rate at which adding a storage system to cover the power shortage would 

be more cost effective than buying the required electricity from grid will be obtained. 

 

Table 3-1 The battery bank specification 

Nomial Capacity 

(Ah)

Nominal Voltage 

(V)

DOD 

(%)

Number of 

Cycles

Battery 

Bank
40 24 90 535

 

 

Table 3-2 Grid electricity process in UK  

Grid
Off-peak price 

(c/kWh)

Peak price 

(c/kWh)

First 900kWh 29 NA

Consumptions after 

first 900kWh
17 NA

Selling  electricity to 

grid (c/kWh)
5 5
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3.5 Results 

The results of design process for 10 assumptions for the peak hour price are presented 

in Table 3-3. 

 

As expected the optimum size for PV is calculated as zero in all optimum solutions 

due to the fact that wind is dominant in the site under study. The further 

investigations showed that the configurations with PV arrays did not deliver the best 

performance considering the dramatic increase they make to the total cost of the 

system. Figure 3-3 has a more detail look on the effect of adding PV panel on a 

sample for wind turbine with overall share of 45% in load satisfaction. It can be seen 

that by increasing the area of PV arrays from zero to 400 m
2
 the HRES performance 

increases by 25% in the load demand satisfaction while the total cost of system 

increases dramatically. 
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Figure 3-3  PV Area vs. HRES Performance and Cost 
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Figure 3-4 demonstrates share of each power source when the peak hour price rate 

increases from 1.1 to 3 times of off-peak prices. It is shown that if the price of peak 

hours increases by 2.3 times or more than the off-peak price, then the optimum 

configuration contains the battery bank. 
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Figure 3-4 share  vs. Peak Hour Price Rate 

 

From result data in Table 3-3 the peak hour prices can be divided into three 

categories: 

1-Peak Prices<= 1.3Off-peak hours 

2-1.3<Peak Prices< 2.3Off-peak hours 

3-Peak Prices>= 2.3Off-peak hours 
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Table 3-3 Optimum configuration of each price rate 

Peak price/Off-peak 

price

WT Rotor Disk 

Area (m2)

PV Panel 

Area(m2)

Number of 

Batteries

Grid Supply 

for Peak hour

1.1 28.27 0 0 Yes

1.3 28.27 0 0 Yes

1.5 40.72 0 0 Yes

1.7 40.72 0 0 Yes

1.9 40.72 0 0 Yes

2.1 40.72 0 0 Yes

2.3 40.72 0 32 No

2.5 40.72 0 32 No

2.7 40.72 0 32 No

2.9 40.72 0 32 No  

 

Figure 3-5 compares the price and the share of each power resource for a sample rate 

in each of three above categories. The figure shows that at rates less than 1.5 there is 

no justification to add the battery bank. By comparing two best solutions of Figure 

3-5 (1) it is observed that the configuration with less share of HRES have less total 

cost comparing to next configuration which actually has more HRES share in load 

satisfaction. As the peak hour price increases to 1.5 times the off-peak hour the 

configuration with batteries appear as the second best options yet not the best one 

Figure 3-5 (2). And eventually the configuration with the battery bank becomes the 

optimum configuration when the peak hour price reaches to 2.3 times more than the 

off-peak hour price Figure 3-5(3). 
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(1) Peak price=1.1 Off-peak 
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(2) Peak price=1.9 Off-peak 



 

68 

 

6.9 6.95 7 7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4 7.45 7.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

S
h

a
re

 (
%

)

Total Cost ($)

 

 

6.9 6.95 7 7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4 7.45 7.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

R
e
tu

rn
 o

n
 I

n
v

e
s
tm

e
n

t 
(%

)

Battery Share

Grid Share

Renewable Share

ROI

 

(3) Peak price=2.3 Off-peak 

Figure 3-5 comparison between two best solutions of three different Peak prices 

 

Figure 3-6 shows the detail of produced power and demand of the months in which 

the battery bank is used. Apparently the battery bank is used in four months of the 

year in which the wind speed is low. In other months either the wind turbine produces 

sufficient power or the shortage occurs in off-peak hours and the shortage is 

maintained from the grid. 
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Figure 3-6 The produced power of each source for typical months 
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3.6 Summary 

 

New concepts in buying electricity from grid such as different prices at different 

hours requires development of new design methods in grid-connected HRES those 

conventionally rely on grid to obtain their required electricity during the shortage 

hours.  The method proposed in this study is based on investigating the possibility of 

adding a small storage system to cover the electricity shortage during peak hours.  

The proposed method takes into account adding battery bank to conventional grid-

connected HRES configuration as an option to overcome the consequences of 

different electricity prices. The outcome of the design would be more profitable and 

at the same time the owner would be less dependent on the grid. The system 

configurations are evaluated in terms of power production and economical aspects. 

The amount of electricity bought from the grid is added as an economic factor to the 

design of the HRES 
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4 Reliability of 

Deterministic Design 

Approach 
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4.1 Introduction 

 

In the deterministic approach, all design inputs and variables are considered as known 

variables without any randomness or uncertainties involved in design variables during 

system design and analysis. Common deterministic approaches use mean values as 

inputs of the systems. In most of the studies reported on the deterministic design 

approach of HRES, the hourly average values of solar radiation, wind speed and 

power demand are used as the design inputs [37, 98, 99]. To ensure the system 

reliability,  the system is designed based on worst case scenarios (for example the 

system is designed based on the month with least available renewable resources) 

[100] or a margin of safety is usually considered. It is also shown in [101] that in the 

context of multi-objective optimisation with conflicting objectives of cost and 

reliability, for each design problem, there exists an optimum margin of safety that can 

be used to produce a Pareto solution. Following the deterministic design approach, 

different methods in optimal sizing of HRES have been considered based on different 

reliability objectives. Balamurugan et al. [19] proposed a hybrid energy system 

consisting of biomass, wind, photovoltaic and battery to deliver maximum renewable 

energy by considering appropriate energy storage to meet peak demand during 

periods of low (or no) solar radiation  or wind. Diaf et al. [102] analysed the optimum 

configuration of a standalone hybrid photovoltaic-wind system that guarantees the 

energy autonomy of a typical remote consumer with the lowest LCOE. Yang et al. 

[42] proposed an optimal sizing method based on Generic Algorithm (GA) technique 

using a typical meteorological year data. The proposed optimisation model calculates 

the system optimum configuration which is capable of achieving the desired loss of 

power supply probability (LPSP) with minimum Annualized Cost of System. 

Deterministic approaches are widely used in design of HRES, though they rely on 

many uncertain parameters which have direct effects on the performance of the 

designed HRES.  Unrealistic estimation of the uncertainties may lead to violation of 

system design constraints such as lower reliability. On the other hand overestimation 

in the effect of uncertainties in the output of the HRES may yield in high maintenance 
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costs  and [103] shows that calculated costs via a deterministic approach deviate from 

the cost obtained by Monte Carlo simulation even without having uncertainty in cost 

modelling. Normally obtaining a desired reliability level is considered during design 

of a standalone HRES by sizing the battery bank based on worst case scenario which 

is non-availability of renewable resources for several days called as days of 

autonomy. Conventional reliability measurement methods take into account the 

overall performance of the system and do not focus on the time and period of 

blackout occurrence. 

 

This chapter focuses on the reliability measures during the design of HRES and 

shows the weakness of traditional design method of HRES in maintaining a 

satisfactory power generation system even though the overall desired reliability 

criteria is been satisfied. The concept block diagram of the designed system in this 

study is presented in Figure 1-1. The power supply from wind turbine and PV panels 

to the load, the battery bank and dump load follows the priority of first load; second 

the battery bank and last the dump load. When the total output of wind turbine and 

PV panels is more than load demand and the battery is not fully charged the excess 

energy is used to charge the battery and in case that wind turbine and PV panel output 

is not enough to cover the load demand the battery will maintain the power shortage. 

 

4.2 Problem formulation and design methodology 

The objective is to find the optimum configuration of a standalone HRES with 

minimum total cost while satisfying the load demand at the desired reliability level. 

The input data would be average hourly or monthly meteorological data of wind 

speed and solar irradiance of the desired site along with the average hourly load 

demand. Here DPSP , the deficiency of power supply probability is chosen as the 

reliability assessment criterion and any configuration of hybrid system which satisfies 

above constraint is considered as feasible solution. 
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Here the wind turbine/PV system sizing optimisation is performed following a 

deterministic design approach based on exhaustive search. The averages hourly of 

weather data and load profile are used as inputs of the design. The power from each 

resource is calculated at each time step (every hour) based on the capacity of power 

generator. 

Conventionally the battery bank is sized prior to wind turbine and PV panels’ sizing. 

The size of the battery bank is determined to meet the load demand during autonomy 

days, two or three days a year [11]. Following equation estimates the battery bank 

size with consideration of maximum depth of discharge, rated battery capacity and 

battery life using Equation 3.6. 

 

The performance of whole system is then simulated with :  
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     (4.1) 

 

)(a if total power generated by wind turbine and PV is sufficient to cover the load 

demand otherwise 

)(b where WTP  and PVP is not sufficient 

and  state of charge the battery : 

 

minSOCSOC          (4.2) 

 

The reliability of each design candidate can be measured with Equation 4.3 [104]: 
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where DPS is amount of deficiency in power supply at each hour. 

4.3 Case study 

The conventional design method is used to design a grid-connected HRES for a 

household in Kent, UK. Inputs of the design are typical summer and winter load 

profiles Figure 1-2 and hourly average of wind speed and solar irradiance data for 12 

months of the year which are presented in Figure 4-1 & Figure 4-2 . 
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Figure 4-1 Average Hourly Solar Irradiance 
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Figure 4-2 Average Hourly Wind Speed 

 

Technical and economical characteristics of the system components are given in 

Table 1-1. 

The battery bank is sized based on three days of autonomy and the overall DPSPof 

the system is considered to be less than %1desiredDPSP  

 

 

Table 4-1 Optimum solution based on common design method 

Optimum Solution 

WT Rotor Disk 

Area (m2) 

PV Panel Area 

(m2) 
Number of Batteries DPSP (%) Cost ($) 

40.715 0 187 0.4658 124285 
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4.4 Results and Discussion 

Through an optimisation method the optimum size of wind turbine and PV panel is 

obtained. Table 4-1 presents the optimum sizes of wind turbine rotor disk area, PV 

panel area, number of batteries and the overall DPSPof the system. As expected the 

optimum size for PV is calculated as zero due to the fact that wind is dominant in the 

site under study. Although the optimum solution has DPSPof 0.47% as a system 

with high reliability, a more detailed look to the times of power supply deficiency 

occurrences and their possible blackout duration shows that this configuration may 

not be the most satisfactory solution to the user because majority of power shortages 

are most likely to happen very close to each other during the evening in the winter 

season. 

 

Figure 4-3 shows a comparison with produced power of HRES and the demand of a 

typical day in winter with the possibility of power shortage. The figure shows that the 

blackout may actually continue for long hours in this day. From Figure 4-4 it is seen 

that in some months when the wind speed is not high enough to produce enough 

power to cover the load demand and charge the battery bank long blackouts may 

happen even though the battery bank is sized to cover the maximum load level for 

three days. 

 

The case study introduced a problem on the common design methods in optimal 

sizing of HRES based on a predefined reliability. As a preliminary solution to the 

stated problem, adding a constant on the maximum duration of the blackouts is 

proposed here.  The state of charge (SOC) of the battery can be used as an indicator 

for the blackout occurrence. The times when the battery bank is at its maximum depth 

of discharge the blackouts are more likely to happen and can be counted as blackout 

occurrences. The proposed solution is used to redesign the HRES for desired site in 

the case study and new optimum sizes of the HRES components are presented in 

Table 4-2. 
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Figure 4-3 Typical Day with Power Shortage 
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Figure 4-4 State of Charge of the Battery Bank 
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Table 4-2 Optimum solution after adding constraint on maximum blackout hours 

 Optimum Solution 

WT Rotor Disk 

Area (m2) 

PV Panel Area 

(m2) 
Number of Batteries DPSP (%) Cost ($) 

55.418 0 187 0 144045 
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Figure 4-5 State of Charge of the Battery Bank after considering maximum blackout 

hours in design 

 

Figure 4-5 shows the state of charge of the battery through the whole year in new 

design. Since this value never reaches in the neighbourhood of the maximum depth of 

discharge of the battery, the blackouts are very unlikely to happen in the designed 

system. 
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4.5 Summary 

Traditional reliability measurement criterions in design of HRES only consider the 

overall performance of the HRES in design period (for example in a year) and ignore 

the time and duration of blackouts occurrences in short times. That is why even 

though the designed system has an overall high reliability measure; it may not be 

satisfactory as majority of power shortages may happen during a short period. 

This study shows that in addition to traditional reliability measurements during the 

design a more precise design criterion should be considered in order to prevent design 

failures. 
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5 Stochastic design 

approach in  optimal 

sizing of HRES 
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5.1 Introduction 

Considering uncertainties when designing the system, could improve the HRES 

performance. For that, a realistic method is required to simulate the wind speed and 

solar irradiance variations. Different approaches are used to model the renewable 

sources behaviour. One of common approaches is fitting the uncertainties to known 

distributions such as Weibull or Beta distributions [77]. However researches show 

that, for some locations like UK using predefined distributions may not simulate the 

weather data properly[105]. Erken [106] used different distributions to find the best 

fitted distribution for each hourly meteorological data. Another method in 

considering uncertainties is adding a random disturbance to average values of wind 

speed and solar irradiance [107]. Lujano-Rojas [76] and Ji [108] used time series 

analysis to model wind speed and solar irradiance variations accordingly. Time series 

could be a viable solution to model the uncertainties with unknown distributions. 

 

Different methods to integrate the uncertainties in renewable resources in the design 

of HRES have been reported. Giannakoudis et al [107] considered adding a known 

disturbance to the design inputs to maintain  optimum mix of renewable resources. 

Nandi and Himri [55, 109] fitted wind speed variation with Weibull distribution. 

Lujano-Rojas el al [76] used time series theory to simulate the uncertainties in wind 

speed in the design of small wind/battery systems. Usually, the Monte Carlo 

simulation approach is used in solving probabilistic problems. Given a significantly 

large sample size, this method can provide highly accurate results. However, the main 

drawback is the computational burden associated with the large number of  repeated 

calculations [110]. In addition to the common ‘under uncertainties’ design methods, 

the chance constrained programming approach is also a popular method in solving the 

problems dealing with random parameters. This method was first introduced by 

Charnes and Cooper [78] in 1959. Its main feature is that the resulting decision 

ensures the probability of complying with constraints [83]. The chance constrained  
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Figure 5-1 Block diagram of applying time analysis on historical weather data 

 

method has been widely applied in different disciplines for optimisation under 

uncertainty[111], but a very few studies are reported using this method in the design 

of HRES. Arun et al [112] used the chance constrained programming approach in  the 

design of photovoltaic battery system to deal with the  uncertainties in the solar 

radiation. Seeraj et al [113] used this method to find the battery bank size when 

renewable energy resource availability, ratings and load demand were assumed to be 

known. 

 

This chapter proposes a method in simulation of wind speed and solar radiation 

variations with time series analysis and Monte-Carlo simulation to design a stand-

alone HRES. Here the historical hourly values of wind speed and solar irradiance are 

fitted to proper auto-regressive moving average (ARMA) models to simulate the 

uncertainties in wind speed and solar irradiance values. Using Monte-Carlo 
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simulation method, design candidates are evaluated based on reliability and the 

system total cost. The latter is introduced as the optimum solution. 

 

5.2 The wind speed and solar irradiance simulation model 

In this chapter the uncertainties in wind speed and solar irradiance is simulated using 

time series method. An ARMA model is fitted to historical meteorological data of 

each hour of a typical day of each month of the year. Block diagram of applying time 

analysis on historical weather data is presented in Figure 5-1. The output is used to 

simulate the variability in wind speed and solar irradiance data of each particular hour 

which will be used in Monte-Carlo simulation of design candidates. 

 

5.2.1 Problem formulation and design methodology 

The objective is to find the optimum configuration of a standalone HRES with 

minimum total cost while satisfying the load demand at the desired reliability level. 

The reliability is measures by calculation the deficiency of power supply probability 

(DPSP). 

The optimisation problem can be formulated as: 

 

MOrepIC CCCTC &min        (5.1) 

 

while 

 

desiredDPSPDPSP          (5.2) 

 

DPSP is the overall probability of deficiency in annual total power generated by the 

hybrid system (Equation 4.3) and any configuration of hybrid system which satisfies 

above constraint is considered as feasible solution. 

 

The design variables are the rotor swept area of wind turbine and area of PV panel. 
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The wind turbine rotor area is varied in the range from 0 to 300 m
2
, PV panels’ area is 

from 0 to 175 m
2
. The battery bank is sized using Equation 3.6. 

 

The performance of whole system is then simulated as: 
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     (5.3) 

 

)(a if total power generated by wind turbine and PV is sufficient to cover the load 

demand otherwise, 

)(b  the battery supplies the difference BatP  as long as the state of charge the battery 

is: 

 

minSOCSOC           (5.4) 

 

Considering the uncertainties in renewable resources (modelled using times series 

analysis), the reliability of each HRES design candidate is analysed using Monte-

Carlo simulation and the optimum solution with minimum total cost is selected 

among design candidates that satisfy the reliability constraint using exhaustive 

search. 

 

5.2.2 Case study 

The proposed method is used to design a stand-alone HRES for a household in Kent, 

UK. The input data for the design are typical summer and winter load profiles which 

are presented in Figure 1-2 in addition to historical hourly data of wind speed and 

solar irradiance data for 12 months of the year. The ARMA parameters for wind 

speed and solar irradiance of each individual hour is estimated based on historical 

meteorological data for one typical day of each month. The output of ARMA 

simulation is used as hourly wind speed and solar irradiance in Monte-Carlo 
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simulation. Examples of simulated wind speed and solar irradiance variations for a 

typical day in January are presented in Figure 5-2 & Figure 5-3. 

The results of technical and economical characteristics of the system components are 

given in Table 1-1. 

The battery bank is sized based on three days of autonomy and the overall DPSPof 

the system is considered to be less than %15desiredDPSP . 
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Figure 5-2 An example of simulated wind speed 
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Figure 5-3 An example of simulated solar irradiance 
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5.2.3 Results and Discussion 

In order to investigate the performance of modelling uncertainties with method 

explained in Section (5.2.1) in optimal design of HRES, an exhaustive search is 

performed to solve the optimisation problem Equation (5.1) the mean value of DPSPs 

obtained by performing 10,000 Monte-Carlo simulations on each design candidate is 

considered as its overall DPSP and the optimum solution which satisfies the Figure 

5-4 compares the upper and lower limits of DPSP values in different configurations 

of HRES. The optimum configuration is marked in Figure 5-4 and Table 5-1. 

Figure 5-5 & Figure 5-6 show the values and the distribution of DPSP values for the 

optimum solution obtained using Monte-Carlo simulation. 

 

The probability of blackout occurrence can be calculated using Monte-Carlo 

simulation result. The hours, when the battery bank is at its minimum state of charge 

or the overall available power of HRES is less than load demand, are counted as 

blackout hours. The probability of blackout occurrence is then calculated with: 

 

sSimulation

Blackouts
HourBlachout

N

n
obability ,Pr      (5.5) 

 

Figure 5-7 represents the probability of blackout occurrence in each day of the year 

for the optimum solution which is calculated with Equation 5.5. The figure clearly 

shows that the blackouts have strong probability to happen in the last three months of 

the year when renewable resources availability is not high enough to cover the load 

demand and charge the battery bank. 

 

Table 5-1 Optimum Configuration 

WT Rotor Disk Area (m
2
) PV Panel Area (m

2
) Number of Batteries DPSP (%)

92 150 187 15

Optimum Solution
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Figure 5-4 Upper & lower DPSP for design candidates 
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Figure 5-5 DPSP values of optimum solution 
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Figure 5-6 Distribution of DPSP values for optimum solution 
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Figure 5-7 Probability of blackout occurrence for each day of year 

 

5.2.4 On the Sensitivity Analysis 

As the wind turbine and PV panel models presented in Equations 2.1 & 2.11 are 

dependent on wind speed and solar irradiance data of desired site and the 

unpredictable nature of renewable resources have been considered in stochastic 

design approach , performing sensitivity analysis would not result in additional useful 

information here. 
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5.2.5 Summary 

The Hybrid Renewable Energy System (HRES) can be a reliable solution to bring 

electricity to isolated areas where there is no access to the grid by considering 

uncertainties in resources at the design stage. Appropriate modelling of wind speed 

and solar irradiance variations, at the design stage, would give a more realistic picture 

of the designed system performance. This study shows that ARMA models can be 

used as a proper method in simulating the wind speed and solar irradiance data in 

design of HRES. 
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6 Chance Constrained 

Programming Using 

Non-Gaussian Joint 

Distribution Function in 

Design of Standalone 

Hybrid Renewable 

Energy Systems 
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6.1 Introduction 

Performance of a Hybrid Renewable Energy Systems (HRES) is highly affected by 

changes in renewable resources and therefore interruptions of electricity supply may 

happen in such systems. In this chapter, a method to determine the optimal size of 

HRES components is proposed, considering uncertainties in renewable resources. 

The method is based on chance-constrained programming (CCP) to handle the 

uncertainties in power produced by renewable resources. The design variables are 

wind turbine rotor swept area, PV panel area and number of batteries. The common 

approach in solving problems with CCP is based on assuming the uncertainties to 

follow Gaussian distribution. The analysis presented in this chapter shows that this 

assumption may result in a conservative solution rather than an optimum. The 

analysis is based on comparing the results of the common approach with those 

obtained by using the proposed method.  The performance of the proposed method in 

design of HRES is validated by using the Monte Carlo simulation approach. To 

obtain accurate results in Monte Carlo simulation, the wind speed and solar irradiance 

variations are modelled with known distributions as well as using time series 

analysis; and the best fit models are selected as the random generators in Monte Carlo 

simulation. 

 

Increasing energy demand and depletion of fossil fuel resources have made renewable 

energy resources more attractive [114] and advances in technologies had led to 

reduced cost, making renewable energy systems competitive with fossil fuels 

especially in remote places where grid connection is not available [115].The power 

generated from renewable resources   is completely dependent on renewable 

resources and therefore, largely unpredictable. There are many research works 

reported on the assessment of global energy potentials resources [116] and on 

investigating the vulnerability of renewable systems and improvement of their 

performance. Kalogirou [117] investigated the effect of environmental pollutants and 

dust that are transferred with the air on performance of  PV  panels. Greening  [118] 

performed an evaluation on the life cycle environmental sustainability of micro-wind 
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turbines in the UK , as compared with grid electricity and solar PV panels.  As the 

isolated operation (standalone operation) of these power units may not be effective in 

terms of cost and reliability [119] unless properly optimised for those qualities. In 

recent years there has been an increased interest in the use and optimisation of hybrid 

renewable energy systems (HRES) as a viable solution to provide a reliable power 

supply, particularly in rural areas with standalone systems [120]. Generally, a HRES 

combines two or more energy sources to generate reliable power to satisfy the load 

demand at all times and under various weather conditions. Conventionally, the 

balance between demand and the system output in standalone systems is obtained by 

using an auxiliary power source such as a diesel generator and/or storage such as 

battery bank. To ensure an effective use of available renewable energy resources 

(wind, sun,...), optimal design and sizing of HRES are essential.  The aim is to 

optimise the mix of renewable energy systems available to meet the load power 

demand, minimise the combined intermittency in power generation, maximize their 

contribution to the peak load (thus minimising power generation from the auxiliary 

power source)and do this at a minimum cost [121].  That is, using optimal design to 

achieve cost effective and reliable HRES. Generally two approaches are followed in 

design of HRES; deterministic or stochastic. 

 

In the deterministic approach, all design inputs and variables are considered as known 

variables without any randomness involved during system design and analysis. 

Common deterministic approaches use mean values as the systems’ inputs and most 

of the work reported on the deterministic design approach of HRES implement the 

hourly average of solar radiation, wind speed and power demand as the design inputs 

[37, 98, 99]. To ensure the system reliability,  the system is designed based on worst 

case scenarios (for example the system is designed based on the month with least 

available renewable resources) [100] or a margin of safety is usually considered. 

 

Stochastic approaches attempt to solve the optimisation problem involving 

uncertainties. They deal with uncertainties by using resource functions and chance 
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constraints  to transform the stochastic optimisation to an equivalent deterministic 

optimisation problem [122]. Chance constrained programming approach is a popular 

method in solving the problems dealing with random parameters. The chance 

constrained method has been widely applied in different disciplines for optimisation 

under uncertainty[111], but a very few studies are reported using this method in the 

design of HRES. Arun et al [112] used the chance constrained programming approach 

in  the design of photovoltaic battery system to deal with the  uncertainties in the 

solar radiation. Seeraj et al [113] used this method to find the battery bank size when 

renewable energy resource availability, ratings and load demand were assumed to be 

known. For simplicity the power produced by photovoltaic array and wind turbines 

are assumed to follow a bivariate normal distribution with known mean and standard 

deviation. 

 

In this chapter, the chance constrained programming approach is used to design a 

standalone hybrid wind turbine/PV and battery bank system. The design variables are 

the rotor swept area of wind turbine, area of photovoltaic panel and the size of battery 

bank. However, assuming normal distribution as the joint distribution of produced 

power by wind turbine and PV panel may not result in a realistic output of the 

system. Therefore, in this study the joint distribution of the wind turbine and PV 

panel output power is considered to follow an unknown distribution and individual 

cumulative distribution function (CDF) of the produced power by wind turbine and 

PV panel. The CDF, corresponding to each hour of typical days of 12 months of the 

year, is calculated based on the hourly historical data of wind speed and solar 

irradiance. The design candidates are constrained in satisfying the load demand, 

which is achieved when the overall probability of the load demand to be satisfied is 

more than a certain value. The design candidates satisfying the reliability constraints 

are evaluated by their total cost. The design candidate with minimum total cost is 

defined as the optimum configuration. The reliability of the design output is validated 

through Monte Carlo simulation. As the performance of Monte Carlo simulation is 

directly dependent on the accuracy of its random data generator, two common 
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methods in modelling wind speed and solar irradiance variations are used to deal with 

this. These methods are the time series analysis and fitting historical data to the 

known distributions. They are performed on historical meteorological data of the 

desired site and the statistical characteristic of their output is compared to the 

observed data in order to ensure accurate modelling of wind speed and solar 

irradiance variation in the Monte Carlo simulation. The performance of the proposed 

design method is demonstrated in the design of an HRES for a household in Kent, 

UK, as explained in section 6.3. 

 

The concept block diagram of the designed system used in this study is shown in 

Figure 1-1. The power generated from the wind turbine and PV panels follows the 

supply priority of first load; second the battery bank and last the dump load. When 

the total output of wind turbine and PV panels is more than load demand and the 

battery is not fully charged the excess energy is used to charge the battery. When the 

wind turbine and PV panel output is not enough to cover the load demand, the battery 

will supply the difference. 

 

The development of this chapter is presented as follows: 

The components modelling and cost modelling are presented in chapter 2. 

Problem formulation and design methodology are presented in section 6.2 and a case 

study is described in section 6.3. 

Validation with Monte Carlo simulation is described in section 6.4 and finally 

conclusions are presented in section 6.5. 

 

6.2 Problem formulation and design methodology 

The methodology of finding the optimum size of a standalone wind 

turbine/PV/Battery bank following a stochastic approach is discussed in this section. 

The objective is to find the optimum configuration of a standalone HRES with 
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minimum total cost while satisfying the load demand at the desired reliability level. 

The objective function can be formulated as: 

 

treplacemenMOIC
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The energy balance of the system can be simulated with: 
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)(a if total power generated by wind turbine and PV is sufficient to cover the load 

demand, otherwise 

)(b when  WTP  + PVP is not sufficient to meet the demand and the battery supplied 

the difference. 

 

As mentioned before, ignoring the uncertainties in wind speed and solar irradiance 

leads to unreliable supply system. The design of HRES under uncertainties can be 

generally described as a nonlinear stochastic optimisation problem. Using the chance 

constrained programming the optimisation problem of optimal sizing of HRES can be 

defined as: 

 

 treplacemenMOICNAA CCC
BatPVWT

 &,,min     (6.3) 

s.t. 

8760,...,2,1,)Pr(  iDemandP ii       (6.4) 

minSOCSOC          (6.5) 

where 

8760,...,2,1,  iPPPP
ii BatiPVWTi      (6.6) 
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Here the values of power generated by the wind turbine and PV system are dependent 

random variables following known distributions and the power of battery bank is 

dependent random variable. The historical hourly data of wind speed and solar 

irradiance are used to estimate the joint cumulative distribution function (CDF) of the 

power produced by the wind turbine and PV system at each time step (each hour) of 

calculation. The load demand is assumed to be deterministic and known at each time 

step and  is the reliability of compliance of the constraint or confidence level given 

as: 

1001 DPSP          (6.7) 

where  DPSP of each design candidate which is  calculated as Equation 4.3. 

The probabilistic constraint in Equation 6.4 can to be changed to a deterministic 

constraint as follows: 

 




  ))(Pr( 1
t

CV
SOCSOCDemandPP BatBat

tttPVWT tt
   (6.8) 




  1))(Pr( 1
t

CV
SOCSOCDemandPP BatBat

tttPVWT tt
  (6.9) 

 

The number of batteries for a given wind turbine rotor area and PV panel area can be 

obtained by solving Equation 6.9 which requires the calculation of joint CDF of WT 

and PV panel output powers at each hour. 

To solve Equarion 6.9, two approaches are followed: the common method used in 

previous studies and a new method proposed in this chapter. 

 

6.2.1 Common method used in previous studies-Using normal distribution 

To  solve Equation  6.9, tWTP and tPVP at each hour are assumed to follow normal 

Gaussian distribution with mean values of 
tWTP , 

tPVP  and standard deviations 

tWTP , 
tPVP  [113]. 
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The sum of 
tWTP and 

tPVP is assumed to have a new random variable tP  with mean 

value of 
tP and the variance 

2

tP
  such that: 

 

tWTtPVt PPP            (6.10) 

tWTtPVtWTtPVtWTtPVt PPPPPPP ,
222 2        (6.11) 

 

where 
tWTtPV PP , is coefficient of correlation between 

tWTP and 
tPVP at each hour. 

The deterministic equivalent of Equation 6.9 is expressed as: 

 

 Z
t

cV
SOCSOCDemand

tt PP
BatBat

ttt 


  )( 1    (6.12) 

 

where Z is the inverse of the cumulative normal probability distribution 

corresponding to the required reliability of compliance of the constraint or confidence 

level ,  .Equation 6.12 is used to obtain the minimum battery size for each 

configuration of WT and PV panel and the configuration with minimum cost is 

selected  as the best  design. 

 

6.2.2 The proposed method 

In the proposed method, it is assumed that WTP and PVP are independent random 

variables following known distributions (Weibull and Beta distributions, accordingly) 

and the joint cumulative distribution function of these is calculated as: 

 

PVWTPVWT PPPP FFF .,          (6.13) 

 

Equation 6.9 can be re-written as: 
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)1()( 1
,1 


 

 PVWT PP
BatBat

ttt F
t

cV
SOCSOCDemand    (6.14) 

 

Equation 6.14 is a deterministic constraint which can be satisfied by calculating the 

inverse of the joint cumulative distribution function of wind turbine and PV panel 

power, corresponding to the required reliability of compliance of the constraint   . 

The values of WT and PV panel output powers are used to obtain the minimum 

battery size for each configuration of WT and PV panel and the configuration with 

minimum cost is selected as the best design. The performance of the proposed 

method is validated using Monte Carlo simulation. 

 

The flowchart of the design and validation process is presented in Figure 6-1. 

 

6.3 Case study 

The chance constrained programming is used to design a standalone HRES for a 

household in Kent, UK. The input data for the design are historical hourly data (2000-

2008) of wind speed and solar irradiance for 12 months of the year together with 

typical summer and winter load profiles shown in Figure 1-2. The two methods 

explained in section 6.2 are used to find the optimum solution for the desired location 

and the results obtained with two methods are compared for five different confidence 

levels from 0.1 to 0.5. 

 

Details of technical and economical characteristics of the system components are 

given in Table 1-1. 

 

The system under study consists of a wind turbine, a PV panel and a battery bank. 

The wind turbine rotor area is varied in the range from 0 to 154 m
2
, PV panels’ area is 

from 0 to 260 m
2
 and minimum number of batteries required to meet the probabilistic 

constraint is determined for each case. Upper limits of each renewable power 

generation unit is calculated assuming that it is the only source of power. The number 
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of batteries is assumed to vary from 0 to 478. The maximum permitted number of 

batteries in the study is calculated, using Equation 3.6, considering required storage 

for one day of autonomy for a day with highest daily load demand; here typical 

winter load demand is used. 

 

Figure 6-2 shows a sample contour plot for different  values obtained by calculating 

the joint CDF of WTP and PVP for a typical day in August at 12.00 noon using the 

method proposed in this chapter. 

 

The optimum configurations and their total costs, obtained with the two methods 

explained in section 6.2 for five different confidence levels from 0.1 to 0.5 are 

presented in Table 6-1. As shown in this table, the results of the two methods are 

close in lower reliability; lower  ; but as the reliability increases the difference 

between total costs of optimum solutions of the two methods becomes more 

significant. Figure 6-3 compares the total cost of the optimum solutions of the two 

methods for five values of .Figure 6-4 shows a three dimensional space formed by 

the wind turbine rotor swept area, PV panel area and minimum battery capacity 

required to meet the load, using the two design methods for  value of 0.8. As can be 

seen from the figure, using the method proposed in this chapter results in a bigger 

design space as compared with using the normal Gaussian distribution, which leads to 

a larger number of feasible optimum solutions. Figure 6-5 and Figure 6-6 show a 3D 

view of feasible design options based on different number of batteries for each of the 

two design methods explained in sections 4.1 and 4.2, for value of 0.8. As the 

objective function in the defined optimisation problem of Equation 6.3 is the present 

value of total cost, the optimum solution of each method is selected based on having 

minimum total cost and is marked in Figure 6-5 and Figure 6-6. 
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Table 6-1  The comparison between results obtained using two design methods 

WT Rotor Area (m
2
) PV Panel Area (m

2
) Number of Batteries Total Cost ($) WT Rotor Area (m

2
) PV Panel Area (m

2
) Number of Batteries Total Cost ($)

0.5 50 113 0 61 174,413 116 0 61 178,091

0.6 40 128 0 61 195,103 134 0 61 202,919

0.7 30 149 0 61 222,688 154 17 61 245,237

0.8 20 154 69 61 292,193 154 139 61 354,801

0.9 10 154 234 61 440,887 154 260 421 598,285

Optimum Solutions Obtained Using Proposed Method
DPSP (%)α

Optimum Solutions Obtained Using Normal Distrobution
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Figure 6-1 Block diagram of proposed design method and validation process 
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6.4 Validation with Monte Carlo simulation 

Monte Carlo simulation is used to validate the reliability of the optimum solution 

obtained with the proposed method as well as comparing the performance of the 

optimum solutions marked in Figure 6-5 and Figure 6-6 as the optimum solution of 

two discussed methods. The performance of the Monte Carlo simulation is dependent 

on the accurate modelling of the uncertainties in the wind speed and solar irradiance. 

Different approaches are used to model the renewable sources behaviour. One of the 

common approaches is by fitting the uncertainties to known distributions such as 

Weibull or Beta distributions [77]. However, research show that for some locations 

(e.g. in the UK), using predefined distributions may not simulate the weather data 

properly[105]. Erken [106] used different distributions to find the best fitted 

distribution for each hourly meteorological data. Another method in considering 

uncertainties is adding a random disturbance to average values of wind speed and 

solar irradiance [107]. Lujano-Rojas [76] and Ji [108] used time series analysis to 

model wind speed and solar irradiance variations, accordingly. To obtain the most 

accurate model in wind speed and solar irradiance variations of the desired location, 

two different methods are used for fitting the historical data to known distributions 

and  time series analysis using autoregressive moving average models (ARMA) 

explained in chapter5. The results obtained by using ARMA simulation are compared 

with the results obtained from fitting the historical data of wind speed to Weibull 

distribution and solar irradiance to Beta distribution and then calculating the mean 

squared error (MSE) of each method as: 

 





h

i
ii YY

h
MSE

1

2)ˆ(
1

        (6.15) 

 

where iŶ is the mean value of vector of simulated values and iY is the mean value of 

vector of observed values for hour no i . Calculated values of MSE for desired site 

show that wind speed variation is best fitted to Weibull distribution than ARMA 
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model. The MSE of the simulation with Weibull distribution is 0.0007 which is 

significantly lower than that for ARMA simulation which is 0.27. However for solar 

radiation simulation, the ARMA model performs better than Beta distribution with 

MSE of 6.94 as compared to 36.24. It can be seen that the values of MSE are 

considerably bigger for solar radiation than for wind speed. It should be noted that the 

values of solar radiation calculated are mostly in the range of 100 to 600 and wind 

speed changes in the range between 2 to 5.5. Figure 6-7 & Figure 6-10 present the 

result of comparison between the mean values of simulated data and observed values. 

The Monte Carlo simulation is repeated as long as the statistical characteristics of the 

modelled variation in wind speed and solar radiation are close enough to the actual 

observed data. The reliability of optimum solution obtained using the proposed 

method; marked in Figure 6-5 is then estimated as the mean of the results obtained 

over the number of the simulation; 5000 times. Figure 6-11 compares the DPSP 

values obtained at each run of simulation, its mean value and 90% confidence 

intervals of the results. The overall DPSP of the optimum configuration which is 

calculated as the mean value of DPSP  values obtained from Monte Carlo simulation. 

If we consider   as 1001 DPSP and calculate   based on the results from Monte 

Carlo simulation; the results show that the optimum solution obtained by using the 

method proposed in this chapter complies with the design constraint which requires 

an overall load satisfaction with a probability of  ; here = 0.8. 

 

Monte-Carlo simulation is also used to compare the performance of optimum 

solutions obtained using each of explained methods in terms of blackout occurrence 

probability as well as the average excess power that is produced by the wind turbine 

and PV panel in case of choosing either of these optimum solutions and the results 

are presented in Figure 6-12 and Figure 6-13. The probability of blackout occurrence 

for each hour for a typical day of each month is shown in Figure 6-12. This figure 

shows that the probability of blackout occurrence in each hour of the optimum 

solution obtained by proposed method is less that 18%. The Figure 6-12 also shows 

that the probability of blackout for both optimum solutions is higher in the last three 
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months of the year. Also the value of this probability does not differ significantly 

between two optimum solutions for each particular month. However the amount of 

average daily excess power shown in Figure 6-13 proves that the proposed method 

results in less conservative design option as compared to the output of common 

method as there is less excess power produced by wind turbine and PV panel in the 

output design of this method. 

 

6.5 Summary 

This chapter suggests the use of the chance constrained programming in the design of 

HRES. To solve the chance constrained problem two methods are compared: 

 The common approach which solves the problem based on the assumption of  

the uncertain variables following the normal Gaussian distribution 

 A new method is proposed in this chapter to solve the chance constrained 

problem without initial assumption on the type of joint distribution of two 

uncertain variables; wind speed and solar irradiance. 

 

Analysis of comparing the results obtained in this study shows that by using the first 

method some feasible configurations are ignored and the output configuration of the 

design may not be the best configuration. 

 

A case study, design of a standalone hybrid wind /PV /battery bank system is 

presented for a farm in Kent, UK. The outcome of the design is validated based on 

deficiency of power supply probability through performing Monte Carlo simulation. 

Historical meteorological data of the desired location is used to find the best method 

in modelling wind speed and solar irradiance variations. This is done by comparing 

the statistical characteristics of fitting the variations to known distributions as well as 

using time series analysis; ARMA models. It is shown that, for the desired location, 

the Weibull distribution is the best fitted model for wind speed variation and that 

ARMA model performs better in modelling solar radiation variations. However it 
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should be noted that conclusions might be different for other locations, as the best fit 

model should be chosen after performing similar analysis based on the desired 

locations historical weather data. The outputs of each of these models are compared 

with observed data and best model is chosen to simulate renewable resources 

variation in Monte Carlo simulation.  
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Figure 6-2 Contour plot of joint probability of WT and PV panel output powers for 

Aug at 12:00 
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Figure 6-3 The total cost of optimum solutions of two methods for different 

confidence levels 
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Figure 6-4 The design spaces of two methods for α=0.8 
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Figure 6-5 Feasible design solutions & selected optimum solution of optimisation 

problem Eq. 6.14- Using proposed method for α=0.8   
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Figure 6-6 Feasible design solutions & selected optimum solution of optimisation 

problem Eq. 6.14- Using normal dist. for α=0.8 
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Figure 6-7 Mean values of simulated and observed data of wind speed 
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Figure 6-8 Error values of simulated and observed data of wind speed 
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Figure 6-9 Mean values of simulated and observed data of solar irradiance 
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Figure 6-10 Error values of simulated and observed data of solar irradiance 
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Figure 6-11 Deficiency of power supply probability of optimum solution obtained 

with Monte Carlo simulation 
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Figure 6-12 Comparison between probability of blackout occurrences of two 

optimum solutions for α=0.8 
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Figure 6-13 Comparison between average daily power excess of two optimum 

solutions for α=0.8   
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7 Multi-Objective Design 

under Uncertainties of 

Hybrid Renewable 

Energy System Using 

NSGA-II and Chance 

Constrained 

Programming 
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7.1 Introduction 

The optimum design of Hybrid Renewable Energy Systems (HRES) depends on 

different economic, environmental and performance related criteria which are often 

conflicting objectives. The Non-dominated Sorting Genetic Algorithm (NSGA-II) 

provides a decision support mechanism in solving multi-objective problems and 

providing a set of non-dominated solutions where finding an absolute optimum 

solution is not possible. The present study uses NSGA-II algorithm in the design of a 

standalone HRES comprising wind turbine, PV panel and battery bank with the 

(economic) objective of minimum system total cost and (performance) objective of 

maximum reliability. To address the uncertainties in renewable resources (wind speed 

and solar irradiance), an innovative method is proposed which is based on Chance 

Constrained Programming (CCP). A case study is used to validate the proposed 

method, where the results obtained are compared with the conventional method of 

incorporating uncertainties using Monte Carlo simulation. 

 

Decision making problems can be categorized in two classes based on the number of 

objective functions that are involved in the problem; single objective and multi-

objective. In a single objective problem, the aim is to identify the best solution 

corresponding to minimising or maximising a single objective function. However,  in 

real life, the decision making process usually involves more than one objective 

function. Multi-objective problems do not have a single optimal solution but they 

have a set of compromised solutions between different objective functions known as 

Pareto set. 

 

In optimal sizing of HRESs, there is normally more than one objective function to be 

considered. Two important objective functions in the design of a HRES are cost and 

reliability. Since these objectives are contradicting, a single optimal solution cannot 

be found (with minimum cost and maximum reliability) and a multi-objective 

optimisation is needed to find a trade-off; Pareto set solutions. Several studies have 
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been reported in multi-objective optimisation of HRES considering different 

objection functions and using various optimisation techniques. 

 

Genetic Algorithms (GA) proved to be popular in solving optimisation problems. 

Ould [41] proposed a Pareto-based multi-objective GA for sizing a hybrid solar–

wind-battery system with the aim of minimising the annualized cost and minimising 

the probability of loss of power supply. Montoya et al. [53] presented a hybrid 

Pareto- based multi-objective meta-heuristic approach to minimise voltage deviations 

and power losses in power networks, which can be extended to hybrid systems. Yang 

et al. [42] proposed a GA based optimal sizing technique using typical meteorological 

yearly data. The proposed optimisation model determines the system optimum 

configuration which is able to provide the desired Loss of Power Supply Probability 

(LPSP) with minimum Annualized Cost. 

 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) was proposed [46]  to 

perform multi-objective evolutionary algorithms (MOEA) in which an elite-

preserving operator gives the best individuals the opportunity to be directly 

transferred to the next generation. By doing so, a ‘good’ solution which is found in 

early generations is never removed from the population unless a better solution is 

discovered. Katsigiannis [20] used the NSGA-II to design a small autonomous hybrid 

power system that contained both renewable and conventional power sources with the 

objectives of minimising the energy cost of the system and total greenhouse gas 

emission during the system life time. However, the effects of uncertainties in 

renewable energy generation were not considered in this study. 

 

Different methods to include the uncertainties in renewable resources in the design of 

HRES have been reported. Giannakoudis et al [107] considered adding a known 

disturbance to the design inputs to maintain optimum mix of renewable resources. 

Nandi et al.[55] assumed that wind speed variation follows the Weibull distribution. 

Lujano-Rojas el al [76] used time series theory to simulate the uncertainties in wind 
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speed in the design of small wind/battery systems. Usually, the Monte Carlo 

simulation approach is used in solving probabilistic problems. Given a significantly 

large sample size, this method can provide highly accurate results. However, the main 

drawback is the computational burden associated with the large number of  repeated 

calculations [110]. The Chance Constrained Programming (CCP) approach, first 

introduced by Charnes and Cooper [78] in 1959, is now popular method in solving 

problems that include  random parameters.  Its main feature is that it ensures the 

probability of the resulting decision to  comply with the specified constraints [83]. 

The CCP  method has been widely applied in different disciplines for optimisation 

under uncertainty[111], but very few studies are reported on using this method for the 

design of HRES. Arun et al. [112] used the CCP  approach in the design of  a PV-

battery system to deal with the uncertainties in the solar radiation. Seeraj et al. [113] 

used this method to find the battery bank size when renewable energy resource 

availability, ratings and load demand were assumed to be known. 

 

This chapter presents the results of a multi-optimisation NSGA-II based approach for 

the design of a standalone HRES, shown in Figure 1-1, considering uncertainties in 

the resources available. The approach employs the chance constrained programming 

to deal with the effects of uncertainties in renewable resources instead of common 

approach of using Monte Carlo simulation. It is shown in Chapter 6 that chance 

constrained programming can result in optimum solution for a predefined reliability 

in a single-objective optimisation problem in design of HRES, however  in a multi-

objective optimisation problem where there is no predefined reliability, 

conventionally Monte Carlo simulation is employed. This study proposes a novel 

method in employing chance constrained programming in multi-objective problems 

as a substitute of Monte Carlo simulation. The study proposes a method in which 

chance constrained programing is used as a tool in estimating the expected value of 

the objective function which is affected by the uncertainties, in other words instead of 

finding the optimum solution for a predefined value of reliability, chance constrained 

programing is used to estimate the expected value of the reliability of the design 
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candidates in a multi-objective optimisation problem. To evaluate the performance of 

the proposed method, the results obtained are compared with those obtained by 

employing the Monte Carlo simulation. 

The outline of this chapter is as follows: 

The components modelling and cost modelling are presented in chapter 2. 

Problem formulation and design methodology are presented in section 7.2. 

A case study is described in section 7.5. Results and discussion are described in 

section 7.6 and finally conclusions are presented in section 7.7. 

 

7.2 Problem formulation and design methodology 

The proposed technique adopts the non-dominated sorting genetic algorithm (NSGA-

II) [46] in combination with the chance constrained programming (CCP) [78] to 

effectively solve the multi-objective optimisation problem of design of a HRES under 

uncertainties. The aim is to find the Pareto set solutions based on the desired 

objective functions using NSGA-II. The NSGA-II provides a very efficient procedure 

in keeping the elitism optimisation process as well as preserving the diversity which 

assures a good convergence towards the Pareto-optimal front without losing the 

solution diversity [47]. 

 

The following steps are implemented in the NSGA-II algorithm. 

1: Initial population is generated based on defined decision variables and number of 

populations. 

2: Evaluation of each chromosome in terms of defined objective functions. The 

adopted methods in evaluation the objective functions affected by uncertainties are 

explained in sub-section (7.3) and (7.4). 

3: Set the generation count 

4: Prepare the mating pool 

5: Perform crossover and mutation operators 

6: Perform non-dominated sorting 
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7: Calculate the crowding distance 

8: Perform the selection based on rank. If individuals with the same rank are 

encountered, crowding distance is compared. A lower rank and higher crowding 

distance is the selection criteria. 

9: Increment the generation count and repeat steps 4 to 8 until the counter reaches the 

maximum number of generation 

 

The decision variables are the wind turbine rotor swept area ( WTA ), the PV panel area 

( PVA ) and the number of batteries ( BatN ). 

The optimisation problem can be defined as: 

 DPSPTC
BatPVWT NAA ,min ,,        (7.1) 

s.t. 

minSOCSOC                     (7.2) 

where 

treplacemenMOIC CCCTC  &       (7.3) 

 

As Equation 7.1 shows, two objective functions have been considered associated with 

both minimisation of the system total cost (TC ) and the deficiency of power supply 

probability ( DPSP ); where DPS is the amount of power shortage at each hour and h  

is the total hours under study. 

 

The energy balance of the system can be modelled as: 










BatPVWT

PVWT
HRES

PPP

PP
P

,
 

)(

)(

b

a
       (7.4) 

)(a if total power generated by the wind turbine and PV is sufficient to cover the load 

demand, otherwise 

)(b WTP + PVP is not sufficient to meet the demand and the battery has to supply the 

difference. 
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In order to compare the performance of the proposed method, the NSGA-II algorithm 

objectives affected by uncertainties are evaluated with CCP  (explained in section 

7.3) as well as a conventional method based on Monte Carlo simulation (explained in 

section 7.4). 

 

7.3 Optimal Estimation of the Objective Functions Affected by Uncertainties 

Using CCP 

Each design candidate in the main optimisation process needs to be evaluated in 

terms of the desired objective functions; here these are the total cost )(TC and 

deficiency of power supply probability )(DPSP . As uncertainties with renewable 

resources have direct effects on the second objective function (DPSP); finding an 

exact value for DPSP is not realistically possible. Therefore, this objective function 

needs to be estimated using stochastic methods, in this study using chance 

constrained programming. 

 

As  estimatedDPSP is completely dependent on the correct estimation of uncertain 

variables, here the aim would be to estimate the hourly values of 
estimatedtWTP

,
and 

estimatedtPVP
,

. The estimation problem of 
estimatedtWTP

,
and 

estimatedtPVP
,

can be written as a 

chance constrained problem. The aim of this problem would be to estimate the hourly 

values of 
estimatedtWTP

,
and 

estimatedtPVP
,

in such way that their sum would have a value 

with a desired confidence level  . The estimation problem can be described as a 

chance constrained problem, as: 

 

 )Pr(
,, estimatedtestimatedttt PVWTPVWT PPPP      (7.5) 

 

Following the method proposed in Chapter 6, the hourly values of 
estimatedtWTP

,
and 

estimatedtPVP
,

are extracted and then used to calculate the estimatedDPSP . As shown in the 
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case study , this method requires considerably shorter process time as compared with 

the conventional Monte Carlo simulation. 

 

7.4 Monte Carlo Simulation 

Monte Carlo simulation is conventionally used to estimate the expected value of the 

parameters with uncertainties. The performance of the Monte Carlo simulation is 

dependent on the accurate modelling of uncertainties in the wind speed and solar 

irradiance. Different approaches are used to model the renewable sources. One of the 

common approaches is by fitting the uncertainties to known distributions such as 

Weibull or Beta distributions [77]. However, research show that for some locations 

(e.g. in the UK), using predefined distributions may not simulate the weather data 

properly[105]. Erken [106] used different distributions to find the best fitted 

distribution for each hourly meteorological data. Another method in considering 

uncertainties is adding a random disturbance to the average values of wind speed and 

solar irradiance [107]. Lujano-Rojas [76] and Ji [108] used a time series analysis to 

model wind speed and solar irradiance variations. To obtain accurate modelling of  

wind speed and solar irradiance variations, two methods are used to correlate  

historical data to known distributions and  time series analysis using autoregressive 

moving average models (ARMA). Based on the location of the desired site, the 

performance of different modelling methods should be investigated and the most 

suitable model selected as the random data generator to model the uncertainties in 

Monte Carlo simulation. Using these random data generators, the Monte Carlo 

simulation is repeated enough for each configuration until the expected values of the 

objective function; here  DPSPE , is calculated with the confidence level of %90 and 

variation value of less than %3. The confidence level in Monte Carlo simulation is 

estimated using 
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Table 7-1 Monte Carlo simulation parameters 

Confidence 

Level (%)
99.75 99 98 96 95.5 95 90 80 68

Confidence 

Coefficient 

(Zc)

3 2.58 2.33 2.05 2 1.96 1.645 1.28 1

 

 

N
ZUL c


 ),(         (7.6) 

Where the L and U are the lower and upper values of the estimation,  and  are the 

mean value and standard deviation of the simulation results, cZ is the confidence 

coefficient and N the number of the repeatation of the Monte Carlo simulation. The 

relevant values of cZ to different confidence levels are presented in Table 7-1. 

 

7.5 Case study 

The proposed method is used to design a standalone HRES for a household in Kent, 

UK. The input data for the design are historical hourly data (2000-2008) of wind 

speed and solar irradiance for 12 months of the year together with typical summer 

and winter load profiles shown in Figure 1-2. The load profile is a typical load profile 

in the UK which is adopted from [84]. 

 

Details of technical and economical characteristics of the system components are 

given in Table 1-1. 

 

The system under study consists of a wind turbine, a PV panel and a battery bank. 

The wind turbine rotor area is varied in the range from 0 to 154 m
2
 (in 10 steps), PV 

panels area is from 0 to 260 m
2
 and minimum number of batteries required to meet 

the probabilistic constraint is determined for each case. The number of batteries is 

assumed to vary from 0 to 478. The maximum permitted number of batteries in this 

study is calculated, using Equation 3.6, considering required storage for one day of 

autonomy with highest daily load demand; here typical winter load demand is used. 
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The NSGA-II algorithm is performed for 250 iterations with a population number of 

100, the mating pool size is considered as 0.5 of the population, crossover probability 

pc = 0.9 and mutation probability of n1 ; where n is the number of variables; here 3. 

To select the best model for wind speed and solar irradiance in Monte Carlo 

simulation, the results of ARMA simulation are compared with those obtained from 

fitting the historical data of wind speed to Weibull distribution and solar irradiance to 

Beta distribution. Based on the results presented in Chapter 6 Weibull distribution 

showed better performance in modelling wind speed variation and ARMA simulation 

is used to model solar irradiance in the desired site. 

 

7.6 Results and discussion 

The system under study was designed based on the methodologies explained in 

section 7.2 and results are presented in this section. 

 

Figure 7-1-a  and  Figure 7-2-a present a comparison between the initial populations 

and the final Pareto sets of performing NSGA-II in combination with CCP  and 

Monte Carlo simulation. It can be observed that the NSGA-II with CCP produces 

more conservative results as compared to the other method, as it results in solutions 

with higher total cost. However, it obtains better results in high reliabilities close to 

100%; with lower total cost of the system.Figure 7-1-b and Figure 7-2-b show how 

the output of each technique converges to its final Pareto set. As can be seen, in both 

cases (using the CCP and Monte Carlo simulation), the outputs of the NSGA-II 

converges to the final Pareto set at generation 150. 

 

The final Pareto sets of performing optimisation process using proposed NSGA-II 

algorithm on the site under study; in combination with CCP as well as  Monte Carlo 

simulation are compared in Figure 7-3. The Pareto sets obtained in both cases of 

employing NSGA-II are well defined and solutions are spread over the reliability 

axis. It should be noted that a solution with zero total cost is not feasible. Although 
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using CCP instead of Monte Carlo simulation results in more conservative set of 

solutions (as shown in Figure 7-3); the execution time is significantly lower. The 

calculation time for evaluating the objective function of each chromosome is 11.44 

seconds using CCP which is significantly lower than performing the Monte Carlo 

simulation, which takes 56.81 seconds for each design candidate. 

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7
x 10

5

(100-Reliability) or DPSP (%)

C
o

st
 (

$
)

 

 

Initial population

Pareto-set NSGA-II and CC

 

(a)                                                                                            

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7
x 10

5

(100-Reliability) or DPSP (%)

C
o

st
 (

$
)

 

 

Initial population

Pareto-set at Gen. No. 50

Pareto-set at Gen. No. 150

Pareto-set at Gen. No. 200

Pareto-set at Gen. No. 250

 

(b) 

 Figure 7-1.NSGA-II with chance constrained programming  
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Figure 7-2 NSGA-II with Monte Carlo simulation 
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Figure 7-3 Comparison of Pareto sets obtained with different optimisation methods 

 

 

The Figure 7-3 also shows that maximum deviation between two Pareto sets happens 

when the DPSP is from 15% to 35%. 

 

To help the decision maker to choose the solution which fits the requirements, the 

output solution of two design methods for reliability of 80% or DPSP of 20% is 

studied in detail. Design parameters of CCP and the optimum solutions of two design 

methods are presented in Table 7-2. To evaluate the performance of each of the 

selected solutions; Monte-Carlo Monte Carlo simulation is performed for the 

simulation number of 2500 runs. A selection of results is presented in Figure 7-4 and 

Figure 7-5.  Figure 7-4-a and Figure 7-5-a present probability distribution of hourly 

blackout occurrence in a year. By comparing these two graphs one can see that there 

are more hours in the year with very little chance of having power shortages in 

solution -1 than in solution-2. It is also observed that the maximum hourly blackout 

occurrence probability is less in solution-1 than solution-2; 0.6 for solution-1 and 

around 0.8 for solution-2. 
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Table 7-2 Optimum solutions of two design methods for reliability=0.8 

WT Rotor Area (m2) PV Panel Area (m2) Number of Batteries WT Rotor Area (m2) PV Panel Area (m2) Number of Batteries

0.9 92 26 49 77 0 96

NSGA-II and MonteCarlo simulation (Solution-2)NSGA-II and chance constrained programming (Solution-1)

α

 

 

Figure 7-4-b and Figure 7-5-b present the average daily probability of blackout 

occurrence throughout the year. Comparing these to figures shows that in solution-1 

the last three months of the year have the highest probability of blackout occurrence 

which is due higher load demand in winter (see Figure 1-2) as well as less renewable 

resources available in these months. However, in solution-2 the second half of the 

year has higher probability of power loss. 

 

The day that has the largest probability of blackout occurrence in Figure 7-4-b and 

Figure 7-5-b is selected and details of having blackout at each hour of that day is 

presented in Figure 7-4-c and Figure 7-5-c. 

 

Figure 7-4-d and Figure 7-5-d show the results of performing Monte Carlo simulation 

for 2500 times on the hour with most probability of blackout and presents the 

frequency and load satisfaction percentage for that hour. 
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Figure 7-4 Monte-Carlo simulation results on optimum solution of NSGA-II with 

chance constrained programming for reliability=0.8 
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          (d) 

Figure 7-5 Monte-Carlo simulation results on optimum solution of NSGA-II with 

Monte Carlo simulation for reliability=0.8 

 

7.7 Summary 

This chapter proposes a multi-objective optimisation algorithm for optimum 

economic and reliability oriented design of hybrid renewable energy system. The 

algorithm takes into account the uncertainties in renewable resources. The decision 
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variables are the wind turbine rotor swept area, the PV panel area and the number of 

batteries. Two conflicting objectives which are total cost and system reliability are 

considered. A novel method in using chance constrained programming is proposed in 

this study to estimate the expected value of the objective function; the reliability of 

design candidate;   affected by  uncertain values of wind speed and solar irradiance at 

each jour under study. This reduces the evaluation time of the design candidate and 

consequently the run time of the NSGA-II program. 

The results obtained by using the proposed methods are compared with those 

obtained using a conventional Monte Carlo simulation. The comparison shows that 

the proposed method yields conservative results in lower reliability values and better 

results in high reliability values. 
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8 Summary and 

Conclusion 
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This dissertation work comprised a study on optimum design of hybrid renewable 

energy systems including wind turbine, PV panels and battery bank. This dissertation 

work involved investigating different design methods; deterministic and stochastic 

optimization techniques; components modeling and formulating the uncertainties.     

 

This chapter summarizes main contributions of the work as well as point directions 

for further research in this area. 

 

8.1 Original contribution 

The thesis contributes to the following domains: 

 

 Design of grid-connected HRES considering a back-up storage 

 Investigation on the reliability of deterministic design approach 

 Modelling the variation of power coefficient of the wind turbine. 

 Modelling the uncertainties of renewable resources 

 Optimal design of HRES under uncertainties. 

 Multi objective optimal design of HRES under uncertainties 

 

The obtained results are discussed in more detail throughout the following 

subsections. 

 

8.1.1 Design of grid-connected HRES considering a back-up storage 

Conventional grid-connected HRES rely on grid to obtain the required amount of 

electricity they require to satisfy the load demand in case of deficit in produced 

power. However new concepts in buying electricity from grid at different prices at 

different hours requires development of new design methods in grid-connected HRES 

This study proposed an investigation on the possibility of adding a small storage 

system to cover the electricity shortage during peak hours.  Through a sample case 

study it is shown that depending on the grid electricity price it might be economically 
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more profitable to consider adding a small storage to HRES to maintain the shortage 

at the peak hours. 

 

8.1.2 Investigation on the reliability of deterministic design approach 

It is shown that by considering the overall values of traditional reliability criterions 

during the design some valuable and essential reliability information might be 

ignored and the outcome of the design may not be able to perform satisfactory. It is 

shown that in order to prevent the design failures, additional detail performance 

evaluations are required to be considered on top of the usual reliability measurements 

during the design of the system. 

 

8.1.3 Modelling the variation of power coefficient of the wind turbine 

Since in this work the focus is on optimal sizing of HRES based on the penetration of 

the renewable resources and specific type of components are not necessarily chosen, 

to obtain a mathematical model independent of the type of the wind turbine the power 

curve of the different wind turbines are used to calculate the corresponding Cp value 

to different wind speeds and through an least square optimisation a best fitted 

mathematical model is found to model the wind turbine power coefficient variations 

at different wind speed values. This model is particularly created for use in case 

studies reported in this thesis and the input data for the modelling is extracted from 

wind turbines in response to the demand of the load used in the case study. 

 

8.1.4 Modelling the uncertainties of renewable resources 

The Hybrid Renewable Energy System (HRES) can be a reliable solution to bring 

electricity to isolated areas where there is no access to the grid by considering 

uncertainties in resources at the design stage. Appropriate modelling of wind speed 

and solar irradiance variations, at the design stage, would give a more realistic picture 

of the designed system performance and would result in more reliable HRES. The 

precision in modelling uncertainties would reduce the economic effect of over design 

of the system which might have been caused because of over estimation of the 
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uncertainties. Monte Carlo simulation is proven to perform well in design under 

uncertainties however its performance is completely dependent n its random data 

generator. To obtain the most accurate model in wind speed and solar irradiance 

variations of the desired location, two different methods are used for fitting the 

historical data to known distributions and time series analysis using autoregressive 

moving average models (ARMA) The results obtained by using ARMA simulation 

are compared with the results obtained from fitting the historical data of wind speed 

to Weibull distribution and solar irradiance to Beta distribution. Comparing the 

statistical characteristics of the generated data by mentioned methods it is shown that 

the random data generator to model the uncertainties in Monte Carlo simulation 

should be selected based on the location of the desired site. 

 

8.1.5 Optimal design of HRES under uncertainties using CCP 

Chance-constrained problems are performing well in solving optimisation problems 

involving uncertainties. However they are conventionally solved based on an initial 

assumption that is the uncertainties to follow Gaussian distribution. Though the 

performed analysis in this work it is shown that this assumption may result in a 

conservative solution rather than an optimum. This thesis proposes a analytical 

method in solving chance constrained programming with unknown joint distribution 

of the random variables. It also shows that by using the common approach the design 

space would be smaller than the design space obtained by the proposed method and 

therefore the outcome of the common method is more conservative. Though by using 

proposed method can obtain a less conservative yet equally reliable HRES. 

 

8.1.6 Multi objective optimal design of HRES under uncertainties 

Many of the reported researched on optimal design of HRES in the literature are 

either single objective or they are ignoring the resource uncertainties. In this work 

two contradicting objectives; cost and reliability are selected and NSGA-II is used as 

the base for performing the multi objective optimisation. The work also proposes a 

novel method in employing chance constrained programming in multi-objective 
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problems as a substitute of Monte Carlo simulation in estimating the expected value 

of the objective function which is affected by the uncertainties, in other words instead 

of finding the optimum solution for a predefined value of reliability, chance 

constrained programing is used to estimate the expected value of the reliability of the 

design candidates in a multi-objective optimisation problem. 

 

8.2 Critical appraisal and future works 

The techniques and results, presented throughout this thesis, can be possibly 

improved as the objectives of the following future research directions. 

 

The economic and demand parameters are considered as deterministic values. 

Considering the uncertainties in the economic aspect such as inflation and interest 

rates can be done in future works. The unpredictable nature of the demand especially 

for small sites can also be taken into account in future improvements. 

 

Adding other renewable sources such as ground source can be considered in further 

researches.  
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