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ABSTRACT 

An energy saving Leidenfrost levitation method is introduced to transport micro-droplets with 

virtually frictionless contact between the liquid and solid substrate. By micro-engineering the 

heating units, selective areas of the whole substrate can be electro-thermally activated. A droplet 

can be levitated as a result of the Leidenfrost effect, and further transported when the substrate is 

tilted slightly. The selective electro-heating produces a uniform temperature distribution on the 

heating units within 1 s, in response to a triggering voltage. Alongside these experimental 

observations, finite element simulations are conducted to understand the to understand the role of 

the substrate thermal conductivity on the temperature profile of the selectively heated substrate,. 

We also generate phase diagrams to verify the Leidenfrost regime for different substrate 

materials. Finally, we demonstrate the possibility of controlling low friction high speed droplet 

transportation (~ 65 mm/s) when the substrate is tilted (~ 7 °) by structurally designing the 

substrate. This work establishes the basis for an entirely new approach to droplet microfluidics. 

INTRODUCTION 

Transporting droplets in a controllable and energy efficient manner could have a significant 

impact on several engineering applications, such as low drag liquid transportation
1,2

, water 

collection
3,4

, and advanced microfluidic devices
5
. Based on a theoretical understanding of the 

wetting of surfaces, common approaches usually focus on creating a surface with designed 

physical/chemical features, e.g. hierarchical micro/nanostructured surfaces
6,7

, chemical 

gradients
8,9

, or slippery surfaces created by infusing low surface tension lubricant into 

microstructures that yield directional motion of water droplets when tilted at a low angle
10-12

. 

Notably, some interesting attempts have demonstrated liquid transportation efficiency using such 
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techniques: for example, Chaudhury and Whitesides achieved an average velocity of 1−2 mm/s 

for droplet transportation on a silicon wafer possessing a gradient in wettability
13

, Ghosh et al. 

employed extreme wettability patterns to achieve a flow rate of up to 300 mm/s
14

, and Lv et al. 

achieved a maximum speed of 420 mm/s for droplet transportation in a microfluidic system
15

. 

Approaches taken to date have been based on the liquid-solid contact, where the droplet motion 

will more or less be affected by the friction or dragging effect induced by local surface 

roughness, dimensional confinement, as well as the non-uniformity of the surface wettability.    

The Leidenfrost phenomenon (Figure 1a), first discovered in 1756
16

, describes a meta-stable 

state of a droplet on a substrate heated significantly above the boiling point of the liquid. In this 

state, the droplet is levitated by an instantaneously generated vapor layer (~ 100-200 µm) caused 

by the initial contact of the droplet with the substrate
17-21

. The levitation yields a virtually 

frictionless contact between the droplet and substrate
21-23

, therefore playing a key role in drag 

reduction for the liquid flow
24,25

. Moreover, the vapor layer acts as a thermal insulator preventing 

rapid droplet evaporation despite the high temperature of the substrate. Recent developments 

show some attempts to control the droplet motion based on the Leidenfrost effect levitation by 

employing ratcheted and other patterned substrates
21,26-29

, magnetic fields
30

, electric fields
31

 and 

acoustic radiation pressure
32

. However, the actuation of the Leidenfrost effect for a droplet has 

thus far involved heating the entire substrate, which limits downstream applications due to the 

extreme substrate temperature condition. Despite recent work to reduce the transition 

temperature
24,28

, the high energy consumption remains due to heating the substrate globally, 

rather than the localized area which supports the droplet.  

In this study, we trigger Leidenfrost levitation of a droplet by the application of a voltage to 

micron-scaled serpentine shaped heating arrays, which cover the substrate in a selective manner. 

Page 3 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

4 

In addition to initializing the levitation of droplets of three different liquids via selective heating 

of substrate areas, we also show that the droplet transportation can be actuated and controlled by 

designing heating array patterns, along with tilting of the substrate (5−10 °). The proposed 

strategy of selective heating could significantly reduce the energy input needed to actuate the 

Leidenfrost effect, and also offer a control mechanism for droplet motion by locally controlling 

the designed heating array. By combining our approach with surface relief patterns, precise 

directional control and self-propulsion can be achieved without the need to tilt a surface
33

. It also 

enables the possible integration of levitation of droplets into micro-systems as a new type of on-

chip platform.   

EXPERIMENTAL  

Micro-fabrication: Thin film resistors were fabricated on different substrates, i.e. borosilicate 

glass and silicon (with oxidation layer) wafers. After cleaning the substrate, a thin film metal 

layer (Cr/Au = ~10 nm/~100 nm in thicknesses) was coated on the substrate via electron beam 

evaporation. The resistor patterns were photolithographically transferred into the metal layer by 

spinning Megaposit SPR-350 photoresist, which was exposed to UV light in an EVG mask 

aligner and then developed in Microposit MF-319 developer for 90 s. The excess metal out of the 

photoresist’s protection was removed using selective gold (4:1:8 KI:I2:H2O) and chromium 

(7:34:1 Ce(NH4)2(NO3)6:HNO3:H2O) wet etches, leaving the required resistor patterns with 

varying distance between consecutive lines.  

Leidenfrost Levitation Activation and Measurements: Each wafer was selectively covered by 

4 two dimensional arrays of devices, and electrical contact pads for each array were designed to 

enable independent control of the heating arrays. A customized rig was assembled with a 
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stainless steel stage on an x y z θ manipulator, to assist the characterization. In order to maintain 

a uniform temperature within the stage, an mbed-controlled Peltier cooler with cooling pipes and 

fan was mounted on the underside of the stage to stabilize the ambient condition. Spring loaded 

electrical contacts were then used to pass a current through each array in turn.   To verify the 

effectiveness of the Leidenfrost Levitation, we tested three different liquids, isopropanol (surface 

tension  20 mN/m), acetone (surface tension  28 mN/m), and deionized water (surface tension 

 72 mN/m). All liquids produced similar results, once heated beyond their respective 

Leidenfrost transition temperatures. In this paper, we present the summarized results for IPA as a 

typical case for the lowest surface tension liquid, which is the most difficult liquid when 

attempting to use materials techniques to create a super-liquid-repellent state. A 1000x USB 

optical microscope was used to observe the arrays, and a FLIR A40 thermal camera was used to 

observe the temperature profile of the substrate.  Different powers were applied to each heated 

array in turn, and the array was left for 1 minute for the temperature to equalize.  

Simulation: A ‘unit cell’ device was also modelled in COMSOL Multiphysics software, which 

also included the substrate, stage and effects of the Peltier cooling as a boundary condition.  The 

COMSOL model involves parameterized substrate gaps between consecutive unit cells, and so 

all heating ratios can be simulated automatically.  The substrate either side of the unit cell is 

related to the heated ratio, with the end of the substrate being the halfway point between two unit 

cells, which would be the coldest point in the array and therefore the region most likely to cause 

a collapse in the Leidenfrost vapor layer. All of the solid vertical boundaries in this model have a 

symmetry condition, whereas the air has an outflow condition.  Finally, the bottom of the 

stainless steel domain has a fixed temperature boundary condition (21 °C), to simulate the Peltier 

cooler placed underneath the stainless steel stage. 
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RESULTS AND DISCUSSION 

In our experiments, the concept of selective electro-thermally actuating Leidenfrost levitation is 

achieved by engineering millimeter-scale heating units on the substrate. The heating units 

covering the substrate are intended to create a uniform distribution of the thermal energy to 

trigger the Leidenfrost effect (Figure 1b), but in a selective manner only where this is needed to 

levitate a droplet. Different substrates (borosilicate glass and silicon) were used to determine the 

effect of the substrate thermal conductivity on the power needed for the Leidenfrost effect to 

occur. Since the thermal conductivities for borosilicate and silicon are 1.14 W/mK and 

1480 W/mK respectively, these choices provide over three orders of magnitude difference with 

this parameter
32

. The silicon substrates were electrically insulated via a 100 nm thick silicon 

dioxide layer, grown by furnace oxidation, between the substrate and the heating array layer. In 

preliminary experiments we confirmed that the Leidenfrost effect could be achieved with 

droplets of isopropanol (IPA), acetone, and deionized water. Once the Leidenfrost effect was 

triggered, virtually frictionless liquid transportation was expected on a pre-tilted substrate.  

We first consider a substrate patterned with relatively large heating units arranged in 2.5 mm 

width bands. After tilting the substrate by ~ 7 °, the levitated isopropanol (IPA) droplet (~ 40 µL) 

is transported across a distance of 17.5 mm on the substrate in 0.27 seconds, i.e. ~ 65 mm/s, 

indicating very low friction (Figure 1c). The Leidenfrost effect usually represents a meta-stable 

state of droplet when it comes into contact with a surface that is significantly hotter than the 

liquid's boiling point. Typically, a vapor layer will be initialized to support, and so yield a longer 

lifetime, of the droplet, and enable a virtually frictionless contact between the drop and the 

substrate. The droplet transportation supported by an electro-thermally actuated Leidenfrost 

effect is demonstrated for the first time in this report. 
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The actuation of Leidenfrost effect was further investigated by designing and patterning micron-

scaled heating arrays onto substrates. To quantitatively evaluate the electro-heating actuation of 

the Leidenfrost effect, we designed the serpentine-shaped repeating ‘unit cell’ (Figure 2a) to 

further reduce the surface coverage to 62.5% of the overall area of the heated region. A defined 

geometrical parameter, the heating ratio, which is a 1 dimensional ratio between heated and 

unheated regions, where p = 40 µm and represents the width of the heated region, and the ratio is 

p:(p + d), where d is the distance between consecutive unit cells, seen in the inset of Figure 2b. 

The total area heated for a given ratio can be calculated by multiplying the heated ratio by the 

serpentine unit cell coverage. For example, for a 0.2 heated ratio, the total heated percentage 

would be 20% multiplied by 62.5%, which is 12.5% of the area being heated. A typical plot of 

evaporation time versus input power on a heated 2D array of unit cells, shown in Figure 2b, is 

similar to previous results using more conventional methods (e.g. hotplate heated devices) 

(Figure S-1). In Figure 2b, the Leidenfrost transition (dotted line) is monitored by recording the 

evaporation time of a droplet, teva, as a function of the power input for a 0.5 heated ratio array. 

The dotted line of 21.8 W is the typical power value needed to boil the IPA droplet (for these 

experiments, a 20 µL volume was used) for this heated ratio, whereby the IPA touches the hot 

surface and evaporates due to the high temperature of the surface below it. Above this power, the 

transition regime denotes a region where the substrate is hot enough to begin creating a localized 

vapor underneath the droplet, but the temperature is not yet high enough to do this in a stable 

way, and the vapor layer is not thick enough to maintain a levitating droplet. In the stable 

Leidenfrost regime (right of the dotted line), the vapor can maintain a stable levitated state for 

the droplet. The determination of transition regime under selectively heated electrical actuation 

reveals a strong similarity to that from global heating of the substrate. 
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In contrast to heating a substrate globally, selective heating to create discontinuously heated 

fields across the in-plane area of the substrate should reduce the energy input. To understand 

how the thermal energy distributes across the substrate, we performed surface thermal analysis 

using COMSOL Multiphysics. The qualitative analysis (Figure 3a) first considers a serpentine 

‘unit cell’ resistor (0.2 heated ratio) on a borosilicate glass substrate with a voltage applied to 

show the temperature profile of the single unit cell above the Leidenfrost transition temperature. 

The heat created as a result is then dissipated through the substrate, the stage underneath and also 

the air above the resistor. As can be seen in Figure 3a, the temperature difference across a 

distance of 100 μm, from the center of the heat to half way between two unit cells (or a heated 

ratio of 0.2) is as high as 20 °C for the borosilicate glass substrate.  

As a result of this temperature difference, it would be expected that the resistors with a lower 

heated ratio (or a larger gap between them) would have to be heated to a higher temperature than 

required, in order to get the coolest part of the array to still be hot enough for the Leidenfrost 

effect to occur. To prove this, we further simulate the unit cells, with three adjacent serpentine 

units shown here on the same substrate (Figure 3b) with a voltage applied on each unit cell 

(heated ratio = 0.5), and demonstrate a more uniform distribution of the temperature (the 

difference of temperature is less than 5 °C). In this case, the voltage required is lower than for the 

unit cell shown in Figure 3a. We note that the current flow through the serpentine-shaped unit 

cell is non-uniform as a result of the structure’s geometry, as can be seen in Figure S-2, and the 

subsequent thermal stress localization could potentially lead to mechanical failure. However, no 

failures occurred in our experiment and this may have been because the localized strain energy 

was likely absorbed by the in-plane structural expansion and the chromium adhesion layer. 
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Using the selectively heated substrate with repeated unit cell (heated ratio = 0.5), we next plot 

the phase diagrams to describe the meta-stable state of the heated IPA droplet on a glass 

substrate (Figure 3c) and a silicon substrate (Figure 3d). Experimental data are compared with 

the COMSOL simulation results. The Leidenfrost state is shown in the diagram and the 

anticipated trend of reducing power being needed to initiate the Leidenfrost effect when 

increasing the heating ratio is observed. There is good agreement between the experimental and 

simulated results, where the model assumes a Leidenfrost temperature of 220 °C, which is a 

reasonable value for IPA which has a boiling point of 82.4 °C
34

.  

As the selectivity of the Leidenfrost effect is via voltage actuated heating units on the substrate, 

the thermal conductivity of the latter will have a direct influence on the results. Two substrate 

materials with a large difference on thermal conductivity were employed to verify this impact, 

i.e. borosilicate glass (1.14 W/mK) and silicon (1480 W/mK) at 300 K
32

. As can be seen in 

Figure 3d, the results for a silicon substrate still follow the decreasing trend with increasing 

heated ratio. However, a greater power per line is required than for the borosilicate substrates to 

achieve the Leidenfrost effect, because the heat is dissipated through the substrate more readily, 

rather than remaining in the vicinity of the serpentine-shaped unit cells to form the uniform in-

plane temperature profile. Therefore, borosilicate is a more preferable substrate material for this 

experiment, as it could create a uniform temperature profile more effectively on the surface of 

the substrate, owing to its low thermal conductivity.  

Finally, we demonstrate the possibility of controlling droplet transportation by taking advantage 

of using a selectively heated substrate (Figure S-3). A substrate with four separate blocks of 0.5 

ratio heating arrays, each of which could be individually switched in sequence was created, as 

seen in Figure 4a and 4b. The first, second and fourth arrays were switched on for 0.1 s in turn, 
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with a 0.1 s time gap between each one being switched on. Therefore, the substrate was 

selectively heated in the micro-scale (due to the heated ratio), the macro scale (the four arrays 

being heated individually) and in time (the arrays being sequenced individually). Each array was 

activated for an eighth of a cycle. The third array was left disconnected. A schematic of the 

controlled droplet transportation shows the droplet to the target zone (un-activated region) 

possessing the disconnected heating array in a short time. Experimental images (Figure 4c and 

4d) indicate rapid droplet movements from both directions to region #3, at a comparable speed to 

that witnessed in Figure 1c, thus implying rapid, virtually frictionless transport. This concept also 

enables a new strategy of targeted delivery of a droplet by configuring the substrate to form, on 

demand, localized frictionless levitation layers, which could be of considerable interest to 

scientists and researchers in micro-fluidic systems, chemical engineering, biological engineering 

and other related areas.   

CONCLUSION 

In conclusion, we have demonstrated the electro-heating actuation of the Leidenfrost effect for 

three different liquids by applying voltages to heating units which selectively cover a substrate. 

This approach provides rapidly switchable and highly targeted transportation of droplet, 

according to the design of the geometry and layout of the heating array on the substrate. By 

selectively heating a sample to produce the Leidenfrost effect in a small area where needed, 

rather than using a hot plate to heat the entire surface, the same effect can be achieved but with a 

much lower energy requirement. It also provides the potential for easy integration to be part of 

an on-chip device with an electrical triggering mechanism. Moreover, further energy efficiency 

could be achieved by using a feedback control system to drive and control the direction of 

Page 10 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

11 

motion of droplets with actuation only of those heating units in the instantaneous locality of the 

levitated droplet. 
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SUPPORTING INFORMATION 

 Figure S-1. The Leidenfrost transition graph for a sample on a hotplate 

 Figure S-2. COMSOL image of flow of current through serpentine resistor on a 

borosilicate substrate. 

 Movie S-3.  Video showing targeted transportation of a droplet upon selective heated 

substrate.  We show the instant droplet transportations from both directions to expected 

destination when we applied a voltage of 60 V to the settings in Figure 4a and 4b. The 

droplet travels within 1 second and stopped at the non-activated area (#3).  
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FIGURES 

 

Figure 1. Initializing the Leidenfrost effect by creating localized Joule heating areas with 

selective coverage of heating units on a substrate. (a) A side view image of a traditional 

Leidenfrost levitated water droplet on a heated silicon wafer surface (~ 300 °C); the scale bar is 

500 µm. (b) Schematic illustration of Leidenfrost levitation on a substrate selectively covered by 

metal heating units. (c) The concept is examined through virtually frictionless transportation of 

an IPA droplet (~ 40 µL), supported by the levitation vapor layer. The substrate is selectively 

covered by heating units in bands of width 2.5 mm (indicated by white the arrow) indicating 

droplet transportation speeds of ~ 65 mm s
-1

; the substrate is tilted by 7 
o
 and the scale bar is 

2 mm.  
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Figure 2. Micro-pattern of gold heating units and detection of the critical Leidenfrost transition. 

(a) SEM image of micro-patterned chromium/gold heating array using serpentine patterns 

defined by an electrode width w = 10 µm, gap distance d, and electrode structure width p = 

40 µm. (b) The Leidenfrost transition (dotted line) is monitored by recording the evaporation 

time of a droplet, teva, as a function of the power input. The inset shows the unit cell design 

within a serpentine electrode for selective heating of the substrate (the heated area is the lighter 

area), where the overall unit area is shown by the dashed box in (a).  
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Figure 3. Selective Leidenfrost mechanism and phase diagrams. (a) Temperature profile of 

surface for the electro-heating of single unit cell with a 0.2 heated ratio. The COMSOL 

simulation in (b) reveals a uniform distribution of the temperature (in degrees Celsius) across the 

unit cells within three adjacent serpentine units (a heated ratio of 0.5). The simulation is based on 

363 serpentine unit cells in series, which are referred to as a line, and a number of these lines are 

connected in parallel to form a complete heating array. The applied voltage is then varied to 

provide an equivalent power per cell required for the Leidenfrost effect to occur. The selective 

Leidenfrost effect using this pattern is described by phase diagrams on (c) a glass substrate and 

(d) a silicon substrate. The dotted lines represent the simulation results and the symbols represent 

the experimental results, respectively. 
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Figure 4. Demonstration of droplet transportation using programmable activation of localized 

heating units. (a-b) Schematic illustrations of experimental arrangements with example designs 

which selectively cover a substrate with four micro-patterned heating arrays (numbered #1 to #4 

from right to left); each complete unit consists of serpentine-patterned unit cells as illustrated by 

Figure 2a. The third unit is non-activated to give an ‘off’ state while the others are activated into 

an ‘on state’. The whole wafer is tilted at a small angle of 10 
o
 in (a) and -10 

o
 in (b), as shown in 

the inset side view schematic. The droplet travels downslope across regions #1 and #2 with 

almost no friction due to the Leidenfrost effect, but then stops when it reaches the non-activated 

region #3; droplet transport is also stopped on the non-activated region when the substrate tilt is 

reversed (b).  (c) Momentary snap shot of the droplet transportation shows the droplet advances 

from region #1 to region #3 with the setting in (a), and finally stopped at the non-activated region 

#3 (d). (e-f) Experimental images for droplet transport records the rapid virtually frictionless 

droplet transport from region #4 to region #3 with the setting (b). 
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