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We present a theoretical study of the statics and dynamics of a partially wetting liquid
droplet, of equilibrium contact angle 6., confined in a solid wedge geometry of opening
angle 5. We focus on a mostly non-wetting regime, given by the condition 6, — 8 > 90°,
where the droplet forms a liquid barrel—a closed shape of positive mean curvature. Using
a quasi-equilibrium assumption for the shape of the liquid-gas interface, we compute the
changes to the surface energy and pressure distribution of the liquid upon a translation
along the symmetry plane of the wedge. Our model is in good agreement with numerical
calculations of the surface energy minimisation of static droplets deformed by gravity.
Beyond the statics, we put forward a Lagrangian description of the droplet dynamics.
We focus on the the over-damped limit, where the driving capillary force is balanced
by the frictional forces arising from the bulk hydrodynamics, the corner flow near the
contact lines and the contact line friction. Our results provide a theoretical framework
to describe the motion of partially wetting liquids in confinement, and can be used to
gain further understanding on the relative importance of dissipative processes that span
from microscopic to macroscopic length scales.

1. Introduction

The statics and dynamics of liquid droplets in wedge geometries constitute an active
research topic across disciplines, including biological physics (Prakash et al. 2008),
granular media (Bocquet et al. 2002; Kohonen et al. 2004; Grof et al. 2008) and microflu-
idics (Dangla et al. 2013; Renvoisé et al. 2009; Luo & Heng 2014). More fundamentally,
understanding the motion of droplets in wedges can shed light on complex phenomena,
such as interfacial instabilities (Al-Housseiny et al. 2012; Keiser et al. 2016) and the
impact of surface roughness on contact-line dynamics (Moulinet et al. 2002).

When a liquid droplet is brought into contact with the inner walls of a wedge-shaped
channel, the system will tend to minimise its total surface energy. In general, the transient
dynamics and the final equilibrium state of the droplet can be characterised in terms
of two main parameters, corresponding to the opening angle of the wedge, 8, which
characterises the confinement geometry, and the equilibrium contact angle of the liquid
with the solid, 6., which quantifies the wetting properties of the liquid.

Broadly speaking, one can identify four qualitatively different regimes for the behaviour
of droplets in wedges depending on the interplay between 8 and 6., as summarised in
figure 1. The first corresponds to a complete invasion regime, where 0° < 6, < 90° — .
In such a case the liquid-gas interface is concave and forms a transient capillary bridge
when placed between the walls of a wedge. It was first noted by Hauksbee (1710) that
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Complete spreading Edge blob Liquid barrel Drop/bubble

0°<6,<90°-8 90°- B <6,<90°+ B 90° + B <6, < 180°

(a) (b) (c)

Figure 1: Wetting regimes for a liquid droplet in a wedge geometry. (a) Complete
spreading. (b) Edge blob. (¢) Liquid barrel. (d) Drop.

the free motion of such structures (i.e., in the absence of external forces, such as gravity)
always results in their migration towards the apex of the wedge. Concus & Finn (1969)
and Concus et al. (2001) showed that a global equilibrium is not possible. Instead, the
liquid prefers to spread along the apex of the wedge. Recently, Reyssat (2014) studied the
motion of completely-wetting capillary bridges (6. = 0) within wedge-shaped channels
and identified two regimes in the dynamics of the liquid. Close to the apex, the main
source of energy dissipation is the viscous friction in the bulk of the liquid, which balances
the rate of work done by capillary forces. As a result, the time evolution of the position
of the capillary bridge is linear. This picture changes when the liquid is far from the apex
of the wedge, where the main source of dissipation is the corner flow near the apparent
contact lines. The result is a different equation of motion, which is given by a power-law
dependence of the position of the liquid as a function of time with an exponent 4/13.

A second regime occurs when 90° — 8 < 6, < 90° + 3. In such a case the liquid-gas
interface forms an equilibrium shape that touches the apex of the wedge, sometimes
referred to as an edge blob (Concus & Finn 1998; Concus et al. 2001; Brinkmann &
Blossey 2004).

A third regime corresponds to the completely non-wetting case, where 6, = 180°, and
for which a liquid in a wedge-shaped channel will form a suspended droplet, a situation
also found for gas bubbles. In such a case, a confined droplet will always migrate away
from the apex of the wedge (Dangla et al. 2013). In sharp contrast to the complete-wetting
limit, the equilibrium shapes of suspended droplets or bubbles correspond to perfect
spheres. The dynamics of such systems involve the interplay between the liquid/gas and
the surrounding fluid (Bretherton 1961; Park et al. 1984). However, in the specific case of
a low-viscosity fluid (air bubble) suspended in a liquid of relatively high viscosity (silicone
oil), Reyssat (2014) showed that the main sources of dissipation during the motion within
a wedge originate from the liquid, and that the same equations of motion that hold for
completely wetting capillary bridges also hold for completely non-wetting bubbles.

The fourth regime, which is the focus of this paper, corresponds to a mostly non-wetting
situation, where 90° + 3 < 6, < 180°. In such a case, the liquid-gas interface is convex,
i.e., it has a positive mean curvature, and forms a closed surface in equilibrium that
avoids the apex of the wedge. In the following, we refer to this configuration as a liquid
barrel in distinction from the wetting configurations of a capillary bridge, an edge blob, or
a drop. Concus et al. (2001) studied the equilibria of liquid barrels in wedge geometries.
They showed that, in contrast to capillary bridges, liquid barrels form closed equilibrium
shapes avoiding the apex of the wedge, and that, in the absence of external forces, such
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shapes correspond to sections of spheres. Experimentally, Baratian et al. (2015) recently
observed such equilibrium configurations using an electrowetting setup. They show that
a spherical equilibrium shape implies a vanishing net force acting on the liquid and that
non-spherical static shapes appear when subjecting the liquid to the action of gravity.
Recently, Ruiz-Gutiérrez et al. (2017) observed the motion of water droplets trapped in
a wedge geometry where direct contact with the solid is prevented by a thin layer of a
lubricating oil. They found that the equilibrium shapes of such structures are consistent
with the truncated-sphere equilibrium shapes of liquid barrels. Using a simplified version
of the theory presented in this paper, they showed that in the absence of a true contact
line the main source of dissipation affecting the dynamics is the ‘bulk’ dissipation within
the liquid.

Whilst the equilibrium states of liquid barrels in a wedge geometry are now well
understood, several questions regarding the statics and dynamics of these systems remain
open. In particular, the statics and dynamics of non-spherical barrel shapes can only be
understood by knowledge of the net restitutive capillary force (which can be inferred
from the free-energy landscape), and of any resistive forces, such as a net external force
or a friction force caused by the motion of the liquid. Importantly, understanding the
motion of liquid barrels towards an equilibrium state can reveal details of dissipative
processes at three different length scales, namely, the large-scale viscous friction caused
by the bulk flow pattern, the viscous friction caused by the motion of the liquid near the
contact line, often described as a corner flow, and the friction caused by the motion of
the contact line itself.

In the present article, we carry out a theoretical study of the statics and dynamics of
a liquid drop that forms a barrel shape upon contact with the walls of a narrow wedge-
shaped channel. Our approach, which we present in §2, is to introduce a near-equilibrium
model for the morphology of the barrel. This allows us to compute the corresponding
free-energy landscapes and internal pressure distributions for barrels displaced from the
equilibrium position relative to the apex of the wedge. In §3 we compare our model to
numerical computations of the surface energy of a static barrel deformed by gravity, and
establish the regime for which the model gives a good representation of the hydrostatic
pressure profile. In §4 we derive the equations of motion for a liquid barrel relaxing
to equilibrium using a Lagrangian approach. Based on our result for the pressure
distribution within the barrel, we put forward a model for the internal flow patterns,
and calculate the overall drag coefficient arising from the bulk, corner-flow and contact-
line contributions to energy dissipation. Finally, in §5 we discuss the implications of our
results, and comment on their agreement with experimental data.

2. Free-Energy Model

Figure 2 shows a schematic of the system under consideration, which consists of a liquid
droplet that partially wets the inner surface of a wedge formed by two solid planes. We
focus on a situation where the mass, M, temperature, T, and volume of the liquid,
V', are constant. The relevant thermodynamic potential is the Helmholtz free energy
F =U—TS, where U and S are the internal energy and entropy, respectively.

From the second law of Thermodynamics, the Helmholtz free energy will either remain
constant or decrease upon a change in the configuration of the system, i.e., §F < 0. Such
changes in the free energy are caused by the interfacial variations

dF = ’}/dA1g + Ye1dAg + ’YsgdAsg, (2.1)

where 7, 7., and sz are the liquid-gas, solid-liquid, and solid-gas surface tensions
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Figure 2: (Colour online) Schematics of the geometry of a liquid barrel inside a solid
wedge of opening angle 28. (a) 3D view of the system. The position vector of the liquid-
gas interface, g, is described using the vectors X, r and R, and the azimuthal and polar
angles ¢ and ¥. (b) View of the barrel’s cross section along the bisector plane, z = 0. The
short-dashed line corresponds to the equator of the barrel. The solid line corresponds
to the contact lines. (c) View of the barrel’s cross section along the transverse plane,
y = 0. The intersection with the solid occurs at a contact angle 6. The aspect ratio of
the transverse cross section of the barrel is determined by its minimum thickness, H and
equatorial width, W.

respectively; and Ajs, Ag, and Ay, are the corresponding interfacial areas. Therefore,
equilibrium states correspond to minima of the surface energy

F =~(Ag — Ag cosbe), (2.2)
where the equilibrium angle, 6., is determined by Young’s Law,

Vsg — Vsl
. 2.3
. 23

cosb, =

2.1. Geometry

To determine F', we need to specify a suitable parametrisation of the geometry of the
droplet, as shown in figure 2. In Cartesian coordinates, the wedge walls are oriented at
an angle 8 from the zy plane and intersect along the y axis. The unit normals to the
walls are +n(+53), where n(3) = (—sin g, 0, cos f3).

We assume that the wedge walls are identical and perfectly uniform. Furthermore, we
assume that the droplet shape has two planes of symmetry. In the following, we refer to
these as the bisector plane,

z=0, (2.4)
and the transverse plane,
y=0. (2.5)
The intersection of these planes defines the bisector line,
(2,0,0), (2.6)

which is the principal axis of symmetry of the droplet.
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We describe a point on the liquid-gas interface using the position vector

v, =X +r+R (2.7)
The vector X = (X, 0,0) defines the position of the geometric centre of the
droplet, X, relative to the apex of the wedge. The vector r = r(p)r, where

7 = (cos p, sinp, 0), is a displacement vector from the geometric centre of the droplet
(point X in figure 2) confined to the bisector plane. The vector R = R(p, ﬂ)R, where
R= (cospcosd, sinpcosd, sind), is a displacement vector that joins the vector r and
a point on the liquid-gas interface.

Whilst the azimuthal angle varies in the interval ¢ € [0, 27), the polar angle is restricted
by the intersection of the liquid-gas interface with the solid walls, i.e., ¥ € [—, 1], where
the maximum angle, v, can be found by the geometrical condition

A(E£B) - 21y (0,0 = ) = 0. (2.8)

In addition, one can write a relation for the contact angle of the liquid-gas interface with
the solid, #, measured from the liquid phase, which reads

ap.’Blg X 319$1g

—cosf = +R(£f) -
o n(£h) |0p15 X Oy

(6,0 = +1). (2.9)
The aspect ratio of the droplet can be characterised by the height-to-width ratio of
the transverse cross section,
H
W )
where the droplet height, H = |x15(7, ¥) —@15(m, —10)|, is the length of the line connecting
the contact lines at the narrow end of the wedge and the droplet width, W = |x4(0,0) —
x1g(m,0)], is the distance between the leading and trailing points of the droplet’s equator.
Using the parametrisation xi5(¢, ), we define the surface elements of the liquid-gas
and solid-liquid interfaces as

h

(2.10)

dAjy = (0px1g X Oyaig)didep, (2.11)
1 d
dAa = Szig(p, ¥) x @fmg(w,w) de. (2.12)
Therefore, the surface energy F', and the volume of the droplet, V', can be expressed as
27 P 27
F= 'y/ / |dAjg| — 27 cos 96/ n-dAg, (2.13)
0o J—y 0
and

1 I
V== V. (z,y,z) dedydz = 7/ / xg - dAj, (2.14)

3 liq. 3 0 7w

where we have made use of the divergence theorem in the last equality.

2.2. Morphology of liquid barrels

In this section we discuss the morphology of the liquid-gas interface in static and
dynamic situations close to thermodynamic equilibrium. Static droplets correspond to
a mechanical equilibrium situation, where capillary forces are balanced by an external
force, such as gravity. Dynamic situations, on the other hand, correspond to droplets
undergoing a translational motion within the wedge, where the liquid is subject to inertial
and frictional forces.
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In the following we will restrict our discussion to droplets confined in narrow wedges,
where [ is of the order of a few degrees. We consider droplets of characteristic linear
size V1/3 ~ 1 mm, made of liquids such as water, glycerol, or oils, for which the density
p ~ 103 kgm™3, dynamic viscosity n =~ 1 mPas, and surface tension v ~ 20 —70mNm™'.

For droplets under the action of gravity, the Bond number is, therefore, Bo =
ng2/3/fy ~ 107!, where g = 9.81ms~2. For moving droplets inside a narrow wedge,
B ~ 1° — 10°, experiments show that the typical speed is U ~ 1 — 10 mm s~ ! (Reyssat
2014; Ruiz-Gutiérrez et al. 2017). Hence, the Reynolds number Re = pUVY/33/n ~
10~ — 10°, the capillary number, Ca = nU/vy ~ 107> — 1073, and the Weber number,
We = ReCa ~ 1076 — 1073.

The smallness of the Reynolds number implies that inertial effects are negligible relative
to viscous stresses. On the other hand, the smallness of the Weber number indicates that
short-wavelength perturbations to the liquid-gas interface decay over a short timescale
relative to the timescale of translational motion the drop (Miller & Scriven 1968; Zhong-
Can & Helfrich 1987). Finally, the smallness of the Bond and capillary numbers implies
that the shape of the interface is dominated by surface tension.

Therefore, we describe the near-equilibrium shape of the liquid-gas interface as a
smooth barrel shape intersecting the solid at the equilibrium contact angle. In terms
of the parametrisation presented in §2.1, this corresponds to introducing the following
approximations:

0= 0., (2.15)
R = R(yp), (2.16)
W/2 = R+ r = const., (2.17)

where R(y) is the radius of curvature of the interface normal to the bisector plane and
W/2 is the radius of curvature of the barrel’s equator.

To obtain an explicit expression of the barrel shape, we need to substitute the as-
sumptions (2.15)—(2.17) into (2.7)—(2.9). First, we note that under these assumptions
the unit vector R is approximately normal to the contact line. Therefore, the boundary
condition (2.9) can be relaxed to the constraint

—cos B, = n(B) - R(Y =1p). (2.18)

This simplification leads to the following expression for the transverse radius of curvature,

cos ¢
R = 1 2.19
2 q( +€cos<pcosee/sin5>’ (2.19)
where
sin 3
=— X 2.20
cosf, ( )
and
w
=——1. 2.21

Here, ¢ is a rescaled position of the geometric centre of the barrel. Setting ¢ = 0 in (2.19)
gives R = const., and thus the barrel takes the shape of a sphere truncated by the
solid planes. Therefore, € controls the amplitude of azimuthal distortions to the spherical
shape.

For a given volume, choosing the position of the barrel fixes its equatorial width, and
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consequently, ¢ and € are not independent. Rather, evaluating (2.14) gives the relation

3

Vige) =" aic, (2.22)

i=0
where the constants a; are functions of 8 and 6., and are reported in Appendix A. Their
expressions, however, simplify considerably in the limit of small wedge angles. Therefore,

ap = %(cos 30. — 9cosb,), (2.23)
ay = (20, — m — sin 26,) + O(3?), (2.24)
as = —2mcos b, + O(B?), (2.25)
az =0+ O(5?). (2.26)

Using this approximation, and inverting (2.22), we find

e(q) = % ({a? + 4ay (;/3 - a0> }1/2 - a1> : (2.27)

2.3. Equilibrium

We first analyse the equilibrium shapes of liquid barrels in wedge geometries. Concus
et al. (2001) proved the existence of equilibrium states in the range 6, — 8 > 90°, corre-
sponding to sections of spheres intersecting the walls of the wedge with the equilibrium
angle 6,. Baratian et al. (2015) showed that for such solutions the surface tension acting
on the wall integrated over the contact line exactly matches the pressure exerted by the
liquid integrated over the solid-liquid interface.

In terms of (2.15)—(2.17), such force-free spherical shapes can be recovered by setting
r =0 and R = R,, where

6V 1/3

B = m(cos 30 — 9 cos )

(2.28)

This yields the following relations for the equilibrium position, X, height-to-width ratio,
he, and surface energy, Fy:

cos 0,

X, = — . 2.2
sin 3 (2.29)
he = —cos(0. — B), (2.30)
F, = 'yg(cos 30, — 9cos 0) R2, (2.31)
while the equilibrium rescaled variables read
e = Re, (2.32)
€ =0. (2.33)

Figure 3 shows the equilibrium surface energy of liquid barrels at different positions
within the wedge. We first focus on the effect of 6, on F, and X,.. For 6, < 180°, a
suspended droplet will always reduce the total surface energy by wetting the walls of the
wedge. This wetted area is larger for smaller 6., and, because of volume conservation, the
liquid settles at an equilibrium position closer to the wedge apex (see insets in figure 3).
At first sight, one might expect a similar effect by increasing the wedge angle, 8. Indeed,
from (2.29) an increase in the wedge angle leads to a closer position of the barrel to
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Figure 3: (Colour online) Equilibrium surface energy, Fi, as a function of the distance
from the wedge apex, X,, for different equilibrium contact angles at fixed 8 = 5° (full
symbols) and wedge angles at fixed 6, = 105° (empty symbols). The insets correspond
to cross sections of the barrels along the transverse plane.

the wedge apex. The surface energy, however, remains constant. Geometrically, this can
be understood by noting that a change in [ is equivalent to a rotation of the excluded
portions of the truncated sphere (shown as dashed lines in the insets of figure 3) about
the centre of the sphere, which does not alter the size of any of the interfaces of the
barrel.

Note that for the droplet to form a closed barrel, that is, a structure that bridges the
walls of the wedge avoiding its apex, one must have R, < X,, or, equivalently,

he > 0. (2.34)
From (2.30), this condition is satisfied only if
0. — 5 >90°. (2.35)

Equilibrium states can also exist if 6, — 5 < 90° but not as liquid barrel shapes. In
such cases it has been shown that the liquid completely invades the wedge (Reyssat 2014)
and forms edge blobs (Concus & Finn 1998; Concus et al. 2001) or filaments that spread
laterally along the wedge apex (Brinkmann & Blossey 2004).

For a parallel-plate geometry (8 = 0°), force-free barrels can exist provided that the
separation between the solid walls matches the equilibrium height

H, = 2heR., (2.36)

which follows easily from (2.30). As noted by Kusumaatmaja & Lipowsky (2010), a
displacement of the solid wall from this equilibrium configuration will still result in
mechanical equilibrium, albeit in the presence of a net external force. This situation
can also occur for capillary bridges (6. < 90° — ), for which no force-free equilibrium
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Figure 4: Energy landscapes along the position of the liquid barrel within the wedge,
X, calculated analytically (solid lines) and numerically via constrained minimisation of
the surface energy (symbols). (a) Curves for fixed § = 5° and different equilibrium
contact angles: 6, = 95° (+), 6, = 100° (x), 6, = 105° (%), 6, = 110° (O), 6, = 115°
(W), 6, = 120° (o), 6, = 125° (e), and 6, = 130° (A). (b) Curves for fixed 6, = 105°
and different wedge angles: § = 5° (%), f = 9° (x) and 8 = 13° (+). The pentagons
correspond to the minima in the analytical curves. The solid cut-off lines correspond to
the limit where the liquid-gas interface touches the apex of the wedge.

configurations can exist and the net force exerted by the liquid on the solid plates is
always attractive.

2.4. Energy landscapes

We now focus on the energy change due to a small change in the position of the barrel
from equilibrium, corresponding to € < 1. Therefore, we express the free energy F (2.13)
as a polynomial expansion in €. After some manipulations, we obtain

3
F(g,€) = 7" Y (3 —i)aic’ + O(*). (2.37)
i=0
The constant-volume energy landscapes, Fy/(X), are then obtained by inserting (2.27)
into (2.37) and recovering the definition of ¢ from (2.20), i.e.,

Fy(X)=Foecoq(X). (2.38)

Figure 4(a) shows the energy landscapes for several values of 8, but keeping 5 = 5°. The
asymmetry in the landscapes about the equilibrium position arises from the intrinsic
asymmetry of the geometry of the wedge. A displacement towards the apex of the wedge
induces a comparatively larger increase in the solid-liquid surface area relative to the
liquid-gas surface area, and results in a sharper increase in the surface energy. This same
feature is observed in figure 4(b), where we present energy landscapes at fixed 6, = 105°
and different values of 5.

2.5. Pressure distribution
In the limit of small Reynolds and Weber numbers, the local conservation of momentum
within the liquid is governed by the Stokes equations

0=—Vp+nV3u + pg, (2.39)
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Figure 5: (Colour online) Pressure profiles along the bisector line (z,0,0) for out-of-
equilibrium barrel shapes of equilibrium contact angle #, = 110° and wedge angle 5 =
5° (shown as insets). Each of the curves corresponds to a different displacement from
equilibrium. From left to right, (X — X.)/V/3 = -1, —1/2, 0, 1/2, 1.

where p is the pressure field, u is the velocity field, and pg is the body force density
exerted by gravity. For an incompressible fluid, the continuity equation reduces to the
incompressibility condition

V.u=0. (2.40)

The model for the barrel shape presented in §2.2 provides a means to calculating the
pressure distribution within the liquid in both static and dynamic situations. Specifically,
combining equations (2.39) and (2.40) to eliminate u and pg (Landau & Lifshitz 2013,
Pozrikidis 1992) leads to the result that the pressure satisfies Laplace’s equation,

V2p = 0. (2.41)

Here, the geometry of the wedge and the configuration of the barrel provide the boundary
conditions for p. At the solid walls, we impose the impenetrability condition

n - Vp(xg) = 0. (2.42)

At the liquid-gas interface, on the other hand, the pressure is determined by the local
barrel shape via the Young-Laplace law,

p(x1g) = 2K, (2.43)

where k is the mean curvature of the interface.

To determine the pressure profile we need to solve the boundary value problem posed
by (2.41)—(2.43). The mean curvature, &, follows from (2.18)—(2.21). The calculation is
simplified significantly using toroidal coordinates, as reported in detail in Appendix B.
Having determined the mean curvature, we solve Laplace’s equation using separation of
variables and express the solution as a harmonic series. The calculation is lengthy, and
we thus refer the reader to Appendix C for details.

To illustrate our result, let us first consider the mean curvature at the equator of the
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Figure 6: (Colour online) Pressure field, p(x), for a barrel displaced inwards, (a and b),
and outwards (c and d) from the equilibrium position. (a) and (c): Projections of the
pressure field on the equatorial plane, z = 0. (b) and (d): Projections on the transverse
plane, y = 0.
The displacement in (a) and (b) is (X — X.)/V'/? = —1, and in (c) and (d),
(X — X.)/VY? = 41. The contact and tapering angles are f, = 110° and § = 5°.

Figure 7: Pressure gradient force density, —Vp, for a barrel displaced (a) inwards and (b)
outwards from the equilibrium position. The plots correspond to cross sections along the
transverse plane, y = 0. The displacements in (a) and (b) correspond to X — X, = —V1/3
and X — X, = +V1/3. The contact and tapering angles are 6, = 110° and 3 = 5°.

B

barrel, which reads

1

K== aRG) T 2

Evaluating (2.44) at the points ¢ = 0 and ¢ = 7 leads to an expression for the Laplace
pressure drop along the bisector line, which reads
8vXe

Ap = X (2.45)

Equation (2.45) gives an indication of the structure of the pressure profiles along the

bisector line, which we present in figure 5. We first note that geometry dictates that X >

W /2. Therefore, the sign of Ap is controlled by e. Inwards displacements, corresponding

to € > 0, give Ap < 0, indicating that the barrel is subject to an outwards force due

to the pressure gradient. The converse situation occurs for € < 0. The magnitude of

Ap increases as X — W/2, reflecting the stronger effect of confinement for inwards

displacements from the equilibrium position. In equilibrium, where ¢ = 0, the pressure

profile is uniform (Ap = 0), and corresponds to p(z,y = 0,z = 0) = 27/R., as expected

for a spherical barrel shape.
As shown in the contour plots of figure 6, the 3D pressure distribution broadly follows

1 1 1 esin g cos
= . 2.44
( +1—|—e+(l—l—e)sinﬂcosga—cosee) (244)
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the same structure as the pressure profile along the bisector line. For barrels displaced
inwards and outwards from their equilibrium position, the contour lines of the pressure
field are denser towards the narrow end of the barrel, implying a stronger capillary
force caused by the effect of confinement. This is confirmed by inspection of the pressure
gradient force density, —Vp, shown in figure 7, which is radial and decreases in magnitude
with increasing distance from the apex of the wedge.

3. Statics: comparison to liquid barrels deformed by gravity

The pressure profiles shown in figure 5 suggest that the out-of-equilibrium barrel
morphologies presented in §2.2 capture the effect of a uniform force density, such as
gravity, on the shape of the liquid-gas interface.

To verify this hypothesis, we employed a finite element approach to numerically
compute the barrel morphologies in mechanical equilibrium subject to a constraint in
the position of the centre of mass. To this aim we used the public domain software
SURFACE EVOLVER (Brakke 1992) to define a triangulated mesh describing the liquid
surface and to minimise the surface energy through a conjugate gradient algorithm.

In the numerical method, the Lagrange multiplier of the volume constraint, Ay, plays
the role of the Laplace pressure at the coordinate x = 0, while the Lagrange multiplier
of the centre of mass, Ax, can be interpreted as an effective body force required to hold
the droplet in place. Therefore, a linear hydrostatic pressure profile can be constructed
by writing pps(z) = Ay + A xV?/3g /7. In figure 8 we overlay the linear pressure profiles
obtained numerically to the analytical curves. The range of each curve corresponds to
the equatorial width of the barrel in each model. As expected, there is good agreement
in the magnitude of the pressure and in the location of the edges close to equilibrium
with the analytical model, particularly for for X > X,. This agreement is also observed
when comparing the analytical and numerical energy landscapes, as shown in figures 4(a)
and 4(b).

In order to quantify the deviations between the pressure profile of the barrel and
the linear hydrostatic pressure profile we consider the limit of small displacements from
equilibrium. In such a case, the hydrostatic pressure profile increasingly approaches the
Laplace pressure profile within the droplet, i.e.,

A
pm@y:mamomn%Hx—X+wqm. (3.1)
Therefore, a measure of the deviations between p and pyg is the residual pressure

6phs = [P - phs]wlg(go,ﬁzo)a (32)

i.e., the difference between the pressure of the barrel and the hydrostatic pressure profile
at a point along the barrel’s equator. After some calculations we obtain

4vXe W sin? ¢
W2 —4X2 \Wecosp+2X )~

5phs = (33)

For a given barrel configuration, we calculate the maximum of dpys/p along the equator,

giving the convergence criterion
5pns L (R.\*
Ph N2<>|6<L (3.4)

p

max

Xe

@15 (,9=0)

The dependence on € shows that the barrel shape is a good approximation of the gravity-
deformed droplets close to equilibrium. For a given translational displacement from
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Figure 8: Comparison of the pressure profiles along the bisector line for out-of-equilibrium
barrel shapes obtained analytically (solid lines) to hydrostatic profiles obtained wvia
constrained free-energy minimisation (dashed lines). From left to right, the curves
correspond to the set of displacements (X — X.)/V/3 = —1, —1/2, 0, 1/2, 1. The
equilibrium and wedge angles are 6, = 110° and 5 = 5°.

equilibrium, distortions are stronger for inwards displacements due to the dependence
of e on X (2.27), and for barrels initially closer to the apex of the wedge due to the effect
of confinement, as indicated by the dependence on R,/ X,.

4. Dynamics: motion of a liquid barrel near equilibrium
4.1. Lagrangian formulation

The barrel morphologies obtained in §2.4 correspond to a translational displacement
of the liquid along the bisector line. Here we analyse the relaxation of the position of
the barrel, X (¢), back to the equilibrium position, X,. The advantage of the free-energy
model is to provide an expression of the net capillary force, —dFy /d X, that drives such
a relaxation. For slow motions, corresponding to the over-damped regime, the driving
force acting on the barrel will be balanced by a friction force. This will depend on the
viscous stresses within the liquid and on the contact-line friction offered by the solid
walls. Therefore, the dynamics is amenable to a coarse-grained description that focuses
on the time evolution of X (¢). In this section we derive the equations of motion at this
level of description based on a Lagrangian formulation.

Consider the generic Lagrangian L(¢, 5), where £ = {} and £ = {51} are a set of
generalised coordinates and generalised velocities. The equations of motion are obtained
by writing the Euler-Lagrange equations

d (0L OL
4 (85) - K (4.)

where we have introduced the set of (non-conservative) friction forces K = {K;}.
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For zero K, the energy of the system,

£ - Z@ o (4.2)

is a conserved quantity (Goldstein et al. 2001). This situation changes for non-zero K,
where the energy is dissipated by friction at a rate (see, e.g., Galley 2013)

&= Z LK. (4.3)

In situations where the friction forces are linear functions of the velocity, i.e.,
Ki = *Viéia (44)

where v; is a friction coefficient, one obtains the result

== u?, (4.5)
i
which is called a Rayleigh dissipation function (Goldstein et al. 2001). Therefore, if £ is
known, it can be used to determine the friction coefficients; namely:
192
20¢?
The instantaneous barrel configuration, given by (2.19), is controlled by the coordinates
g and €. Hence, the Lagrangian of the system is L(q, ¢, €, ¢), where ¢(t) and €(t) are treated
as dynamical variables and ¢ = dq/dt and é = de/dt are the corresponding velocities.
As discussed in §2.2, we focus on the over-damped regime, where inertial effects are
negligible. Therefore, L can be written purely in terms of the surface energy, F'. Imposing
the constraint of a constant volume, V = Vj, gives

L=-F+p(V -V (4.7)

where p is a Lagrange multiplier.
Inserting this expression into (4.1) and using (4.4) gives the equations of motion

or 0V )
ag Pag = v (4.8)
oF 8V .
E ae = —UE. (49)

The time-evolution of the position of the barrel, X (¢), follows from the equation of

motion

dF :
T)‘(/ = —vxX, (4.10)

where the term in the right-hand side is obtained by differentiating (2.38). The drag
coefficient vx can be related to v, and v.. Enforcing the conservation of volume explicitly
gives

S = 4+ —é=0. 4.11
. (4.11)

This relation can then be used in conjunction with (4.8) and (4.9) to obtain

vx = (iﬁl()? {uq + (j;)zue}. (4.12)
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4.2. Flow patterns

In order to determine the friction coefficients introduced in §4.1, we need to specify the
dissipation function £. This, in turn, depends on the details of the flow pattern within
the barrel. In this section we discuss the flow pattern emerging from the barrel shape
introduced in §2.2.

The approximation of the pressure distribution within the barrel, derived in §2.5,
implies that, in the absence of external forces, the Stokes equations (2.39) can be written
as

nV?u = Vp, (4.13)

which have been reduced to a set partial differential equations for the components of the
velocity field w.

Due to the linearity of the Stokes equations, u can be expressed as a superposition of
the flow patterns in two distinct regions. These correspond to the region near the contact
lines, and to the bulk region of the barrel.

We first consider the region near the contact lines. Voinov (1976) and Cox (1986) first
showed that the flow pattern in this region is generic of dynamic wetting problems (Bonn
et al. 2009), and is determined by the competition between capillary and viscous forces.
As shown by Snoeijer (2006), the dominant flow pattern is a corner flow where the shape
of the interface is described by the apparent contact angle of the liquid-gas interface with
the solid, 6. In the frame of reference of the contact line, the flow field reads

(cos ¢ — Ppsin¢)sin — QCOSQCOS¢§+ fsin ¢ cosf — ¢ cos psinf -

ucorner(sa (b) = Ucl 0 — cosfsinf f# — cosfsinf

)

(4.14)
where v is the speed of the contact line, s is a radial coordinate perpendicular to the
contact line and ¢ is a polar coordinate subtending from the solid wall (¢ = 0) to the
liquid-gas interface (¢ = 6).

The main result of the Cox-Voinov theory is a relation between the shape of the
interface, characterised by 6, and its speed v;. This is the well-known Cox-Voinov law

10l log 2] (4.15)

g(0) = g(be) + 0

where g(z) = [} da’(z — cos 2’ sina’) /2 sina’. The logarithmic term in (4.15) reflects the
increased viscous friction in the proximity of the contact line, where £,, is a microscopic
cut-off length scale introduced to regularise the so-called viscous dissipation singular-
ity (Huh & Scriven 1971). The corner flow extends up to a macroscopic length scale, £y,
beyond which the flow pattern is no longer generic and becomes dependent on the details
of the geometry of the system.

The large-scale region corresponds to the bulk of the barrel. From the structure of the
pressure field of the barrel (see figure 7), we expect that the flow pattern resembles a
radial flow within a wedge geometry, also known as a Jeffery-Hamel flow (Jeffery 1915;
Hamel 1917). For a given barrel configuration, this can be written explicitly by matching
the pressure drop across the barrel (2.45), to the pressure drop driving the radial flow.
After some calculations, reported in detail in Appendix D, we obtain

X cos 283 — cos 2w
(22 + 22)1/2 cos 23 — B~ 1sin 23

Upuik (2, 2) = X (cosw & + sinw 2), (4.16)
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Figure 9: Comparison between the pressure profile of a liquid barrel along the bisector
line (solid curves), to the Jeffery-Hamel pressure profile (dashed curves) for 6, = 120°,
B = 5° and barrel positions (X — X.)/V/3 = —1,-1/2,0,+1/2, +1.

where w = arctan(z/z). The corresponding pressure profile is

W cos 6, R W cosb,\ W2 —4X2
2X sin 8 AW 2Xsinfl) 22+ 22

Figure 9 shows a comparison between the pressure profile of the barrel, p, and the
Jeffery-Hamel pressure profile, ppuix, along the bisector line for a set of displacements from
equilibrium. There is a good match between both pressure profiles close to equilibrium.
To quantify the deviations between the pressure profiles, we consider the residual pressure
field along the barrel’s equator

Pbulk (T, 2) = = (3

- (4.17)

5pbulk = [P - pbulk]wlg(ga,ﬁ=0)a (418)
which reads
W sin? ¢
OPbulk = . 4.19
Pbulk ’ye(WcosgaJrQX)z (4.19)
Hence, the Jeffery-Hamel flow will be a good approximation of the bulk flow in the barrel
provided that
P 1 (R’
max‘pblk - (> le] < 1. (4.20)
P ey (eo=0) 4 \Xe

The meaning of this equation is that deviations grow as the barrel becomes increasingly
distorted from the equilibrium shape. This is reflected in the linear dependence on e.
Similarly to the case of static barrels discussed in §3, distortions are comparatively
stronger for larger R./Xe, i.e., for barrels increasingly confined to the the apex of the
wedge.

4.3. Sources of dissipation

Having discussed the flow pattern within the barrel, we are now in a position to derive
the dissipation function £. As discussed by de Gennes (1985) and de Ruijter et al. (1999),
the total energy dissipation arising during the motion of a meniscus, £, results from three
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main contributions,

E=Eu+E+E7, (4.21)
where & is the hydrodynamic dissipation, Er is the dissipation due to the contact line
motion, and £ is the energy dissipation arising from the formation of a precursor film
ahead of the contact line. The latter term is negligible for partial wetting situations, and
therefore we shall set £ = 0. )

The hydrodynamic contribution, £, is the rate of viscous dissipation caused by the
flow pattern, and reads (Landau & Lifshitz 2013),
. 1
Ex = _5"/ (Vu+vul)? av. (4.22)
1%
Following the analysis of the flow patterns in §4.2, the integral in (4.22) can be split into
contributions coming from the bulk and corner flow regions. i.e.,

S’H = gbulk + gcorncr~ (423)

The bulk dissipation is determined using the flow field (4.16). After some calculations,
which we report in Appendix E, we obtain

12mn X2W2
ﬂ(4X2 _ W2)3/2

The energy dissipation due to the corner flow near the contact line arises from a
deviation of the meniscus from its equilibrium configuration. This can be quantified in
terms of the apparent contact angle, §. The capillary force driving the distortion of the
interface is

Epuk ~ — X%~ —6;—27” cos | (1 + €)% g ¢*. (4.24)

fo1 = (cos B — cos0)b ~ vsinb.(6 — 6.)b, (4.25)

where b is the unit normal of the contact line coplanar to the solid interface. Therefore,
the energy dissipation can be expressed as (see, e.g., de Gennes 1985),

corner - % fcl Vel dl (426)

where the integration is over the closed loop defined by the contact line and v, =
Z1g (¢, ¥ = 1) is the velocity of the contact line.

The deviation of the dynamic contact angle from the equilibrium value can be estimated
using the Cox-Voinov law (4.15), which for small (6 — 6,) reduces to

0. — cos O, sin b, Im

0—96 el 1 4.27
2 sin 6, ~ e) = ’yU 1ogy - Oy’ ( )
where v = v + b.
Using (4.27) to eliminate 6 — 6, from (4.26) gives
. 4n sin? 6, Ay 9
Ecorner = —7——————— log — di, 4.28
e 0. — cos O, sin 0, 08 b j{l Yel ( )
where the closed-loop integral is (see Appendix F for a derivation)
2 9 1 <2
f ! gg +d (4.29)
cl

Finally, the contact-line dissipation, &, arises at length scales smaller than ¢,,, where
frictional processes are controlled by the motion of the liquid and gas molecules past
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the solid. Matching the average speed of the molecules to v, one obtains the friction
law (de Ruijter et al. 1999),

Er=—2( % v2 dl, (4.30)
cl

where the friction coefficient, (y, is determined by the competition between the adsorption
of molecules by the solid and thermal fluctuations (Blake & Haynes 1969).

4.4. Relazation towards equilibrium

Close to equilibrium, the restoring force in (4.10) can be obtained by expanding Fy in
powers of X — X, i.e.,

1

Fy(X) = ot 5h(X ~ X + O(X ~ X.)", (431)

where the coefficient of restitution is

3apas B2
k=6 1— : 4.32
vao ( a? ) cos? 0, (432)
which, after using (2.26) reduces to
cos 36, — 9 cos b 2 cos? 0, (cos 20, — 5)

[ = <1 - - . 4.33
m™p cos? 6, { (m — 20, + sin 26,,)? } (4.33)

To estimate the drag coefficient, vx, we first substitute (4.24), (4.28) and (4.30)
into (4.21). Then, using (4.6), gives, to leading order in f,

2 2sin? 6, cos 6, 4%t
_ $6.](1 1 " log — 4.34
Vg 52 | cosb.|(1+ €)gq [( +6)+cosﬂesin06—98 ngm} (4.34)
2
+ B,fo cos? e (1 + €)q, (4.35)
Vo (4.36)

The close-to-equilibrium behaviour of vx can then be obtained by substituting v, and
ve into (4.12), and setting ¢ ~ Re = (V/ag)/? and e ~ 0. This produces the result

6V 1/3 67n 47 sin? 6,
Vx = )

159
log — + 2 . (4.
m(cos 30, — 9 cos b, 08 i + 77(0) (4.37)

|cosfe| = 6o — cos B, sin b,
This expression gives the relative contributions to the drag coefficient arising from the
bulk, corner and contact-line, corresponding to the first, second and third terms inside
the round brackets, respectively.

Using (4.37) and (4.31) in (4.10) gives the exponential relaxation of the position of the
barrel towards equilibrium,

X(t) = Xe + (X(0) — Xo)e /7, (4.38)

where the ratio

T

Vx
e (4.39)

sets the time scale of the relaxation process.

5. Discussion and Conclusions

Concus et al. (2001) predicted the existence of equilibrium barrel shapes, which
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Figure 10: (Colour online) Phase diagram of the filling states of liquid droplets in a solid
wedge. The vertical arrows indicate trajectories of the system for fixed values of 6, and
8. The dashed line shows the onset of edge blobs. The equilibrium of the trajectories
is highlighted and examples of the morphology of the droplet are shown as insets. For
clarity, the volume in the examples is not the same.

correspond to sections of a sphere. Such states exist so far as the contact and wedge
angles satisfy 90° + 8 < 6, < 180°.

In equilibrium, the height-to-width aspect ratio of the barrel, he, plays the role of
an order parameter. This idea is illustrated in figure 10, which shows a phase diagram
of the different filling regimes for a wedge. For 6 < 90° + 3, he = 0, corresponding
to the complete filling states studied by Concus & Finn (1998), Concus et al. (2001)
and Brinkmann & Blossey (2004). For 6, > 90° + 3, corresponding to the barrel regime,
the aspect ratio becomes finite, i.e., he = — cos(f, — 3). Increasing the equilibrium contact
angle leads to a limiting barrel configuration, where 6, = 180° and h, = cos 5. In such a
limit, the contact area between the liquid and the solid vanishes, and the liquid forms a
suspended droplet.

Out of equilibrium, the instantaneous aspect ratio characterises the inwards and
outwards modes of motion for a liquid barrel. Using (2.10) and (2.19) gives

cosfe + (1 +¢)sin
(1+ €)(cos B +sinB)’

A displacement of the liquid towards the apex of the wedge will result in a vertical
compression of the barrel (see lower inset in figure 10). This corresponds to setting
e > 0 in (5.1), which leads to a decrease in the aspect ratio, i.e., h < he. In contrast,
a displacement towards the wide end of the wedge causes a vertical extension of the
interface, and corresponds to € < 0, or, equivalently, h > h,. The energy landscapes
reported in §2.4 suggest that the spherical barrel shapes correspond to global minima
in the surface energy, and therefore distortions to such shapes will always relax back
to equilibrium. For situations where 6, and (8 are kept constant, trajectories towards
equilibrium run as vertical lines in figure 10, pointing towards the master curve he (6, —f3).

Baratian et al. (2015) showed that the equilibrium barrel shapes are subject to a
vanishing net force. In such a case, the pressure force exerted by the walls on the
droplet is exactly balanced by the surface tension acting along the contact line. Out
of equilibrium, the net force will not vanish. Because the mean curvature of the barrels

h = he (5.1)
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Figure 11: (Colour online) Bulk, corner flow and contact line contributions to (a) the
drag coefficient, vx and (b) the relaxation time, 7, of the translational motion of barrels
along the bisector plane of a wedge of angle 8 = 5°. In (a) the restitution coefficient, k,
is superimposed on the right-hand side axis. The vertical lines in both plots correspond
to the limiting wetting angle 6, = 90° + 3.

is positive, the average Laplace pressure within the droplet is larger than the pressure of
the surrounding medium. Therefore, the lateral projection of the pressure force exerted
by the liquid on the walls of the wedge points towards the apex, and, consequently,
the walls will always exert a reaction force pointing in the outwards direction. On the
other hand, the tension acting over the contact line can always be locally decomposed
into components that are normal and tangential to the solid surface. In situations where
the contact angle is uniform, the integral of the tangential component of the tension
force over the contact line will vanish. The vertical component will always point towards
the solid, and therefore, the walls will exert a net force pointing inwards. Because a
displacement of the barrel towards the narrow end of the wedge always results in an
outwards motion, one can infer that the pressure force must be larger than the tension
force. On the other hand, the inwards motion of the barrels from the wide end of the
wedge towards their equilibrium position suggests that the dynamics is dominated by
the tension acting at the contact line. These features are analogous to the well-known
problem of capillary invasion (de Gennes et al. 2004). For tension-dominated dynamics
one expects little deviation of the local contact angle from the equilibrium contact angle,
similarly to the spontaneous imbibition problem, whilst in the pressure-dominated regime
the interface should deform more appreciably from its equilibrium configuration, as in
forced imbibition.

We close our discussion by focusing on the relaxation time scale of the translational
motion of the barrels, 7 = vx /k, which results from the balance of the driving capillary
force, characterised by the restitution constant k, and the overall friction, characterised
by the drag coefficient, vx. Figures 11(a) and (b) show plots of k, vx, and 7 as functions of
the equilibrium angle. In the limit 6, — 90°43, the barrel equilibrium position is closer to
the apex of the wedge. Geometrically, this implies a stronger confinement, and thus both
the bulk contribution to the friction coefficient and the restitution constant reach local
maxima in this limit. For larger 6., both quantities decrease monotonically, leading to an
initial decrease in the relaxation time. However, the rate at which k decreases becomes
dominant with increasing 6,. This is because at higher equilibrium contact angle the
barrels keep an approximately spherical shape for larger displacements from equilibrium.
As a result, the relaxation time reaches a minimum, beyond which it increases with 6,
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Figure 12: Dependence of the relaxation time data from Ruiz-Gutiérrez et al. (2017),
scaled by V~=1/3T(#,)~'. The symbols represent different liquid barrel volumes: V' = 2 L
(W), V =3 puL (A), V =4 uL (e), and V = 5 uL (#). The solid line represents
the theoretical prediction, equation (5.2), up to a best fit of the y-intercept to the
experimental data.

until it reaches a maximum saturation value as 6, — 180°. Interestingly, the location
of the minimum and maximum relaxation times shown in figure 11(b) depends on the
contributions to dissipation from the motion of the corner flow and the contact line.

The typical magnitude of the corner flow is controlled by the length scale separation
between the macroscopic length scale fy;, and the microscopic length scale ¢,,. The
microscopic length depends on the details of the liquid-gas interactions and the roughness
of the solid surface (Bocquet & Charlaix 2010) that characterise the motion of the
interface at the level of the contact line (Snoeijer & Andreotti 2013). For a macroscopic
droplet, we fix oy ~ Re ~ 1 mm and £, ~ 10 nm, and thus fy;/f, ~ 105. As shown
in figure 11(a), this additional contribution is important at intermediate angles, and
vanishes in the limit 8, — 180°. This is the combined effect of a vanishing contour length
and a less confined corner flow at higher opening angle. As a result of the corner flow,
the minimum in the relaxation time is displaced to a higher contact angle, as shown in
figure 11(b).

The contribution of contact line dissipation to the drag coefficient is controlled by the
(constant) microscopic friction coefficient {p and the contour length of the contact line.
Therefore, this term decays more slowly than the corner flow term in (4.37). Estimating
o will, in general, be subject to the details of a specific model (see, e.g., Ranabothu et al.
2005; Sikalo et al. 2005). Rather, here we examine the case where (/317 = 1 in (4.37)
as a specific example where the corner and contact line dissipation are comparable in
magnitude. As shown in figures 11(a) and 11(b), the main effect of this term is a slower
decay in the contact line dissipation with increasing contact angle, which in turn leads
to an overall broadening of the maximum in the relaxation time.

Experiments of the dynamics of liquid barrels in smooth dry wedge geometries (where
a contact line is present) have not yet been reported. Recently, Ruiz-Gutiérrez et al.
(2017) have reported experiments of water droplets of volumes in the range of 2-5 uL
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relaxing towards equilibrium in wedges of opening angles in the range 5 = 1°-5°, where
the walls of the wedge are coated with a thin layer of a lubricant oil. The main effect
of the lubricant layer is to remove the contact line, whilst introducing a wetting ridge
of the lubricant liquid. We thus expect that this system provides a means of testing the
bulk contribution to dissipation in our model. Dropping the corner-flow and contact-line
contributions to vy in (4.37), equivalent to setting o = 0 and £y /4y, ~ 1, leads to the
scaling of the relaxation time

V1/3
T X 52 T(0.), (5.2)
where
cos 0, 2 cos? 0, (cos 20, — 5) -1
T(6,) = 1 - 5.3
(6) (cos 30, — 9cosB,)4/3 + (20, — 7 — sin 20,,)? (5.3)

In the experiments of Ruiz-Gutiérrez et al. (2017), the apparent contact angle varies in
the range 97° — 105°, with typical experimental errors of 1°-4° due to the effect of the
lubricant layer (see Appendix G for a reproduction of the experimental data). Therefore,
it is difficult to test the scaling of the relaxation time with the contact angle. In figure 12
we plot the measured relaxation time of Ruiz-Gutiérrez et al. (2017), Texp, rescaled by
V=1/3T(6,)~'. We obtain a collapse of the experimental data onto a single master curve,
which is consistent with the ~ 372 scaling predicted by (5.2) over the range of parameters
considered. The details of the motion of the droplet in contact with the lubricating layer
in the experiments will affect the pre-factor in the relaxation time, which our model does
not capture, but not the scaling proposed by our theory.

Therefore, the prediction of the relaxation time can be used in experiments that study
the motion of barrels in a wedge geometry to identify the relative contribution of each
source of dissipation in the motion of the liquid barrels. More quantitatively, our model
can be used to estimate the values of the microscopic cut-off length, ¢,,, and the friction
coefficient, (g, by treating these quantities as fitting parameters.
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Appendix A. Coefficients of the volume and free energy polynomial
forms

Integrating (2.7) with respect to ¢ gives the following expression for the volume of the
liquid,

2T
V:%/ R{Q(X&prsingo—i-rz—I—chosgo)sinw—l—R[r(?)w—&—sinz/woszb) (A1)
0

+X (¢ + sin ) cos 1) cos ] + 2X 9, Ry sin ¢ + 2R siny} de,
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Following the approximations detailed in §2.2, the radii » and R read

qex

r(p) = P (A2)
B €COS
Rig)=a (14 2 ). (A3)

where o = — cos 6,/ sin 3.
Substituting (A 2) and (A 3) into (A 1) results in a polynomial of € where the coefficients
are,

1 2

ao = 3 ; {2sin ¢ 4+ afy) + siny cosp] cos p} do, (A4)

1 27 .
a =g / (cos p + @)% {4a* cos psinp
0

+ o®[(41) + 2 sintp + sin 29)) cos 2 + 6(1p + sin ) 4 2sin 2]
+ 20%[({3 + sin 24/} cos 2 + Teh + 4{2 + cos ¢} sin 1)) cos ¢]
+ (24 + sin 299 cos 2 + 81 + 4(6 + cos ) sin )] cos? ¢

+12cos® psin w} de,
(A5)

1 27 . .

az = 5 / (cos o + @)% {4a®[cos 2 + 3] sinyp
0

+ a[(61) + sin 29)) cos 2 + 224 + 16 sin 9 + 5 sin 2¢] cos @

+ [(2¢) + sin 29)) cos 2¢ + 26¢) + 24 sin 1) + 5sin 20 cos? @

+24 cos® psiny} de,
(AG)

and
1 27 _3 9 .
as = ¢ (cos 4+ a) ™% {4a” cos psiny
0

+ a[69) + sin 21)] cos?
+4 cos® @ sin 1/)} de.

(A7)

The evaluation of the integrals requires an explicit expression of the angle v; using
(2.18) gives

. [a\/l—i— (cos? o — a?)tan® B + cosp| . (A8)

Using (A 8) and expanding in powers of 8 leads to (2.26).
To compute the interfacial energy we first note that (2.13) is composed of two terms,
the first being

27 pp 2m e
/ / |dAjg| = / / R [R?cos® ¥ + 2Rrcos ¥ + 1° + (OpR + Opr cos)?] 1z dddep.
0 —) 0 —p

(A9)
The integral in ¥ can be expressed in terms of elliptic functions. Then, substituting R
and r using (A 2) and (A 3), gives an expression in terms of ¢ and e. Close to equilibrium
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€ < 1, therefore, we evaluate the integral by first expanding the integrand in powers of
€, which leads to (2.37).

Appendix B. Liquid-gas interface in toroidal coordinates

A position vector in toroidal coordinates has the form,
a
= (2,9, 2)= Z(sinhocos w, —sin ¢, sinhosinw), (B1)

where A = cosho — cos¢, for 0 > 0, ¢ € (—m, 7|, w € [-f, 5], and some constant
a (Moon & Spencer 2012; Andrews 2006). We have identified the apex of the wedge with
the axis of revolution of the angle w, which are surfaces of constant ¢. The two solid
surfaces are planes given by w = 4+, and w = 0 corresponds to the bisector plane z = 0.
Higher values of o form tori with shrinking tubular radius asymptotically approaching
the reference circle, 22 + 22 = a? as ¢ — 0o0. By construction, the shape of the droplet
at the bisector plane is a circle with centre at X and diameter W; using the relation

2
(x —acotho)? +4% =

, B2
sinh? & (B2)
we can set the value of the constant a and the coordinate o with the interface of the
droplet giving a? = W?2(¢2 —1)/4, and cosho = &, where £ = 2X/W > 1. The azimuthal
angle of the droplet, ¢, and the coordinate ¢ are related by

(B3)
at the equatorial circle. Considering that the liquid-gas interface is formed by arcs of
constant radii, R, and centres at X + r, then, (2.7) is rewritten as,

[ — (X +1(p) cos )]* + [y — r(p) sing]” + 2% = R*(p); (B4)
which, by substitution of (B 1) and (B 3), translates into the surface,

a—§&— (&€ -1DV2(1 - a?sin?w)/?

af —1— a2 —-1)Y2cosw ’ (BS)

o1g() = log [

where oo = — cos 6,/ sin 3.
The normal vector to the surface can be calculated from the gradient of the surface
(B5),

g = V(o — oig(w)) _ sinh o1 €, — (0,01) éw’ (B6)

V(0 — o1(w))] \/sinh2 015 + (001)?

where é;, = 0;xz/|0;x|, i = {0, ¢, w}, are the set of orthonormal coordinate vectors.
The normal vector of the interface is useful in the calculation of the mean curvature,
2k = =V - g, which results in,

4(sinh? o1, — A cosh o) (D,015)? + sinh oy, (4 sinh® o1, — Asinh 20, + 2402 07,)
AW (€2 — 1)1/2[sinh® oyg + (8,,01)?]

(B7)
The form of the gradient and divergence can be found in Moon & Spencer (2012); Morse
& Feshbach (1953). After evaluating (B5) in (B7), we obtain,

-

n:n(¢,w:0)+a4w w? + O(w?), (BS)
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where k(¢,w = 0) is the curvature at the equatorial plane,

2 (a — &§)(€ — cos P)
= = — 1
H(Qb?w 0) W + 2(52 — 1)
Considering that, |w| < 8 and £ ~ « near equilibrium, the correction term in (B8) is
vanishingly small. Substituting (B 3) into (B9) gives (2.44).

(B9)

Appendix C. Pressure profile

In toroidal coordinates, introduced in Appendix B, Laplace’s equation for the pressure
field (2.41) reads (see, e.g., Moon & Spencer 2012)

A3 sinh o sinh o A2
2 2
Vp = Zsinho |:ao (Aaap) + 0y ( A 8¢p)] + mawp =0. (C1)

This equation is separable using the Ansatz p = (A/sinho)'/2S(0)®(4)2(w). The
general solution is given by Andrews (2006), where S(o) is expressed a as a linear
combination of terms P:—1/2 (cotho) and Q’:_l/Q(coth o), which are the Legendre and

associate Legendre functions of the third kind; @(¢) is expressed as a linear combination
of the functions cosm¢ and sinmg; and 2(w) as a linear combination of terms cos pw
and sin pw.

Periodicity in the angle ¢ demands that p(¢+27) = p(¢) for all ¢, therefore making m
an integer, and, due to the plane symmetry (y <> —y) we only keep the cos m¢ solutions.
Symmetry upon a reflection about the bisector plane (z +» —z) allows us to only keep
solutions of the form cos pw. The boundary condition at the solid surface, d,p(8) = 0,
sets = 7wn/B, for integer n. Interior solutions, i.e., finite value at the inner phase,
demand discarding the Qu 1/ terms since they diverge at the reference circle. After
these simplifications, the pressure field is expressed as,

oo

4y
where,
cosh o — cos ¢ 1/2
U0, d,w) = [slnho} P, /5-1/2(coth o) cos(mg) cos(mnw/B).  (C3)

Note that for small 3, the lower index in the Legendre function becomes large and so
does its value at the boundary. This implies that the terms of higher order in n should
carry a vanishingly small coefficient; and, even for n = 1, their contribution can be
neglected. Therefore, the pressure at the equatorial circle of the droplet which can be
written as (4y/W) Z;lc:o ¢k cos ko, where the coefficients ¢ = ¢ (&, @) are,

2taf—2
COZ%a (C4)
c1:2(§§2_“1). (C5)

As stated in Andrews (2006, App. B), the pre-factor in square brackets from the general
solution, equation (C3), can be expressed as a Fourier cosine series,

\/W Z b (€) cos ma. (C6)
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where by, = (21/2/71')(2 - 50m)Qm—1/2(£)'

The product of the two Fourier series can be recast into a single series by using the
trigonometric equality, 2 cos m¢ cos k¢ = cos[(m + k)] + cos[(m — k)¢], and rearranging
terms; then, the A,,q coefficients are,

@ [k m=0
Amo(§, ) = X { coby 4 c1(bo + b2/2), m =1, (C7)
m /€2
Pﬁl/Q(f/ ¢ 1) cobm + Cl(bm—l + bm+1)/27 m = 2.

Appendix D. Jeffery-Hamel flow

The flow within a wedge geometry, including inertial effects, was addressed by Rosen-
head (1940). Here we follow a similar procedure to obtain the low-Reynolds number
behaviour of the flow. Using the polar coordinates s*> = z? + 22 and w = arctan(z/z),
the velocity field is expressed as upyy = us8 + u,w where the angular flow is assumed
to vanish, i.e., u, = 0.

The continuity equation, (2.40), reads,

1 0su
il s _ D1
s 0Os 0, (D1)

which has the general solution,
us(s,w) = Jw) (D2)
s

where f depends only on w. The explicit form of f can be found using the Stokes
equations, (2.39). In polar coordinates, and using (D 2), these read

" Oppui
_ — D
53 0s 0, (D3)
ond _ LOPouic _ (D4)

$3 5 Ow

Integrating (D 4) with respect to w gives the pressure profile,

2
Pouik(s,w) = 53 f(@) +9(s), (D5)
where g only depends on s. Substituting this result into (D 3) gives the equation,
d2f s3 dg
Sy — D6
dw? 47 n ds (D6)

The left hand side only depends on w, whereas the right hand side only depends on s.
This can only happen if both sides are equal to a constant, ¢;. Therefore,

g(s) = “9g2 + co, and flw) = % + 3 cos 2w + ¢4 8in 2w. (D7)
The constants ¢;, i = 1,...,4 can be found by imposing boundary conditions to the flow.
Due to symmetry, the flow profile must be an even function of w, therefore ¢4 = 0.
Imposing a no-slip boundary condition at the walls of the wedge fixes ¢; = —4c3 cos24.
Setting the pressure to ppuk(s1) = p1 and pruk(s2) = p2 at two arbitrary points, s; and
s9, fixes co = (p15? — p2s3)/(s? — s3) and c3 = (pa — p1)s3s3/2n(s? — s2).

To express the flow field in terms of the velocity of the droplet, we match the average



Liquid Barrels in Wedges 27

_ [ / / sdsdw] / / W - & sdsdw (D8)

of upyk to X, i.e.,

_ — Do $1892 ? sin 23 — 23 cos 26 (DY)
51— 82 \ 81+ 82 28n
Therefore, the bulk velocity field reads
. 28 — 2
T X51 + 59 cos2B — cos2w N (D 10)

25  cos2B — B~1sin2p

Converting this expression to Cartesian coordinates and making the substitutions s; =
X —W/2 and s = X + W/2 leads to (4.16). To obtain the pressure profiles in figure (9)
we use p; = 2v£(m,0) and pa = 2v£(0,0) to fix the constants in (D 5), where & is given
by (2.44).

Appendix E. Bulk dissipation

By substituting (D 10) in (4.24), we can determine the energy dissipation in the bulk
of the droplet. First, the gradient of the velocity field is

XB(SI + s2) cos 2w — cos 23 sin 2w
ulk = s E1l
Vtbulk s2(28 cos2 — sin 2f3) 0 cos 23 — cos 2w (E1)
which leads to the bulk energy dissipation density
. 7 oo 2nX2B%(sy + 52)%(3 + cos 4B — 4 cos 23 cos 2w)
—_ = u = E 2
&=~ (Vitbun+ Vi) s1(2B cos 2 — sin 23)2 (E2)

To obtain the total dissipation, (E2) needs to be integrated over a volume Veg < V,
that corresponds to the region where the Jeffery-Hamel is adequate and thus the bulk
dissipation of the barrel takes place.

We approximate Vg, as a toroidal section, of major radius equal to the distance X, and
a minor diameter W/ = W — ¢, for some positive § < W. Therefore, the bulk dissipation

is
XAW/ /2 o/ W2/A—(s—X)2
Epuk = /éd%ﬁ" = / / / ¢ dy sds dw, (E3)
—Wrj2 S\ /W2 /A (s—X)?

which evaluates to

327n B2 X2W?2 X2 B (cosdB + 3) — sin4f]
C (4X2 —W?2)3/2 (2B cos 283 — sin 28)?

Taking a Laurent series expansion in § of (E4) leads to (4.24).

gbulk ~ (E 4)

Appendix F. The contour integral of the velocity of the contact line

To calculate the closed-loop integral in (4.28), and (4.30), we first obtain v, the
projection of the velocity perpendicular to the contact line. This can be done by obtaining
a parametrisation of the contact line. Points belonging to the contact line can be reached
through three displacements from the origin, that is,

Ty =Xz + Xsinfn+rq. (F1)
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The first displacement lands in the centre of the droplet, from there, the next displace-
ment moves to the nearest point in the top solid surface, concluding with a coplanar
displacement to the triple line represented by the vector r.. This vector can be obtained
using (2.7) evaluated at the boundary. Then, rq = @i (¢, ¥ = ) — X & — X sin f n, which
gives the radius of the contact line,

ro = m [2(1 +6)? +a?(3 — 202 + 4€?) — 4af{a® —2(1 +€)}cosp

+ 2arcos 26(a + cos p)® + {2(1 + €)? — a®} cos 2¢ (F2)

1/2
+ 8ae{a + (1 + ¢€) cos p} cos 1/)} ,

where we have used the relation, sint) = (« + cos ¢ cos ) tan 3 that results from (2.18),
to simplify the expression. Substituting (A 8), the contact line radius can be expressed
in series form,

ra=q(l+¢€) — %qaﬂQ(a + ecos ) + O(B>). (F3)

Notice that at € = 0, the variation in ¢ from (F 2), is lost and the contact line becomes a
circle. From (F 3), we can see the that dependence in ¢ is weak, since it is proportional
to af?e ~ Be.

After obtaining the magnitude of the vector 7, its direction can be expressed by the
unitary vector #¢ = r¢1/rq. From Egs. (F 1), (A8), and (F2), we can see that

. (cos p, sin ¢, tan 3 cos ) n

o= O(B*€). F4
el \/1+tan2ﬁcos2<p (5% ¢) F4)

This a vector collinear to the intersection of the solid plane wall, and a vertical slice at
the angle ¢ from the x axis.

The velocity of the points in the contact line can be calculated by the derivative with
respect to time of (F 1); using (2.27), (F2), and (F 4), this is,

Vel :(% [qeos p{2 — B cos® p}é — ¢{(a?B% — 2) cos  + 2a(B? — 1) + 5% cos®
+ e cos (B cos® ¢ — 2)}],

Fb5
—%sing@[c}{oﬂﬁz—I—ﬂzcongp—i—e(52(3082g0—2)—2}—|—q(520052g0—2)é]7 (9)

B lila+ ecos i+ cos ) + geos d] ) + O(5°)

To calculate the projection of the velocity in the perpendicular direction to the contact
line, we define the vector b=1tx 7, where t = 0,Tc1/|0,7q|. For the sake of simplicity,
we shall use, b= 71, which is a valid approximation for small values of 5 and €. Then,
the projected velocity reads,

% [20°B% + o (B%(1 + cos(2¢p)) — 4) cos — 4(1 + €)| + O(B°). (F6)

Vel R Vel *Tel = q€—

We now have all the ingredients to compute the circuit integral. The infinitesimal
length dl becomes rqdy, and the integration is performed over the interval [0, 27]. The
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e (°) B(°) V (kL) Texp (8) S7exp (s)
104.43 1.50 2 28.98 +0.17
103.29 1.48 2 28.60 +£0.40
104.48 1.49 2 30.20 +£0.28
103.23 1.80 2 21.70 +£0.31
105.40 2.26 2 10.35 =£0.15
105.43 2.25 2 9.53 40.17
104.96 2.28 2 9.50 40.16
104.11 1.39 3 36.95 40.26
104.11 1.46 3 30.96 40.44
103.72 1.45 3 33.28 40.44
102.89 1.70 3 30.96 40.21
102.87 1.74 3 26.03 +0.30
102.89 1.73 3 24.47 +£0.13
103.70 2.16 3 14.12 40.16
103.28 2.14 3 13.54 +0.22
104.12 2.18 3 12.59 +£0.17
102.08 2.19 3 14.72 +£0.19
102.45 2.24 3 13.29 +0.12
102.46 2.26 3 12.74 +0.11
102.03 2.67 3 8.19 40.07
102.02 2.70 3 8.23 40.09
102.06 2.70 3 8.81 40.13
102.23 2.89 3 7.11 £0.09
102.45 2.91 3 7.45 +0.06
102.46 2.92 3 6.84 40.10
101.93 1.33 4 53.41 +0.56
102.70 1.34 4 47.29 £0.98
101.55 1.74 4 25.62 40.15
101.58 1.69 4 27.63 40.13
101.74 1.71 4 25.03 40.13
100.55 1.99 4 25.51 40.30
101.55 1.99 4 18.58 +0.16
101.13 1.95 4 19.37 +0.15
99.70 2.30 4 15.15 +0.18
101.17 2.82 4 9.60 +0.17
101.58 2.87 4 8.58 +0.16
99.73 2.28 5 14.87 +£0.13
100.10 2.27 5 14.23 +0.14
101.20 1.38 5 46.96 +1.03
100.63 1.43 5 47.00 40.81
100.49 1.41 5 42.25 40.35
100.12 1.37 5 47.59 40.37
99.84 1.75 5 26.02 +0.25
100.52 1.67 5 27.81 40.40
99.88 1.73 5 25.33 +0.16
97.04 1.89 5 24.77 +0.20
97.59 1.87 5 20.73 +0.10
98.24 2.01 5 20.54 40.48
99.12 3.00 5 7.54 =£0.06
97.27 3.12 5 7.79 4£0.10

Table 1: Experimental measurements of the translational relaxation time, Texp, of a

droplet in a wedge geometry after, reproduced from Ruiz-Gutiérrez et al. (2017).

integral in (4.29) can be evaluated in series form,

2m
fv?ldl%/ Uflrcldcp:7rq(1+e){{a2+2(1+6)2}q'2+4q(1+6)é(j+2q262]
cl 0

- %oﬂﬁzq {{2a2 +3(1L+¢€)(5+4e)} ¢

+16q(1+e)éq+4q2é2} +0(8Y)

(F7)

Substituting o« = — cos 0,/ sin B, and keeping terms up to linear order we obtain (4.29).

Appendix G. Experimental data set

Table 1 shows the translational relaxation time of a droplet inside a wedge, Texp,
for different equilibrium contact angles, wedge angles and droplet volumes. The data is
reproduced from Ruiz-Gutiérrez et al. (2017).
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