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ABSTRACT 

PURPOSE: Bone resorption is increased following running, with no change in bone formation.  

Feeding during exercise might attenuate this increase, preventing associated problems for bone. This 

study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) 

feeding during treadmill running. METHODS: Ten men completed two 7 d trials, once being fed 

CHO (8% glucose immediately before, every 20 min during and immediately after exercise at a rate 

of 0.7 gCHO·kg-1BM·h-1) and once placebo (PBO).  On day 4 of each trial, participants completed a 

120 min treadmill run at 70% VO2max.  Blood was taken at baseline (BASE) immediately after 

exercise (EE), after 60 (R1) and 120 (R2) min of recovery and on 3 follow-up days (FU1-FU3). 

Markers of bone resorption (-CTX) and formation (P1NP) were measured, along with OC, PTH, 

ACa, PO4, GLP-2, IL-6, insulin, cortisol, leptin and OPG. Area under the curve was calculated in 

terms of the immediate (BASE, EE, R1 and R2) and short-term (BASE, FU1, FU2 and FU3) 

responses to exercise. RESULTS: β-CTX, P1NP and IL-6 responses to exercise were significantly 

lower in the immediate post-exercise period with CHO feeding when compared with PBO (-CTX: 

P=0.028; P1NP: P=0.021; IL-6: P=0.036), although there was no difference in the short-term response 

(-CTX: P=0.856; P1NP: P=0.721; IL-6: P=0.327). No other variable was significantly affected by 

CHO feeding during exercise. CONCLUSION: CHO feeding during exercise attenuated the -CTX 

and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO 

feeding on bone turnover.  
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INTRODUCTION 

Feeding influences the circadian rhythm of bone metabolism at rest (17). Markers of bone resorption 

decrease following mixed meal feeding (3) and ingestion of individual macronutrients at rest (1,7). 

Reductions in bone resorption occur following oral but not parenteral administration of glucose, 

suggesting that enteric hormones might play a part in mediating the effects of glucose on bone 

metabolism (1).  This is supported by studies showing that Octreotide administration, an inhibitor of 

enteric hormone secretion, abolishes the reduction in bone resorption following glucose ingestion (4). 

These findings suggest a potential means to modulate bone turnover by nutritional strategies or 

through manipulation of dietary composition (21). 

 

Exhaustive weight-bearing exercise increases bone resorption by 40-45% for up to four consecutive 

days without a concomitant increase in bone formation, potentially resulting in a short-term net loss of 

bone (19). Attenuating bone resorption is a potential countermeasure to the bone uncoupling shown to 

occur with exercise that might predispose athletes and military recruits to stress fractures and other 

associated injuries (22).  Feeding practices, before, during and after exercise, influence the interaction 

between exercise and bone turnover, making them potentially important for offsetting bone loss.  

Scott et al. (18) showed that feeding a mixed meal prior to exercise reduced β-CTX concentrations 

before a 60 min treadmill run, although the subsequent increase in β-CTX during exercise was similar 



in fed and fasted groups. This indicated a novel interaction between feeding, exercise and bone 

metabolism that requires further study, particularly in relation to feeding practices during and after 

exercise. 

 

Carbohydrate, fat and protein all decrease -CTX (3,4); CHO ingestion during exercise is an 

established nutritional practice for athletes, proven to enhance physical performance and exercise 

capacity by providing additional fuel to the muscle (11).  A recent study (5) suggests that CHO is a 

candidate nutrient for modulating bone resorption during an exercise programme (8 d intensive 

training), although factors that may have mediated these responses were not examined.  

 

The aim of this study was to investigate the responses of bone metabolism to CHO feeding during 

exercise in the hours (immediate) and days (short-term) following a single bout of strenuous treadmill 

running. We also measured markers associated with feeding, exercise and bone to explore possible 

mediating and mechanistic factors.  



 METHOD 

Participants 

Ten healthy, physically active men (mean ± SD, age 24 ± 3 years, height 1.75 ± 0.08 m, body mass 

72.9 ± 7.5 kg, body fat percentage 14.3 ± 2.4%, VO2max 53.0 ± 6.4 ml·kg-1·min-1) provided informed 

consent and completed medical history questionnaires. The institutional research ethics committee 

approved the study in accordance with the declaration of Helsinki. 

 

Participants were included if they were non-smokers, had not suffered a bone fracture or injury of any 

type in the previous 12 months, were free from musculoskeletal injury, were not taking any 

medication and were not suffering from any condition known to affect bone metabolism.  Eligibility 

of each participant was confirmed verbally and with a medical screening questionnaire.   

 

Experimental Design 

All participants completed two randomised, repeated measures, counterbalanced 7 d experimental 

trials, involving either placebo (PBO) or carbohydrate (CHO) ingestion during 120 min of treadmill 

running at 70% of maximal oxygen consumption (VO2max). Trials were separated by 14 d to allow 

participants to recover from blood sampling and dietary control and to allow bone marker 

concentrations to return to baseline values.  Participants were required to refrain from exercise, 

caffeine and alcohol consumption for 48 h prior to trials.  Participants recorded dietary intake during 



the first trial and repeated the same dietary pattern during the second trial to control for the influence 

of feeding on bone metabolism (21).  

 

Experimental Procedures 

Preliminary Measurements 

Height and body mass were recorded before body fat analysis was conducted by bioelectrical 

impedance (Bodystat 1500, Bodystat LTD, Isle of Man).  Preliminary testing also involved the 

assessment of the cardio-respiratory responses to running.  Participants first performed a sub-maximal 

test to establish the relationship between running speed and oxygen consumption during level 

running, which was completed at a 0% gradient from a gentle starting speed. The speed of the 

treadmill was increased by 1 km·h-1 at 3-min intervals for at least 15 min (5 stages).  Expired air (~1 

min, inspiration to inspiration) was collected into Douglas Bags during the last minute of each stage to 

determine oxygen consumption.  Oxygen consumption at each stage of the sub-maximal test was 

plotted against the running speed at that stage so that the relationship between running speed and 

oxygen consumption could be determined.   

 

The maximum oxygen uptake test was then performed following a 15 min recovery period, consisting 

of a continuous incremental uphill running test at constant speed until volitional exhaustion. Running 

speed for this test was determined from the results of the sub-maximal test.  The gradient of the 



treadmill was increased by 1% at the end of each minute from a starting gradient of 0%.  Once 

maximum oxygen uptake was determined, the oxygen consumption representing 70% VO2max was 

calculated.  Using the data from the sub-maximal running test, the running speed that elicited 70% of 

VO2max at a 0% gradient was determined.   

 

Trial Days 1 – 3 

Participants adhered to their normal diet and refrained from exercise or strenuous physical exertion.  

Participants recorded their dietary intake and were asked about lifestyle activity (e.g., feelings of 

fatigue, sleep patterns), with diet and sleep patterns being replicated between trials.   

 

Trial Day 4 

Participants attended the laboratory (0800 h) after an overnight fast (since 2000 h the previous 

evening) and remained fasted until the final blood sample was drawn.  On arrival, nude body mass 

was determined and participants then rested in a semi-recumbent position and were fitted with a heart 

rate monitor (Polar FS1, Polar Electro, Finland).  At 0830 h, a resting blood sample (BASE) was 

withdrawn from a prominent forearm vein.  Participants then completed 120 min of running on a 

treadmill (h/p/cosmos, Pulsar 4.0) at 70% VO2max. Further blood samples were withdrawn 

immediately after exercise (EE) (1100 h) and after 60 (R1) (1200 h) and 120 (R2) (1300 h) min of 



recovery.  Heart rate and ratings of perceived exertion (6-20 scale; Borg 1970) were recorded pre-

exercise and at 10 min intervals throughout exercise for participant monitoring purposes. 

 

During the CHO trial, participants ingested an 8% glucose solution immediately before, every 20 min 

during and immediately after exercise at a rate of 0.7 gCHO·kg-1BM·h-1.  The total amount of glucose 

ingested was 102.1±10.6 g in a total solution volume of 1276±132 mL.  These totals were divided 

equally over 7 mean ingestions of 14.6±1.5 g of glucose in 182±19 mL of solution. During PBO, 

participants ingested equal volumes of a taste-matched flavoured water drink containing no CHO. 

 

Upon completion of exercise, nude body mass was determined and participants consumed water equal 

to 150% of the body mass lost over the subsequent 120 min. Participants were instructed not to 

perform any other further exercise.  

 

Trial Days 5 – 7 

Participants attended the laboratory (0800 h) following an overnight fast (from 2000 h the previous 

evening) and rested for 30 min, following which a blood sample was withdrawn (0830 h) from a 

prominent forearm vein. During this time, participants continued to record their diet and maintained 

dietary control and refrained from all exercise.  

 



Storage and Analyses of Venous Blood 

15 mL of venous blood was dispensed into three 5 mL tubes lined with ethylenediaminetetraacetic 

acid (EDTA) and centrifuged immediately for 10 min at 2000xg at 4oC. Following centrifugation, 

plasma was dispensed into Eppendorf tubes and stored at -80oC for subsequent analyses of C-terminal 

telopeptide region of collagen type 1 (β-CTX), N-terminal propeptides of procollagen type 1 (P1NP), 

osteoprotogerin (OPG), osteocalcin (OC), parathyroid hormone (PTH), leptin, glucagon like peptide-2 

(GLP-2) and interleukin-6 (IL-6). Prior to storage, measurements of plasma glucose and lactate were 

performed (Yellow Springs Instruments, 2300 STAT Plus, YSI Ltd, UK).   

 

-CTX, P1NP, OC and PTH were measured using electrochemiluminescent immunoassays (ECLIA) 

on a Modular Analytics E170 analyser (Roche Diagnostics, Burgess Hill, UK).  Inter-assay coefficient 

of variation for -CTX (CV) was <3% between 0.2 and 1.5 ug·L-1, with sensitivity of 0.01 ug·L-1. 

P1NP inter-assay CV was <3% between 20-600 ug·L-1 and sensitivity of 8 ug·L-1. OC inter-assay CV 

was <5% between 2-200 ug·L-1 and sensitivity of 0.6 ug·L-1.  PTH inter-assay CV of <4% between 1-

30 pmol/L and sensitivity of 0.8 pmol/L.   OPG was measured using an enzyme linked 

immunosorbent assay (ELISA) supplied by Immuno Diagnostic Systems (IDS) (Boldon UK), with an 

inter-assay CV of <8% across the range 1-30 pmol·L-1 and sensitivity of 0.14 pmol·L-1 .  Leptin was 

measured using ELISA supplied by IDS, having an inter-assay CV of <8% across the range 3-50 

ug·L-1 and sensitivity of 1 ug·L-1.  GLP-2 was measured using ELISA (Yanaihara Institute Inc, 



Japan), with an inter-assay CV of 1.1-11.1% across the range 3.1-33.4 ng·mL-1 and detection limit of 

0.5 ng·mL-1. IL-6 was measured using ELISA (Quantikine HS, R&D Systems Ltd, UK), with an inter-

assay CV of <10% across the range 0.15-10 pg·mL-1 and detection limit of 0.039 pg·mL-1. 

 

The remaining 5 mL of venous blood was dispensed into a serum tube and allowed to clot at room 

temperature for 60 min before being centrifuged for 10 min at 2000xg at 4°C. Resultant serum was 

dispensed into Eppendorf tubes and stored at -80oC for the subsequent analysis of cortisol, insulin, 

calcium, albumin and phosphate (PO4).  

 

Cortisol was measured using an ECLIA on the Roche Modular E170, with an inter-assay CV of <6% 

between 16 and 1750 nmol·L-1 and sensitivity of 8 nmol·L-1.  Insulin was measured using ECLIA on a 

Cobas e601 (Roche Diagnostics,Burgess Hill, UK), having an inter-assay CV of  <6.1% across the 

range 44-505 pmol·L-1 and sensitivity of 1.8 pmol·L-1.  Calcium, albumin and phosphate were 

measured using standard commercial assays supplied by Roche Diagnostics  performed on the Roche 

Modular E170.  The range of measurement in serum is 0.05-5.00 mmol·L-1 for calcium, 10-70 g·L-1 

for albumin and 0.10-6.46 mmol·L-1 for phosphate. 

 

Statistical Analysis 



Data are presented as mean ±1SD and statistical significance was accepted at P ≤ 0.05.  Data were 

analysed using SPSS V20. Effects of exercise were assessed on the PBO trial data using a one-way 

ANOVA for normally distributed data, and a Friedman’s ANOVA for non-normally distributed data. 

Within exercise variables were analysed using a repeated measures ANOVA. The area under the 

curve (AUC) with respect to BASE was calculated for all biochemistry markers from the percentage 

change data (23) for the immediate (BASE, EE, R1 and R2) and short-term (BASE, FU1, FU2 and 

FU3) responses to exercise.  The two conditions were then compared using a paired samples t-test for 

normally distributed data, or a Wilcoxon’s test for non-normally distributed data.   



RESULTS 

BASE biochemistry 

Table 1 shows the mean±1SD concentrations for all variables. There were no differences between 

trials for any of the measures taken at BASE (P values from 0.143-0.990, data not shown). 

 

Exercise variables 

There were no significant differences between PBO and CHO for RPE (P=0.473) or HR (P=0.869), 

but, as expected, both increased over the duration of the exercise bout (P<0.001). There was also no 

interaction between condition and time for either RPE (P=0.847) or HR (P=0.170).  Blood glucose 

concentrations (Figure 1) remained relatively unchanged during PBO (BASE: 4.74±0.32 mmol·L-1; 

EE: 4.82±0.84 mmol·L-1; R1: 4.38±0.36 mmol·L-1; R2: 4.35±0.35 mmol·L-1), but were significantly 

elevated with CHO feeding (P=0.002) at EE (6.32±0.62 mmol·L-1) compared with BASE (4.87±0.16 

mmol·L-1). Blood glucose concentrations were significantly (P<0.001) higher in the CHO than in the 

PBO trial at EE. Blood lactate concentrations (Figure 1) increased significantly from BASE to EE 

(P=0.002) before returning back towards BASE during recovery.  

 

Markers of bone metabolism 

-CTX increased by between 6 and 14% from BASE to the follow-up days in PBO (BASE: 0.54±0.14 

ng·mL-1; FU1: 0.56±0.14 ng·mL-1; FU2: 0.58±0.19 ng·mL-1; FU3: 0.61±0.16 ng·mL-1. Table 1).  



AUC analysis showed that the β-CTX response to exercise was significantly lower in the immediate 

post-exercise period with CHO than with PBO (P=0.028; Figure 2A), although there was no 

difference in short-term response over the follow-up days (P=0.856; Figure 2B).  

 

On the follow up days, P1NP was 5 to 14% (FU1: 67.9±33.2 ng·mL-1; FU2: 66.2±31.7 ng·mL-1; 

68.4±28.0 ng·mL-1) higher than at BASE (63.1±30.5 ng·mL-1) in the PBO trial (Table 1).  AUC 

analysis showed significantly lower P1NP concentrations in the CHO trial compared to the PBO trial 

in the hours following exercise (P=0.021; Figure 2A), but there was no differences between trials over 

the follow-up days (P=0.721; Figure 2B).  

 

OC concentrations were not affected by exercise in the PBO trial (Table 1) or by CHO ingestion 

during exercise either in the immediate (P=0.343; Figure 2A) or short-term (P=0.786; Figure 2B) 

recovery periods. 

 

Modulators of calcium metabolism 

PTH increased (P<0.001) by 87% at EE (6.6±2.0 pmol·L-1) compared with BASE (3.7±1.2 pmol·L-1) 

in PBO.  Thereafter, concentrations returned towards BASE levels and were slightly lower than 

BASE at R1 (3.6±1.2 pmol·L-1) and R2 (3.3±1.3 pmol·L-1).  PO4 was increased by 21% at EE 

(1.4±0.1 mmol·L-1) due to the exercise bout (P<0.001), and then returned to BASE values (1.1±0.1 



mmol·L-1) by R1 (1.1±0.2 mmol·L-1).  No exercise effect was shown for ACa in PBO (P=0.871). 

There were no immediate or short-term effects of CHO feeding on calcium metabolism markers 

(Table 2). 

 

Other modulators of bone metabolism 

Significant effects of exercise (PBO trial) were shown for insulin (P<0.001), IL-6 (P<0.001) and 

leptin (P<0.01), but there were no significant effects of exercise on cortisol, OPG, or GLP-2.  CHO 

feeding significantly attenuated the elevation in IL-6 concentrations (223%) seen immediately 

following exercise in the PBO trial (Table 2; P=0.036), although these differences did not persist over 

the follow-up days (P=0.327).  There were no other immediate or short-term effects of CHO feeding 

on any of the remaining modulators of bone metabolism measured (Table 2). 

 

  



DISCUSSION 

Our main findings were that: 1) CHO feeding during exercise attenuated the -CTX and P1NP 

responses in the hours but not days following exercise; 2) IL-6 responded in a similar manner to bone 

turnover following CHO feeding during exercise.  

 

The reduction in bone resorption with CHO feeding during strenuous exercise suggests a potential 

strategy for athletes and those performing arduous occupational training (e.g., the military recruit) to 

minimise increased bone resorption resulting from such exercise (19).  From the results of the present 

investigation, it should be noted, however, that the magnitude of the effect of CHO feeding on -CTX 

concentrations was relatively small, which in itself might not be that clinically significant.  If these 

effects were repeatable over subsequent strenuous exercise bouts (as would be the case during athletic 

or military training programmes), however, then there would likely be a physiological or clinical 

benefit. Future studies should determine the effect of repeated feeding during exercise across a 

training programme on bone turnover.  In the present study, it should also be noted that CHO feeding 

attenuated the exercise induced increase in P1NP, indicating that the dynamic balance between bone 

resorption and formation was somewhat maintained. The bone turnover marker responses to CHO 

ingestion during exercise in the present study are similar to the responses observed by others at rest 

(3) where a reduction in -CTX (18%) and P1NP (4%) in response to breakfast feeding when 

compared with fasting was observed. Whilst this is consistent with the present findings incorporating 



an exercise intervention, it does not concur with our previous study (18), which showed that resting 

concentrations of -CTX, but not P1NP or OC, were reduced following a pre-exercise mixed meal 

compared with fasting.      

 

One possible explanation for the immediate effects of CHO feeding on the bone resorption response 

to exercise is the concomitant reduction in the IL-6 response, with a strong correlation (r = 0.74; 

P<0.05) existing between the immediate responses of IL-6 and -CTX in the CHO trial. The ingestion 

of CHO before and during endurance exercise attenuates the rise in circulating IL-6 associated with 

exercise (13,14). Starkie et al. (20) showed that a total ingestion of 64±3 g of CHO before and during 

60 min of running and cycling attenuated the rise in plasma IL-6 associated with both modes of 

exercise. Increases in circulating cytokines (15,16) have been shown in response to heavy or 

unaccustomed exercise and might have a regulatory function in bone metabolism (12), potentially 

providing a mechanism that underpins the observed short-term effect of CHO ingestion during 

exercise on bone metabolism.  Evidence from in vitro and animal models suggests that IL-6 is an 

activator of osteoclastogenesis and bone resorption (Kotake et al., 1996).  It can stimulate osteoclast 

differentiation but can also, in the presence of soluble IL-6 receptors (sIL-6R), stimulate osteoclast 

activity (Kotake et al., 1996).  Palmqvist et al. (2002) has shown that IL-6, when combined with its 

soluble receptor, stimulate bone resorption, as well as mRNA and protein expression of receptor 

activator of nuclear factor B ligand (RANKL) and OPG in murine calvarial bone.  sIL-6R can bind 



its ligand and induce cellular responses through association with the glycoprotein 130 receptor subunit 

(gp130), thus acting as an IL-6 agonist.  IL-6 stimulates gp130 on stromal or osteoblastic cells; 

subsequently resulting in downstream signal transducer and activator transcription 3 mediated 

expression of RANKL and the stimulation of osteoclast formation.  In addition, others (Rifas and 

Avioli, 1999) have suggested the presence of a T-cell cytokine that can stimulate IL-6 in human 

osteoblastic cells. Whilst this indicates a potential mechanism for the current findings, it should be 

noted that there was no effect of CHO feeding on circulating OPG concentrations and we cannot 

confirm the circulating sIL-6R or RANKL concentrations in the present study.  Previous studies have 

suggested an effect of exercise on sIL-6R concentrations (for review see Peake et al., 2015) but there 

is no study, to our knowledge, that has reported the effects of CHO feeding. The measurement of 

circulating RANKL concentrations was not possible in the present study due to the lack of a suitable 

assay.  Lastly, with the measurement of circulating concentrations it is not possible to be certain of the 

biological actions occurring in particular tissues.  

 

There was a significantly attenuated P1NP response in the hours after exercise in the CHO trial when 

compared with the placebo trial, suggesting that CHO feeding during prolonged exercise affects bone 

formation in addition to bone resorption.  There was no concomitant effect on circulating OC 

concentrations, which is inconsistent with the P1NP and IL-6 responses to CHO ingestion during 

exercise in the present study, since some have suggested that it is a marker of overall coupled bone 



turnover (9) and is capable of suppressing IL-6 release (8) and has importance in the relationship 

between bone remodelling and energy metabolism (6). Clearly, the present data do not add support to 

these previous findings. 

 

The response of P1NP in concert with the effect shown on -CTX would suggest that CHO feeding 

during exercise reduced overall bone turnover in the hours following exercise but the balance between 

resorption and formation was maintained.  Whilst a reduction in IL-6 release during exercise with 

CHO feeding is a plausible mechanism to explain the observed reduction in -CTX concentrations, 

the reason for the attenuated post-exercise P1NP concentrations with CHO feeding during exercise is 

currently unknown, but is likely to involve cellular cross-talk between the osteoclasts and osteoblasts 

given their very close association.  

 

Potential mechanisms for the suppression of bone turnover by CHO feeding during exercise relate to 

effects on PTH, or on the incretin and enteric hormones.  Bone turnover was decreased along with 

PTH in a previous study employing the hypoglycaemic clamping technique (4), suggesting that short-

term alterations to bone turnover are due to direct effects of hypoglycaemia (glucose concentrations 

were clamped at 2.5 mmol·L-1 for 105 min) on bone cells or are mediated by changes in regulatory 

hormone concentrations triggered by hypoglycaemia (4).  The present study did not show any 

immediate effect of CHO provision during exercise on the circulating concentrations of PTH, ACa or 



PO4, making it unlikely that the effects of CHO supplementation during exercise on bone turnover 

were mediated by alterations in calcium metabolism.  CHO did not significantly alter the immediate 

or short-term responses of leptin, insulin, cortisol or GLP-2 to exercise, indicating that alterations in 

these hormones were also unlikely to be responsible for the effect of CHO supplementation on bone 

turnover shown.  Despite the fact that the present study involved 120 min of running at 70% VO2max, 

blood glucose concentrations remained relatively stable, even when participants were not fed CHO in 

the PBO trial, with blood glucose concentrations not reaching hypoglycaemic levels. 

 

Given that the data from the PBO trial show a 5-15% increase in -CTX during the follow up days, 

when compared to BASE, and others (19) also report greater and more prolonged increases in -CTX 

following exhaustive exercise, it is clear that CHO feeding during exercise alone might not be 

sufficient to result in a more prolonged or greater suppression of the increase in bone resorption.  This 

might be because the amount of CHO provided (102.1 ± 10.6 g) during exercise was not sufficient to 

prolong the effect observed during the early recovery period, possibly because the CHO was used by 

the muscle to support glycogen re-synthesis. Another possibility is that participants resumed their 

habitual diet once leaving the laboratory on D4, meaning that any extra CHO provided during 

exercise in the CHO trial would become less meaningful as a proportion of the total daily energy 

intake.  As such, the clinical implications of the present study findings remain unclear; future work 

could explore higher CHO intakes during exercise, or the maintenance of high CHO intakes in the 



days following exercise for skeletal benefits. The amount of CHO provided during exercise in the 

current study (~50 g·h-1) is consistent with the amount and rate typically recommended for endurance 

exercise benefits (10), although in current practice athletes typically consume 60 to 70 g·h-1 (11) and 

athletes performing prolonged exercise (e.g., triathletes) are advised to increase their CHO intake 

(from multiple CHO sources) to 80-90 g·h-1 (11).   

 

In conclusion, CHO supplementation during prolonged running reduced bone turnover in the hours 

following exercise. A possible mediator of the immediate bone resorption response to exercise when 

fed CHO during exercise was IL-6.  The mechanism underlying the reduced P1NP response remains 

unknown.  No changes in markers of calcium metabolism or the incretin and enteric hormone 

concentrations were observed with CHO feeding, suggesting that they are unlikely mediators of the 

effect of CHO on bone turnover.   
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TABLE LEGENDS 

Table 1. Concentrations of bone turnover markers, modulators of bone metabolism and markers of 

calcium metabolism at baseline (BASE), immediately following exercise (EE), during 2 h of recovery 

following exercise (R1-R2) and during 3 follow-up days (FU1-FU3) in the CHO and PBO trials.  

 

Table 2. Immediate and short-term data for changes in modulators of bone and calcium metabolism 

with or without CHO supplementation during exercise.  



FIGURE LEGENDS 

 

Figure 1. Blood glucose (···) and blood lactate (―) concentration on the CHO (■) and PBO (□) trials. 

*denotes a significant difference in blood glucose concentration at EE to all other time points, and 

between CHO and PBO trials. 

 

Figure 2. Immediate (A) and short-term (B) recovery areas under the curve for markers of bone 

formation and resorption on the CHO (■) and PBO (□) trials. 

 


