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ABSTRACT Systems based on wireless gas sensor networks offer a powerful tool to observe and analyze
data in complex environments over long monitoring periods. Since the reliability of sensors is very important
in those systems, gas classification is a critical process within the gas safety precautions. A gas classification
system has to react fast in order to take essential actions in the case of fault detection. This paper proposes a
low latency real-time gas classification service system, which uses a multi-layer perceptron (MLP) artificial
neural network to detect and classify the gas sensor data. An accurate MLP is developed to work with
the data set obtained from an array of tin oxide (SnO2) gas sensor, based on convex micro hotplates. The
overall system acquires the gas sensor data through radio-frequency identification (RFID), and processes the
sensor data with the proposed MLP classifier implemented on a system on chip (SoC) platform from Xilinx.
Hardware implementation of the classifier is optimized to achieve very low latency for real-time application.
The proposed architecture has been implemented on a ZYNQ SoC using fixed-point format and the achieved
results have shown that an accuracy of 97.4% has been obtained.

INDEX TERMS Artificial neural network, gas identification, FPGA, system on chip (SoC), ZYNQ.

I. INTRODUCTION
The oil and gas industry is one of the most dominant indus-
tries for the application of Wireless Sensor Technology [1].
For gas application, Wireless Gas Sensor Networks (WGSN)
systems are used to observe and analyse sensed gas data in
complex environments over long periods. As the accuracy
of data and reliability of sensors are very important in those
systems, a gas classification system has to react fast in order
to take essential actions in case of fault detection. In order to
have a system that reacts fast to the changes each processing
element within the system has to work in a low latency
manner [2]. Generally classifiers within the gas sensor array
system are the most computationally intensive processing
components. Classifiers, such as neural networks, use the data
set acquired from the gas sensor array system and process
them to detect and classify gases and their properties within
the gas chamber.

Feed-forward artificial neural networks (ANN) are
commonly used as classifiers for pattern classification
approaches [3], which also include multi-layer percep-
tron (MLP). In general, software implementation of the MLP
neural networks are used during the algorithm development

phase, where parallel and low latency approach is not needed.
However in real-world applications high speed processing
and low latencies are needed in order to execute the ANN
within the real-time constraints.

The ubiquitous nature and miniaturization of sensor
devices have revolutionized surveillance and monitoring sys-
tems. Now a single sensor node can be equippedwithmultiple
sensors to collect data from different modularities. Since
sensor nodes are becoming increasingly accurate they are
employed to monitor subtle changes to the environment.
In addition, machine learning techniques can be used to
identify behavioural changes by analysing the data collected
from sensor nodes, and generate an alarm signal that indicates
abnormal behaviour.

In this paper, a low-latency, real-time gas classification
system is proposed. The service system uses a MLP ANN
to detect and classify the gas sensor data. An accurate MLP
is developed to work with the data set obtained from an array
of tin-oxide (SnO2) gas sensor [2], based on convex Micro
hotplates (MHP). The proposed system acquires the gas sen-
sor data through radio-frequency identification (RFID), and
processes the sensor data with a novel low latency classifier
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within a heterogeneous ZYNQ System-on-Chip (SoC) plat-
form fromXilinx. ARMprocessor within the ZYNQSoC acts
as a host-processing platform that handles the data acquisition
and transmission as well as the data distribution to and from
the classifier. The interaction between the Processing System
(PS) and the programmable logic (PL) is done with the use
of the Direct Memory Access (DMA) accesses within the
ZYNQ platform. The use of DMA engine provides the classi-
fier the required bandwidth to be able to give the throughput
required for the overall system. Finally hardware implemen-
tation of the MLP classifier is optimized to have very low
latency and response time, in order to process the sensor data
in real-time and to provide a sensible classifier output as fast
as possible, which is a must in failure detection systems.
In this paper an overview of the proposed system approach
and an optimised hardware implementation of a feed-forward
MLP neural network are detailed. The key features of the pro-
posed work are optimizations to have a fixed-point parallel
MLP system for the system level integration of the system.
This paper aims to present a hardware implementation of a
MLP classifier starting with some background work followed
by the system description which includes neural network
architectures and MLP classifier design. Then the details of
FPGA implementation of an MLP algorithm are presented.
Finally conclusions about the approached design and future
work are included.

II. RELATED WORK
The gas classification problem has been widely addressed
in the literature. A summary of various gas identification

systems is presented in Table 1, a comparison is made in
terms of number of gas sensors used, target gases, pre-
processing and classification algorithms as well as on the
implementation platform. The pre-processing algorithms and
classification algorithms used are the following: Euclidean
normalization (EN), principal component analysis (PCA),
linear discriminant analysis (LDA), neuroscale (NS), self-
organized map (SOM), smoothed moving average (SMA),
logarithmic spike timing encoding (LSTE), rank order (RO),
k-nearest neighbors (KNNs), MLP, radial basis func-
tion (RBF), Gaussian mixture model (GMM), probabilistic
principal component analysis (PPCA), image moment (IM),
genetic algorithm (GA), ANN, generative topographic map-
ping (GTM), binary decision tree (DT) classifier and
general linear model (GLM). The types of implementa-
tion platforms used are mainly personal computer (PC),
field-programmable gate array (FPGA), application-specific
integrated circuit (ASIC) and Zynq SoC.

In open literature many research papers have also been
published about the use of FPGAs as the implementation
platform for the MLP neural network for different applica-
tions. In [13], vitabile et al. implemented a MLP ANN that
featured a virtual neuron based architecture with a target to
have an optimized structure for high classification rate and
minimum resource usage. The developed architecture was
applied on high energy physics and road sign recognition
algorithms. In [14], Yilmaz et al. implemented differential
evaluation algorithm on an FPGA platform and cross com-
pared with software simulations done in MATLAB. In [15],
Alizadeh et al. implemented a ANN system that predicts

TABLE 1. Software and hardware based gas identification systems.
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FIGURE 1. Proposed system environment.

cetane number in diesel fuel from the chemical compositions
of the fuel by using the data from chromatography (LC) and
gas chromatography (GC). In [16], Shi et al. implemented a
gas discrimination system with the use of different classifiers
on an FPGA platform. MLP was one of the classification
algorithm which was implemented with the use of the tin-
oxide gas sensors. In [17], Latino et al. implemented a mem-
ory based MLP architecture on an FPGA platform to work
with a smart position sensor system.

In [18], Moradi et al. implemented an MLP for Farsi
handwritten digit recognition algorithm on an FPGAplatform
for speeding up an offline classification. In [19], Blaiech
et al. proposed an efficient implementation of MLP neural
network. Proposed a methodology to increase the efficiency
of the implementation in terms of area and time, via an
automatic generation of the MLP encoding. In [20], Ferreira
et al. proposed an MLP architecture suitable to reduce the
size of large ANN structures. The design is compared with
software implementations. In [21], Bahoura et al. proposed
a pipelined implementation to reduce the critical path and
to increase the frequency of the design for an non-linear
approximation ANN.

III. SYSTEM DESCRIPTION
The proposed system environment and its main component
are illustrated in Fig. 1. The proposed system consists of
a series of gas sensor nodes, where each of this node is
equipped with a gas sensor acquisition unit and a FPGA unit.
The gas sensor acquisition unit is used to monitor the specific
gas molecules, and the FPGA unit is used to analyse and
classify the gas categories. The processed information will
then be sent to the monitoring centre through the WGSN
using a multichip based approach.

The block diagram of the proposed sensor node is shown
in Fig. 2. The Overall system consists of a gas cham-
ber where the gas sensor is present, data acquisition RFID
transmitter and receivers, MLP classifier implemented on a
ZYNQ platform, and a screen to show the system’s output.

FIGURE 2. Proposed sensor node architecture.

The sensor data is read from the gas chamber using the data
acquisition block and transmitted to the processing platform
through RFID [22]. In this particular application the Process-
ing System (PS) is used to handle communication and control
of the RFID block as well as the MLP classifier working on
the PL.

The final output of the overall system is the classified gas
type from the trained neural network. The list of gases used
during the data collection and training is:

• Benzene − C6H6
• CarbonMonoxide − CO
• Formaldehyde − CH2O
• NitrogenDioxide − NO2
• SulfurDioxide − SO2

A. NEURAL NETWORK ARCHITECTURE
In this section, the notation, the ANN architecture and train-
ing process are explained. Neural networks have been widely
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used in pattern classification, completion, approximation,
prediction and optimizations.

TheMLP is an ANN that consists of multiple layers of neu-
rons in a feed-forward architecture. A multilayer perceptron
consists of three or more layers where one input, one output
and one or more hidden layers.MLP uses nonlinear activation
function with the neurons and each layer is fully connected
to the next layer. Several perceptrons are combined in order
to create decision boundary with the use of non-linear/linear
activation functions. Each perceptron provides a non-linear
mapping to a new dimension. Given that MLP is a fully
connected network each neuron in each layer is connection
to the next layer with a certain weight function wij. MLP
uses a supervised learning technique called back propagation.
During the training phase of the neural network weight func-
tion are defined. The training method for theMLP is based on
the minimisation of the chosen cost function which is initially
developed by Werbos [23] and Parker [24].

FIGURE 3. The architecture of the two-layer feed-forward network.

Fig. 3 is an example of an MLP network, where a hidden
layer consists of S neurons and each neuron has R weights,
which can be presented in a S×Rmatrix called Input Weight
matrix I as shown in equation 1. The input vector P has
R elements [p1, p2,. . . , pR]T, which are multiplied by I and
the resulting matrix is summed with a bias vector b1 to form
vector n1 as shown in equation 2. The output of the hidden
layer a1 is the result of applying the transfer function on n1
(see equation 3).

I =


w1,1 w1,2 . . . w1,R
w2,1 w2,2 . . . w2,R

......
wS,1 wS,2 . . . wS,R

 (1)

n1 = I · p+ b1 (2)

a1 = f1(n1) (3)

The same operations applied in the hidden layer are used
in the output layer, which consists of K neurons, where a1 is

used as the input vector (see equations 4, 5 and 6).

L =


w1,1 w1,2 . . . w1,S
w2,1 w2,2 . . . w2,S

......
wK ,1 wK ,2 . . . wK ,S

 (4)

n2 = L · a1+b2 (5)

a2 = f2(n2) (6)

B. MLP CLASSIFIER
The MLP algorithm which is a feed-forward ANN is mod-
elled with two hidden layers and trained using the provided
database [25]. The proposed feed-forward artificial neural
network has 12 input neurons, three hidden neurons and one
output neuron, where the 12 input neurons are correspond-
ing to the 12 features extracted from each gas sample in a
database that contains 600 gas samples. The neural network
is trained by Levenberg-Marquardt backpropagation algo-
rithm [26]. Fig. 4 shows the training performance of theANN.
This particular training uses 70% of the data for training,
15% of the dataset for testing and the remaining 15% for
the validation. In general the hardware implementation of
ANN system can hit to the PL’s routing capabilities quickly
since it requires layer based connectivity. Thus operations
and ANN structure are implemented in optimized way that
utilizes PL’s routing and in fixed-point to limit the internal
numerical precision which becomes a trade-off between hard-
ware resources, calculation time and approximation quality.

FIGURE 4. ANN training performance.

The choice of the number of hidden layers is based on the
performance of the ANN over the testing of using different
hidden layers. Given the desired output of the ANN system
is an integer which indicates the classified gas type, ANN
with higher number of hidden layers tends to have very
good performance during the training however they have bad
performance with the validation stage. The optimal point for
the ANN is chose where validation stage has the lowest Mean
Square Error (MSE) value.
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IV. HARDWARE IMPLEMENTATION
The MLP ANN training phase was done in MATLAB sim-
ulation environment. Since the data set and the gas sensors
are not changing dynamically. Training is proposed to be
done by recorded data and according to the training results.
The implementation of the trained weight data is done using
signed fixed-point representation 24-bit total length with
20 fractional bits. The activation function which has been
used within the MLP algorithm is implemented with the
use of look-up tables (LUTs). Different variations have been
performed to obtain the optimum implementation for this
component, however in order to reduce the latency, the dis-
tributed memory is chosen. The proposed parallel design can
be described as a parallel data-flow architecture, where every
neuron in every layer has one processing element (PE). This
approach allows the system to work in parallel and to produce
a high throughput system as shown in Fig. 5.

FIGURE 5. FPGA implementation.

In Fig. 5, each PE consists of a RAM to store the weights of
the neurons, where the input vector is firstly multiplied by the
weights and accumulated to be fed into the activation function
block. Fig. 6 shows the architecture of the PE.

FIGURE 6. Architecture of the processing element.

The pseudo code of an input layer can be written as
presented in Code 1.

In the feedforward computation perspective, the multi-
accumulation operations will occupy the most of the compu-
tation time. So we will focus on accelerating input and hidden

Code 1: Pseudo Code of an Input Layer
1. Input: Pin is the input data array of sensor readings.
2. Output: Nout is the output data array of the input layer.
3. for (row = 0; row < S; row++){
4. for (col = 0; col < R; col++){
5. Nout [row][col]+=weights[row][col]×Pin[col];
6. }
7. Nout [row][col] = Nout [row][col] + b[row];
8. }

layers. The objective of computation optimisation is to enable
efficient loop unrolling or pipelining while fully utilisation of
all computational resources provided by the FPGA on-chip
hardware. The used optimisation pragmas are highlighted as
follow:

A. LOOP UNROLLING
The loop unrolling strategy can be used to increase the util-
isation of massive computation resources in FPGA devices.
Depending on the way to unroll along different loop dimen-
sions, the implementation variants will be generated. The
complexity of the generated hardware will be affected by
the data dependency of the unrolled execution instances as
well as the affection from the unrolled hardware copies
and the hardware operation frequency. An independent data
sharing relation generates direct connections between buffers
and computation elements. However, a dependent data shar-
ing relation generates interconnects with complex hardware
topology. Loop dimension col is selected to be unrolled to
avoid complex connection topologies for all arrays.

B. LOOP PIPELINING
loop pipelining is another key optimisation techniques in
high-level synthesis to improve the throughput of the sys-
tem, where the execution of operations from different loop
iterations are overlapped in an organised way. Similar to the
loop unrolling techniques, the throughput achieved is limited
by resource constraints and data dependency in the loop.
Code structure after optimisation for loop unrolling and loop
pipelining is shown in Code 2.

Code 2: Pseudo Code of an Input Layer (Optimized
Structure)
9. Input: Pin is the input data array of sensor readings.
10.Output: Nout is the output data array of the input layer.
11. for (row = 0; row < S; row++){
12. #pragma HLS pipeline
13. for (col = 0; col < R; col++){
14. #pragma HLS UNROLL
15. Nout [row][col] += weights[row][col]× Pin[col];
16. }
17. Nout [row][col] = Nout [row][col] + b[row];
18. }

8142 VOLUME 4, 2016
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Figure 7. Sigmoid Function.

Within the MLP algorithm there are several activation
functions, linear and non-linear, which can be chosen accord-
ing to the application domains behaviour. In this implemen-
tation the activation function is used as sigmoid. For the
actual hardware implementation the sigmoid function shown
in Fig. 7, is chosen to be represented as signed fixed-point rep-
resentation was limited in order to accomplish the hardware
implementation with a feasible resource usage, where each
value is implemented in 16-bit total length with 14 fractional
bits.

The Tan-sigmoid function shown in equation 7 is imple-
mented using its simplified version (i.e. equation 8). When
x < −5 or x > +5, the values of tanh(x) is closed to −1 and
+1 respectively. When −5 ≤ x ≤ +5, the values of tanh(x)
have been pre-calculated for using samples of x in this range
{−5,−4.99, . . . , 4.99, 5} where a step size 0.01 is used.

tanh(x) =
ex − e−x

ex + e−x
(7)

tanh(x) =


−1 (x < −5)
ex − e−x

ex + e−x
(−5 ≤ x ≤ +5, stepsize : 0.01)

+1 (x > +5)
(8)

The results from equation 8 are pre-calculated and stored
in a memory. Since the used step size is 0.01 for the range
−5 to +5, there are 1001 results to be stored in the memory.
In order to access the correct pre-calculated results from the
memory, the following formula needs to be used to calculate
the address:

address = (x + 5)× 100 (9)

The entire ROM-based Tan-sigmoid block is shown
in Fig. 8. a1 is a register used to store the current result from
Tan-sigmoid block, which represents one element from the
vector a1 in equation 3.

The hidden layer of the MLP is implemented using similar
way of the input layer, which is responsible to gather classifi-
cation output data from the MLP and send the response to the
PS to be used by the user. An overview of the implementation

Figure 8. ROM-based Tan-sigmoid.

Figure 9. Implementation overview.

is shown in Fig. 9. The whole system fits in one Zynq SoC
chip and uses a DDR3 DRAM and SD card for external
storage. ARM Cortex-A9, a hard processor core is used to
assist with MLP accelerator start-up, reading and storing data
from/to SD card. AXI4lite bus is used for transmitting the
weights, input/output data between PS/PL. TheMLP acceler-
ator works as an IP on the AXI4 bus, it receives configuration
parameters from ARM Cortex-A9 through AXI4lite bus and
sends the processed the data back. Interrupt mechanism is
enabled between ARM processor and MLP accelerator to
provide an accurate time measurement.

V. PERFORMANCE EVALUATION
Although the proposed FPGA implementation of MLP is
mainly based on fixed-point arithmetic, the accuracy of the
proposed implementation is not compromised, and it has
the same results as the floating-point implementation in
MATLAB. The major benefit of using fixed-point implemen-
tation is to reduce the hardware cost and optimize the system
in terms of speed and latency. The accelerator design is imple-
mented with Vivado HLS (v2016.1). This tool enables imple-
menting the MLP accelerator using C/C++ language and
C/RTL simulation as well as exporting the RTL as a Vivado’s
IP core. The C++ code of the MLP design is parallelized
by adding HLS-defined pragma and the pre-synthesis parallel
version is validated with the C/RTL co-simulation tool. The
pre-synthesis resource report are used for design resource
exploration and performance estimation. The RTL is exported
as IP core to be synthesised and implemented in Vivado
(v2016.1). The trained MLP neuron network is implemented
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on the Zybo boardwhich has aXilinx Zynq-7000XC7Z010T-
1CLG400 all programmable SoC. The working frequency
of PS and PL is 650 MHz and 100 MHz respectively. The
software implementation runs on a dual-core Intel i7-5600U
CPU at 2.6 GHz.

A. EXPERIMENTAL RESULTS
In this subsection, the resource utilisation is firstly reported.
Subsequently, the software implementation (on CPU) and the
implementation of the proposed MLP accelerator on FPGA
is compared. Finally, the comparison of the proposed imple-
mentation and existing FPGA approaches is provided.

The Vivado tool is used to complete the placement and
routing of the proposed implementation. The resources util-
isation of the proposed implementation is reported out,
as shown in Table 2.

TABLE 2. FPGA resource utilisation.

As it can be seen from Table 2, the proposed implemen-
tation has only consumed 29.98% slice of the available PL
resources. The 35% DSP48E1 is used to implement mul-
tipliers within the input and hidden layers. Since all loops
(Code 2) have been optimised either using parallel or pipeline
structures, the usage of DSPs is dominant. In order to max-
imise the performance of the proposed implementation, the
input weight array I and input vector array P shown in
equation 2 have been repartitioned into S × R and R smaller
arrays respectively, where S and R is the number of hidden
and input neurons respectively. The major benefit of doing
this is to ensure all the data within the arrays can be fed
into the parallelised multipliers, to be executed at the same
time. The achieved synthesised architecture confirmed that
the desired initiation interval for the pipeline pragma achieves
one initiation, which has greatly reduced data dependencies
of input arrays.

During the conversion process several criteria can be
considered, such as MSE, size of neural network, memory
requirements. The absolute error calculated by the difference
between success rates in fixed-point coding and floating-
point coding reflects the performance criterion of our MLP.
During the fixed-point conversion process, we determined
the integer and fractional part of the MLP after the arith-
metic conversion, which took the floating point double pre-
cision and converted to 2’s complement with 24 bit total
length with 20 fractions. As a result of this, the performance
of classifier with fixed-point implementation remained
same as 96.8% correct classifications from the MATLAB
implementation.

The ARM processor runs at 650 MHz and the PL clocked
at 100 MHz. The processing time of the proposed system is
measured by counting the number of ARM processor’s clock
cycles spent for obtaining the classified results of one Gas
signal from the MLP accelerator. Table 3 shows the compar-
ison between the software and hardware implementations of
the MLP accelerator in terms of the processing time. As it
can be seen in Table 3, the average processing time using
the hardware implementation has improved by a factor of
31 compared to the software implementation on a dual-core
Intel i7-5600U CPU at 2.6 GHz.

TABLE 3. Processing time of the MLP accelerator.

TABLE 4. Estimation of power consumption.

TABLE 5. A comparison of ANN FPGA implementations.

The on-chip power consumption consists mainly of two
parts, which are static and dynamic power consumption.
The static power is consumed due to transistor leakage.
The dynamic power is consumed by fluctuating power as
the design runs, i.e. Zynq7 Processing System (PS7), clock,
power, logic power, signal power, BRAMs power, etc., which
are directly affected by the chip clock frequency and the usage
of chip area. The details of estimated power consumption
of the implementation are summarised in Table 4. The PS7
consumesmuchmore power than the PL; this is due to the fact
that the ARM dual core Cortex-A9 based processing system
has much higher running frequency than the PL and it runs
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TABLE 6. A comparison of existing FPGA-based gas classification implementations.

drivers and control programmes. Compare to the PS7, the
custom logic blocks consumes only a small portion of the
total on-chip power consumption.

Tomeasure the performance ofMLP neural network across
the wide range of platforms that they have been implemented
on, one of the common criteria is: connections per sec-
ond (CPS), where the connections stand for one term in the
sum of ∑

j
WS,RPR (10)

where wS,R and pR are the elements within Input Weight
matrix I and input vector P respectively. Due to the parallel
implementation of FPGA based neural networks, the CPS
metric increases as long with the number of synaptic con-
nections. While taking account the precision of the network,
the connection primitives per second (CPPS) is calculated,
which is equal to bx × bw × CPS, where bx and bw are the
numbers of bit for the inputs and its weights. While taking
account of usage of resources, we calculate the CPPS per
LUT (CPPSL). Table 5 shows an implementation comparison
between the proposed network and other implementations
using these metrics.

The CPPSL metric is a means for normalising the
throughput by dividing by the number of LUTs used in the
implementation. The implementation of the proposed system
maximises flexibility as well as the parallelism over hardware
cost. The architecture of hardware and software co-design
allows the weights of the ANN on the PL site to be easily
updated based on the inputs from the PS site.

Table 6 contains a comparison of existing FPGA-based
gas classification implementations. Unlike the other existing
FPGA-based gas classifiers, the proposed work is imple-
mented on a low-cost Zynq SoC and achieved a similar
recognition rate and processing speed. Although, the work
presented in [12] shows outstanding results in terms of clas-
sification rates and resources utilisations, however, it is worth
noting that the proposed work uses a larger sensor array and
it does not need any pre-calculation on the parameters from a
PC to assist the calculation on FPGA, which means that the
proposed is a complete implementation that can be used as
a standalone platform to classify the gas in a low-cost and
efficient way.

VI. CONCLUSIONS
In this paper, a parallel high speed MLP has been suc-
cessfully implemented on the ZYNQ SoC, to work with
a gas sensor array system. The MLP was trained using a
dataset that has been recorded with a gas chamber. In the
implementation of the trained back-propagation MLP algo-
rithm, 50% of the 196 inputs are used as training set for
training phase and 25% of inputs as test and 25% for the
validation.

The proposed system has been implemented on the
Xilinx Zynq-7000 XC7Z010T-1CLG400 from Xilinx. The
Vivado 2016.1 has been used to implement and synthe-
sise the implementation. Compared to the other implemen-
tations in the open literature, the proposed approach uses
two hidden layers with 12 input neurons, 3 hidden neu-
rons and 1 output neuron. In this work optimizing method-
ology for the implementation of an MLP neural network
for gas applications has been performed which allowed
us to reduce the requirement of the word-length also the
complexity of the ANN system, number of hidden layers.
This methodology has helped to optimize the response of
the MLP.

In terms of future work, it is to develop an intelli-
gent algorithm for sensor failure detection and self-recovery
from the fault status. In addition to this, investigating data
fusion techniques for data transmission optimisation over
the WGSN would be other key research direction for this
project.
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