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Abstract

More than 30% of all pregnancies in the UK require some form of assistance at delivery, with one of the more severe forms
of assistance being an emergency Caesarean section (ECS). Previously it has been shown that the likelihood of a delivery via
ECS is positively associated with the birth weight and size of the newborn and negatively with maternal height. Paternal
height affects skeletal growth and mass of the fetus, and thus might also affect pregnancy outcomes. We hypothesized that
the effect of newborn birth weight on the risk of ECS would decrease with increasing maternal height. Similarly, we
predicted that there would be an increase in ECS risk as a function of paternal height, but that this effect would be relative
to maternal height (i.e., parental height differences). We used data from the Millennium Cohort Study: a large-scale survey
(N = 18,819 births) with data on babies born and their parents from the United Kingdom surveyed 9 to 12-months after
birth. We found that in primiparous women, both maternal height and parental height differences interacted with birth
weight and predicted the likelihood of an ECS. When carrying a heavy newborn, the risk of ECS was more than doubled for
short women (46.3%) compared to tall women (21.7%), in agreement with earlier findings. For women of average height
carrying a heavy newborn while having a relatively short compared to tall partner reduced the risk by 6.7%. In conclusion,
the size of the baby, the height of the mother and parental height differences affect the likelihood of an ECS in primiparous
women.
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Introduction

Obstructed labor, a failure to progress due to a mismatch

between fetal size and the mother’s pelvis [1], accounts for 8% of

maternal deaths worldwide. Only a minor part of these maternal

deaths, i.e. the death of a woman during or shortly after preg-

nancy [2], occur in the developed world, but obstructed labor is

nonetheless a common obstetrical problem. For example, in

England more than 30% of all pregnancies require some form of

assistance at delivery [3], of which an emergency Caesarean

section (ECS) is the most common form (12.7% of all deliveries).

Short maternal stature is associated with adverse pregnancy

outcomes, such as stillbirths [4], low birth weight newborns [5],

low APGAR scores (a quick assessment of health directly after

delivery, based on Appearance, Pulse, Grimace, Activity and

Respiration; [6]), and perinatal mortality [7]. Despite having

smaller neonates [5,8], shorter mothers are also at a higher risk for

obstructed labor, resulting in an assisted delivery, in particular

ECS [2,9]. Obstructed labor is related to the narrower pelvises of

shorter women [10–12], through which the head (i.e. cephalo-

pelvic disproportion) or shoulders [13,14] of the baby is hindered.

Fetus size is also a well-known risk factor for obstructed labor.

Heavier and larger newborns increase the likelihood of difficult

deliveries (such as an ECS [9,15–20]) or assisted deliveries

resulting from shoulder dystocia [14,20,21]. A short woman with

a heavy and/or large newborn seems particularly at risk for

obstructed labor [15,22–24]. In contrast, for taller women, for

whom the increased size of the newborn is less likely to lead to

obstructed labor [22,24], a low birth weight newborn seems more

predictive of adverse pregnancy outcomes [15]. In the latter

situation, operative deliveries are more a result of fetal distress,

preeclampsia, or fetal malformations, rather than size-related

obstetrical problems [15].

Although the effects of maternal height and birth weight on

ECS risk are well established, it is currently unknown whether or

not there is an effect of paternal height on the likelihood of having

an ECS. Paternal height may influence pregnancy outcomes, as it

has a positive effect on neonatal body size [25,26]. Whereas the

height of the mother is especially associated with the size of the

newborn through the adiposity of the fetus, the height of the father

predicts skeletal growth and fat-free mass of the newborn [25–28].

Specifically, research has shown an effect of paternal height on

neonatal fat-free mass, but not on fat mass [25,26], on the length

of the baby [26,28], on neonatal bone mineral content [29], on

placental volume [30], and on head circumference [26,28]. This is

relevant because the skeletal structure of the baby is more
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predictive of birth problems than birth weight [9,24]. For instance,

head circumference is more important in predicting problems at

delivery than birth weight [23,24]. The effect of paternal height on

the structural size of the baby may therefore affect the risk for

adverse pregnancy outcomes.

Much of the research on size and complications at birth in

humans is mirrored by research on obstetric complications in

animal research. In cattle, feto-pelvic disproportion, the dispro-

portion between calf size and the size of the birth canal of the cow

is the major cause of problems at birth [31–33]. In line with the

findings on humans, both the size of the cow as well as the size of

the calf is a determinant of difficult delivery [31–33]. Furthermore,

the sire also affects this risk, as pairing cows to sires bred for heavy

birth weight calves (versus low birth weight calves; [31,32]) and

sires bred for meat (which are bigger, versus bred for dairy; [34])

increases the risk of difficult delivery. Additionally, as found in

humans, the skeletal size of the calf seems more important than the

birth weight of the calf for the risk of difficult delivery [32].

In this study, our aim was to test the hypothesis that in addition

to maternal height and birth weight, paternal height also affects

the risk of ECS. We use the Millennium Cohort Study (MCS) to

test this hypothesis. In line with previous findings [15,22–24], we

predict that maternal height would interact with birth weight, such

that a relatively short woman with a heavy newborn would be

most at risk. Furthermore, we extend earlier findings and

hypothesize that paternal height also influences the risk for ECS,

but that the effect of paternal height would be dependent on the

height of the mother. We predict that with increasing parental

height differences, the risk for ECS would increase.

Materials and Methods

The Millennium Cohort Study (MCS) is a survey that gathered

information from the parents of 18,819 babies born in the year

2000/2001 in the United Kingdom. Interviews were carried out

when the babies were around 9–12 months. Detailed information

on the pregnancy and birth was collected as well as anthropo-

metric (maternal and paternal height, age, and birth weight), social

and economic information (all self-reported) from the mother and

where possible from the father. Self-reported measures of height

have been shown to be very reliable in women of reproductive age

[35]. The sample was selected from a random sample of electoral

wards, disproportionately stratified to ensure adequate represen-

tation of all four regions of the UK, areas with higher minority

ethnic populations, and deprived areas. The overall response rate

was 68% [36]. We used the first Wave of data from the MCS.

For the analyses presented here, we only included White parents

for which height data were available who had their first, singleton

child (of which the birth weight was available), leaving 4,365 cases.

Only White parents were included in the analyses as ethnicity

relates to maternal pelvic size, which might influence the risk of

ECS [8]. We chose to include only first births, because parity has

been shown to be a strong determinant of ECS [18,37]. This was

also evident in our sample, as primiparous women had an average

risk of 27%, whereas parous women only had a risk of 9% for an

ECS. In addition, obstetrical problems resulting from the large size

of the newborn are largely confined to primiparous women

[18,37]. For instance, when delivering a macrosomic baby (i.e. an

extremely heavy newborn; .4.5 kg), 39.8% of primiparous

women had a normal vaginal delivery, whereas 24.2% had an

ECS [37]. In contrast, 81% of multiparous women had a normal

vaginal delivery when delivering a macrosomic baby, and only

5.7% had an ECS [37]. Therefore, we restricted our sample to

primiparous women.

We performed logistic regressions on our key dependent

variable; whether the delivery was normal (i.e. vaginal without

complications) or by ECS, leaving in total 3,165 cases. We

excluded Caesarean delivery on request (N=266), assisted breech

delivery (N=9), assisted forceps (N=376), assisted vacuum

extraction (N=503), water births (N=11) and other problems

without specification (N=5). However, including these cases (i.e.

resulting in a dependent variable vaginal without complications

versus any form of assistance) did not change our key results. To

examine the effects of maternal and paternal height on birth

weight, we performed a linear regression. All analyses were

performed in SPSS 17.0.

Occurrence of the various pregnancy outcomes in the

Millennium cohort was comparable to national statistics. In our

entire sample the occurrence of a normal vaginal delivery and

ECS were 68.5% and 12.2% respectively, whereas the national

statistics for England for 2000 to 2001 are 66.6% and 12.7%

respectively [3].

Results

Descriptive statistics
Table 1 provides descriptive statistics of the entire cohort as well

as our restricted sample of White couples with singleton, first births

for which information on maternal and paternal height and birth

weight of the newborn was available (see Table S1 for more

descriptive statistics on the sample used for our analyses). As

expected, maternal and paternal height were positively correlated,

indicating that taller women had taller partners (Pearson r=0.11;

p,0.0001; N=3,165). Furthermore, taller mothers and fathers had

heavier newborns, as both maternal and paternal height positively

and independently affected the birth weight of the newborn, with

the maternal effect being 66% stronger than the paternal effect

(Table 2).

Table 1. Characteristics (mean 6 standard deviation or %) of
the entire cohort and the sample used for our analyses.

Entire sample Restricted sample

N N

Maternal height (cm) 163.567.0 18,217 164.466.9 3,165

Paternal height (cm) 177.867.4 12,617 178.767.4 3,165

PHDa (cm) 14.169.2 12,617 14.369.5 3,165

Birth weight (kg) 3.3460.6 18,484 3.3460.6 3,165

Delivery outcomes:

Normal delivery 68.5% 12,666 73.1% 2,314

Emergency CS 12.2% 2,260 26.9% 851

Planned CS 9.4% 1,742

Other forms of assistanceb 9.9% 1,828

The sample used for analyses was White parents (for which height data were
available) who had their first, singleton child (of which birth weight was
available) through a normal vaginal delivery or an emergency Caesarean
section.
aPHD; Parental height differences (paternal minus maternal height).
bOther forms of assistance were: assisted breech delivery, assisted forceps,

assisted vacuum extraction, water births and other problems without
specification.

doi:10.1371/journal.pone.0020497.t001

Parental Height Differences Predict Risk ECS
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Effects of birth weight
Logistic regression revealed a quadratic effect of birth weight on

the likelihood of having an ECS: both low and high birth weight

newborns had an increased risk for ECS compared to average

weight newborns (Table 3A; Figure 1). The lowest risk of 21.8%

(the minimum of the quadratic curve) was found at a birth weight

of 3.1 kg, which was 0.2 kg below average.

Effects of maternal height
Controlling for birth weight, maternal height had a negative

effect on the occurrence of ECS. Shorter women were more likely

to have had ECS compared to taller women, and this was a

decelerating pattern as indicated by a significant quadratic effect of

height (Table 3B; Figure 2A). Maternal height interacted with

birth weight (Table 3C; Figure 2B), indicating that the risk

resulting from the size of the newborn depended on the height of

the mother. To illustrate these findings, table 4A provides model

predictions for the interaction between maternal height and birth

weight. As expected, the highest risk for an ECS arises when short

women carry heavy babies. Short women (below mean 21 s.d.)

were more than twice as likely to need an ECS (46.3% versus

21.7%) than tall women (above mean +1 s.d.) when carrying a

heavy newborn (above mean +1 s.d.). Generally, with increasing

birth weight the risk of ECS also increased, but in tall women the

risk of having ECS when carrying an average weight newborn was

marginally lower compared to when having a light weight

newborn (respectively 16.6% and 18.7%; Table 4A, see Table

S2 and Figure S1 for model predictions across the entire range of

female height).

Effects of parental height differences
Having established that effects of previously identified risk

factors (i.e. maternal height and birth weight) on ECS risk are

present in the Millennium Cohort Study, we extended the analyses

to examine the effects of parental height differences (PHD;

paternal minus maternal height) on ECS risk. Logistic regression

revealed that, when controlling for maternal height, birth weight

and their interactions, there was no main effect of PHD on ECS

risk (Table 3D). PHD did, however, affect the risk of ECS, as it

significantly interacted with the squared effect of maternal height

(Table 3E). With increasing PHD, the risk of an ECS increased

(Figure 2C), but the effect of PHD was restricted to women of

average height and tall women (Table 3E; see Table S2 and Figure

S2 for model predictions of the effect of PHD in short, average

height and tall women). There was no effect of PHD in short

women, most likely because the risk for ECS in these women was

already very high (i.e. a ceiling effect; Figure S2).

In addition to the interaction of PHD with maternal height,

PHD also interacted with birth weight (Table 3F, Figure 2D). With

increasing PHD the risk of ECS increased, but only when the

mother was carrying heavy newborns or newborns of average

weight but not when carrying relatively light newborns (Figure 2D).

Table 4B provides model predictions for the effect of PHD and

birth weight on the occurrence of an ECS for average height

women (see Table S2 and Figure S3 for model predictions of the

effect of PHD when mothers carry light, average weight and high

birth weight newborns). Average height women were most at risk

for an ECS (32.6%) when carrying a heavy newborn and having a

relatively tall partner (large PHD; Table 4B). The lowest observed

risk for average height women was 18.6%, when having small

PHD and a baby of average weight.

Having a relatively tall compared to short partner increased the

risk for ECS in average height women when carrying a heavy

(from 25.9% to 32.6%) or average weighing newborn (from 18.6%

to 20.9%; Table 4B). For average height women carrying light

weight newborns, increasing PHD hardly changed the likelihood

of an ECS (from 19.2% to 18.8%).

The effect of the interactions between maternal height, birth

weight and PHD on the risk of ECS remained significant after

controlling for maternal and paternal age, self-perceived health,

socio-economic status, education, household income, sex of the

baby, and gestation time (see Table S3 for parameter estimates).

Newborns with low or high birth weight probably increase ECS

risk for different reasons, but when excluding low birth weight

newborns (below 2.5 kg; [18,22]) from the analysis the results were

very similar (Table S4). This suggests that the effects documented

are not driven by newborns with very low birth weights.

Effects of maternal height and parental height
differences independent of birth weight

Given that birth weight is obtained only after birth, and can

hence not serve as practical predictor of ECS risk in a clinical

setting, we performed additional analyses in which we excluded

birth weight (and the interactions with it) to obtain clinical relevant

estimates of the effects of maternal height and parental height

differences. In line with the results above, logistic regressions

revealed a significant squared effect of maternal height (Table 5A).

A woman of average height has a 24.9% chance of having ECS at

the birth of her first child. Women one standard deviation below

average have a risk of 32.7% (an increase of 7.8%), whereas

women one standard deviation above average 21.0% (a decrease

of 3.9%). There is a 1.56 (32.6%/21.0%) greater probability of

ECS for short compared to tall mothers.

Similarly, the interaction between maternal height and parental

height differences (PHD) remained significant when excluding

birth weight from the analyses (Table 5C). A woman of average

height with an average PHD, has a 24.7% chance of having

undergone ECS. Having a PHD one standard deviation below

average would reduce this risk to 22.6% and a PHD difference one

standard deviation above average would increase the risk to 26.9%

for a woman of average height (see Table S5 for model predictions

of the effect of PHD for short, average height and tall women).

There is a 1.19 (26.9%/22.6%) higher probability of ECS for

women of average height with larger compared to smaller partner

height differences. Thus, women with a relatively tall partner were

more likely to have had an ECS, also when effects of newborn

weight are ignored.

Discussion

In this study, we have shown that the size of the newborn, the

height of the mother and parental height differences all predict the

risk of an emergency Caesarean section in primiparous women.

Table 2. Linear regression parameter estimates of the effects
of maternal height and paternal height on birth weight.

B (± s.e.) b

Intercept 21.48*1021 (63.23*1021)

Maternal height 1.32*1022 (61.46*1023)*** 0.158

Paternal height 7.41*1023 (61.37*1023)*** 0.095

N 3,165

Maternal and paternal height in centimeters, birth weight in kilograms.
***p,0.0001.
doi:10.1371/journal.pone.0020497.t002

Parental Height Differences Predict Risk ECS
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We replicated the finding that both lower and higher birth weight

newborns increase the risk of ECS [15,17,18]. Whereas the

increased risk for heavy weight newborns is likely to be a

consequence of size-related obstetrical problems, the increased risk

for low birth weight newborns may be more a result of fetal

distress, preeclampsia and fetal malformations rather than size-

related obstetrical problems [15]. In line with previous studies

[9,38], we also found that shorter women are at a higher risk for

an ECS and that with increasing height the decrease in risk

became progressively weaker. Maternal height interacted with

birth weight: shorter women were especially susceptible to the

effect of newborn weight on ECS risk (in line with earlier studies

[15,22–24]). When carrying a heavy newborn (one SD above

average weight), short women were more than twice as likely to

need an ECS than tall women. For taller women, for which the

overall risk of ECS is lowest, the increased size of the baby had

little effect on ECS risk and a low birth weight newborn seems

more predictive of an adverse pregnancy outcome for reasons

discussed above.

Furthermore, to our best knowledge, we documented for the

first time that the height of the father, specifically parental height

differences, also affected the occurrence of ECS. The effect of the

Figure 2. The effect of maternal height, parental height differences and birth weight on ECS risk. The effects (means and 95%
confidence interval of raw data) are shown for (a) maternal height, (b) maternal height and birth weight (c) parental height differences and (d)
parental height differences and birth weight. Height is divided into bins of 5 cm (bins lower than 145 for maternal height and 25 cm for parental
height differences and higher than 180 and 35 cm were pooled) and birth weight was divided into tertiles. The confidence interval was determined
using the Agresti-Coull method [43].
doi:10.1371/journal.pone.0020497.g002

Figure 1. The effect of birth weight (means and 95%
confidence intervals of raw data) on the risk of ECS. Birth
weight in bins of 0.5 kg and bins lower than 2.5 and higher than 4.5 kg
were pooled. The confidence interval was determined using the
Agresti-Coull method [43].
doi:10.1371/journal.pone.0020497.g001
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parental height differences on ECS was, however, dependent on

the height of the mother and the birth weight of the newborn.

Women with tall compared to short partners relative to their own

height, had an increased ECS risk when carrying an average

weight and heavy newborn, but not when carrying a light weight

newborn, and this effect was most pronounced in average height

and tall women. For shorter women, the overall ECS risk was

highest, and parental height differences had little additional

influence on ECS risk. Average height and tall women giving birth

to a heavy newborn were at higher risk when their partners were

relatively tall (respectively 32.6% and 25.0%) compared to short

(respectively 25.9% and 19.4%). As the structural size of the baby

has been shown to be more important in predicting problems at

birth than birth weight [24] and the height of the father predicts

the structural size rather than the adiposity of the fetus [25,26],

having a tall partner relative to the height of the mother, will result

in a relatively larger (in structural size) fetus for that mother, which

in turn increases the risk for ECS. Particularly, having a high birth

weight newborn with large PHD suggests that the structural size of

this baby is large, which causes most problems for the delivery.

The mismatch between the size of the fetus and the mother results

in adverse pregnancy outcomes [15,22–24]. Unfortunately, in our

sample no data were available on the structural size (e.g. head

circumference, length) of the newborn, and we thus have no finer

grained measures to further substantiate our results.

The finding that differences in height between father and

mother influence pregnancy outcomes partly explains the in-

creased risk of assisted deliveries for shorter women. Shorter

women have partners who are on average much taller than

themselves and with increasing female height, the difference in

height between partners decreases strongly. Thus, the higher risk

for adverse pregnancy outcomes for shorter women is partly due

Table 4. Model predictions for the risk (%) of an emergency Caesarean section for A short, average height, and tall mothers and, B
average height women with small, average, and large parental height differences for low, average and high birth weight
newborns.

Birth weight newborn

A Low Average High RRa ORa

Maternal height Short 24.5 29.4 46.3 1.89 2.66

Average 19.7 20.5 30.6 1.55 1.80

Tall 18.7 16.6 21.7 1.16 1.20

RRb 1.31 1.78 2.13

ORb 1.41 2.10 3.11

B Low Average High RRa ORa

Parental height differences Small 19.2 18.6 25.9 1.35 1.47

Average 18.9 19.7 29.1 1.54 1.76

Large 18.8 20.9 32.6 1.73 2.09

RRc 0.98 1.12 1.26

ORc 0.97 1.16 1.38

Short and small refers to mean 2 s.d., average refers to mean, and tall and large refers to mean + s.d.. Relative risks (RR) and Odds ratios (OR) are calculated based on the
percentages.
aComparison between high and low birth weight newborns.
bComparison between short and tall mothers.
cComparison between large and small parental height differences.
doi:10.1371/journal.pone.0020497.t004

Table 5. Logistic regression parameter estimates (6 s.e.) of the effects of maternal height, height2, parental height differences and
their interactions on the probability of an emergency Caesarean section.

Model A B C

Intercept 49.56 (614.54)*** 47.53 (614.70)** 100.85 (628.07)***

Height 25.73*1021 (61.77*1021)** 25.57*1021 (61.79*1021)** 21.19 (63.34*1021)***

Height2 1.61*1023 (65.38*1024)** 1.58*1023 (65.43*1024)** 3.48*1023 (69.91*1024)**

PHD 7.54*1023 (65.54*1023) 21.74 (65.55*1021)**

Height*PHD 2.09*1022 (66.79*1023)**

Height2*PHD 26.19*1025 (62.10*1025)**

N 3,275 3,165 3,165

Height in centimeters, weight in kilograms. PHD is parental height differences ( = paternal height2maternal height).
**p,0.01;
***p,0.001 (significance based on Wald test statistic with df = 1).
doi:10.1371/journal.pone.0020497.t005
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to the fact that they are more likely to have a partner much taller

than themselves.

The finding that parental height differences predict the need for

ECS is also consistent with a study investigating cross-national

variation in height differences between the sexes [39]. This study

found that ‘‘maternal death caused by deliveries and complications

of pregnancy (a variable known to be size related) could be a key

determinant explaining variation in sexual stature dimorphism

[sex differences in height] across populations’’ ([39]; p 2529).

According to these authors, tall mothers would more likely survive

childbirth, which would result in females getting taller relative to

males, thereby decreasing the average height differences between

the sexes. Based on our data, the reverse association is also likely:

the cross-national variation in height differences between the sexes

might explain the variation in maternal deaths caused by deliveries

and complications during pregnancy. When average height

differences between the sexes are large, fetuses would be relatively

large for the mothers carrying them, resulting in more complica-

tions at birth.

A potential limitation of our study is the nature of the sample, in

particular the oversampling of individuals from deprived areas.

However, controlling for socio-economic status with several

indicators (household income, National Vocational Qualifications

(NVQ levels) / National Statistics Socio-economic Classifications

(NS-SEC)) did not change our results, which suggests that the

effects of maternal and parental height differences on the risk of

ECS are independent of socioeconomic status. Another limitation

is that the data are self-reported, through interviews approximately

9 months after birth. However, national health statistics regar-

ding rates of assisted deliveries for England in 2000–2001 are

comparable to the rates in our sample. In addition, it seems

unlikely that there is a systematic error in reporting problems at

birth associated with height: there is little reason to assume that

women of a certain height or women with a partner of a certain

height would be more likely to over- or underreport complications

such as an ECS.

The incidence of ECS may be an imperfect index of obstructed

labor, as a physician bias related to maternal height might have

occurred [40]. The need for assistance at delivery may be

overrated for short women, due to physicians’ expectations of

difficulty at delivery. This potential bias might have influenced our

results for the risk of ECS for short women, but it seems an

unlikely explanation for the effects of the parental height

differences on ECS risk as this effect is also present for women

of average height and for tall women.

From a functional perspective, documented preferences for

partner height among men and women (e.g. [41,42]) are consistent

with our finding that parental height differences predict the

likelihood of ECS. Whereas women prefer men taller, but not too

tall, men prefer women shorter but not too short. Our results

suggest that these mate preferences could be adaptive as a male

partner too tall or a female partner too short will both result in an

increased risk for obstructed labor.
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