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a b s t r a c t 

Automatic evaluation of sports skills has been an active research area. However, most of the existing re- 

search focuses on low-level features such as movement speed and strength. In this work, we propose a 

framework for automatic motion analysis and visualization, which allows us to evaluate high-level skills 

such as the richness of actions, the flexibility of transitions and the unpredictability of action patterns. 

The core of our framework is the construction and visualization of the posture-based graph that focuses 

on the standard postures for launching and ending actions, as well as the action-based graph that focuses 

on the preference of actions and their transition probability. We further propose two numerical indices, 

the Connectivity Index and the Action Strategy Index, to assess skill level according to the graph. We 

demonstrate our framework with motions captured from different boxers. Experimental results demon- 

strate that our system can effectively visualize the strengths and weaknesses of the boxers. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 1 

Computer technologies have taken on a crucial role in modern 2 

sports and health sciences, in revolutionizing the way to observe, 3 

analyze, and improve the performance of both amateur and profes- 4 

sional athletes. Computer-managed weight lifting machines, tread- 5 

mills and many other training equipment provide energy consump- 6 

tion or repetition and weight management in many sport clubs. 7 

Virtual reality technology has been applied in various training sys- 8 

tems in baseball [1] , handball [2] and tennis [3] to assist more pro- 9 

fessional sport activities. Nevertheless, these technologies are only 10 

able to analyze motions at a low level, i.e. recording the timing or 11 

repetitions of basic motions and comparing movement trajectories 12 

with those performed by better players. More advanced technolo- 13 

gies are needed for personalized and higher-level analysis compa- 14 

rable to that from human experts. 15 

In addition to the instantaneous movement features of the 16 

sports players, Experienced sport coaches consider high-level fea- 17 

tures such as the variety of actions and quality of transitions from 18 

one action to another. Taking boxing as an example, professional 19 

boxers have in basic actions such as defence, stepping and attack, 20 

threading through which the transitions are carried out based on 21 
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the strategy and the opponent’s reactions. The action transitions 22 

of a good boxer need to be flexible and contain great variety to 23 

achieve the optimal outcome. Such information often serves as an 24 

important indicator in assessing the skill level of a player, and the 25 

same principle applies to many other sports such as basketball 26 

[4] and fencing [5] . Unfortunately, automatic systems for analyzing 27 

and evaluating sports motions at such a high level is very limited. 28 

In this paper, we propose a robust visualization system to ad- 29 

dress the above limitations, by represent motions as an interactive 30 

graph of high-level features, including the flexibility and richness 31 

of the actions as well as the transitions of actions. Although we 32 

use boxing as a demonstration in this paper, our method is generic 33 

and can be applied to different sports. Our approach starts with 34 

capturing the shadow boxing training motion of a boxer, in which 35 

the boxer performs boxing with an imaginary opponent. An experi- 36 

enced coach can effectively assess the boxer’s skill by watching the 37 

shadowing boxing motions. As a positive side effect, this method of 38 

motion analysis greatly reduces the complexity of motion capture 39 

due to occlusion and collision and has shown to be very effective 40 

in our system. The motion data is then processed and visualized 41 

in two different graphs: the posture-based graph and the action- 42 

based graph, for performance analysis. 43 

In the posture-based graph, the semantic actions segmented 44 

from the captured motion are grouped into clusters based on a 45 

customized distance function that considers action specific fea- 46 

tures. Our system then automatically generates a motion graph 47 

structure known as Fat Graph [6] , which uses nodes to represent 48 
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groups of similar postures to start and end actions, and edges 49 

to represent groups of action. By applying dimensional reduction 50 

techniques, this graph can be visualized in a 3D space for per- 51 

formance analysis and evaluation. The transition capability of the 52 

boxer are visualized by the connectivity of the nodes, where the 53 

richness and preference of the actions are visualized by the edges 54 

in the graph. We further propose a skill evaluation metric known 55 

as the Connectivity Index which evaluates the richness of actions 56 

and the flexibility of transitions according to the graph. 57 

Whilst the posture-based graph focuses on the variety of basic 58 

postures and the transition flexibility between actions, the action- 59 

based graph mainly considers the richness of actions and the tran- 60 

sition probability among them. The action-based graph is con- 61 

structed as a customized Hidden Markov Model (HMM) [7] , in 62 

which similar actions are grouped into clusters that formulate the 63 

nodes. The transition probability among actions is calculated and 64 

is expressed as edges between nodes. The graph is visualized in a 65 

3D space, and the positions of the nodes and edges are optimized 66 

for better visualization. With such a graph, the pattern of action 67 

launching can be easily identified in order to assess the boxing 68 

strategy of the boxer. We further propose the Action Strategy In- 69 

dex to evaluate the unpredictability of action patterns according to 70 

the graph. 71 

We conducted experiments on the motions captured from mul- 72 

tiple boxers and evaluate their skills. The corresponding posture- 73 

based and action-based graphs were generated. As shown in 74 

Fig. 10 , we can easily evaluate the skills of different boxers with 75 

our visualization system. 76 

There are three main contributions of this work: 77 

• We propose a framework for high-level skill analysis through 78 

automatic motion analysis and visualization. Given a captured 79 

motion from a sports player, our system automatically seg- 80 

ments the motion into semantic action units and constructs 81 

two graph structures. 82 

• We propose the posture-based graph, which is a variant of the 83 

Fat Graph, to visualize the skills according to different standard 84 

postures for launching and ending actions. It allows the user to 85 

identify the correctness of standard postures and the diversity 86 

of actions. We further propose the Connectivity Index that eval- 87 

uates the richness of actions and the flexibility of transitions. 88 

• We propose the action-based graph, which is a variant of the 89 

Hidden Markov Model (HMM), to visualize the skill according 90 

to different groups of action. It allows the user to identify the 91 

preference of actions and their transition probability. We fur- 92 

ther propose the Action Strategy Index to evaluate the unpre- 93 

dictability of action patterns. 94 

The preliminary results of this work were published in a con- 95 

ference paper [8] , which proposed only the posture-based graph. 96 

In this paper, we extend the work by introducing the new action- 97 

based graph. We perform analysis and experimental evaluation of 98 

such a graph, and compare its performance with the posture-based 99 

graph. We have also updated the paper thoroughly such that the 100 

two graphs are presented in an organized and effective manner. 101 

The rest of this paper is organized as follows. Related works 102 

are reviewed in Section 2 . The details of motion capture and or- 103 

ganization are given in Section 3 . In Sections 4 and 5 , we explain 104 

the design and implementation of the posture-based graph and the 105 

action-based graph respectively. Related experiments can be found 106 

in Section 6 . The paper is concluded in Section 7 with future re- 107 

search directions discussed. 108 

2. Related work 109 

2.1. Sports visualization 110 

Helping athletes on skill improving via the visualization of 111 

sport motions is a field that has not been fully explored in the 112 

field of sports science. Existing research [9,10] mainly focuses 113 

on the appearance changes of motions when body and motion 114 

parameters are changed. For example, Yeadon [9,10] has done 115 

research on how diving and somersault motions change when 116 

the motions are launched at different timings by using physical 117 

simulation. Although such tools are useful for the athletes to 118 

interactively visualize possible results under different parameters, 119 

they can only evaluate the performance of sports that do not 120 

require complex maneuvers and strategies, such as jumping, high 121 

jumping, sky jumping, or somersaults. In many sports games, 122 

the performance depends not only on physical factors such as 123 

velocity, power and strength, but also on flexibility to switch from 124 

one motion to another and richness of the player’s motions. This 125 

high-level information has not been used to visualize the skills 126 

of the athlete in previous research and it is the major difference 127 

between our work and the afore-mentioned ones. In this research, 128 

we combine the approaches of motion graph [11–13] and dimen- 129 

sionality reduction [14,15] to visualize high-level skills information 130 

of the athletes for the skill assessments. 131 

2.2. Motion graphs for motion modeling 132 

The Motion Graph approach [11–13,16–19] is a method to inter- 133 

actively reproduce continuous motions based on a graph generated 134 

from captured motion data. Reitsma and Pollard [20] compared 135 

different motion graph techniques comprehensively. Heck et al. 136 

[21] further parametrized the motion space to control how the 137 

motions are generated by blending samples in the motion graph. 138 

Such an approach can be used for interactive character control 139 

such as that in computer games. When it comes to graph con- 140 

struction, [16,17] are the ones most similar to our method. Min 141 

et al. [16] grouped similar postures and transitions into nodes and 142 

edges. Their focus was the motion variety of synthesized motions 143 

so they used generative models to fit the posture and motion data. 144 

Our focus is on skill visualization through the analysis of postures 145 

and motions so we can afford simpler and faster methods of analy- 146 

sis. Beaudoin et al. [17] cluster postures first then find motion mo- 147 

tifs by converting the motion matching task into a string matching 148 

problem. Their priority was to find motifs that were representa- 149 

tive while our focus is to visualize motion details and statistics 150 

to help people assess the skills. Xia et al. [22] constructed a se- 151 

ries of local mixtures of autoregressive models (MAR) for model- 152 

ing the style variations among different motions for real-time style 153 

transfer. They demonstrated style-rich motions can be generated 154 

by combining their method and motion graph. 155 

Since the Motion Graph produces a lot of edges and nodes 156 

without any context, it becomes difficult to control generated mo- 157 

tion as the user wishes. Safonova and Hodgins [23] optimized 158 

the graph structure by combining motion graph and interpolation 159 

techniques to improve performance. On the other hand, works to 160 

resolve this problem by introducing a hierarchical structure were 161 

proposed [6] . These approaches add topological structures into the 162 

continuous unstructured data so that the motion synthesis can be 163 

done at a higher level. In a sport like boxing, it is possible to cre- 164 

ate a motion graph of semantic actions such as attack and defence, 165 

which is known as the action-level motion graph [24,25] . A re- 166 

cent work by Hyun et al. [4] proposed Motion Grammars to spec- 167 

ify how character animations are generated by high-level symbolic 168 

description. Such an approach can be used with existing animation 169 

systems which are built based on motion graphs. Ho and Komura 170 
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[26] built a finite state machine (FSM) based on Topology Coor- 171 

dinates [27] for synthesizing two-character close interactions. The 172 

sparse graph structure can be used for controlling the movement 173 

of virtual wrestlers in computer games. The purpose of these ap- 174 

proaches, however, is motion generation rather than the visualiza- 175 

tion of the player’s skill. 176 

In our research, we adapted a hierarchical motion graph struc- 177 

ture called the Fat Graph [6] on the action level to analyze the con- 178 

nectivity and the variety of a captured motion set. In a fat graph, 179 

similar nodes are grouped together as fat nodes, and similar edges 180 

are grouped as fat edges, allowing better organization of motion 181 

data. The filtered motion graph is a variation of the Fat Graph, 182 

in which the temporal relationship between poses are considered 183 

[28] . Such a structure, however, is targeted for motion reconstruc- 184 

tion and analysis rather than visualization [29] . 185 

2.3. Statistical motion modeling 186 

Dimensionality reduction methods have been proposed to vi- 187 

sualize the overall structure of captured motions. Grochow et al 188 

[14] proposed a method to project the 3D motions of a human 189 

onto a 2D plane, and further reconstruct 3D motions by mapping 190 

arbitrary points from the 2D plane back onto 3D joint space. PCA 191 

[15] and ISOMAP [30] are proposed to map the motions onto 2D 192 

planes. Due to the high variation of human motion, local PCA that 193 

considers only a relevant subset of the whole motion database in 194 

order to generate a locally linear space is proposed [31,32] . One can 195 

generate motions from arbitrary points on the plane by interpo- 196 

lating the postures of the original motion. Meanwhile, non-linear 197 

methods [33,34] and Deep Learning [35] have also been used to re- 198 

duce the dimensionality of motions. The Gaussian Process [36] and 199 

the mixture of Gaussian Processes [36] can be used to represent 200 

a set of human postures with a small number of Gaussian param- 201 

eters. However, such methodologies do not take into the account 202 

the connectivity structure of the motions. We apply dimensional- 203 

ity reduction to our graph structure to visualize the connectivity 204 

structure of captured motions on a 2D plane. 205 

Other researchers have focused on the connectivities of mo- 206 

tion/actions by methods such as Markov models. Hidden Markov 207 

Model (HMM) [7] has been widely used in analyzing and synthe- 208 

sizing human motion. Typically, the hidden states of the HMM are 209 

the distribution of body poses and the dynamics of the motions 210 

are represented by the transitions between the hidden states. The 211 

parameters of the HMM can then be learned from training data us- 212 

ing the Expectation-Maximization (EM) algorithm. Hara et al. [37] 213 

proposed to model daily activities using HMM in intelligent house. 214 

Françoise et al. [38] proposed to use HMM models for analyzing 215 

Tai Chi motion sequences. An early work proposed by Brand and 216 

Hertzmann [39] proposed to learn the dynamics of human mo- 217 

tion using HMM in their motion style synthesis model. Tango and 218 

Hilton [40] proposed to learn a HMM model from captured hu- 219 

man motion for synthesizing in-between frames in keyframe an- 220 

imation. Ren et al. [41] presented a data-driven approach for quan- 221 

tifying naturalness of human motion including those synthesized 222 

by HMM. While existing work focuses on finding statistical distri- 223 

butions of motions, our focus is on visualizing the motion richness 224 

and the transition dynamics for skill assessments. 225 

3. Motion capture and organization 226 

We first capture the motion required for analysis using motion 227 

capture systems. Then, we propose an automatic system to seg- 228 

ment long sequences of captured motion into meaningful actions, 229 

which are used as building blocks of our posture-based and action- 230 

based graphs. 231 

Fig. 1. The shadow boxing motions of several boxers were captured using an optical 

motion capture system. 

Here, we follow the definition from [25] , in which a motion is 232 

considered to be a raw sequence of captured human movement, 233 

and an action is considered to be a short, meaningful segment of 234 

movement within a motion. In the field of boxing, an action can 235 

be an attack (such as a “left straight”, “jab” or a “right kick”), a 236 

defense (such as “parries”, “blocking” or “ducking”) , a transition 237 

(such as “stepping to the left”, “stepping forward” or “back step”), 238 

or any combination of them. 239 

Postures and actions are good entities for skill visualization, as 240 

sports players typically plan their strategies and evaluate their per- 241 

formances with such terms. For example, a boxer typically thinks 242 

about what sort of attack/defense/transition should be launched 243 

during a match. A coach typically evaluates the overall strategy in 244 

the action level, as well as how well individual postures and ac- 245 

tions are performed. 246 

3.1. Motion capture 247 

Although it would be best to capture the motions of all players 248 

in multi-player sports because the data would reflect the features 249 

of the motions, capturing multiple players remains difficult due 250 

to the occlusions and collisions among players. Fortunately, it is 251 

possible to only capture individual motions for our purposes with- 252 

out compromising the true motion characteristics. In boxing or any 253 

other martial arts, there is a training practice called “shadow box- 254 

ing”. The boxer imagines a boxing session with another boxer, and 255 

launches boxing actions to interact with such an imaginary oppo- 256 

nent. The boxer launches not only offensive actions such as punch- 257 

ing, but also defence, stepping, and the consecutive combination of 258 

all such actions. There are similar practice methods in basketball 259 

and soccer as well, in which players use the ball to conduct var- 260 

ious techniques in the court, imagining that their opponents are 261 

trying to take the ball away from them. The players thus perform 262 

various actions to keep the ball and trick an imaginary opponent. 263 

This technique has also been used by coaches for skill assessment 264 

hence is suitable for our analysis. We employed an optical motion 265 

capture system to acquire the performed motion as shown in Fig. 1 266 

as it was less intrusive and highly accurate. Also, we preferred to 267 

capture long and continuous clips of motion, such that the player 268 

could perform the motion in a natural manner. 269 

3.2. Motion analysis 270 

After data capture, the system automatically segments mean- 271 

ingful actions from the raw captured motion, and identifies the ef- 272 
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Fig. 2. Upper: The movement segment is defined as the period between two double support supporting phases. Middle: The activity segment is defined as the period with 

high acceleration. Lower: The action is the combination of movement segment and activity segment. 

fective joints that contribute the most to the semantic meaning of 273 

the actions. 274 

For boxing motions, we observed that actions normally start 275 

and end in a double supporting state (i.e. both feet touching the 276 

floor), as the state is usually dynamically stable. We detect such a 277 

state by monitoring the feet height and velocity and setting corre- 278 

sponding thresholds. This allows us to segment the raw captured 279 

motion into a set of movement segments , which are the periods be- 280 

tween every two successive double supporting states, as visualized 281 

in Fig. 2 Upper. 282 

We also observed that actions normally require a relatively 283 

larger force to be performed, such as a punch or a step. We de- 284 

fine periods with a high-level of force exertion as the activity seg- 285 
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4. Posture-based graph 317 

The posture-based graph focuses on evaluating the common 318 

postures that are used to start and end actions. In such a graph, 319 

the nodes represent similar postures and the edges represent sim- 320 

ilar actions. It allows us to evaluate the consistency of common 321 

postures and the diversity of actions. 322 

4.1. Graph construction 323 

We adopt a Fat Graph structure [6] in the action level [25] to 324 

generate the posture-based graph, as it can effectively simplify the 325 

graph representation by grouping similar postures and actions to- 326 
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Finally, the actions are composed by using the movement seg- 

nts as the building blocks. The timing and the duration of the 

ivity segments are used to determine if the movement segments 

uld be merged together to form longer segments. Regarding the 

tionship of the movement segments and the activity segments, 
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nt becomes a single action of pure body transition. (2) There 
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s movement segment becomes an action with a special activ- 

 (3) There are one or more activity segments lying across suc- 

sive movement segments. In this case, the movement segments 

taining activity segments at the border are merged to form an 

ion as visualized in Fig. 2 Lower. Note that due to this merg- 

 process, the resulting action may contain multiple activity seg- 

nts. In our system, we implement an optional step to filter very 

rt actions that are likely to be generated due to the noise of the 

porting feet. 
We define the effective joints to be the set of joints to represent 

activity segment. In case (1) above, since the actions contain no 

cial activities, the pelvis is considered to be the effective joint. 

case (2) and (3), the effective joint is the joint that contributes 

 most to the sum of squares of the acceleration in the activ- 

segment. In more complicated actions such as left-right combo 

ches, there may be multiple effective joints as there are mul- 

le activity segments. Such joints are used in later processes to 

luate the similarity of actions. 
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her. The Fat Graph was originally proposed for motion synthesis, 3

 thus it is not optimized for skill visualization. We redesign the 3

orithms to generate nodes and edges in the Fat Graph for our 3

pose. 3

1. Fat Nodes 3

In our system, the nodes of the Fat Graph, known as Fat Nodes, 3

 the common starting or ending postures of the actions. We 3

ign an unsupervised clustering scheme for grouping all start- 3

/ending postures into a finite set of posture groups, which 3

ids additional labour for posture labelling and grouping. Specif- 3

lly, we used k-means to cluster postures. The distance between 3

 postures P 0 and P 1 is defined as: 3

 0 , P 1 ) = 

i = i total ∑ 

i =0 

| θ0 (i ) − θ1 (i ) | (1) 

ere θ0 ( i ) and θ1 ( i ) represent the 3D joint angle of the joint i 3

posture P 0 and P 1 respectively, and i total is the total number of 3

ts. Regarding the cluster number k , a large k would result in 3

ny clusters (Fat Nodes), which unnecessarily increases the com- 3

xity of the graph. A small k will cluster very different postures 3

o the same node, defeating the purpose of the graph. Therefore, 3

 set up a posture difference threshold empirically based on ex- 3

ts’ suggestions. Then, we iteratively search for a proper k by 3

ially setting k = 1 and incrementing k by 1 until we find the 3
t value of k that does not violate the distance threshold. After 348 

stering, we use the mean posture of a group to represent the 349 

responding Fat Node. The nodes in the graph represent the set 350 

tandard postures which the player starts various action from. In 351 

 case of boxing, they are usually the fighting postures that the 352 
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boxer uses to guard his/her face against the opponent, with bo

feet landing on the ground and keeping shoulder width apart. 

By evaluating the Fat Nodes alone, we can already tell if

boxer has multiple unnecessary standard postures, or if any sta

dard postures contain potential weakness. In general, experien

players have fewer Fat Nodes, such that they can start actions in

standard posture effectively without the needs of shifting to oth

ones. Novice players sometimes may have a particular Fat Node f

some particular actions. This is discouraged in boxing training 

such postures hint the opponent as to what actions are going 

be launched. 

4.1.2. Fat Edges 

We design the edges of a Fat Graph, known as Fat Edges, as d

rectional edges that represent groups of similar actions. Each ed

points from the Fat Node representing the starting posture to th

representing the ending posture. 

Similar to the Fat Nodes, we implement an unsupervised clu

tering algorithm to group similar actions into Fat Edges. We u

k-means to cluster the actions and search for the smallest accep

able k for a given distance threshold. We define the actions d

tance according to the trajectory of the effective joints as explain

in Section 3.2 . This allows accurate clustering of actions and e

sures that the effects of the effective joints are not smoothed o

by other joints. 

Formally, the distance between two actions A 0 and A 1 is defin

as 

D (A 0 , A 1 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∞ 

if A 0 and A 1 have different sequences 
of effective joints 

j total ∑ 

j=0 

f end ∑ 

f= f start 

[ A 0 ( j)( f ) − A 1 ( j)( f )] 

otherwise 

(

where A 0 ( j )( f ) and A 1 ( j )( f ) represent the 3D positions of effecti

joint j in frame f in the action A − 0 and A 1 respectively, j total 

the total number of effective joints in the actions, f start and f end a

the starting frame and ending frame of the considering effecti

joint. In case two effective joints with different duration are to 

compared, the shorter one is linearly scaled to the duration of t

longer one. 

In the field of boxing, a Fat Edge typically contains a set of a

tions with basic attacks or defences such as “straight punch”, “ho

punch”, “parry”, or a set of complex actions combining several a

tacks and defences. Since member actions in a Fat Edges have 

share the same starting and ending Fat Nodes, if an action gro

contains multiple starting or ending poses, it is sub-divided in

multiple Fat Edges. 

Again, by only looking at Fat Edges, one can tell the differenc

between experienced and novice players. Experienced players no

mally have Fat Edges with similar numbers of actions, as they ha

mastered a large variety of boxing actions and can switch betwe

them effectively using a small number of stable transition mane

vers. Novice boxers tend to have a larger number of Fat Edges b

each with a small number of actions, due to the inability to repr

duce boxing actions consistently. Figure 3 shows the relationsh

of Fat Nodes and Fat Edges. 

4.2. The connectivity index 

It requires deep knowledge and years of experience to asse

one’s skills in sports. Here, we make use of the posture-bas

graph and define an index representing the skill level, allowi

more objective and efficient skill assessment. 
Please cite this article as: Y. Shen et al., Posture-based and Action-

(2017), https://doi.org/10.1016/j.cag.2017.09.007 
Fig. 3. The Fat Node represents the standard fighting pose. The three outgoing 

Edges represent different action groups. 

In many types of sports, there are two important skill indic

tors. The first one is the richness of the actions that indicates t

resourcefulness of a player. The other is the flexibility of tran

tions between states so that the player can switch between diffe

ent states at will. Our posture-based graph captures both of t

indicators. The richness can be represented by the number of F

Edges, indicating how many kinds of maneuvers the player h

The flexibility is indicated by the connectivity of the graph, whi

is inversely proportional to the number of Fat Nodes. A fully co

nected graph shows great flexibility because there are transitio

between any two nodes. 

Notice that these two factors are somehow contradicting. 

general, the richer the actions are, the greater the number of diffe

ent starting and ending poses is hence the poorer the connectiv

of actions is. Independently considering either of them would n

suffice. We therefore define a Connectivity Index that evaluates bo

the action richness and the action flexibility of a player 

CI = 

Number of Fat Edges 

Number of Fat Nodes 
(

To accurately reflect the skill level of a player, in our imp

mentation, we do not consider Fat Nodes that are not intentiona

created. For example, one of our boxers tripped over during a se

sion. While it is good that our system can objectively pick up t

posture generated by the accident, we do not include the corr

sponding Fat Nodes when calculating the Skill Index. Also, we on

consider Fat Edges that are consistently performed, as those havi

only a small number of member actions could be randomly pe

formed actions. Empirically, we consider edges having more th

2 member actions. 

4.3. Visualization system 

Here, we describe the design of our visualization system to 

sualize the posture-based graph in an effective manner. We al

introduce interactive features for the user to view the graph wi

different levels of details. 

The posture-based graph consists of high dimensional Fat Nod

(groups of similar postures of many degrees of freedom) and F

Edges (groups of similar actions in the spatial-temporal domai

which presents a challenge for visualization. To reduce the dime

sionality for better visualization, we propose two different schem

for nodes and edges due to their different nature in this grap

Specifically, we project the Fat Nodes on a 2D space using Princip

Component Analysis (PCA) as it creates a more consistent low d

mensional space compared with other methods. We represent F

Edges with 2D curves and augment the curves with a combinati

of geometric primitives to visualize the action features. 
based Graphs for Boxing Skill Visualization, Computers & Graphics 
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es larger as the size of the nodes increases. 
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Fig. 4. From left to right, the character becom

.1. Visualizing Fat Nodes 

Although the degree of freedom (DOF) of human postures are in 

h dimensionality (45 DOF in our system), they are intrinsically 

endent on each other [14] . In fact, the Fat Nodes can be rep- 

ented effectively in a 2D space where nodes of similar postures 

 located together while those of different postures are located 

apart. This allows viewers to easily understand the relationship 

ween postures. 

For each Fat Node, we obtain the mean posture as its represen- 

ion. Given a set of postures, we apply principal component anal- 

s (PCA) to reduce the dimensionality to 2. Essentially, we cal- 

ate the covariance matrix to evaluate the intrinsic dependency 

the dimensions. We then calculate the eigenvectors from such 

ovariance matrix, and use the two eigenvectors with largest 

envalues to form a feature vector. 

PCA is used as it has shown to be effective on human postures 

] . However, since we only have a small number of postures, 

 believe other dimensionality reduction techniques would also 

rk. 

We render the mean posture of each Fat Node onto a 2D X- 

lan. This allows the user to identify inappropriately performed 

tures. In boxing, novice boxers sometimes lose track of their 

ing rhythm, and hence start or end an action with an inappro- 

ate posture. We use the fatness of the character to represent the 

ber of member postures in the node, as shown in Fig. 4 . This 

ws the user to easily observe the postures that the player usu- 

 uses to start actions. 

.2. Visualizing Fat Edges 

Here, we explain how to visualize the Fat Edges, which contain 

rmation of groups of similar actions. 

We do not apply dimensionality reduction techniques directly 

the action data itself because the low dimensional projection 

uld be very complex. Instead, we propose to visualize each Fat 

e by a 2D curve that represents its mean action on the X –Z 

ne. We optimize the angle and sign of these curves to minimize 

lusion. For edges with a starting node different from the end- 

 node, the edge angle is fixed. The only adjustable variable is 

 bending side of the curves, which is essentially the sign of the 

ves. For those with the same starting and ending node, both 

e angle and bending side can be controlled. We optimize the 

ns and angles of the edges in a greedy manner such that they 

uld blend towards a less dense region of the graph. 

To visually distinguish between different Fat Edges, we add 

e geometric patterns to the 2D curves. We collect the high- 

rgy frames of all actions and project them onto a 1D space 

ng the PCA system explained in Section 4.3.1 . Since the high- 

rgy frames of different actions are typically distinguishing pos- 
ease cite this article as: Y. Shen et al., Posture-based and Action-based

017), https://doi.org/10.1016/j.cag.2017.09.007 
 5. The geometric patterns for landmark values between -1 and 1. Each pattern 

esents a landmark posture in an action. (Lower) Comparison of visualization 

out/with the patterns. Each curve represents a group of action. The right image 

ws the uses of landmark patterns to identify different types of action. 

es, the projection essentially maps all action features onto a 4

malized 1D space in the range of [ −1 . 0 , 1 . 0] . To visualize the 4

ue in this 1D space, we design some geometric patterns for 4

dmark values -1.0, -0.5, 0.0, 0.5 and 1.0 as shown in Fig. 5 Up- 5

. The patterns to represent values between two landmarks are 5

ained by linear interpolation between nearby landmarks. 5

We further represent the number of member actions in the 5

e by the thickness of the curve. This allows the user to iden- 5

 the player’s preferred actions. For instance, if a boxer relies 5

vily on single straight punches, the Fat Edge for such action 5

l be unreasonably thick, while edges for other attacks will be 5

tively thin, which demonstrates a potential lack of diversity at- 5

king strategies. 5

Through the comparison between Fig. 5 Lower Left and Lower 5

ht, it shows that adding the geometric patterns gives a better 5

ualization of actions in the edges. This strategy presents an intu- 5

e way to show the players preferences over actions of different 5

plexity. 5

.3. Interactive features 5

We integrate some interactive features in our system to dis- 5

y relevant information based on user input. When the user se- 5

ts any specific entities in the graph, related information will be 5

wn. 5

When a Fat Node is selected, its corresponding Fat Edges will 5

highlighted for easier observation. Information about the num- 5

 of members in that node, number of outgoing edges, and num- 5

 of incoming edges are displayed in a sub window. When a Fat 5

e is selected or highlighted (because of a Fat node selection), 5
 Graphs for Boxing Skill Visualization, Computers & Graphics 
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Fig. 6. The posture-based graph of the Boxer S. 1, 2 and 3 are Fat Nodes. 4 and 5 

are two Fat Edges. 4 connects Node 2 and Node 3. 5 connects Node1 to itself. 

we render the member actions included, such that the user can 525 

understand the content of the edge. 526 

As an example, in Fig. 6 , there are three Fat Nodes indicated by 527 

red arrows and numbered as 1, 2 and 3, each visualized as a char- 528 

acter with a mean posture in the node. The sizes of the nodes are 529 

indicated by the body fatness. Node 1 is represented by the most 530 

muscular character, which indicates the largest node size. Nodes 2 531 

and 3 are far thinner. Fat Edges are rendered as curves between 532 

nodes such as the ones shown by 4 and 5. The thicknesses of the 533 
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Fig. 7. The three HMM nodes represent action groups. The HMM edges represent 

transitional probability between them. 
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edges indicate the frequency of the actions taken. Edge 5 is thick

than edge 4, suggesting that this boxer takes action 5 more ofte

In addition, an edge can be smooth like a circle or bumpy wi

geometric patterns. A single pattern means one activity segme

such as a single punch, while multiple patterns indicate a series

activities such as a combo attack. Our system also supports inte

active features. Fig. 6 is the result when the user selects Node

All the edges starting from this node are highlighted, each with

small character performing the action on it. 

5. Action-based graph 

The action-based graph focuses on evaluating the transiti

probability from one action class to another. In such a graph, t

nodes represent groups of action with similar activity segmen

The edges represent the transition probability between two acti

groups. It allows us to evaluate the pattern of launching actio

and extract the strategy of the boxer. 

5.1. Graph construction 

We use the hidden Markov model (HMM) to organize the ca

tured motion, as it has been shown effective in modelling h

man motion. In the domain of character animation, HMM has be

mostly used in the posture level to create motion graphs [12] . W

adapt the graph into the action level such that we can visuali

the transition probability among actions. 

The nodes of the graph represent different action groups. W

apply Eq. (2) to group the captured actions into a number of a

tion groups with k-means clustering. The process is similar to th

in Section 4.1 , in which we define a threshold based on expe

knowledge, and then incrementally increase the number of class

until the threshold is met. We denote k ′ as the total number 

groups, | G i | as the number of actions in the i th action group (whi

is used in the visualization system for visualizing the fatness a

the placement of the node and will be described later). 

The edges of the graph represent transitional probability fro

one action group to another. To obtain the transitional probabili

we go through the sequence of actions in the captured motion a

count the number of occurrences for an action belonging to gro

i to be followed by another belonging to group j , which is denot
as c ij . The transition probability of action group i to action group j 608 

Please cite this article as: Y. Shen et al., Posture-based and Action-

(2017), https://doi.org/10.1016/j.cag.2017.09.007 
T i j = 

c i j ∑ k ′ 
m =1 

∑ k ′ 
n =1 c mn 

(

where the denominator represents the total number of transiti

in the whole motion. Notice that i may be equal to j . In such a ca

two actions of the same action group are launched successively.

The concept of the action-based graph is shown in Fig. 7 . 

general, experienced boxers tend to have a more evenly distribut

transitional probability across all actions, which means that the

should be edges connecting all the nodes. This indicates that t

boxer’s pattern is dynamic and cannot be easily predicted by 

opponent. Conversely, novice boxers may have limited edges a

some thick edges connecting two nodes, which means a high pro

ability to launch those two groups action consecutively. An opp

nent may discover such a pattern and counter-act in advance wh

the first action is observed. 

5.2. The action strategy index 

In many sports, the unpredictability of action patterns is an im

portant skill indicator. Experienced players would diversify th

action patterns such that their opponents cannot predict the ne

action. However, novice players tend to perform actions based 

predictable patterns (i.e. the sequence of actions to be launch

continuously), which can be easily identified. For example, a novi

boxer usually perform two straight punches successively. This 

because the boxer is not able to link different types of punch

fluently, and therefore would perform the simplest punches aga

and again. The proposed action-level graph allows easy observ

tion of boxing patterns, as we can visualize the transitional prob

bility among actions. We further propose the Action Strategy Ind

which evaluates the unpredictability of action pattern. We obta

the number of outgoing HMM edges for each HMM node, formi

a set that is denoted as e = { e i } ∀ i ∈ [1 , k ′ ] , where k ′ is the to

number of HMM nodes. Skillful players would have similar valu

in the e set, while novice players would have very different valu

We therefore define the Action Strategy Index as the precision 

e , that is, the reciprocal of its standard deviation 

ASI = 

1 

σ (e ) 
(

where σ represents the standard deviation operator. A high A

value indicate that the player’s action patterns are more unpr

dictable, which indicates a higher skill level. 
based Graphs for Boxing Skill Visualization, Computers & Graphics 
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Fig. shold as (a) 0, (b) 1 and (c) 2. The red shade indicates the inner circle covering nodes 

of t e rare class. 
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 8. Action-based graphs of the same boxer generated by setting the frequency thre

he frequent class, and the blue shade indicate the outer circle covering nodes of th

. Visualization system 

Here, we explain the visualization system for the action-level 

ph. The system allows easy observation of the preference of ac- 

 and the boxing pattern. Both are very important aspects to 

luate the high-level strategy of a boxer. 

.1. Visualizing HMM Nodes 

Each action group is represented by its corresponding median 

ion, which is the action that is the closest to the mean value of 

 action group during k-means clustering. We render the nodes 

ng human characters with the starting posture of the median 

ion. The number of actions in each action group is visualized 

ng the fatness of the corresponding character. The color of the 

es are randomized. 

As mentioned in Section 4.1.2 , we observe that some boxers, 

ecially novices, may produce random actions that are not re- 

table. Such actions may generate a large number of thin nodes, 

ich distract the user from evaluating the actions that are of- 

 launched. Therefore, we classify the action groups with | G i | > a 

o the frequent class , and groups with | G i | ≤ a into the rare class , 

ere G i is the number of member actions in a node as defined 

Section 5.1 , a is a preset frequency threshold. Fig. 8 shows the 

ult of setting different values of a . We find that setting a = 2 

erates the best results. 

We place the nodes belonging to the frequent class at an inner 

le, and those belonging to the rare class at an outer circle, such 

t the user can identify them easily and decide what to focus 

 For the inner circle, nodes are ordered according to the cor- 

ponding value of | G i |, and are placed evenly at a circle with a 

aller radius. For the outer circle, to minimize edge crossing, we 

ce the nodes at a position on a circle with a larger radius that 

he closest to the nodes with incoming and outgoing edges. To 

lement this, we develop a simple optimization algorithm that 

imizes the position of the nodes. During the optimization, we 

strain the position to be at the circle and not overlapping with 

sting nodes. We then minimize the sum of distance with respect 

the nodes connecting to the current one. 

By default, we render the HMM node belonging to the frequent 

ss with solid colors, and those belonging to the rare class in 

i-transparent colors. This further avoids the user being dis- 

cted by the rarely performed actions. 

.2. Visualizing HMM Edges 

We visualize the edges using 2D curves. While we can render 

 edges with straight lines, the resultant group would be diffi- 

t to observe as the lines overlap significantly. We augmented 

 edges with a small random curvature to solve the problem. We 

o render the edges as semi-transparent such that the users can 

 through partially overlapped edges. The thickness of the edge 
ease cite this article as: Y. Shen et al., Posture-based and Action-based

017), https://doi.org/10.1016/j.cag.2017.09.007 
 9. The action-based graph of the Boxer S. 1, 2 are HMM nodes belonging to the 

uent class. 3, 4 are outgoing HMM edges from the node 1. 5, 6 are HMM nodes 

nging to the rare class. 

proportional to T ij calculated in Eq. (4) . As a result, a thicker 6

e connecting node i to node j indicates that the boxer often 6

nches action group j after action group i . The color of the edges 6

 decided based on that of the source node. This helps the user 6

identify which action groups the boxer may launch after a par- 6

lar one. 6

.3. Interactive features 6

We also implement some interactive features such that the user 6

 select what to view. The most important component of the 6

ion-based graph is the action itself. Therefore, we implement 6

interactive system such that when a user clicks on a particular 6

M node, the median action of the corresponding action group is 6

played. We also highlight the outgoing edges from such a node. 6

s allows the user to examine individual action group together 6

h the transition probability to the next groups. The information 6

the node, such as the number of member actions and the num- 6

 of out-going HMM edges, are displayed on a separate window. 6

As an example, in Fig. 9 , there are 5 HMM nodes belonging to 6

 frequent class including node 1 and 2. These nodes are vi- 6

lized with more muscular characters, meaning that the boxer 6

forms them more frequently. There are 3 HMM nodes belong- 6

 to the rare class including node 5 and 6, which are visualized 6

h thinner characters. Node 1 has 5 outgoing HMM edges, in 6

ich edge 3 point towards another node, while edge 4 is a self- 6

necting edge. Edge 4 is thicker than the others, indicating that 6

 boxer performs successive actions belonging to node 1 very 6

quently. The screen is captured when the user selects node 1, 6

 as a result, all outgoing edges of node 1 are highlighted, and 6

 character representing node 1 performs the corresponding me- 6

n action. 6

Experimental results 6

In this section, we present experimental results. We captured 6

 motions of four boxers with varying skill levels. We first give 6
 Graphs for Boxing Skill Visualization, Computers & Graphics 
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Fig. 10. (Left) The posture-based graphs and (Right) the actio

detailed motion analysis and visualization of individual motion

and then compare them side by side using the proposed index

This demonstrates that our system is an effective tool for m

tion analysis, skill assessment and comparisons. As it is difficu
Please cite this article as: Y. Shen et al., Posture-based and Action-

(2017), https://doi.org/10.1016/j.cag.2017.09.007 
ed graphs for boxer N, M1, M2 and S (top to bottom), respectively. 

to show the motions in pictures, we refer the readers to the su

plementary video for more details. 

The four boxers chosen have different skill levels. As a grou

truth, their skills were evaluated by a professional boxing coa
based Graphs for Boxing Skill Visualization, Computers & Graphics 
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as skillful, medium, medium and novice respectively, and were de- 697 

noted as S, M1, M2 and N. 698 

6.1. Boxer evaluation 699 

The boxers’ posture-based and action-based graphs are shown 700 

in Fig. 10 , in which letter annotations are given to help explain the 701 

graphs. These graphs allow the users to assess boxing skills even if 702 

they are not familiar with boxing. 703 

6.2. Boxer S 704 

The first row of images in Fig. 10 shows the graphs of boxer 705 

S. T706 

sta707 

box708 
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Table 1 

Statistics of the boxing motions. SL: Skill Level evaluated 

by a professional boxing coach. PN: Posture Number (for 

starting and ending actions). AN: Action Number. 

Boxer S Boxer M1 Boxer M2 Boxer N 

SL Skillful Medium Medium Novice 

PN 138 160 112 176 

AN 69 80 56 88 

ever, a number of secondary postures (b) –(d). These postures are 756 

all performed sub-optimally with his arms not guarding the head, 757 

and should be avoided. Looking closely to the edges (f) going to 758 

posture (c), we can find that the posture is performed as a subtle 759 

movement to prepare various left punches. This should be avoid 760 

as the opponent can tell the moves whenever seeing such a pos- 761 

ture. Postures (g) and (h) are very different from the rest, and are 762 

geometrically far from the other postures. These two postures are 763 

performed because the boxer unintentionally raises the arms dur- 764 

ing the capture. Our system can pick up the mistake and visualize 765 
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Pl

(2
he posture-based graphs shows a main standard posture (a) to 

rt and end actions, which is good for boxing as it allows the 

er to transit from one action to another effectively through the 

ndard posture. A large variety of actions (b) can be produced 

m such a posture. There is a secondary posture in which the 

s are further apart (c). This should be avoided as such a pos- 

e is weak in blocking attacks. Posture (d) is generated because 

 boxer trips over during the training. Our system can pick up 

 visualize such a mistake accurately. 

The action-based graph of boxer S shows there there are many 

ions in the frequent group (a) and only a few in the rare group 

. This shows that the boxer is experienced and his actions are 

sistent. There is a major movement action (c) in the frequent 

up (a), and such an action has good connections to many of 

 others. This is good as experienced boxers typically use move- 

nt actions to adjust their position relative to their opponent, 

 launch attacks when the time is right. Other actions in the 

quent group (a) are variations of attacks. For example, the more 

quently used action (d) is a right-left combo and action (e) is 

ingle right punch, which show that the boxer tends to start an 

ack with the right punch. It is good to see that attacking actions 

y connect to each other, which enhance the unpredictability of 

 boxer. 

. Boxer M1 

Next, we evaluate the posture-based graph of boxer M1. The 

er has a main standard posture (a) to launch most of the ac- 

s (b). However, he has a secondary posture (c) for launching 

e attacks, and another (d) for launching a turning action. In 

h postures, the arms are in a low position and cannot guard 

 boxer well from the opponent. More importantly, the relatively 

re frequently used secondary posture (c) is performed with the 

t distance much wider than the shoulder width. This means 

 boxer has limited mobility in this posture, as the legs must 

ve towards each other before another stepping action can be 

formed. These observations show that the boxer is not as expe- 

ced and consistent as boxer S. 

The corresponding action-based graph shows that there are 

er frequent class actions (a) but more rare class ones (b) com- 

ed to boxer S. This means that that the boxing action of boxer 

 is less consistent. The boxer has a large number of movement 

ions (c) that are connected to all the rest of the action nodes. He 

o has a variety of attack actions as shown in other actions in the 

quent class (a). In particular, action (d) is a left-right combo and 

ion (e) is a left punch, showing that the boxer tends to start an 

ack with the left punch. Overall, there is an acceptable number 

connections among attacks, demonstrating the acceptable un- 

dictability of the boxer. 

. Boxer M2 

For boxer M2’s posture-based graph, there is a main standard 

ture (a) launching the majority of actions (b). There are, how- 
ease cite this article as: Y. Shen et al., Posture-based and Action-based
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n the graph. 7

From boxer M2’s action-based graph, it can be observed that 7

re are relatively fewer actions in the frequent class (a), but a 7

e number of actions in the rare class combining (b) and (c). 7

s shows that the boxer is quite inconsistent in the boxing ac- 7

s, and could be because of the lack of training and experience. 7

ferent from the boxers discussed, boxer M2 has a largest action 7

e (d) of left punch. The second largest action node (e) is a dou- 7

 left punch. The movement action node (f) is relatively small. 7

s shows that boxer M2 has a different boxing style to use left 7

ch as a major action to connect to other actions and his left 7

ch is dominant. Such a boxing style is not advised as a punch- 7

 action, comparing to a movement one, consume more energy 7

 expose a larger risk of being attacked. 7

. Boxer N 7

In the posture-based graph of the novice boxer N, there are two 7

jor standard postures (a) and (b) instead of one. There are a 7

e number of self-connecting actions (c) and (d) for both pos- 7

es, as well as a lot of actions (e) connecting the two. This shows 7

t the boxer is highly inconsistent in the boxing postures. Pos- 7

e (a), the more relatively frequently used one, is inferior to pos- 7

e (b), due to its wider foot distance. It does not allow the boxer 7

step freely. Posture (f), (g) and (h) are all secondary postures 7

h different posture variations. They are all not well performed 7

 to the low arm positions limiting blocking capability, and the 7

e foot width limiting movement capability. 7

The corresponding action-based graph shows some actions in 7

 frequent class (a) but a large number of actions in the rare 7

ss (b). This means that the novice boxer cannot perform actions 7

sistently. The action in the rare class (b) are mainly very long 7

bo that are randomly combined and cannot be reproduced. The 7

in action (c) is a movement action. Such an action cannot con- 7

t to a number of others in the rare class (b), and many ac- 7

s in the rare class (b) are not well connected. This means that 7

 boxer’s action is more predictable, which is bad in a match as 8

 opponent can guess what the boxer may launch next. The two 8

re frequently used attack action (d) and (e) are left-right combo 8

 left punch respectively, showing that the boxer tends to start 8

attack with a left punch. 8

. Statistical analysis 8

Here, we give some statistics about the proposed system. 8
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Table 2 

Statistics of the boxing motions. FNN: Fat Node Number 

(brackets show numbers after removing accidentally cre- 

ated nodes). FEN: Fat Edge Number (brackets show num- 

bers of consistently performed edges). CI: Connectivity In- 

dex. 

Boxer S Boxer M1 Boxer M2 Boxer N 

FNN 3 (2) 6 (4) 3 (3) 5 (5) 

FEN 20 (10) 36 (12) 16 (7) 57 (8) 

CI 5.0 3.0 2.3 1.6 

Table 3 

Statistics of the boxing motions in the Aciton Graphs. NN: 

Node Number. NNFC: Node Number for Frequent Class. 

NNRC: Node Number for Rare Class. EN: Edge Number. ASI: 

Action Strategy Index. 

Boxer S Boxer M1 Boxer M2 Boxer N 

ng 807 

of 808 

809 

h, 810 

he 811 

he 812 

th 813 

c- 814 

815 

h, 816 

ed 817 

c- 818 

al- 819 

er, 820 

in, 821 

ve 822 

823 

s- 824 

of 825 

a- 826 

- 827 

ri- 828 

ns 829 

 k 830 

nd 831 

e 832 

in 833 

834 

835 

el 836 

a- 837 

ed 838 

s- 839 

 is 840 

on 841 

ity 842 

s 843 

si- 844 

m 845 

il- 846 

p- 847 

tured from 4 boxers with varying skill levels. The evaluations from 848 

our system aligns with that of a professional boxing coach. 849 

Although we use boxing as our target sport in the experimenta- 850 

tion section, the underpinning theoretical development can be ap- 851 

plied to most sports that require swiftness, flexibility and creativ- 852 

ity, such as tennis, fencing and basketball. The adaptation of the 853 

proposed system to these sports and the comparison of the system 854 

performances on different sports remain as future work. 855 

We focus on analyzing the skill level of the boxers in terms of 856 

high-level motion behaviour such as the richness of the action, the 857 

transition of action and the unpredictability of boxing patterns. We 858 

do not evaluate the lower-level parameters such as the speed of 859 

the punches, which has been explored in previous works. It is an 860 

interesting future direction to combine both high-level and low- 861 

level evaluation in order to have a full assessment of the boxers. 862 

There are limitations to our method. First, our method is based 863 

on the assumption that the sports skills mainly consist of a finite 864 

number of key postures and key actions. Admittedly, not all sports 865 

follow this pattern. Second, the visualization and skill assessment 866 

is based on an individual athlete, not considering skills related to 867 

collaborations such as those in group sports, in which the assess- 868 

ment might need to employ different criteria. 869 

We argue that novice boxers tend to have different posture- 870 

based graphs, while experienced boxers tend to have graphs of 871 

a similar topology. This is because unlike experience boxers who 872 

have only 1 to 2 main postures nodes, novice boxers tend to have 873 

more nodes, resulting in a much larger variation on the graph 874 

topology. As a future work, we would like to utilize the stem to 875 

evaluate a large number of boxers in different skill levels to verify 876 

this argument. 877 

he 878 

a- 879 

ell 880 

 it 881 

et, 882 

w 883 

as 884 

In 885 

ke 886 

x- 887 

ill 888 

is 889 

e 890 

891 

892 

si- 893 

he 894 

895 

896 

be 897 

898 

899 

all 900 
m- 901 
02. 902 

903 
eal 904 
ual 905 

906 
ny- 907 
 10. 908 

909 
NN 7 11 9 16 

NNFC 4 3 4 5 

NNRC 3 8 5 11 

EN 16 27 20 38 

ASI 0.572 0.448 0.426 0.378 

Table 1 shows the skill level assessed by a professional boxi

coach, as well as the number of postures and actions, for each 

the boxers considered. 

Table 2 shows the statistics related to the posture-based grap

including the number of fat nodes and fat edges, as well as t

Connectivity Index calculated with Eq. (3) . The index evaluates t

richness of actions and the flexibility of transitions. It aligns wi

the boxers’ skill level and more skillful boxers have higher Conne

tivity Indexes. 

Table 3 shows the statistics related to the action-based grap

including the number of HMM nodes (which is further separat

into the number for the frequent class and the rare class respe

tively) and HMM edges, as well as the Action Strategy Index c

culated with Eq. (5) . It indicates the unpredictability of a box

and more skillful boxers are generally more unpredictable. Aga

it aligns with the boxer’ skill level and more skillful boxers ha

higher Action Strategy Indexes. 

In terms of the computational cost, we run the proposed sy

tem on a laptop computer with a Core i7-6820HQ CPU, 16GB 

RAM and a NVIDIA Quadro M10 0 0M graphic card. The comput

tional time to analyze the captured motion ( Section 3.2 ) and com

puting the graphs ( Sections 4 and 5 ) ranges from 6 to 9 s. The va

ation of computational time is mainly due to the iterative k-mea

clustering algorithm for both postures and actions, as a larger

requires longer computational time. The run-time cost is low a

we achieve frame rate higher than real-time (i.e. 60Hz). The fram

rate tends to be lower when there are more characters shown 

the graphs. 

7. Conclusion and discussions 

In this paper, we proposed a method to visualize the high-lev

skills of boxers using an automatic motion analysis and visualiz

tion framework. The proposed posture-based graph is a customiz

Fat Graph that allows us to evaluate the quality of standard po

tures for launching and finishing actions. The action-based graph

a customized Hidden Markov Model that visualizes the transiti

probability among actions. We further introduce the Connectiv

Index that is deduced from the posture-based graph and allow

evaluation of the richness of actions and the flexibility of tran

tions, as well as the Action Strategy Index that is deduced fro

the action-based graph and allows evaluation of the unpredictab

ity of action patterns. The system is applied on the motion ca
Please cite this article as: Y. Shen et al., Posture-based and Action-

(2017), https://doi.org/10.1016/j.cag.2017.09.007 
In the future, we wish to extend the proposed algorithm to t

field of computer animation. Currently, when synthesizing anim

tions by motion graphs, experienced animators are required to t

what motions are missed or badly captured. With our system,

is possible to analyze the connectivity and variety of a motion s

which are two critical factors in motion synthesis. However, ho

to generalize these findings to give high-level suggestion, such 

proposing the motions to capture, remains an open problem. 

addition, we would like to develop a visualization system to ta

the adversarial nature of sports. For instance, although two bo

ers might have roughly the same skill level, in a match, one’s sk

composition might give him/her advantages over the other. Th

kind of analysis would be very useful in preparation for a gam

or predicting the result. 
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