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Abstract— The inclusion of plug-in electrical vehicles (PEVs) in microgrids not only could bring benefits by reducing the 

on-peak demand, but could also improve the economic efficiency and increase the environmental sustainability. 

Therefore, in this paper a two stage energy management strategy for the contribution of PEVs in demand response (DR) 

programs of commercial building microgrids is addressed. The main contribution of this work is the incorporation of the 

uncertainty of electricity prices in a model predictive control (MPC) based plan for energy management optimization. 

First, the optimization problem considers the operation of PEVs and wind power in order to optimize the energy 

management in the commercial building. Second, the total charged power reference which is computed for PEVs in this 

stage is sent to the PEVs control section so that it could be allocated to each PEV. Therefore, the power balance can be 

achieved between the power supply and the load in the proposed microgrid building while the operational cost is 

minimized. The predicted values for load demand, wind power, and electricity price are forecasted by a seasonal 

autoregressive integrated moving average (SARIMA) model. In addition, the conditional value at risk (CVaR) is used for 

the uncertainty in the electricity prices. In the end, the results confirm that the PEVs can effectively contribute in the DR 

programs for the proposed microgrid model. 

Index Terms—Demand response (DR), model predictive control (MPC), conditional value at risk (CVaR), plug-in 
electric vehicles (PEV), wind power, commercial building microgrids. 
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Indices   

i                   Index of the PEV V2G Vehicle to grid 

k Index of time step in the first stage controller DR Demand response 

Abbreviations PEVs Plug-in electric vehicles 



 

 
 
 
 
 
 
 
 
 
 
 
 

II. INTRODUCTION 

The power system has been facing various technical challenges with the increasing number of distributed 

generation units mainly based on RERs such as wind and photovoltaic which are utilized especially close to the load 

centers in order to benefit the grid in reducing the on-peak demand and decreasing the congestion of generation units 

[1]-[2]. To tackle these problems, a solution could be using microgrids, which are capable of allowing a bidirectional 

power flow between generation units and load demands. They facilitate the interconnection of distributed power 

generation units, energy storage systems and different kinds of load in a restricted zone [3]. Microgrids are expected 

to operate in two modes, i.e., grid connected mode and islanded mode. It is necessary for each microgrid to have a 

balanced power between generators and consumers [4]. Wind power is one the most attractable sources of RERs 

which has shown a rapid growth due to its proficiency and accessibility [5]. However, its unpredictable nature makes 

it an uncertain source of energy which aggravates the conditions of reaching the power balance. Consequently, what 

is desirable in a microgrid with RERs is to compensate the variation in their power generation. On the other hand, 

the use of PEVs has recently increased significantly due to its advantages over the internal combustion engine 

SOC             State of the charge RERs Renewable energy resources 

SARIMA Seasonal autoregressive integrated moving 
average 

CVaR          Conditional value at risk 

Variables 

( , )Cos ij
t t tX Ct Total operational cost of the commerial 

bulding microgrid 
, , ,PEV l u i  Auxiliary variables indicating the SOC 
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microgrid at the tth step time 

GD
tC  The electricity prices transferred from grid 

to load at the tth step time 

W
tX  Total generated power by wind at the tth step 

time 
GEV
tC  The electricity prices transferred from grid 

to PEV at the tth step time 

ij
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tth step time 
EVG
tC  The electricity prices transferred from PEV 

to grid at the tth step time 

,PEV iP  Charging/discharging power of the ith PEV WG
tC  The electricity prices transferred from wind 

to grid at the tth step time 

,
ref

PEV aggP  Optimum charge/discharge power reference for 
aggregated PEVs 

ηC 

ηD 

charging efficiency of the PEVs battery 

discharging efficiency of the PEVs battery 
 

PPEV,agg 
The charging power of aggregated PEVs. For 
PPEV,agg> 0, PEVs are in charging mode and for 
PPEV,agg< 0, PEVs are in discharging mode. 

w weighting factor for the price risk 
consideration 

EPEV,agg 
 

Energy stored in the PEVs aggregator Parameters 

EPEV,arr Energy stored in the arriving PEVs c Power to energy conversion factor 

EPEV,arr,i Energy stored in the ith PEVs when it arrives Pkm Power consumed per kilometer 

EPEV,dep Energy stored in the departing PEVs CBattery Battery capacity of each PEV 

NPEV,arr Number of PEV arriving commercial building 
in each step time 

SOCmin Minimum state of the charge of a PEV 

di Daily driving distance of the ith PEV SOCmax Maximum state of the charge of a PEV 

NPEV,ava Number of plugged-in PEVs PPEV,max Maximum charging rate of each PEV 

tSOC  State of the charge at the tth step time 
tC  the electricity price at the tth step time 



vehicles due to environmental concerns and fossil fuel consumption. Nevertheless, PEVs are regarded as high power 

consumers since they consume a remarkable amount of power throughout charging procedure which may lead to 

power shortages, increase on-peak demand, and difficulties related to the reliability of the power grid [6]. Challenges 

related to using PEVs such as power losses, voltage fluctuations and the power quality deterioration in the current 

distribution systems are stated in [7]. Thus, the use of PEVs along with the presence of wind power in microgrids in 

an uncoordinated manner could bring some practical challenges for the demand side management due to their 

unpredictable nature. This incoordination also increases on-peak demand since the PEV owners tend to connect the 

PEV to the charging station in the evening when they arrive home or in the morning when they arrive at the work 

place. Besides, the PEVs remain in stand-by mode up to 96 percent of the time in a day and this time is more than 

enough for their battery to be fully charged [8]. In addition, in contrast to other electrical appliances, the integration 

of several PEVs simultaneously connected in parking station could be considered as a potential source for the DR in 

the power system. This is justified by the amount of the aggregated PEVs charging load by being regarded as a bulk 

load demand which could be shifted or interrupted during while it is connected to the charging station. So, a 

coordinated charging schedule for PEVs with power system DR could have a significant improvement on DR through 

an appropriate management system. In this way, all the PEVs could be entirely charged while the DR is satisfied by 

shifting or interrupting the charging of PEVs. For this purpose, the aggregated PEVs could be considered as a battery 

energy storage device in the microgrid and they could be used for reducing the on-peak demand and also for 

compensating the oscillation of RERs. PEVs could discharge their battery with vehicle-to-grid (V2G) technology 

when they are parked in the parking station. For this to function, the owners can choose whether they allow their 

vehicle to participate in this program or not. The benefit is that it allows for the microgrid to discharge their battery 

when a power imbalance occurs or when the electricity price is high. In this way, a portion of the load dedicated to 

the charging PEVs could be curtailed so that they can be charged when the electricity price is cheaper or the load is 

lower instead of charging immediately after connecting to the charging station. As a result, using the PEVs for DR 

purposes and also coordinating between PEVs and renewable generation in order to improve the power balance in 

microgrids has been getting an increasing attention from the research community [6]-[8].   

Several studies from the literature have been focusing on the contribution of the local power generations (i.e., 

wind) in different load sectors [9]-[21]. In [9], the coordination between wind power and PEVs is presented by three 

power dispatching methods in order to create a balance between the power generation and the consumers in the 

microgrid. In [10] and [11] a control scheme is presented based on integrating PEVs and wind power in order to 

preserve the grid frequency in a desired range. In [12] a model is employed with the aim of providing DR by 

considering the cooperative performance between PEVs and wind generators. Four settings are recommended for 

PEVs and it is concluded that the whole operational cost of the system has been reduced through an optimized 

charging. In [13] and [14] PEV charging is analyzed under a DR program in the upcoming smart grids in order to 

reduce the peak demand of the grid. In [13] the PEVs charging pattern and the stochastic nature of the initial SOC is 

modeled by a normal distribution function. However, the final requested level of SOC is not considered in that study. 



In addition, the uncertainty of PEVs in [14] is taken into account based on real-life practice. In [15] different kinds 

of methods comprising V2G, DR programs, uncontrolled charging and smart charging of PEVs are compared for the 

day-ahead energy management. In [16] a robust optimization model is presented for a large-scale deployment of 

PEVs which are considered as a dispatchable energy storage device for DR purposes in order to allow them to supply 

the load demand and contribute in ancillary services. Overall, with the aim of shifting the bulk demand of PEVs to 

off-peak times the most of PEVs charging management is based on the different kinds of electricity pricing proposed 

by the utility, such as setting the price based on real time [17], [18], day-ahead [4], [19], or the consumption time 

[20]. Nevertheless, in most of these publications, the uncertainties related to electricity price were not taken into 

account which may lead to inefficient solutions, especially when the price prediction is not very accurate. In addition, 

the majority of these works only focus on the charging process of PEVs, but less attention is paid to the coordination 

between PEVs and wind power generation for the purposes of DR.  

Due the reasons mentioned above, this paper presents a two stage control approach for DR management based on 

predictive control. Initially, the PEVs and wind power unit coordination is made for the microgrid in order to create 

a power balance between power generation and demand. Then, the calculation of the aggregated PEVs power 

command is sent to the PEVs for analysis. The PEVs controller section optimally allots the computed power for 

charging or discharging to each individual PEV. To solve this problem an online predictive control problem is 

proposed with some physical constraints for the microgrid (such as working hours, minimum and maximum charge 

level for batteries, charging and discharging rate limits and so on). The considered microgrid in this paper is a small 

to medium size commercial building. Such a microgrid typically uses low voltage distribution system and has 

approximately up to 1 MW of consumed power under its peak demand [21]. Finally, the key contribution of this 

work is to utilize PEVs as a potential DR tool in the commercial building microgrid while incorporating the 

uncertainty of the electricity price in the optimization model by using the CVaR. 

The remaining of this paper is organized as follows. The considered case study and its model are presented in 

Section III. The proposed control approach design is explained in Section IV. Simulation results are presented and 

discussed in Section V in order to verify the suggested plan. Finally, the paper is concluded in Section VI. 

III. SYSTEM UNDER STUDY 

The system studied in this paper is a local wind power-based commercial microgrid with several PEVs and load 

demand (which is the base load without PEV load) and can be observed in Fig. 1. This microgrid is connected to the 

main grid in order to have the capability of operation in both islanded and grid connected modes.  
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Fig. 1. The schematic of the proposed under study model. 

In this study the PEVs are considered as a load or a power supplier, depending if they’re charging or discharging, 

respectively. Only privately owned PEVs are considered for this purpose. It is assumed that only the PEV owners 

that are the commercial building’s employees connect their PEV to the charging station in the morning when they 

arrive at work. In addition, all of them disconnect their PEV at the 9 PM. For this purpose the arrival time is a 

stochastic variable but the departure time is deterministic one. The PEVs can be used as an energy storage system to 

inject power to the microgrid during on-peak demand periods and absorb the excess power of wind power source 

during off-peak periods. The time horizon for the modelled microgrid is assumed to be between 9:00 AM to 9:00 PM 

which often contains one period of on-peak and one period of off-peak load. In addition, in order to entice the PEVs 

owner to participate in this program, an incentives must be dedicated to them. Furthermore, some of the PEV owners 

(employees) register themselves as dispatchable PEVs and allowing to be demand response candidates.  In this way, 

they commit to be plugged-in during the day in order to be utilized by the commercial building if required. 

Understandably, despite the dedicated incentives, some PEVs owner disconnect their PEVs from the charging station 

to depart from the commercial building. When this occurs it is represented as white Gaussian noise in the formulation. 

In addition, the amount of energy stored in the PEVs which arrive at the commercial building at time step k, is a 

disturbance to the model and is represented as a stochastic variable EPEV,arr(k). The total number of PEVs is considered 

to be 100 in this paper. The amount of EPEV,arr(k) depends on the number of PEVs, NPEV,arr(k) and their initial energy 

(EPEV,arr,i) while connecting to the charging station. Furthermore, regarding the stochastic characteristic of the PEVs 

driving pattern, a statistical model is used for the arrival times and driving distances by considering the statistics of 

the internal combustion engine vehicles as an approximate reference [22]. By using such data and by using the normal 

distribution, the maximum likelihood estimation and their curve-fitting, NPEV,arr(k), can be attained. Generally, most 



of the PEVs arrive before 1 PM and thus NPEV,arr(k) can be modeled by a truncated normal distribution between 9 

AM and 1 PM according to equation 1. In addition, from 1 PM to 9 PM,  ௉ܰா௏,௔௥௥(݇) is assessed to be zero.  
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(1) 

In which NPEV,arr predicts the number of the PEVs arriving at the commercial building while NPEV,ava is the 

accumulation of  NPEV,arr for each time step and is obtained as follows: 

, , ,( 1) ( ) ( )PEV PEV PEVava ava arrk k kN N N    (2) 

Also, NPEV,arr is an inherently uncertain variable and this makes the NPEV,ava a stochastic variable according to 

equation (2). In order to simplify the overall system, the uncertainty related to NPEV,ava is considered in the first stage 

of the proposed approach and so in the second stage it is only taken into account the deterministic one. For this 

reason, the PEVs arriving at the commercial building at the kth time step, are allowed to be charged or discharged 

from the next step time that is (k+1)th step time. Thus, the number of PEVs in the kth step time which is required to 

be managed by the PEV control section is NPEV,ava(k – 1) which is a deterministic quantity. 

In addition, the daily distance covered by each PEV can be modelled approximately by a logarithmic normal 

distribution with the mean ߤௗ=3.20 and variance ߪௗ=0.88 as presented in (3). 
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(3) 

Therefore, the EPEV,arr,i can be obtained as follows: 

, ,PEV Batteryarr i i kmE C d P   
 

 (4) 

Now it is possible to estimate the EPEV,arr,i(k) based on the previous equations. Initially,  ߤேುಶೇ,ೌೝೝ
(݇) is computed, 

which is the number of PEVs to be added in the time step k. Then the EPEV,arr(k) can be predicted as: 
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(5) 

Finally, by observing Fig. 1, the discrete time model for the proposed commercial microgrid can be expressed by: 
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where, EPEV,agg is modeled as the space state variable, PPEV,agg is regarded as the control input, EPEV,arr is a stochastic 

disturbance, and EPEV,dep is considered to be white Gaussian noise. Yet, it is assumed that most of the PEVs remain 

plugged-in throughout the day due to the influence of several incentives designed for this purpose. Hence, the value 

of EPEV,dep is much smaller than EPEV,arr. For this reason, EPEV,dep is not modelled in details. However, in order to 



consider the unmeasured disturbances in the system, a feedback controller is needed for compensation. So, a simple 

solution is to create a model predictive control (MPC) controller for this purpose which is later explained in detail. 

Furthermore, it should be emphasized that other methods of modelling exist regarding the stochastic nature of the 

initial energy of PEVs [22]-[29]. They are similar to this paper in approach, but their model is more inclusive and 

they consider other objects such as different kinds of PEVs, the speed, acceleration and the travelling time of PEVs.   

IV. THE PROPOSED CONTROL APPROACH DESIGN 

Uncoordinated use of PEVs with wind power in the proposed microgrid exacerbate the power mismatch between 

power generation and load demand due to the stochastic charactristic of the wind power generation and PEVs. This 

is unfavorable for both microgrid and main grid and creates difficulties for the demand side management. As a result, 

with the aim of achieving an optminal operation with the minimum possible cost for the commercial building, the 

charging procedure of PEVs must be done in a way to enhance the power balance between the generation and load 

in order to help the demand side control. In addition, it is expected the PEVs to be fully charged before disconnecting 

from the charging station. Also, it is essential to make sure that PEVs are fully charged at the anticipated plug-out 

time. In order to achieve these goals, a two stage hierarchical control approach is presented in this paper. In the first 

stage the power reference for PEVs aggregator is specified by an optimization problem which will be discussed in 

section IV-C. In the second stage, the aggregated charging power is allocated to each PEVs by its control section. In 

this way, the first control set is applied to the proposed microgrid. In the next stage, the actual values of the system 

are measured to repeat the process above. Thus, the feedback controller is used to update the values for the 

optimization process in the next iteration since it depends on the new measured states. However, for the expansion 

of the proposed control strategy, a prediction technique is needed for the load, electricity price, and wind power. 

A. Prediction of The Wind Power, Load Demand, and Electricity Price 

In order to describe the uncertain characteristics of the electricity prices, of the time-varying load demand and 

wind power, a prediction model is required. The probabilistic planning of each stochastic process can be defined by 

finding the joint distribution of its random variables which describes both the probabilistic manner of each random 

variable on its marginal distributions and the interrelations which existed among all of variables (statistical 

dependencies). In this way, autoregressive moving average (ARMA) models which rely on these two principles is a 

fitting choice. However, numerous of events periodically (e.g., daily) show a seasonal trend, that means there is a 

relationship between the observations made during the similar period in successive periods. Besides the seasonal 

link, there is also a relationship between the observations made during sequential periods. This fact can be seen in 

the load demand which shows a similar behavior every day and every week, establishing an instance in both daily 

and weekly seasonality. In these situations a seasonal autoregressive integrated moving average model is needed and 

is known as SARIMA (an extension of the ARMA model) which considers seasonality and potential seasonal unit 



[30]. Suppose y as a stochastic process with a seasonality of order S. The general expression of a seasonal ARIMA 

model with parameters ( , , ) ( , , )
S

p d q P D Q  can be expressed by: 

1 1 1 1
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(7) 

With a seasonal component of P autoregressive parameters 1 2, ,..., P   , Q moving average parameters 1 2, ,..., Q  and 

a differentiation order D. In this paper the wind power generation, load demand, and electricity prices are characterized 

and predicted by a seasonal ARIMA model. 

B. Uncertainty Consideration 

In this study f (x,y) is the loss related to a set of decision variables x, and is selected from a certain subset X of nR

and the random variable y of Rm. The vector x can be taken as the set of available portfolios, whereas the vector y 

points out the uncertainty set. The aim is to achieve a value for the decision vector x that can minimize the cost function, 

conditioned by the uncertainty in vector y. Value at risk (VaR) is one of the most applicable risk measurements and is 

particularly fitting for loss distribution functions with fat tail behaviors. For a specified confidence level β, the VaR is 

the smallest loss over the rolling horizon time which is exceeded with probability 1–β according to following equation: 

min{ : { ( , ) } } 0 1V aR R P f x y for            (8) 

Even though VaR is a familiar risk measure used in economic problems, it is a non-coherent risk measure which 

has negatives points such as non-convexity, non-smoothness, subadditivity etc., which make it an unattractive option 

in the optimization programming. With the purpose of avoiding this difficulty, there is a desirable alternative risk 

measure known as conditional value at risk (CVaR) also recognized as average value at risk or mean shortfall. For a 

given confidence level β, CVaR is defined as: 

( ( , ) ( , ) )yCV aR E f x y f x y V aR      (9) 

It specifies the expected conditional value of the cost function, conditioned by this value being larger than β-

percentile. In contrast to the traditional robust optimization techniques, the minimization of CVaR is a flexible 

selection for choosing the objective function. It is capable to improve the optimization performance greatly since it 

uses distributional data on the uncertain parameter of y. In fact, minimizing the CVaR of the cost leads to the 

minimization of the risk of the system being exposed to high losses. In addition, for linear cost function problems 

minimizing CVaR can be expressed as a linear programming problem which is an attractive choice in practical 

applications. The CVaR can be approximately formulated by: 
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(10) 



where, z 
indicates the positive elements of z, α is the β-VaR, M is the number of Monte Carlo paths to estimate the 

expected value of CV aR  in the cost function, and
i

y indicates the thi generated path of the uncertain variable. In 

order to solve this problem, it is generally proposed to substitute the 0+ with a set of constraints. Thus, the 

corresponding equation for minimizing CVaR is formulated as follows: 
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(11) 

C. Problem Formulation of the Proposed Approach 

As it is mentioned above, the proposed control approach contains two stages. In the first stage, an optimization 

problem is solved to in order to minimize the operational cost related to the exchanged power between the main grid 

and microgrid. It is designed in a way to improve the demand side management by utilizing wind power and PEVs 

aggregated power in a coordinated manner. In order to yield this purpose, the following cost function has to be 

minimized: 

Min  
1

( , )Cos
N

T

ij
t t tX Ct


  

 

(12) 

Considering the prposed system in Fig. 1, wind power is the first priority at each step time to supply the base load. 

In addition, the aggregated power stored in the PEVs could be used to meet the demand power. Finally, if the wind 

power and PEVs can not supply the demand, then the main grid is responsible for injecting the shortage power to the 

commercial building. It assumed that the considered commercial building is open from 9 A.M to 9 PM and this period 

could be discretized into N intervals of length t . Each time step is considered to be 5 minutes in this paper. As a 

result, 144 points are obtained from 9 A.M to 9 PM for 1, 2, ...,144t  , there are seven decision variable as follows: 

( , , , , , , )GD GEV W D W EV W G EV D EV G
t t t t t t t tX X X X X X X X  (13) 

The superscript G, W, EV, and D denotes the grid, wind, PEVs and base load demand (without PEVs) of the 

commercial building, respectively. With this assumption and the fact that the intent is to minimize the operational cost 

of the commercial building, the total cost of exchanged power in each step time can be obtained as:  

Cos ( , ) ( ) ( )GD GD GEV GEV D EVG EVG WG WG
t t t t t t t t t t tt X C X C X C C X CX     (14) 

For the sake of simplicity, identical values are considered for prices i.e. GD GEV EV G W G

t t t t tC C C C C    , which is 

acceptable in most energy markets. Thus, the cost function will be equal to: 

( ) [( ) ( )].Cos , . GD GEV D EV G W G
t t t t t t ttX C C X X Xt X     (15) 

Nevertheless, due to the volatile and unpredictable nature of electricity prices, the strategy above couldn’t be an 

appropriate manner for optimal energy management since abandons the uncertainty of electricity prices. Therefore, 



it is essential to consider the risk and uncertainty while seeking an optimal approach. For this reason, the final cost 

function in (16) is obtained by incorporating the cost function represented in (15) into the minimization of the 

conditional value at risk formulation in (10). In addition, the aggregated charging power of PEVs must be maintained 

in proper limits. If not, the PEV aggregated batteries will be overcharged when the wind density is high and it won’t 

be fully charged when the wind density is low. If this occurs for a long time, it will remarkably decrease the life time 

of the battery. Finally, considering risk in electricity prices besides regarding battery limitations and constraints, leads 

to a linear programming problem as follows: 

Min   
1

( , )(Cos ( )][ )
N

T
t t tX C CVaRt w 



   

 

(16) 

Subject to: 

( ) ( )GD GD GEV GEV D EVG EVG WG WG
t t t t t t t t iX C X C C X CX z      

(17) 

0iz   (18) 

min{ , }W D W

t t tD XX   (19) 

W W EV W D W G

t t t tX X X X    (20) 

GD EVD WDD
t t t tD X X X    (21) 

min ,( ) ( ) [ ]. .EV D EV G GEV W EV

PEV

C
ava Batteryt t t t OC OC CX X X X S S N      (22) 

max ,( ) ( ) [ ]. .GEV WEV EV D EV G

PEV

C
ava Batteryt t t t OC OC CX X X X S S N       (23) 

( ) .GEV W EVC C
Batteryt tX X S C    (24) 

( ) .EVD EV G D

Batteryt tX X CS   (25) 

Constraint (19) indicates that the whole power generated by the wind is injected to the load demand when the 

wind power is lower than commercial building base load. When the power generated by the wind is higher than 

commercial building demand, the excess power will be injected to the PEVs battery or the main grid. Constraint (21) 

shows that the power demand of the commercial building is completely supplied by the grid, battery storage or wind 

power generation. The values of ܱܵܥ௠௜௡ and ܱܵܥ௠௔௫ are the minimum and maximum allowable charge level of the 

PEV battery and constraints (22) and (23) imply that the battery storage level in the next step time remains between 

two limits. This occurs with the intent of preventing the battery to be damaged during the charging process. In order 

to ensure that PEVs are fully charged at the expected plug-out time that is 9 P.M and the fact that they require a 

definite time for fully charging, it is a good decision to change the values of ܱܵܥ௠௜௡ and ܱܵܥ௠௔௫ according to the 



time. For this reason, in this paper, a typical setting for ܱܵܥ௠௜௡ and ܱܵܥ௠௔௫ of a lithium-ion battery is considered 

in the Table I. Moreover, the inequations 0 1CS    and 0 1DS    illustrate the maximum amount for charging 

and discharging rate and constraints (24) and (25) prevent the battery to be charged or discharged faster than the 

acceptable rates during each step time. After finding the decision variables above by solving the optimization problem, 

the SOC of the aggregated PEVs is obtained according to (6) as: 
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PEV Batteryava
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(26) 

Solving this problem leads to an optimal control action which is the first of them applied to the proposed 

microgrid. Then, this process is repeated by the actual values of the system such as ܧ௉ா௏,௔௚௚(ݐ + 1), ݐ)௉ா௏,௔௥௥ܧ +

1) ܽ݊݀ ௉ܲா௏,௔௚௚(ݐ + 1). In addition, the feedback controller is utilized to guarantee that the optimization problem 

uses the new measured values, and in this way, the impact of the noise ܧ௉ா௏,ௗ௘௣ is compensated.   

 

TABLE I.  MINIMUM AND MAXIMUM VALUES FOR THE SOC OF PEVS  

Time ࢞ࢇ࢓࡯ࡻࡿ ࢔࢏࢓࡯ࡻࡿ 

From 9:00 AM to 10:40 AM 20% 80% 
From 10:40 AM to 12:20 PM 40% 90% 
From 12:20 AM to 3:40 PM 50% 95% 
From 3:40  AM to 7:00 PM 70% 100% 
From 7:00  PM to 9:00 PM 90% 100% 

 

D. PEVs Control Section Design 

At the second stage, the PEVs control section is responsible for allocating the charging power from the aggregated 

PEVs power ௉ܲா௏,௔௚௚, which is specified by optimization problem in the first stage, to each individual PEV. As 

discussed in section II, all of the PEVs arriving in the tth step time, are allowed to be charged or discharged from the 

next step time i.e., (t+1)th step time. For this reason, the number of PEVs considered for management in the tth step 

time is equal to ௉ܰா௏,௔௩௔(ݐ − 1) which is a deterministic number. So, it is possible to design the PEV control section 

in a deterministic framework compared to the stochastic from of first stage, because the stochastic nature of arriving 

PEVs is considered in the first stage. Regarding these matters and the PEV model in (1)-(5), the PEV control section 

can be expressed as follows: 

, ,
2 2 2
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(27) 

 Subject to: 



 , ,max( )PEV i PEVP t P      
,1, 2, 1..., ( )PEV avaNi t   

 

(28) 

, ,0 ( ) ( ) B atteryPEV i PEV it tE P Cc      
,1, 2, 1..., ( )PEV avaNi t   

 

(29) 

, , , , min( ) ( ) ( ) . BatteryPEV i PEV i PEV l i SOC CE t P t tc       
,1, 2, 1..., ( )PEV avaNi t   

 

(30) 

max, , , ,( ) ( ) ( ) . BatteryPEV i PEV i PEV u i SOC CE t P t tc       
,1, 2, 1..., ( )PEV avaNi t   

 

(31) 

, , ( )PEV l i t , , , 0( )PEV u i t      
,1, 2, 1..., ( )PEV avaNi t   

 

(32) 

 

Some of the arriving PEVs may have a SOC lower or higher than the specified limits. In this situations it is impossible 

to handle their SOC in one cycle in order to come in the desirable range [ܱܵܥ௠௜௡,  ௠௔௫] because of the maximumܥܱܵ

charge and discharge rate for PEVs. For this reason, auxiliary variables ߣ௉ா௏,௟,௜ ,  ௉ா௏,௨,௜ are introduced to soften theseߣ

limits. In addition, some PEVs connect to the charging station with low charging levels and for short periods of time. 

In this occasion, they cannot be fully charged before disconnecting from the charger. Thus, it is impossible to make 

every PEV be completely charged before the plug-out time. In this situation, it is assumed that all of the PEVs are 

almost fully charged before the use. This is attainable by considering the auxiliary variables in the constraints (30) 

and (31) which make the PEV control section charge the PEVs battery as much as possible. Solving the problem in 

(27) with the constraints in (28)-(32) offers the optimum charging command for all of the PEVs connected to the 

charging station. 

V. SIMULATION RESULTS 

In order to investigate the accuracy of the proposed control approach in this paper, a simulation is carried out in 

this section. For this purpose, a system presented in section II (Fig. 1) is used to examine the effectiveness of the 

suggested strategy. The considered microgrid which consists of 1.5 MW wind power generation, 100 PEVs and base 

load that has a bidirectional power flow with a main grid. The data of the electricity prices is provided from [30]. 

The base load demand belongs to a typical commercial microgrid. It is assumed that all of the PEVs are identical. 

The battery storage parameters of the PEVs is displayed in Table I. In order to have a reasonable approximation for 

the base load of commercial building, electricity prices and wind power generation, the SARIMA model is used for 

forecasting in case there is a seasonality effect in their modeling. In Fig. 2, the base load of commercial building and 

wind power generation are shown over the time horizon of 12 hours between 9 AM and 9 PM. The electricity price 

is illustrated in Fig. 3. As it is clear from Fig. 2, the wind power is occasionally higher than the base load. This implies 

that the excess power generated by wind cause a power imbalance in the commercial building. In addition, when 

there is a power shortage, the same problem occurs. Consequently, in order to improve the demand side management, 

the first objective is to create a power balance between the generation and the consumption in a way so that the 

operational cost could be minimized. In addition, the second objective is to satisfy the PEV control section in order 

to charge PEVs as much as possible so that they could have a satisfactory charging level at the plug-out time. On the 

other hand, the forecasting electricity prices are generally accompanied with some uncertainty which cause a large 



effect on the energy management strategy and make it more complex. Disregarding this uncertainty may lead to a 

non-optimal management. For these reasons, in this paper the CVAR is incorporated in the optimization problem as 

in equation (16) in order to decrease the risk associated with electricity prices. In Fig. 4, SOC of the aggregated PEVs 

are depicted for three confidence level β = 0.90, β = 0.95 and β = 0.99. The minimum and maximum value for SOC 

are also demonstrated in this figure. In addition, Fig.5 indicates the comparison of SOC in two different stats. The 

first is the SOC of the aggregated PEV using the proposed control approach in this paper with the confidence level β 

= 0.99. The second is without the proposed control which is when the PEVs are charged immediately after the 

connection to the charging station in order to reach the desired charging level. In the second state, there isn’t any 

control of the PEVs. The maximum capacity of the aggregated PEV batteries is also illustrated in this figure. As it is 

clear from Fig. 4 and Fig. 5, SOC using the proposed approach varies during the simulation time since it assists the 

demand response management. The optimization problem considers the forecasted energy price in each time step 

and the associated uncertainty of it, in order to minimize the total operational cost of the commercial building. As 

the confidence level rises, the operational cost shows a trivial increase. But the system operation will be more robust 

against price variability. In addition, it is revealed from the Fig. 4 that the aggregated charging power of PEVs for 

all three confidence levels are kept between 20% and 80% in most of the time in order to increase the life time of the 

PEV batteries. Furthermore, as the time was getting closer and closer to the plug-out time, the charging level of the 

aggregated PEVs increases gradually so that the maximum charge level could be reached which means that each 

PEV is nearly fully charged before disconnecting from the charging station.  

When there isn’t any control of PEVs, they are charged directly after connecting to the charging station until they 

are fully charged. This may increase the on-peak demand and increase the system cost. In addition, it may exacerbate 

the power mismatch in the microgrid. However, by using the proposed approach in this paper it is possible to 

minimize the power imbalance in the microgrid and help the demand response management. In this way, the operation 

cost of the system is also significantly reduced. By taking into consideration Figs. 4 and 5, when the wind is lower 

than the base load, for example between 9 AM and 1 PM, the PEVs are not charged or they are even discharged since 

they supply the base load in order to minimize the power injection from the main grid into the commercial building 

in order to decrease its operational cost. On the other hand, when the wind density is high and its power generation 

is greater than the base load, for instance between 1 P.M. and 5 PM, which is an off-peak load time, and the electricity 

price is low, the PEVs are charged properly to maximize their charging level. After 5 PM which is on-peak load time 

and the electricity price goes up, the PEVs are properly discharged in order to supply the load and reduce the 

operational cost. Finally, during the last instances of the connection to the charging station, when the base load is 

decreased, the PEVs are charged again so that the desired value of the charging level could be reached before the 

plug-out time. As a result, the charging and discharging process of the PEVs depend on the base load, wind power, 

the number of available PEVs and the electricity price. The proposed control approach in this paper tried to create a 

power balance between production and consumption in a way to minimize the operational cost of the commercial 

building while considering the uncertainty associated to the electricity price. The power injected into the commercial 



microgrid is from the main grid and its associated costs are depicted for each time step in Fig. 6 and Fig.7, 

respectively. Minus power in Fig .6 indicates the reverse direction of the power transfer i.e. from the commercial 

microgrid to the main grid. When this occurs, the cost sign is also minus which means the commercial building sells 

the power to the main grid instead of buying it. In addition, as it is clear from Fig. 6, that using the proposed control 

approach, the power transferred from main grid to the commercial building is varying all the time in order to minimize 

the total operational cost of the microgrid based on the variability of the wind power, base load, electricity price and 

PEVs charging level by considering the uncertainty of the electricity price. However, in the uncontrolled approach 

of PEVs, the power is injected from the grid to the commercial building only when there is shortage in the power 

supply for the base load and PEVs. The reason is that the uncontrolled PEVs are assumed as a bulk load for 

commercial building. The total operational cost of the commercial microgrid throughout the simulation is shown in 

Table III which is 139.5153, 1373.3132 and 128.7805, respectively, and by using the proposed control with β = 0.99, 

β = 0.95 and β = 0.90, respectively. Moreover, the total operational cost is 206.6003 without the proposed control 

(when the PEVs are charged immediately after connecting to the charging station until reaching the full charge 

without any control). As a result, the operational cost of the commercial microgrid has remarkably decreased by 

using the proposed control at circa 32.47%, 33.54% and 37.67% with β = 0.99, β = 0.95 and β = 0.90, respectively. 

It becomes evident, as the confidence level goes up, that the system will be more risk averse which translates into 

higher costs. Finally, it should be mentioned that it’s also possible to consider other objective functions for the 

commercial building rather than minimizing its operational cost. Some examples are: minimizing the power exchange 

between the main grid and commercial microgrid, generating a pre-specified amount of power by the commercial 

building or so on. In addition, in order to evaluate the performance of the PEV control section for reference tracking, 

the simulation result is depicted in Fig. 8. In this figure, the optimized power reference for the aggregated PEVs can 

be observed, calculated in the first stage, and also the summation of all the individual PEV charging power is 

illustrated. As it is clear from this figure, the aggregated power reference is tracked by the summation of all the 

individual PEV charging power.  

TABLE II.  PARAMETERS FOR PEVS BATTERY ENERGY STORAGE 

DS  CS  C  D  

 

0.10 
 

0.10 
 

0.95 
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Fig. 2. Base load and wind power. Fig. 3. Electricity Price. 

 

 

  

Fig. 4. Aggregated PEVs SOC, SOCmax and SOCmin.  Fig. 5. SOC of the PEVs with and without the proposed control, 
and NPEV,ava*Cbattery. 

 

  

Fig.6. Power injected to the commercial building from  

main grid. 

Fig.7. Cost of power injected to the commercial building from main 

grid. 

 



TABLE 3. TOTAL COST OF INJECTED ELECTRICITY TO THE COMMERCIAL MICROGRID FROM THE MAIN GRID 

 

Method 
 

Operational cost 
 

Improvement  
 

Without the proposed control 
 

206.6003 ($) 
 

- 
 

The proposed control with B=0.99 
 

139.5153 ($) 
 

32.47% 
 

The proposed control with B=0.95 
 

137.3132 ($) 
 

33.54% 
 

The proposed control with B=0.90 
 

128.7805 ($) 
 

37.67% 

 

 
Fig. 8. The calculated aggregated charging reference for PEVs and 

the sum of all individual PEV charging power. 

 

VI. CONCLUSION 

Increasing the number of PEVs as a bulk load demand along with the renewable energy resources which have an 

unpredictable nature imposes some challenges for the future microgrids and the main grid. One of the most important 

challenges is the power imbalance between the generation and the consumption. In order to improve the demand 

response in a commercial microgrid with the purpose of minimizing its operational cost this paper presents a two 

stage predictive control approach for the energy management by considering the uncertainty in electricity prices 

which is incorporated by the CVaR in the optimization problem. It is assumed that the employees arrive at the 

commercial building in the morning stochastically and connect their PEVs to the charging station and disconnect it 

at 9 P.M. when they depart. Using the proposed approach and considering the risk associated with the electricity 

price, the PEVs are mainly charged during the off-peak-demand or when the electricity price is low. In this way, the 

total operational cost of the commercial building has noticeably decreased by 32.47%, 33.54% and 37.67% with β = 

0.99, β = 0.95 and β = 0.90, respectively. In addition, by using the second stage of the proposed control approach, all 

the individual PEVs are charged in a way that the aggregated power reference is tracked appropriately. Any future 

work could contain a design of fully stochastic control for the PEVs control section, an analysis of different power 



sources and their associated costs, a more detailed model for the energy of the leaving PEVs, and a full cooperation 

between the residential buildings and the commercial buildings. 
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