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Abstract 

 
 

CO2 decomposition to CO and O2 was investigated in a dielectric-barrier discharge (DBD) 

reactor packed with BaTiO3 balls, glass beads with different sizes, and a mixture of a Ni/SiO2 

catalyst and BaTiO3 balls at lower temperatures and ambient pressure. The property of 

packing beads and the reactor configuration affected the reaction significantly. The Ni/SiO2 

catalyst samples were characterized by SEM, XRD, BET and TEM. The combination of a 

DBD plasma and a Ni/SiO2 catalyst can enhance CO2 decomposition apparently and a 

reaction mechanism of the plasma assisted CO2 dissociation over the catalyst was proposed. 

In comparison with the result packed with glass balls (3 mm), the combination of BaTiO3 

beads (3 mm) with a stainless steel mesh significantly enhanced the CO2 conversion and 

energy efficiency by a factor of 14.8, and that with a Ni/SiO2 catalyst by a factor of 11.5 in a 

DBD plasma at a specific input energy (SIE) of 55.2 kJ/L and low temperatures (<115 °C). 
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1. Introduction 

 

 
Climate change due to man-made emissions of GHGs such as CO2, CH4, N2O and others is 

one of the major challenges facing mankind. Combustion of fossil fuels (coal, natural gas, 

and oil) for energy and transportation, certain industrial processes and land use change are 

responsible for the steady CO2 concentration increase in the atmosphere since the industrial 

revolution. CO2 emission not only results in an increase in the global mean temperature, but 

also constitutes an extensive waste of a natural carbon source. Therefore, mitigation of CO2 

has attracted worldwide attention. 1-5 Carbon capture and storage (CCS) and carbon capture 

and utilization (CCU) can capture CO2 from point source such as power plants and industrial 

processes. CCU converts the captured CO2 to value-added products, which is different from 

CCS which transfers the captured CO2 to a suitable site for long-term storage. 6 CO2 can be 

considered as a recycled carbon source and C1 building block for fuels and chemicals. 

 

 

 
CO2 conversion to value-added chemicals/fuels has been attracted much attention over the 

past decades. 4, 7-9 CO2 is the end product of the complete oxidation of fossil fuels and  

organic compounds, and it is difficult to be activated due to its intrinsic inert nature. 

Therefore, the use of CO2 as chemical feedstock is limited to a few industrial process such as 

the production of urea and its derivatives, salicylic acid and carbonates. 10
 

 

 

 
The hydrogenation of CO2 to fuels and chemicals such as methane, methanol, formic acid and 

their derivatives has been intensively studied.10-12 In general, the production of hydrocarbons 

and chemicals from CO2 requires substantial energy input, effective reaction conditions (such 
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as high reaction temperature and high pressure), more hydrogen consumption, and active 

catalysts because CO2 is a highly stable molecule. 

 

 

 
CO is more reactive than CO2 and it is a common feedstock for chemical industry.13 In 

addition to be used for fuel synthesis, CO has many applications in the production of 

chemicals such as organic acids, esters, alcohols and other chemicals. The selective 

conversion of CO2 to CO is a promising route for clean energy and chemicals by using CO2 

as a carbon source. 9, 14, 15
 

 

 

 
The hydrogenation of CO2 (or the reverse water gas shift (RWGS) reaction) (equation 1) can 

be used for CO production over catalysts at high reaction temperatures (>600 ºC). 10, 11 

Reaction parameters, catalyst properties and reactor configuration affected the reaction 

apparently.16 In the reaction, an excess of hydrogen is necessary to prevent the coke  

formation on the catalyst. Therefore, a big concern of the RWGS reaction is the product 

selectivity, H2 consumption, and catalyst stability under reaction conditions. 

 

 

 

 

CO2     + H 2 ⎯⎯→ CO + H 2O (1) 

 

 

 

 
(ΔH 298K = 41.2 kJ/mol) 
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CO2 reforming of methane (equation 2) is a well-studied reaction which is of both scientific 

and industrial importance. It converts greenhouse gases (CO2/CH4) into synthesis gas (CO + 

H2) over catalysts at high reaction temperatures (800-1000 ºC). 17 Operating at high 

temperatures may result in high energy costs and high capital investment. A major drawback 

of the catalytic CO2 reforming of CH4 is the catalyst deactivation because of the sintering of 

active sites and carbon deposition at high reaction temperatures.18
 

 

 

 

 

CO2 + CH 4 ⎯⎯→ 2H 2 + 2CO 
 

(2) 

 

 

 

 

 

ΔH 298K = 247 kJ/mol 

 

 

 

 
Direct CO2 conversion to CO and O2 (equation 3) is a thermodynamically unfavourable 

reaction. Thermodynamic analysis shows that apparent CO2 decomposition to CO and O2 is 

difficult at reaction temperatures lower than 2000ºC. On the other hand, chemical kinetic 

study demonstrated that the reverse reaction, the reaction between CO and O2 for CO2, 

become dominant at higher reaction temperatures. Therefore, the decomposition of CO2 to 

CO and O2 could be favoured at non-equilibrium reaction conditions. 

 

 

 

 

CO2 ⎯⎯→ 0.5O2 + CO (3) 
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ΔH 298K = 283 kJ/mol 

 

 

 

 
Dielectric-barrier discharge (DBD) is a kind of non-thermal plasma (NTP), which is an 

alternative to the conventional catalytic chemical process operating at high temperatures. In a 

DBD, although the average temperature of the energetic electrons is in a range of 10,000 - 

100,000 K (average electron energy: 1 - 10 eV), the actual gas temperature remains near 

ambient temperature. 19-21 Active radicals and ionic and excited atomic and molecular species 

are generated through electron-impact ionization, dissociation and excitation of the source 

gases, which can initiate plasma assisted chemical reactions at low temperatures. NTP could 

convert CO2 to CO (and O2) directly without consuming H2 or methane at low temperatures 

and atmospheric pressure by using the renewable energy resources/green energy such as 

hydropower, wind power, solar power and biomass. After reaction, CO can be separated from 

the gas mixture of CO and O2. The produced CO can be used as a feedstock for various 

applications. Furthermore, synthesis gas (CO + H2) can be produced by introducing H2 to the 

CO gas stream. The integration of NTP assisted direct CO2 conversion to CO or synthesis gas 

(CO + H2) and the established chemical processing may provide an alternative for the 

production of fuels and value-added chemicals from CO2. 

 

 

 
CO2 decomposition to CO and O2 assisted by non-equilibrium plasmas has been investigated 

under a variety of NTP conditions. Microwave plasma has been applied for CO2 

decomposition at various pressure. 22-25 Vesel and co-workers 23 studied the dissociation of 

CO2 in a microwave plasma at low pressure (<1.13 torr). No black carbon formed on the 

surface of the quartz tube even after prolonged plasma operation, indicating that the 

dissociation of CO can be neglected in microwave plasma. A study on the efficiency of CO2 
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dissociation in argon in an atmospheric pressure microwave plasma demonstrated that the 

combination of a plasma and a Rh/TiO2 catalyst located in the downstream of the discharge 

region causes a drop in CO2 conversion due to the reverse reaction of CO2 decomposition on 

the catalyst surface. 22 Spencer and co-workers 26 studied the efficiency of CO2 

decomposition in a radio-frequency (RF) plasma at low pressure (0.08-0.28 torr). Although 

the conversion of CO2 to CO can reach about 90%, the maximum energy efficiency was 

about 3%. In a capillary plasma reactor at low pressure (3.33-120 torr), CO2 decomposition is 

predominated by electron impact dissociation of CO2 and gas phase reverse reactions. 27 In a 

coaxial DC corona discharge, the dissociation of CO2 could produce O3 and CO. The CO2 

conversion was lower in a positive polarity discharge than that in a negative one under the 

same reaction condition. 28 CO2 decomposition has been explored in DBD plasmas at 

atmospheric pressure by different research groups.29-34 Paulussen and co-workers investigated 

the influence of reaction parameters such as frequency, power, temperature and gas flow rate 

on CO2 decomposition in a tubular DBD reactor with one stainless steel electrode exposed to 

the plasma. 29 A plasma chemistry model for CO2 splitting proposed by Aerts and  co- 

workers shows reasonable agreement with the experimental conversion and energy efficiency 

in a DBD plasma.30 The influence of permittivity of barrier materials on CO2 decomposition 

in a planar DBD reactor with one stainless steel plate electrode exposed to the plasma was 

explored by Li and co-workers. 32-34 It was found that the CO2 conversion over Ca0.8Si0.3TiO3 

is much higher than that over Al2O3 and SiO2 glass barriers due to the great differences in 

their permittivity. Mei and co-workers 35 studied the effect of packing materials (BaTiO3 and 

glass balls: 1 mm in diameter) on CO2 decomposition by exposing a stainless steel rod 

electrode to the plasma and demonstrated that adding BaTiO3 balls into the reactor enhanced 

the average electric field and mean electron energy which contributed to an enhancement of 

CO2 conversion. A study on the decomposition of CO2 in a coaxial dielectric packed-bed 
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plasma reactor with two corundum barriers revealed that the permittivity and the morphology 

of packing pellets (0.42-0.84 mm) influenced the reaction obviously because they could 

affect the electron energy distribution in the plasma. 36 Furthermore, the CO2 dissociation 

could be influenced by the acid-base properties of the packing materials. 

 

 

 
The aforementioned studies have been focused on CO2 decomposition assisted by various 

NTPs. Although some literature is available on CO2 decomposition assisted by DBD plasma 

with packing materials with different permittivity and acidity, few studies have been carried 

out on the effect of property of packing materials with identical size by eliminating the 

influence of metal electrode and the shape of the packing materials. A detailed study on the 

effect of the size of packing materials with the same dielectric constant, the reactor 

configuration, and the combination of a supported metal catalyst and DBD plasma on CO2 

decomposition is not available. 

 

 

The purpose of this study was to study the effect of the property of packing materials (with 

identical size), the size of the packing materials (with identical permittivity and chemical 

property) by eliminating the influence of metal electrode, the reactor configuration, the 

stainless steel mesh, and a Ni/SiO2 catalyst on CO2 decomposition promoted by DBD 

plasmas. The synergistic effect of a DBD plasma and a Ni/SiO2 catalyst (or a stainless steel 

mesh) on CO2 decomposition will be investigated for the first time. The present study reveals 

that the combination of DBD plasma and a catalyst can enhance CO2 decomposition 

apparently under NTP conditions. 
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2. Experimental Section 

 
2.1 Materials 

 

 
Glass beads: Soda-lime glass beads (3 mm, 4 mm, and 5 mm in diameter, respectively) were 

purchased from Sigma-Aldrich Ltd, and used in the reaction without further treatment. 

 

 

 
BaTiO3 beads: BaTiO3 beads (3 mm in diameter) were purchased from Catal Ltd. The 

density of the BaTiO3 beads was 3.3 g/cm3. The dielectric constant of these beads was about 

1000. 

 

 

 
Ni/SiO2 catalyst: A Ni/SiO2 catalyst with molar ratio of [Ni]/[SiO2] = 1/4 was prepared from 

a precursor solution of colloidal silica (30 wt. % suspension in water, Sigma Aldrich, UK) as 

silica precursor and Ni(NO3)2·6H2O (Purity: 97%, Sigma Aldrich, UK) as catalyst precursor. 

The catalyst preparation procedure included the following steps: Step1: to obtain the 

precursor solution with desired Ni/SiO2 (molar ratio) = 1/4, 56.1 g of Ni(NO3)2·6H2O was 

dissolved in 150 g of the precursor solution of colloidal silica; Step 2: to convert the 

precursor solution to solid pellets, 10 ml of the precursor solution was placed in a 19 cm 

diameter watch glass and irradiated at 1 kW power input using an Ethos EZ Microwave 

Furnace ( Milestone S. R. L., Italy) at a relatively low temperature (250 0C) for 4 minutes. 

Repeat the operation to convert all the precursor solution into solid pellets. The size of the 

solid pellets selected for further treatment was 2-3 mm; Step 3: to obtain a Ni/SiO2 catalyst, 

the above solid pellets were calcined at 550 °C in air for 2 h, and then reduced in a hydrogen 

flow of 50 mL/min at 550 °C for 24 h. At last, the reduced Ni/SiO2 catalyst was cool down to 
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room temperature in the hydrogen flow. The density of the catalyst was 0.2g/cm3. The BET 

surface area of it was 181 m2/ g. Chemical analysis revealed that the amount of Ni (wt. %) in 

the Ni/SiO2 catalyst was 19.7%. 

 

 

 
Ni/SiO2/BaTiO3 beads: Ni/SiO2/BaTiO3 beads was a physical mixture of 50 cm3 of reduced 

Ni/SiO2 catalyst (2-3 mm pellets, 10g) and 50 cm3 of BaTiO3 Beads (3 mm in diameter, 

165g). 

 

 

 
2.2 Catalyst characterization 

 

 
The morphology of the Ni/SiO2 catalyst samples was investigated by a scanning electron 

microscopy (SEM, JSM-5300LV, Japan). A Beckman Coulter SA3100 surface area analyser 

was used to measure the specific surface area of the catalyst samples. The X-ray Diffraction 

(XRD) pattern of the catalyst samples was recorded by a PANalytical X’PERT Pro 

Diffractometer using CuKα1 source (λ=1.540598Å). The scan range (2θ) was from 10 to 

100°. The fine structure of the catalyst samples was analysed with a Philips CM100 

Transmission Electron Microscope (TEM), and the images were collected using an AMT 

CCD camera. 

 

 

 
2.3 Catalytic reactions 

 

 
Fig. 1 depicts a schematic of the experimental setup (Fig. 1a) and the DBD reactor with 

different configurations (Fig 1b-1e). The coaxial DBD reactor consisted of two coaxial quartz 
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tubes one inside the other. The outer tube had 32 mm inner diameter (ID) and 300 mm in 

length. The inner tube had 17 mm outer diameter (OD). The thickness of the two quartz tubes 

was 1.5 mm. Hence the gap between the two tubes was 7.5 mm. The length of the two 

stainless steel mesh electrodes was 173 mm, respectively, which gave a plasma volume of 

100 cm3 in the reactor. The first stainless steel mesh electrode was fixed on the inner surface 

of the inner tube, and the second one was either fixed on the external surface or on the 

internal surface of the external tube. The two electrodes were insulated to the plasma 

activated species when the second electrode was fixed on the external surface of the external 

tube (as shown in Fig. 1b). The second electrode was exposed to the plasma activated species 

when it was fixed on the internal surface of the external tube (as shown in Fig. 1c). To study 

the influence of a stainless steel mesh on the reaction, an extra stainless steel mesh was fixed 

on the inner surface of the external tube of the plasma reactor (as shown in Fig. 1d). 

 

 

 
The discharge volume of the reactor was filled with 100 cm3 of glass balls (3 mm, 4 mm, 5 

mm in diameter, respectively), or 100 cm3 of BaTiO3 balls (3 mm in diameter), or the mixture 

of BaTiO3 balls (3 mm in diameter) with the Ni/SiO2 catalyst. Fig. 1e shows a picture of the 

reactor (as shown in Fig. 1b) packed with glass beads (3 mm in diameter). An alternating 

sinusoidal high voltage of up to 20 kV amplitude (peak-to-peak) with a frequency of about 25 

kHz was applied to the two stainless steel mesh electrodes. 

 
 

The plasma power source unit which could feed 0 - 150 W to the plasma reactor by adjusting 

the amplitude of the applied voltage was designed and manufactured by GAP Ltd. The power 

factor of the power source unit was higher than 0.95. The plasma power dissipated in the 

discharge was calculated by integrating the product of voltage and current. In addition, the 
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voltage-charge Lissajous diagrams were recorded by a TPS 2014 Four Channel Digital 

Storage Oscilloscope (Tektronix). 

 

 
The wall temperature of the DBD reactor was measured by a thermocouple attached on the 

external surface of the reactor. To maintain the wall temperature of the plasma reactor, the 

plasma reactor was kept in a tubular furnace preselected at 100°C. The temperature of the 

furnace was controlled by a proportional with integral and derivative (PID) temperature 

controller. 

 
 

CO2 (BOC Industrial gases, UK) was introduced into the reactor from high pressure bottles 

via mass flow controllers (MFCs), admitting a total gas flow of 25 to 100 mL/min. the 

pressure in the reactor was monitored by a pressure gauge, and it could be adjusted by a back 

pressure valve at the exit of the DBD reactor. 

 

 

 
An online Varian 450-GC equipped with a thermal conductivity detector (TCD) was used to 

analyse the reaction products (CO and O2). The Varian 450-GC was connected to the outlet 

of the reactor by Teflon tubing. To monitor the change of volume flow as a consequence of 

chemical reactions, a constant flow of nitrogen (6.0 mL/min) (BOC Industrial gases, UK) as 

reference gas was added to the exit of the reactor (as shown in Fig. 1a). The results were 

reported in mole percent. 

 

 
 

The CO2 conversion is defined as 
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CO2 

 
Conversion 

 
(%) = 

Moles of CO2(in) − Moles of CO
2(out) 

 
100 

Moles of CO
2(in) 

 

 

 

The CO2 conversion per unit energy (CO2 CPUE) is defined as: 
 

 

 

CO CPUE (mmol / kJ ) = 
mmol of

 converted CO2 

2 
Energy consumed (kJ ) 

 

 

 

The specific input energy (SIE) is defined as 
 

 

 

SIE (kJ / l) = 
Plasma

 power (kW ) 

CO2 flow rate (l / s) 
 

 

 

The energy efficiency of a DBD plasma assisted CO2 decomposition is defined as: 
 

 

 

 

Energy 

 

efficiency (%) = 
H 298 (kJ / mol) 

100 

Energy consumed / mol of converted CO2 (kJ / mol) 
 

( CO2 = CO + 0.5 O2, ΔH298 = 283 kJ/mol) 
 

 

 

 

 

 

3. Results and discussion 

 

3.1 Influence of packing materials 

 

For a better understanding of the influence of the property of packing materials on CO2 

dissociation, the contribution of metal electrodes to the reaction should be eliminated by 
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insulating the metal electrodes from CO2 plasma (as shown in Fig. 1b). In this study, the 

DBD plasma reactor (as shown in Fig. 1b) was used for the following experiments unless 

otherwise stated. The effect of the property and that of the size of packing beads on CO2 

decomposition were studied by applying BaTiO3 balls (permittivity: 1000; 3 mm in diameter) 

and glass beads (permittivity: 4.7; 3 mm, 4 mm, and 5 mm in diameter) in the DBD plasma 

reactor, respectively. 

 

 

 
Fig. 2 shows the conversion of CO2 over those glass and BaTiO3 balls as a function of plasma 

power. It is apparent that an increase in plasma power resulted in an increase in CO2 

conversion over these packing beads. The CO2 conversion over these packing beads is in the 

order of Glass balls (5 mm) ≈ BaTiO3 balls (3 mm) > Glass balls (4 mm) > glass balls (3 

mm). 

 

 

 
The plasma assisted CO2 decomposition ran in a stable way in the time range (up to 5 h) 

tested. Apparent decrease in CO2 conversion was not observed. The reaction products were 

CO and O2. O3 was not detected in the experiment. No carbon deposition was observed on the 

glass and BaTiO3 balls after each experiment in the reactor.  It is important to mention that 

the CO/O2 (molar ratio) is in the range of 1.98-2.02 after reaction, which is in agreement with 

the stoichiometry of CO2 decomposition to CO and O2. Therefore, the further decomposition 

of CO to C and O2 was strongly suppressed in a DBD plasma reactor packed with different 

packing materials. 
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When the CO2 conversion over glass balls (3 mm in diameter) and that over BaTiO3 beads (3 

mm in diameter) are compared, it is clear that the BaTiO3 balls significantly enhanced the 

CO2 conversion by a factor of 9.1-3.1 depending on plasma power dissipated into the reactor. 

 

 

 
As shown in Fig. 2, an increase in the diameter of the packing glass balls resulted in a 

significant increase in CO2 decomposition. When the diameter of the glass balls was 

increased from 3 to 5 mm, the conversion of CO2 increased by a factor of 9.1 at the plasma 

power of 46W. It is important to note that there was no apparent difference between the CO2 

conversion over glass balls (5 mm in diameter) and that over BaTiO3 balls (3 mm in 

diameter), which was different from what we expected, and it could not be explained by the 

permittivity difference of these materials. Therefore, not only the permittivity but also the 

size of the packing materials played a key role in the CO2 dissociation in a packed bed DBD 

plasma reactor. 

 

 

 
The mean electron energy in a DBD can be influenced by varying the product of discharge 

gap d and the gas density n (which is proportional to gas pressure). 37 In the DBD reactor 

without packing beads, the discharge gap width was 7.5 mm which was large compared to the 

conventional DBD for O3 production. A large discharge gap width can lead to the formation 

of spark-like discharge and lower mean electron energy in a DBD plasma. 37, 38 When the 

glass beads or BaTiO3 balls are filled into the plasma reactor, the shorter distance near the 

contacting point between the packing balls can lead to an enhanced local electric field. 

Furthermore, the maximum electric field strength near the contact points can be significantly 

higher than that in the void among those packing balls. It has been reported that those balls 

can refract the electric field, making the local electric field non-uniform and stronger than the 
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externally applied field by a factor of 10 to 250 depending on the shape, porosity, and 

permittivity of the beads. 20 Increased electric field strength and higher mean electron energy 

can be expected in the DBD reactor packed with those balls. In addition to the discharge gap, 

the dielectric constant of packing materials is a key factor affecting the properties of a DBD 

plasma. An increase in dielectric constant of those packing beads can result in a further 

increase in electric field strength near the contacting points between the packing beads and an 

enhancement in the mean electron energy in the plasma. As a result, the permittivity of the 

packing beads can affect the mean electron energy in a DBD plasma. 39, 40 It is known that the 

mean electron energy is an important factor affecting the activation of molecules (excitation, 

dissociation, or ionization) in a DBD. 40 Recently, computational study demonstrated that the 

splitting of CO2 is dominated by electron impact reactions, and predominately by electron 

impact dissociation in a DBD plasma. 30 Therefore, high dielectric constant materials (for 

example: BaTiO3) which can generate stronger electric field and higher average electron 

energy are desirable for efficient dissociation of more stable molecules, such as CO2 in a 

DBD plasma. 

 

 

 
In addition to the influence of dielectric constant on various reactions, the shape of the 

BaTiO3 pellets influenced the reaction performance and the discharge characteristics 

significantly in the reactor with 2 metal electrodes exposed to plasma. 41 The variation of the 

permittivity of those BaTiO3 pellets (permittivity: 600, 5000, and 10000, respectively) was 

not a function of the destruction rate of C6F6. However, Ogata and co-workers studied the 

influence of dielectric constant of packing materials on benzene decomposition by applying 

ferroelectric balls (2 mm in diameter) with different permittivity (20-15000) in a plasma 

reactor with 2 electrodes exposed to the plasma activated species. It was observed that 

increasing the dielectric constant of packing materials resulted in higher benzene conversion. 
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42 Li and co-workers found that the CO2 conversion over higher permittivity Ca0.8Si0.3TiO3 is 

much higher than that over lower dielectric constant Al2O3 and SiO2 glass barriers in a 

planner DBD reactor with one electrode exposed to plasma. 34 Mei and co-workers reported 

that the enhancement of mean electron energy and the photocatalytic effect of BaTiO3 balls  

(1 mm in diameter) in a plasma can enhance the CO2 conversion in a DBD reactor with one 

electrode exposed to plasma. 35 It is important to note that above results were based on  

packed bed plasma reactors with one or two metal electrodes directly contacted with the 

plasma activated species. 35, 41, 42 When we discuss the effect of packing materials on those 

reactions, the catalytic effect of metal electrode/electrodes on various reactions can not be 

ruled out. Yu and co-workers demonstrated that the permittivity and morphology of packing 

pellets (size: 0.42-0.84 mm) played key roles in CO2 decomposition in a DBD plasma with 2 

metal electrodes insulated by corundum tubes. 36 However, the effect of the pellet size 

variation on the reaction was not taken into account. By eliminating the influence of the size, 

the shape of the packing materials and the metal electrode/electrodes, the present study 

demonstrated that the property of the packing beads influenced the CO2 decomposition 

significantly in a DBD plasma. In this study, because the permittivity of BaTiO3 balls (3 mm 

in diameter) is much higher than that of glass balls with the same size, the mean electric field 

strength and the average electron energy could be higher in the reactor packed with BaTiO3 

balls than that packed with glass balls. Therefore, a higher fraction of the electrons in the 

plasma could have sufficient energy to activate CO2 molecules in the reactor packed with 

BaTiO3 beads, which could result in an enhanced CO2 conversion. In addition to the 

difference in permittivity, BaTiO3 and glass balls have different physical and/or chemical 

properties which might affect CO2 decomposition in a DBD plasma as well. 
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As depicted in Fig. 2, in addition to the permittivity, the packing material size is another key 

factor influencing the reaction in a plasma reactor. Due to their identical permittivity and 

chemical properties, the difference of the performance of those glass beads in CO2 

dissociation could be attributed to the effect of the variation of discharge properties. In a 

packed-bed DBD, the micro-discharges mainly take place near the contact points between 

packing beads and beads/quartz tubes where electric field strength are significantly increased. 

43 Although the number of those contact points/micro-discharges was reduced by increasing 

the size of glass balls, the amount of charge transferred by an individual micro-discharge 

could be increased at a constant plasma power. In a DBD plasma, higher average energy 

dissipated in an individual micro-discharge could be achieved with larger glass beads. 

Therefore, increasing the size of glass balls could lead to higher CO2 conversion in the DBD 

plasma. 

 

 

 
Meanwhile, one may argue that the total void volume between the packed beads can be 

increased when glass balls with larger size are packed in the reactor, which may increase the 

residence time of CO2 in the DBD plasma, and might be the reason for the increased CO2 

conversion. In this study, the void volume of the DBD plasma reactor packed with 3 mm and 

5 mm diameter glass balls was 35 and 39 cm3, which gives a residence time of CO2 of 42 and 

46.8 seconds, respectively. When the flow rate of CO2 was decreased from 50 to 44.9 ml/min 

in the plasma reactor packed with 3 mm glass balls, the residence time of CO2 was increased 

from 42 to 46.8 seconds. At the same residence time of 46.8 seconds, the CO2  conversion 

over 3 mm glass balls was 1.2, 2.2, 3.7 and 6.4% at the plasma power of 46, 66, 86 and 106W, 

respectively, which is significantly lower than that over 5 mm glass balls at the corresponding 

plasma power depicted in Fig. 2. Therefore, the variation of residence time of CO2 is not the 
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main reason for the significant difference in CO2 conversion over those 3 mm and 5 mm glass 

balls. 

 

 

 
The present study reveals that both the permittivity and the size of packing materials affect 

plasma assisted CO2 decomposition in a DBD reactor. The size of packing materials could 

influence a reaction performance in NTPs. Ogata and co-workers studied the influence of the 

size of BaTiO3 balls (1, 2, and 3 mm in diameter) on benzene abatement in an NTP reactor. 42 

The benzene conversion over 1 mm and 2 mm pellets was quite close and higher than that 

over 3 mm pellets when the SIE was higher than 54kJ/l. In contrast, the benzene conversion 

over these balls was in the sequence of 3 mm > 2 mm > 1 mm when the SIE was lower than 

18kJ/l. Schmidt-Szalowski reported that a DBD reactor packed with large quartz glass grains 

could enhance ozone generation and energy efficiency.44 Our previous research work 

demonstrated that CO2 and CH4 conversions over large BaTiO3 beads (3  mm in diameter)  

are high than that over small BaTiO3 balls (1 mm in diameter) in a DBD plasma reactor.45 

Therefore, the mean energy dissipated in an individual micro-discharge and the number of 

micro-discharges are important factors affecting a reaction performance in a DBD plasma. 

Some reactions could be sensitive to the mean energy dissipated in an individual micro- 

discharge. When the mean energy of an individual micro-discharge is higher than a certain 

level, an increase in the number of micro-discharges could promote the reaction. It is possible 

to improve the reaction performance, such as conversion and product selectivity, by 

optimizing the packing materials in a DBD reactor. 

 

 

 
In addition to the dielectric constant and the ball size, the surface area, pore size and pore 

volume of the packing materials may influence the plasma behaviour and the reaction 
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performance under plasma conditions.20, 39, 46 Meanwhile, DBD may initiate photocatalytic 

chemical process over BaTiO3 beads and other conventional photo-catalyst such as TiO2.35, 47,
 

48  Moreover, the physical and chemical properties of packing materials may affect plasma 

 

assisted chemical reactions in a DBD reactor. 

 

 

 

 
3.2 Influence of reactor configuration 

 
 
 

The influence of reactor configuration on CO2 dissociation to CO and O2 by applying BaTiO3 

balls (3 mm in diameter) and glass beads (3 mm in diameter) as packing materials in a DBD 

reactor was investigated, respectively. The diameter of BaTiO3 beads and that of glass balls is 

3 mm unless otherwise stated in the following experiments. 

 

 

 
In this study, the effect of exposing a stainless steel mesh to a DBD plasma on CO2 

decomposition was explored: (1) fix the second electrode on the inner surface of the external 

tube (Fig. 1c); and (2) fix an additional stainless steel mesh (the same size as the stainless 

steel mesh electrode) on the inner surface of the external tube of the DBD reactor (Fig. 1d). 

As depicted in Fig. 3, compared with the performance of the corresponding plasma reactor 

(Fig. 1b), a significant increase in CO2 conversion by a factor of 5-2.4 (for glass beads) and 

1.6-1.4 (for BaTiO3 balls) was observed when the stainless steel mesh electrode was exposed 

to plasma activated species or when an additional stainless steel mesh was fixed on the inner 

surface of the external tube of the DBD plasma reactor. Those experimental results also 

demonstrated that exposing one electrode to the plasma or fixing an additional stainless steel 

mesh in the DBD reactor does not result in apparent difference in CO2 conversion. Further 
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experimental results revealed that there was no obvious CO2 conversion in the reactor at the 

wall temperatures (100-140ºC) when plasma was switched off in the experiment. 

 
 

The insertion of a stainless steel mesh into the DBD reactor either as an electrode or as a 

metal layer may affect the electrical characteristics, such as discharge capacitance and the 

breakdown voltage, of the plasma reactor, 49, 50 which could contribute to the enhancement of 

CO2 conversion. Meanwhile, the contribution of plasma catalysis resulted from the 

combination of a stainless steel mesh and plasma activated species can not be ruled out. 

 

 

CO2 can be activated on transition metal catalysts. Modelling study reveals that CO2 can be 

adsorbed and activated on transition metal surfaces.51 In this study, in addition to the gas 

phase CO2 decomposition by plasma, the decomposition of CO2 molecules on the surface of 

stainless steel mesh could be promoted by plasmas at low temperatures. Due to the activation 

of CO2 on the electrode, the electrons with lower energy may become effective for CO2 

dissociation on the the electrode. On the other hand, in addition to the homogeneous gas 

phase reactions of CO and O radicals, when a stainless steel mesh was exposed to the CO and 

O radicals generated by an NTP, some of the CO and O radicals coud be adsorbed on the 

stainless steel mesh. The recombination of adsorbed O radicals could form O2 and the 

combination of adsorbed O and adsorbed CO could form CO2 on the mesh at low 

temperatures and ambient pressure. According to Fig. 3, it was reasonable to suggest that the 

recombination of O radicals may prevail over the combination of CO with O radicals on the 

mesh in the discharge. 

 
 

When a stainless steel mesh is exposed in plasma, apparent improvements in conversion and 

product selectivity have been observed. It was reported that the electrode materials influenced 
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CO2 decomposition apparently in a gas mixture of CO2 and He in a glow discharge plasma.52 

The CO2 conversion is in the order of Cu > Au > Rh >Fe ≈ Pd ≈ Pt. Brock and co-workers 

demonstrated that the metals coated on a fan type plasma reactor can catalyse CO2 

decomposition in a mixture of CO2 and He at low temperatures and atmospheric pressure.53, 54 

The reactivity of the metal coatings is in the sequence of Rh > Pt ≈ Cu > Pd > Au/Rh ≈ 

Rh/Au ≈ Au. In a plasma assisted CO2 and CH4 conversion to synthesis gas (CO +H2) and 

higher hydrocarbons, a stainless steel mesh exposed to the plasma activated species could 

catalyse the reaction between O radicals and carbon containing intermediates derived from 

CH4 for CO in a DBD plasma.45 These phenomena suggested that when a metal is exposed to 

the plasma, the property of the metal may influence the adsorption, the activation and hence 

the reaction performance of chemical reactions in plasma. 

 
 

In addition to the homogeneous gas phase plasma reactions, a series of heterogeneous 

reactions may take place on the metal surface under plasma conditions, which can affect the 

reaction activity and product selectivity. Therefore, when we study the influence of packing 

materials/solid catalyst on plasma performance and chemical reactions, it is necessary to 

eliminate the contribution of metal electrode/electrodes to the reaction by insulating those 

metal electrodes from the plasma activated species. According to the property of a reaction 

assisted by NTPs, optimizing the metal (or alloy) exposed to the plasma may improve the 

performance of the reaction in a DBD plasma at low temperatures and ambient pressure. 

 
 

In this study, the reactor configuration influenced the reaction obviously in a DBD plasma. 

The insertion of a stainless steel mesh into a plasma reactor may lead to catalytic effect in 

plasma and/or influence the electrical characteristics of the plasma reactor, which may 
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contribute to the enhancement of CO2 conversion at low temperatures and atmospheric 

pressure. 

 

 

3.3 Influence of Ni/SiO2 catalyst 
 

 
When a catalyst was introduced into the plasma, chemical reactions in a plasma became the 

combination of gas phase reactions and heterogeneous reactions on the catalyst. Therefore, a 

catalyst may significantly influence the plasma chemistry of the reaction. The interaction 

between a DBD and a catalyst is complicated because when the catalyst pellets are packed in 

a DBD the plasma characteristics could be modified. Meanwhile, the DBD may influence the 

catalytic properties of the catalyst. 

 

 

Fig. 4 depicts the influence of plasma power on CO2 conversion over BaTiO3 balls, and the 

mixture of a Ni/SiO2 catalyst and BaTiO3 balls, respectively. Increasing the plasma power 

results in a substantial increase in CO2 conversion over a mixture of Ni/SiO2 and BaTiO3 

balls. In comparison to the reaction in the absence of a Ni/SiO2 catalyst, introducing the 

catalyst into DBD enhanced the CO2 conversion by a factor of 1.24-1.31 in the power range 

tested. When the plasma was switched off, no CO2 conversion was observed in the reactor 

packed with a mixture of Ni/SiO2 catalyst and BaTiO3 balls in the temperature range tested 

(70-140ºC). Therefore, the enhanced CO2 decomposition could be attributed to the synergistic 

effect of NTP and catalysis by the combination of a DBD plasma and a Ni/SiO2 catalyst. 

 
 

The mean electron energy (1 – 10 eV) in a DBD plasma is higher than the dissociation energy 

of CO2 (5.5eV). In gas phase, the initial step for electron-impact CO2 dissociation can be 

described as 
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2 

 
 

e  + CO2 ⎯⎯Plas⎯ma → 
CO  + O  + e (4) 

 

 

 

The O radicals and CO species can be produced directly by electron impact process in plasma 

(equation 4). The following reactions can influence the final CO2 conversion and product 

distribution. 

 

 

O  + O + M ⎯⎯
k1 →   O + M 

 
(5) 

 

 

 

 

O  + CO + M ⎯⎯
k2 → CO2    + M (6) 

 

(M reprents the third body of the reaction) 

 

 
 

The formed O radicals can either react with other O radicals to form O2 (equation 5), or react 

with CO to form CO2 (equation 6), which can result in a lower CO2 conversion. The effective 

rate constant for the 3 body reaction of O + O + M (k1 = 5.82×10-34 cm6 molecule-2 s-1) is 2 

order of magnitude larger than the 3 body reaction of O + CO + M (k2 = 4.44×10 -36 cm6 

molecule-2 s-1) at the reaction temperature of 100 °C.55 Therefore, the recombination of O 

radicals prevails over the combination of CO with O radicals in a DBD plasma in gas phase. 

 

 

 
A solid catalyst packed in the plasma reactor may reduce the discharge gap width and modify 

the plasma characteristics by increasing the strength of the electric field, and hence the 

electron temperature of the energetic electrons in the plasma. Moreover, introducing a 

catalyst into the plasma changes the homogeneous gas phase chemical reactions into the 
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combination of gas phase reactions and gas-solid reactions on the catalyst. Therefore, the 

catalyst property can influence the reaction in NTPs. It has been reported that CO2 can be 

adsorbed and activated on a nickel catalyst.51, 56, 57 The dissociation of CO2 to adsorbed CO 

and O can be detected on Ni even at room temperature.56 A study on CO2 adsorption and 

decomposition on Ni by using density functional theory methods reveals that Ni shows 

favourable thermodynamics and low CO2 dissociation barriers for CO2 reduction. The 

chemisorbed CO2 is partially negatively charged and has elongated C-O bond lengths and a 

bent CO2 structure because of the electron transfer from nickel surface to the antibonding 

orbital of CO2.57 Therefore, the dissociation energy of the chemisorbed CO2 on the surface of 

Ni could be lower than that in gas phase (5.5eV). According to the electron energy 

distribution function (EEDF) in an NTP, some electrons with the energy lower than 5.5eV 

could be effective for adsorbed CO2 dissociation on the Ni/SiO2 catalyst. In comparison with 

the reaction in the absence of a Ni/SiO2 catalyst, introducing a Ni/SiO2 catalyst into the 

plasma could enhance the electron temperature and decrease the CO2 bond dissociation 

energy, which may lead to a synergistic effect of plasma catalysis and result in enhanced CO2 

decomposition. 

 

 

 
As shown in Fig. 4, a Ni/SiO2 catalyst in the plasma can enhance the CO2 conversion 

significantly at low temperatures and ambient pressure. A mechanism of CO2 decomposition 

over a Ni/SiO2 catalyst could be proposed based on the experimental results and above 

discussion (Fig. 5). 

 

 

 
Under NTP conditions, in addition to the CO2 dissociation to CO and O radicals in a gas 

phase plasma, CO2 and plasma excited CO2 molecules can be adsorbed on the surface of a 
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Ni/SiO2 catalyst to form adsorbed CO2ad. In an NTP, the energetic electrons can dissociate 

these CO2ad molecules to form COad and adsorbed Oad species on the catalyst. The desorption 

of COad can release CO. At the same time, the recombination of Oad, can form adsorbed 

oxygen O2ad. The desorption of O2ad can release O2. Meanwhile, the Oad species may oxidize 

Ni catalyst to produce NiO on the catalyst, and the NiO could be reduced to Ni by COad or 

CO in the reaction. 

 

 

 
It is also possible that the CO and O radicals produced by plasma in gas phase can be 

adsorbed on the catalyst to form COad and Oad. The combination of Oad and COad on the Ni 

catalyst could result in the formation of CO2. The other reactions, such as the reaction 

between Oad and CO, and the reaction between O and COad, may result in CO2 formation as 

well. Various research groups have reported that the recombination of O radicals to O2 

prevails over the combination of CO with O radicals on various solid surfaces at low 

temperatures.27, 28, 36, 58
 

 

 

 
Temperature is a key factor affecting chemical reactions over catalysts under thermal reaction 

conditions. To explore the influence of temperature on CO2 decomposition over a mixture of 

Ni/SiO2 catalyst and BaTiO3 balls assisted by a DBD plasma, a tubular furnace was used to 

keep the plasma reactor wall temperature at 70, 90, 100, 115, 125 and 140º C, respectively. 

 

 

 
Fig. 6 shows that the wall temperature of the reactor is an important factor affecting CO2 

decomposition over a mixture of Ni/SiO2 catalyst and BaTiO3 balls in a DBD plasma. When 

the reactor wall temperature was lower than 115ºC, the variation of reactor wall temperature 
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does not influence the CO2 conversion apparently. However, when the reactor wall 

temperature was increased from 115 to 140ºC, a Ni/SiO2 catalyst decreased the CO2 

conversion significantly from 23 to 10%. Our further experiment reveals that the variation of 

wall temperature does not influence the CO2 conversion obviously in the DBD reactor packed 

with BaTiO3 balls only in the wall temperature range tested (70-140ºC), indicating that the 

reverse reaction of CO2 decomposition over Ni/SiO2 catalyst became dominant at higher wall 

temperatures of the reactor. 

It was reasonable to suggest that the reactions between COad and Oad, COad and O, and CO 

and Oad, over the Ni/SiO2 catalyst could be promoted at higher wall/reaction temperatures, 

which could result in lower CO2 conversion (equation 7-9). Moreover, the NiO can catalyse 

the oxidation of CO to CO2 in the reaction.59, 60
 

 

COad + Oad ⎯⎯→ CO2 (7) 

 

 

COad + O ⎯⎯→ CO2 (8) 

 

 

CO + Oad ⎯⎯→ CO2 (9) 

 

 

 

 
 

It is important to clarify that the real reaction temperature in the plasma reactor could be 

higher than the wall temperature of the reactor. Therefore, to achieve a higher CO2 

conversion, it is important to remove the heat produced by plasma to prevent the reverse 

reaction of CO2 decomposition over Ni/SiO2 catalyst in an NTP. 
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3.4 Catalyst characterization 

 

 
The fresh and used catalysts after prolonged experiment (5h) at 100ºC were characterized by 

SEM, BET, XRD and TEM. As shown in Fig. 7, the fresh and spent catalyst samples have 

hierarchical pore structure. Those SEM images (Fig. 7a and Fig. 7b) revealed that the 

hierarchical pore structure is stable after the experiment in a DBD plasma. The comparison of 

the specific surface area between the spent Ni/SiO2 catalyst (175 m2/ g) and the fresh one 

(181m2/g) demonstrated that the specific surface area of the catalyst does not decrease 

significantly after the reaction assisted by a DBD plasma. 

 

 

 

 
The XRD patterns of the fresh and spent catalysts were depicted in Fig. 8. The typical peaks 

corresponding to metallic Ni (44.49°, 51.9° and 76.4°) could be observed in the fresh and 

spent catalysts. Meanwhile, the peaks corresponding to NiO (37.3°, and 63°) were also 

detected in the fresh catalyst. The peak corresponding to NiO (43.3°) was quite small in the 

fresh catalyst and it was overlapped by the strong peak corresponding to metallic Ni (44.49°). 

After reaction, a shoulder peak (42-47°) corresponding to NiO (43.3°) and metallic Ni 

(44.49°) was observed in the XRD profile of the spent catalyst, and the intensity of the peaks 

corresponding to NiO (37.3°, and 63°) increased obviously, indicating that some of the 

metallic Ni was oxidized to NiO in the reaction at the reactor wall temperature of 100ºC. 

 

 

 

 

 

As described in 3.1, the conversion of some Ni to NiO on the Ni/SiO2 catalyst did not result 

in apparent decrease in CO2 conversion in a DBD plasma. 
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According to the TEM images of the Ni/SiO2 catalyst samples (Fig. 9), the Ni particle size on 

a Ni/SiO2 could be decreased to some extent after the plasma assisted CO2 decomposition. 

The same result was observed in the NTP assisted CO2 and CH4 conversion over a Ni/SiO2 

catalyst at 110 ºC and ambient pressure.45 Recently, Jwa and co-workers also reported that  

the size of Ni crystallite decreased after a plasma assisted methanation of CO and CO2 over 

Ni/Zeolite catalysts at the reaction temperature of 180-260 ºC and atmospheric pressure. 61
 

 

 
The metal particle size on a catalyst support is an important factor affecting the activity, 

selectivity, and stability of the catalyst in a reaction. In thermal catalytic process, high 

reaction temperatures can lead to agglomeration of Ni particles, which is one of the major 

drawbacks of the supported nickel catalysts. The catalyst could loss active sites/surface, and 

consequently be deactivated at higher reaction temperatures due to the sintering of Ni 

particles.62-64 In the CO2 decomposition over a Ni/SiO2 catalyst promoted by a DBD plasma, 

it is not the temperature, but the energetic electrons initiating the reaction at low 

temperatures, which could inhibit the agglomeration of Ni particles on the catalyst. At the 

same time, the energetic electrons in a strong electric field of DBD plasmas may affect the 

interaction between Ni particles and SiO2, which may improve the distribution of Ni particles 

on the catalyst. 

 
 

3.5 Energy efficiency 

 

 
Energy efficiency is a big concern for the implementation of plasma assisted chemical 

process. The highest possible energy efficiency can be obtained in a microwave plasma 

because the vibrational levels of CO2 could be excited selectively, which can promote 
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efficient CO2 dissociation in this type of plasma.22 The calculated energy efficiency of CO2 

dissociation in a microwave plasma could be as high as 23% at reduced pressure of 19.95 torr. 

However, the energy efficiency of CO2 conversion is less than 5% in an atmospheric DBD 

plasma because the electron impact dissociation of CO2 is the key step in the plasma. 25, 65
 

 

 
 
Figure 10 shows the influence of SIE on CO2 decomposition per unit energy (mmol/kJ) 

(CPUE) based on the results depicted in Fig. 2, Fig. 3, Fig. 4, and Fig. 6. The permittivity of 

packing beads, exposing a stainless steel mesh to the plasma, and introducing a Ni/SiO2 

catalyst into the plasma influenced the CO2 CPUE significantly. The CO2 CPUE decreases 

with an increase in SIE over BaTiO3 beads, BaTiO3 beads/mesh, BaTiO3 beads/catalyst, and 

glass balls (5 mm). In contrast, it increases with an enhancement in SIE over glass beads and 

glass beads/mesh. It is important to note that replacing glass beads with BaTiO3 balls or glass 

balls (5 mm) can significantly enhance the CO2 CPUE by a factor of 9.1 at the SIE of 55.2 

kJ/L. Furthermore, exposing a stainless steel mesh electrode to the plasma activated species 

in a DBD reactor packed with glass balls enhanced the CO2 CPUE by a factor of 5.1. In 

comparison with the result packed with glass balls, the combination of BaTiO3 beads with 

stainless steel mesh significantly enhanced the CO2 CPUE by a factor of 14.8, and that with a 

Ni/SiO2 catalyst increased it by a factor of 11.5. 

 

 

 
In this study, the highest energy efficiency (3.4%) of CO2 decomposition was achieved by 

exposing a stainless steel mesh to the DBD plasma packed with BaTiO3 balls at CO2 

conversion of 16.3% and SIE of 55.2 kJ/L. Compared with the results in literature25, 35, 36, it is 

possible to further enhance the energy efficiency of CO2 dissociation by optimizing the DBD 
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reactor configuration, the reaction parameters (such as plasma power, gas flow rate, wall 

temperature), and introducing a proper catalyst into the plasma. 

 

 

 
In a DBD reactor, to increase the mean electron energy and/or reduce the bond dissociation 

energy of CO2 molecules by using a catalyst is a key to achieve enhanced CO2 decomposition 

and higher energy efficiency. As discussed above, introducing high permittivity packing 

materials into the discharge gap may enhance the reduced electric field which can result in 

higher mean electron energy, and then promote the dissociation of CO2 molecules 

significantly, and hence enhance the energy efficiency. Furthermore, the bond dissociation 

energy of CO2 on transition metal surfaces (such as Fe, Ni) or a Ni/SiO2 catalyst can be 

reduced to some extent due to the activation of CO2 on stainless steel mesh electrode or the 

Ni/SiO2 catalyst.51, 57 Therefore, the energetic electrons with lower energy (< 5.5 eV) may 

become effective for the adsorbed CO2 dissociation on stainless steel mesh or the catalyst, 

which may lead to higher CO2 conversion and enhanced energy efficiency at low 

temperatures. However, the Ni/SiO2 catalyst may catalyse the reverse reaction of CO2 

decomposition at higher reaction temperatures (Fig. 6), which may result in reduced energy 

efficiency. 

 

 

 
In addition to be consumed by the excitation, ionization, and dissociation of molecules, more 

than 60% of the plasma power converts to heat due to the dielectric heating, the 

recombination reactions and quenching collisions in a DBD plasma.66, 67 Substantial fraction 

of energy supplied to the DBD plasma leads to vibrational excitation of CO2 molecules. 

However, the contribution of those vibrationally excited CO2 molecules to CO2 dissociation 

is limited because most of the energy transferred to vibrational excitation of CO2 converted to 
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heat in DBD plasmas. 65 Therefore, effective recovering/removing the thermal energy from a 

DBD plasma reactor can not only prevent the reverse reaction of CO2 decomposition but also 

harvest the thermal energy generated by DBD plasmas, which may significantly improve the 

energy efficiency of plasma assisted CO2 decomposition at low temperatures and ambient 

pressure. Furthermore, NTP assisted production of fuels and value-added chemicals from 

CO2 using renewable energy sources (solar, wind, nuclear, geothermal, or hydroelectricity) 

could be a sustainable and potential alternative to reduce CO2 emission. 

 

 

 
Moreover, the utilization of the thermal energy generated by DBD plasmas may lead to 

energy efficient technologies for plasma assisted conventional catalytic processing. It is 

known that reactant molecules can be activated on a catalyst at certain temperatures. The 

energetic electrons generated by an NTP may influence the mechanism of the conventional 

catalytic reactions at different reaction temperatures. Therefore, the integration of an NTP  

and conventional thermal catalysis may improve the activity, selectivity, and stability of the 

catalyst under thermal catalytic reaction conditions with improved energy efficiency. The 

synergistic effect of plasma catalysis for different chemical process with higher energy 

efficiency can be achieved by a deep understanding of plasma assisted catalysis at various 

reaction temperatures and ambient pressure. 

 

 

 

 
4. Conclusions 

 

CO2 decomposition to CO and O2 was investigated in a DBD reactor packed with BaTiO3 

balls, glass balls with different sizes, and a mixture of a Ni/SiO2 catalyst and BaTiO3 balls at 

lower temperatures and ambient pressure. The permittivity and the size of packing beads are 
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key factors affecting the reaction in an NTP. CO2 conversion over BaTiO3 beads is higher 

than that over glass balls because the average electron energy and the mean electric field 

strength that lead to CO2 activation/decomposition are higher in a DBD reactor packed with 

BaTiO3 balls than that packed with glass balls with the same size. Increasing the size of glass 

balls results in higher CO2 conversion because the mean energy dissipated in an individual 

micro-discharge in a DBD plasma packed with larger glass balls was higher than that packed 

with smaller ones at the same plasma power. The insertion of a stainless steel mesh into a 

plasma reactor may lead to catalytic effect and/or influence the electrical characteristics of  

the plasma reactor, which may contribute to the enhancement of CO2 conversion. In 

comparison to the reaction in the absence of a Ni/SiO2 catalyst, introducing a Ni/SiO2 catalyst 

to the plasma reactor packed with BaTiO3 balls can promote CO2 decomposition significantly 

at low temperatures and ambient pressure because CO2 could be activated on the Ni/SiO2 

catalyst, which could result in a synergistic effect of plasma catalysis and lead to enhanced 

CO2 decomposition. However, the catalyst can catalyse the reverse reaction of CO2 

decomposition at higher wall temperatures (> 115 ºC), which could result in decreased CO2 

conversion and lower energy efficiency. After a prolonged experiment, some metallic Ni was 

oxidized to NiO and the size of Ni particles had reduced to some extent on the Ni/SiO2 

catalyst. The energy efficiency of plasma assisted CO2 remediation can be enhanced by 

increasing the mean electron energy by introducing high permittivity materials such as 

BaTiO3, optimizing the plasma reactor configuration and packing beads, introducing a proper 

catalyst, and recovering/removing the thermal energy from the DBD reactor. The integration 

of NTP assisted direct CO2 conversion to CO (or synthesis gas (CO + H2) by adding H2 in the 

downstream) and the established chemical processing using CO (or synthesis gas) as 

feedstock may provide an alternative for the production of value-added chemicals and fuels 

from CO2. 



33  

 
 

Acknowledgements 

 

Support of this work by FP7-EU-project COPIRIDE (Combining Process Intensification- 

driven Manufacture of Microstructured Reactors and Process Design regarding to Industrial 

Dimensions and Environment, Grant agreement no.: CP-IP 228853-2), FP7-EU-project 

PolyCat (Modern polymer-based catalysts and micro-flow conditions as key elements of 

innovations in fine chemical synthesis, Grant agreement no.: CP-IP 246095-2 is gratefully 

acknowledged. 

 

 

 
References 

1. Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C. B.; Frieler, K.; Knutti, R.; Frame, D. 
J.; Allen, M. R., Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 Degrees C. 
Nature 2009, 458, 1158-U96. 
2. Matthews, H. D.; Gillett, N. P.; Stott, P. A.; Zickfeld, K., The Proportionality of Global 
Warming to Cumulative Carbon Emissions. Nature 2009, 459, 829-U3. 
3. Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S. J.; 
Janetos, A.; Edmonds, J., Implications of Limiting CO2 Concentrations for Land Use and Energy. 
Science 2009, 324, 1183-1186. 
4. Song, C. S., Global Challenges and Strategies for Control, Conversion and Utilization of CO2 
for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing. Catal. 
Today 2006, 115, 2-32. 
5. Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; 
Muller, T. E., Worldwide Innovations in the Development of Carbon Capture Technologies and the 
Utilization of CO2. Energy Environ. Sci. 2012, 5, 7281-7305. 
6. Cuellar-Franca, R. M.; Azapagic, A., Carbon Capture, Storage and Utilisation Technologies: A 
Critical Analysis and Comparison of Their Life Cycle Environmental Impacts. J. CO2 Util. 2015, 9, 82- 
102. 
7. Centi, G.; Perathoner, S., Opportunities and Prospects in the Chemical Recycling of Carbon 
Dioxide to Fuels. Catal. Today 2009, 148, 191-205. 
8. Omae, I., Recent Developments in Carbon Dioxide Utilization for the Production of Organic 
Chemicals. Coord. Chem. Rev. 2012, 256, 1384-1405. 
9. Li, Y. W.; Chan, S. H.; Sun, Q., Heterogeneous Catalytic Conversion of CO2: a Comprehensive 
Theoretical Review. Nanoscale 2015, 7, 8663-8683. 
10. Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L., Recent Advances in Catalytic Hydrogenation of 
Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 3703-3727. 



34  

11. Dimitriou, I.; Garcia-Gutierrez, P.; Elder, R. H.; Cuellar-Franca, R. M.; Azapagic, A.; Allen, R. W. 
K., Carbon Dioxide Utilisation for Production of Transport Fuels: Process and Economic Analysis. 
Energy Environ. Sci. 2015, 8, 1775-1789. 
12. Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R., Hydrogenation of CO2 to Value-added Products- 
A Review and Potential Future Developments. J. CO2 Util. 2014, 5, 66-81. 
13. Keim, W., Carbon Monoxide-Feedstock for Chemicals, Present and Future. J. of Organomet. 
Chem. 1989, 372, 15-23. 
14. Chen, Z. F.; Concepcion, J. J.; Brennaman, M. K.; Kang, P.; Norris, M. R.; Hoertz, P. G.; Meyer, 
T. J., Splitting CO2 Into CO And O2 by a Single Catalyst. Proc. Natl. Acad. of Sci. U. S. A. 2012, 109, 
15606-15611. 
15. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G. G.; Jiao, F., A Selective 
and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nat. Commun. 2014, 5. 
16. Wu, H. C.; Chang, Y. C.; Wu, J. H.; Lin, J. H.; Lin, I. K.; Chen, C. S., Methanation of CO2 and 
Reverse Water Gas Shift Reactions on Ni/SiO2 Catalysts: the Influence of Particle Size on Selectivity 
and Reaction Pathway. Catal. Sci. Technol. 2015, 5, 4154-4163. 
17. Pakhare, D.; Spivey, J., A Review of Dry (CO2) Reforming of Methane over Noble Metal 
Catalysts. Chem. Soc. Rev. 2014, 43, 7813-7837. 
18. Wang, S. B.; Lu, G. Q. M.; Millar, G. J., Carbon dioxide reforming of methane to produce 
synthesis gas over metal-supported catalysts: State of the art. Energ. Fuel. 1996, 10, (4), 896-904. 
19. Eliasson, B.; Egli, W.; Kogelschatz, U., Modelling of Dielectric Barrier Discharge Chemistry. 
Pure Appl. Chem. 1994, 66, U1766-U1778. 
20. Fridman, A., Plasma Chemistry. Cambridge University Press: New York, 2008. 
21. Kogelschatz, U., Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial 
Applications. Plasma Chem. Plasma Process. 2003, 23, 1-46. 
22. Spencer, L. F.; Gallimore, A. D., CO2 Dissociation in an Atmospheric Pressure Plasma/Catalyst 
System: a Study of Efficiency. Plasma Sources Sci. Technol. 2013, 22, 015019. 
23. Vesel, A.; Mozetic, M.; Drenik, A.; Balat-Pichelin, M., Dissociation of CO2 Molecules in 
Microwave Plasma. Chem. Phys. 2011, 382, 127-131. 
24. Heijkers, S.; Snoeckx, R.; Kozak, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A., 
CO2 Conversion in a Microwave Plasma Reactor in the Presence of N2: Elucidating the Role of 
Vibrational Levels. J. Phys. Chem. C 2015, 119, 12815-12828. 
25. Kozak, T.; Bogaerts, A., Splitting of CO2 by Vibrational Excitation in Non-Equilibrium Plasmas: 
a Reaction Kinetics Model. Plasma Sources Sci. Technol. 2014, 23, 045004. 
26. Spencer, L. F.; Gallimore, A. D., Efficiency of CO2 Dissociation in a Radio-Frequency Discharge. 
Plasma Chem. Plasma Process. 2011, 31, 79-89. 
27. Mori, S.; Yamamoto, A.; Suzuki, M., Characterization of a Capillary Plasma Reactor for 
Carbon Dioxide Decomposition. Plasma Sources Sci. Technol. 2006, 15, 609-613. 
28. Horvath, G.; Skalny, J. D.; Mason, N. J., FTIR Study of Decomposition of Carbon Dioxide in DC 
Corona Discharges. J. Phys. D: Appl. Phys. 2008, 41. 
29. Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B., 
Conversion of Carbon Dioxide to Value-Added Chemicals in Atmospheric Pressure Dielectric Barrier 
Discharges. Plasma Sources Sci. Technol. 2010, 19, 034015. 
30. Aerts, R.; Somers, W.; Bogaerts, A., Carbon Dioxide Splitting in a Dielectric Barrier Discharge 
Plasma: A Combined Experimental and Computational Study. Chemsuschem 2015, 8, 702-716. 
31. Wiegand, W. J.; Nighan, W. L., Plasma Chemistry of CO2-N2-He Discharges. Appl. Phys. Lett. 
1973, 22, 583-586. 
32. Li, R.; Tang, Q.; Yin, S.; Sato, T., Investigation of Dielectric Barrier Discharge Dependence on 
Permittivity of Barrier Materials. Appl. Phys. Lett. 2007, 90, 131502. 
33. Li, R. X.; Yamaguchi, Y.; Shu, Y.; Qing, T.; Sato, T., Influence of Dielectric Barrier Materials to 
the Behavior of Dielectric Barrier Discharge Plasma for CO2 Decomposition. Solid State Ionics 2004, 
172, 235-238. 



35  

34. Li, R. X.; Tang, Q.; Yin, S.; Sato, T., Plasma Catalysis for CO2 Decomposition by Using Different 
Dielectric Materials. Fuel Process. Technol. 2006, 87, 617-622. 
35. Mei, D. H.; Zhu, X. B.; He, Y. L.; Yan, J. D.; Tu, X., Plasma-Assisted Conversion of CO2 in a 
Dielectric Barrier Discharge Reactor: Understanding the Effect of Packing Materials. Plasma Sources 
Sci. Technol. 2015, 24, 015011. 
36. Yu, Q.; Kong, M.; Liu, T.; Fei, J.; Zheng, X., Characteristics of the Decomposition of CO2 in a 
Dielectric Packed-Bed Plasma Reactor. Plasma Chem. Plasma Process. 2012, 32, 153-163. 
37. Eliasson, B.; Kogelschatz, U., Modeling and Applications of Silent Discharge Plasmas IEEE 
Trans. Plasma Sci. 1991, 19, 309-323. 
38. Kraus, M.; Eliasson, B.; Kogelschatz, U.; Wokaun, A., CO2 Reforming of Methane by the 
Combination of Dielectric-Barrier Discharges and Catalysis. Phys. Chem. Chem. Phys. 2001, 3, 294- 
300. 
39. Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B., Review of Packed-Bed Plasma Reactor for 
Ozone Generation and Air Pollution Control. Ind. Eng. Chem. Res. 2008, 47, 2122-2130. 
40. Kogelschatz, U.; Eliasson, B.; Egli, W., Dielectric-Barrier Discharges. Principle and Applications. 
J. De Phys. IV 1997, 7, 47-66. 
41. Takaki, K.; Shimizu, M.; Mukaigawa, S.; Fujiwara, T., Effect of Electrode Shape in Dielectric 
Barrier Discharge Plasma Reactor for NOx Removal. IEEE Trans. Plasma Sci. 2004, 32, 32-38. 
42. Ogata, A.; Shintani, N.; Mizuno, K.; Kushiyama, S.; Yamamoto, T., Decomposition of Benzene 
using a Nonthermal Plasma Reactor Packed with Ferroelectric Pellets. IEEE Trans. Ind. Appl. 1999, 35, 
753-759. 
43. Chen, H. L.; Lee, H. M.; Chen, S. H.; Chao, Y.; Chang, M. B., Review of Plasma Catalysis on 
Hydrocarbon Reforming for Hydrogen Production-Interaction, Integration, and Prospects. Appl. 
Catal., B 2008, 85, 1-9. 
44. Schmidt-Szalowski, K., Catalytic Properties of Silica Packings under Ozone Synthesis 
Conditions. Ozone: Sci. Eng. 1996, 18, 41-56. 
45. Zhang, K.; Mukhriza, T.; Liu, X.; Greco, P. P.; Chiremba, E., A Study on CO2 and CH4 
Conversion to Synthesis Gas and Higher Hydrocarbons by the Combination of Catalysts and 
Dielectric-Barrier Discharges. Appl. Catal., A 2015, 502, 138-149. 
46. Yu, Q.; Kong, M.; Liu, T.; Fei, J.; Zheng, X., Non-Thermal Plasma Assisted CO2 Reforming of 
Propane over Ni/Gamma-Al2O3 Catalyst. Catal. Commun. 2011, 12, 1318-1322. 
47. Wallis, A. E.; Whitehead, J. C.; Zhang, K., Plasma-Assisted Catalysis for the Destruction of 
CFC-12 in Atmospheric Pressure Gas Streams Using TiO2. Catal. Lett. 2007, 113, 29-33. 
48. Mei, D. H.; Zhu, X. B.; Wu, C. F.; Ashford, B.; Williams, P. T.; Tu, X., Plasma-Photocatalytic 
Conversion of CO2 at Low Temperatures: Understanding the Synergistic Effect of Plasma-Catalysis. 
Appl. Catal., B 2016, 182, 525-532. 
49. Wagner, H. E.; Brandenburg, R.; Kozlov, K. V.; Sonnenfeld, A.; Michel, P.; Behnke, J. F., The 
Barrier Discharge: Basic Properties and Applications to Surface Treatment. Vacuum 2003, 71, 417- 
436. 
50. Falkenstein, Z.; Coogan, J. J., Microdischarge Behaviour in the Silent Discharge of Nitrogen- 
Oxygen and Water-Air Mixtures. J. Phys. D:Appl. Phys. 1997, 30, 817-825. 
51. Liu, C.; Cundari, T. R.; Wilson, A. K., CO2 Reduction on Transition Metal (Fe, Co, Ni, and Cu) 
Surfaces: In Comparison with Homogeneous Catalysis. J. Phys. Chem. C 2012, 116, 5681-5688. 
52. Wang, J. Y.; Xia, G. G.; Huang, A. M.; Suib, S. L.; Hayashi, Y.; Matsumoto, H., CO2 
Decomposition Using Glow Discharge Plasmas. J. Catal. 1999, 185, 152-159. 
53. Brock, S. L.; Shimojo, T.; Marquez, M.; Marun, C.; Suib, S. L.; Matsumoto, H.; Hayashi, Y., 
Factors Influencing the Decomposition of CO2 in AC Fan-Type Plasma Reactors: Frequency, 
Waveform, and Concentration Effects. J. Catal. 1999, 184, 123-133. 
54. Brook, S. L.; Marquez, M.; Suib, S. L.; Hayashi, Y.; Matsumoto, H., Plasma Decomposition of 
CO2 in the Presence of Metal Catalysts. J. Catal. 1998, 180, 225-233. 



36  

55. Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. F.; Ferizell, D. H., NIST Chemical 
Kinetics Datebase, Windows Version 2Q98 ed. U. S. Department of Commerce, National Institute of 
Standards and Technology: Gaithersburg, MD: 1998. 
56. Bartos, B.; Freund, H. J.; Kuhlenbeck, H.; Neumann, M.; Lindner, H.; Muller, K., Adsorption 
and Reaction of CO2 and CO2/O Coadsorption on Ni(110) - Angel Resolved Photoemission (ARUPS) 
and Electron-Energy Loss (HREELS) Studies. Surf. Science 1987, 179, 59-89. 
57. Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J., Chemisorption of CO2 on Nickel 
Surfaces. J. Phys. Chem. B 2005, 109, 18956-18963. 
58. Yamamoto, A.; Mori, S.; Suzuki, M., Scale-up or Numbering-up of a Micro Plasma Reactor for 
the Carbon Dioxide Decomposition. Thin Solid Films 2007, 515, 4296-4300. 
59. Conner, W. C.; Bennett, C. O., Carbon Monoxide Oxidation on Nickel Oxide. J. Catal. 1976, 41, 
30-39. 
60. Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D., NiO nanorings and their unexpected catalytic property 
for CO oxidation. Nanotechnology 2006, 17, 979-983. 
61. Jwa, E.; Lee, S. B.; Lee, H. W.; Mok, Y. S., Plasma-Assisted Catalytic Methanation of CO and 
CO2 over Ni-Zeolite Catalysts. Fuel Process. Technol. 2013, 108, 89-93. 
62. Hashemnejad, S. M.; Parvari, M., Deactivation and Regeneration of Nickel-Based Catalysts 
for Steam-Methane Reforming. Chin. J. Catal. 2011, 32, 273-279. 
63. Bartholomew, C. H.; Sorensen, W. L., Sintering Kinetics of Silica-Supported and Alumina- 
Supported Nickel in Hydrogen Atmosphere. J. Catal. 1983, 81, 131-141. 
64. Wang, S. B.; Lu, G. Q. M., CO2 Reforming of Methane on Ni Catalysts: Effects of the Support 
Phase and Preparation Technique. Appl. Catal., B 1998, 16, 269-277. 
65. Aerts, R.; Martens, T.; Bogaerts, A., Influence of Vibrational States on CO2 Splitting by 
Dielectric Barrier Discharges. J. Phys. Chem. C 2012, 116, 23257-23273. 
66. Kappes, T.; Schiene, W.; Hammer, T., Energy Balance of a Dielectric Barrier Discahreg  
Reactor for Hydrocarbon Steam Reforming. In The 8th international symposium on high pressure low 
temperature plasma chemistry, Puhajarve, Estonia, 2002; Vol. 2, pp 196-200. 
67. Hammer, T., Atmospheric Pressure Plasma Application for Pollution Control in Industrial 
Processes. Contrib. Plasma Phys. 2014, 54, 187-201. 



37  

 

Figure Captions 

 

 

Fig. 1 Schematic of the experimental setup and the dielectric-barrier discharge reactor with 

different configurations: (a) Schematic of the experimental setup; (b) Schematic of the 

dielectric-barrier discharge reactor one; (c) Schematic of the dielectric-barrier discharge 

reactor two; (d) Schematic of the dielectric-barrier discharge reactor three; and (e) A picture 

of the dielectric-barrier discharge reactor one packed with glass balls 

 

 
Fig. 2 Influence of dielectric barrier materials on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; CO2 Flow rate: 50 mL/min; Frequency: around 

20 kHz; 2 electrodes insulated; SIE: 55.2-127.2 kJ/L) 

 

 
Fig. 3 Influence of reactor configuration on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; CO2 Flow rate: 50 mL/min; Frequency: around 

20 kHz; SIE: 55.2-127.2 kJ/L) 

(Note: Glass / mesh or BaTiO3 / mesh: a stainless steel mesh electrode was fixed on the 

internal surface of the external quartz tube of the reactor; Glass + mesh or BaTiO3 + mesh: a 

stainless steel mesh was fixed on the internal surface of the external quartz tube of the 

reactor.) 

 

 
Fig. 4 Influence of Ni/SiO2 catalyst on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; Frequency: around 20 kHz; CO2 flow rate: 50 

mL/min; 2 electrodes insulated; SIE: 55.2-127.2 kJ/L) 

 

 
Fig. 5 Schematic representation of CO2 decomposition over a Ni/SiO2 catalyst assisted by 

dielectric barrier discharges 

 

 
Fig. 6 Influence of wall temperature on CO2 conversion 

(Pressure: 1 bar; Wall power: 106 W; Frequency: around 20 kHz; CO2 flow rate: 50 mL/min; 

2 electrodes insulated; SIE: 127.2 kJ/L) 

Fig. 7 SEM images of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 
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Fig. 8 XRD patterns of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 

Fig. 9 TEM images of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 

 
Fig. 10 Influence of specific input energy on CO2 conversion per unit energy 

(Pressure: 1 bar; Wall temperature: 100 °C; Frequency: around 20 kHz; CO2 flow rate: 50 

mL/min; power: 46-106 W) 

(Note: Glass / mesh or BaTiO3 / mesh: a stainless steel mesh electrode was fixed on the inner 

surface of the external quartz tube of the reactor) 
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(a) Schematic of the experimental setup 
 

 

 

 

 
 

(b) Schematic of the dielectric-barrier discharge reactor one 
 

 

 

 

 
 

(c) Schematic of the dielectric-barrier discharge reactor two 
 

 

 

 

(d) Schematic of the dielectric-barrier discharge reactor three 
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(e) A picture of the dielectric-barrier discharge reactor one packed with glass balls 

 

 

Fig. 1 Schematic of the experimental setup and the dielectric-barrier discharge reactor with 

different configurations: (a) Schematic of the experimental setup; (b) Schematic of the 

dielectric-barrier discharge reactor one; (c) Schematic of the dielectric-barrier discharge 

reactor two; (d) Schematic of the dielectric-barrier discharge reactor three; and (e) A picture 

of the dielectric-barrier discharge reactor one packed with glass balls 
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Fig. 2 Influence of dielectric barrier materials on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; CO2 Flow rate: 50 mL/min; Frequency: around 

20 kHz; 2 electrodes insulated; SIE: 55.2-127.2 kJ/L) 

BaTiO (3 mm) 
3 

Glass (3 mm) 

Glass (4 mm) 

Glass (5 mm) 

C
O

 C
o

n
v

e
rs

io
n

 (
m

o
l.

 %
) 

2
 



42  

 

 

 

 

 

 

 

 

 

 

 

 

35 

 
30 

 

25 
 

20 
 

15 
 

10 
 

5 
 

0 
40 50 60 70 80 90 100 110 

Plasma power (W) 

 

 

 

 

 

 

 

 
 

Fig. 3 Influence of reactor configuration on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; CO2 Flow rate: 50 mL/min; Frequency: around 

20 kHz; SIE: 55.2-127.2 kJ/L) 

(Note: Glass / mesh or BaTiO3 / mesh: a stainless steel mesh electrode was fixed on the inner 

surface of the external quartz tube of the reactor; Glass + mesh or BaTiO3 + mesh: an 

additional stainless steel mesh was fixed on the inner surface of the external quartz tube of 

the reactor.) 

Glass 

  Glass + mesh 

Glass / mesh 

BaTiO 
3 

BaTiO / mesh 
3 

BaTiO + mesh 
3 

C
O

 C
o

n
v

e
rs

io
n

 (
m

o
l.

 %
) 

2
 



43  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

24 
 

22 
 

20 
 

18 
 

16 
 

14 
 

12 
 

10 

40 50 60 70 80 90 100 110 

Plasma power (W) 

 

 

 

 

 
 

Fig. 4 Influence of a Ni/SiO2 catalyst on CO2 conversion 

(Pressure: 1 bar; Wall temperature: 100 °C; Frequency: around 20 kHz; CO2 flow rate: 50 

mL/min; 2 electrodes insulated; SIE: 55.2-127.2 kJ/L) 

  
BaTiO 

3 

BaTiO + Ni/SiO 
3 2 

C
O

 C
o

n
v

e
rs

io
n

 (
m

o
l.

 %
) 

2
 



44  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Fig. 5 Schematic representation of CO2 decomposition over a Ni/SiO2 catalyst assisted by 

dielectric barrier discharges 
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Fig. 6 Influence of wall temperature on CO2 conversion 

(Pressure: 1 bar; Frequency: around 20 kHz; CO2 flow rate: 50 mL/min; 2 electrodes 

insulated; SIE: 127.2 kJ/L) 
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Fig. 7 SEM images of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 
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Fig. 8 XRD patterns of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 
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Fig. 9 TEM images of Ni/SiO2 catalyst samples. (a) Fresh catalyst; (b) Spent catalyst 
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Fig. 10 Influence of specific input energy on CO2 conversion per unit energy 

(Pressure: 1 bar; Wall temperature: 100 °C; Frequency: around 20 kHz; CO2 flow rate: 50 

mL/min; power: 46-106 W) 

(Note: Glass / mesh or BaTiO3 / mesh: a stainless steel mesh electrode was fixed on the inner 

surface of the external quartz tube of the reactor) 
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