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Abstract   Bioreductive drugs are in clinical practice to exploit the resistance from 

tumour microenvironments especially in the hypoxic region of tumour. We pre-

sented a tumour treatment model to capture the pharmacology of one of the most 

prominent bioreductive drugs, Tirapazamine (TPZ) which is in clinical trials I and 

II. We calculated solid tumour mass in our previous work and then integrated that 

model with TPZ infusion. We calculated TPZ cytotoxicity, concentration, penetra-

tion with increasing distance from blood vessel and offered resistance from micro-

environments for drug penetration inside the tumour while considering each cell 

as an individual entity. The impact of these factors on tumour morphology is also 

showed to see the drug behaviour inside animals/humans tumours. We maintained 

the heterogeneity factors in presented model as observed in real tumour mass es-

pecially in terms of cells proliferation, cell movement, extracellular matrix (ECM) 

interaction, and the gradients of partial oxygen pressure (pO2) inside tumour cells 

during the whole growth and treatment activity. The results suggest that TPZ high 

concentration in combination with chemotherapy should be given to get maximum 

abnormal cell killing. This model can be a good choice for oncologists and re-

searchers to explore more about TPZ action inside solid tumour. 

Index Terms— AQ4N, Extra Cellular Matrix, Hypoxia and Tirapazamine. 

INTRODUCTION 

Most common cancer treatments like chemotherapy and radiotherapy are facing a 

strong resistance from hypoxic regions inside the tumour. When a tumour reaches 

to a critical size approximately 10
6
 cells the nutrients diffusion is insufficient to 

supply required amount of oxygen to the inner parts of the tumour initiating a situ-

ation called hypoxia (Gerlee and Anderson 2007). 
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Hypoxia is recognized as a factor that helps the tumour cells survival by giving 

them more aggressive phenotypes. Majority of tumours with size greater than 

1mm
3
 have got hypoxic regions because of irregular blood vessel structure and in-

creased distance from blood vessels. The high rate of glycolysis has been shown in 

hypoxic regions of most tumours. (Shannon et al. 2003). Hypoxic cells were 

thought to be present at about 100-150 µm from functional blood vessels but now 

recent studies showed that hypoxia can be found at about 20-25 µm from blood 

vessels (Marcu and Olver 2006). Deformed capillary vessels of tumour and in-

creased distance of tumour cells and blood vessels result in poor drug penetration 

(Marcu and Olver 2006). The hypoxia is a major challenge in the control of tu-

mour while either using radiation or chemotherapy. Chemotherapy’s major aim is 

to decrease down the number of tumour cells with a number of treatment cycles 

(Algoul et al. 2010). Tumour cells that are at distal locations from blood vessels 

are difficult to treat with chemotherapy. With increasing distance drug penetration 

slows down making it less effective. Cells with good distance from blood vessels 

are deficient in oxygen supply and slow in proliferation rate, show resistance to-

wards effective chemotherapy treatment. Chemotherapy is not an effective way to 

treat hypoxic regions, as it is developed to kill cells having rapid division cycles 

(Brown 1999). Radiation, another cancer treatment works against tumour cells by 

damaging their DNA. This DNA damage remains permanent under the presence 

of oxygen molecules and results in cell death.  So this cancer treatment is also 

most effective to those cells having sufficient oxygen (Bronwyn et al. 2003). 

Some bioreductive drugs are under high consideration to exploit these hypoxic re-

gions with no or less harm to normal cells. Tirapazamine (TPZ) and AQ4N are 

under experiments and are in clinical practice as bioreductive drugs (Patterson and 

McKeown 2000). TPZ is in clinical phase II and III trials with radiotherapy and 

anti cancer drug cisplatin respectively. Its effectiveness can be determined by two 

factors one is the action of reductive enzymes and secondly the extent of hypoxia. 

Potential cell killing has been measured for both radiation and TPZ combination in 

three murine tumours. In SCCVII, DNA damage decreased with increasing oxy-

gen concentration and this damage was half of the best possible value at 0.2% 

pO2. These in-vitro experiments showed the oxygen dependence of DNA damage 

when treated with TPZ. In well oxygenated cells back oxidation of radical con-

verts it to parent compound with no toxicity (Shannon et al. 2003). Results 

showed that less TPZ concentration is highly toxic at low pO2 regions (0.2% O2) 

and more concentration is required if oxygen pressure increases. Current studies 

still show no confirmed answer for its actions, toxicity and optimal administration. 

     Mathematical and computational modelling has introduced a new horizon 

for biologists, scientists and doctors in making hypothesis and experimentations 

about complex biological phenomenons and in curing diseases. Several attempts 

have been made to model tumour growth process but mostly considered it as a 

whole entity at tissue level. An in-silico model was developed to investigate early 

tumour growth under the influence of Extracellular Matrix (ECM), Cell-Cell and 

Cell-Matrix adhesion and cell movement as growth constraints while used a po-
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werful artificial intelligence decision making tool; the neural network considering 

each cell as an individual and independent entity (Kazmi et al. 2010). Now we ex-

tended our previous computational modeling technique to capture TPZ preferen-

tial action towards tumour at cellular level. The initial TPZ concentrations 10 µM, 

50 µM and 100 µM were infused to tumour mass from surrounding blood vessel 

and model calculated drug cytotoxicity, its penetration, metabolism inside each 

cell. The results section showed the impact of all these factors on tumour mor-

phology. This model with some parameter modifications can be served as a tool in 

assumptions and experiments for bioreductive drugs in laboratories and in clinical 

trials by oncologists, researchers and pharmacologists.  

The model 

We did not consider tumour as a whole entity, our model explored the beha-

vioral characteristics of the tumour at basic cell level. The model is developed us-

ing a 2 dimensional plot of size 400 that can simulate tumour of radius 200. Each 

element shows the availability or absence of a tumour cell. A well known decision 

making artificial intelligence technique; neural network is used to calculate the re-

sponse or phenotype of each abnormal cell. The model calculates tumor microen-

vironments values and passes them to input layer and used one hidden layer of 

neurons to calculate the middle values and then pass them to the output layer as 

final phenotype of that specific cell using standard transfer function at each layer. 

Partial differential equation set PDE (1) was used to calculate nu-

trients/microenvironments i.e. the consumption of oxygen, glucose and production 

of hydrogen ions for each cell at specific location x and at specific time instance t, 

during tumour growth process (Gerlee and Anderson 2007). 
 
),(),(/),( txftxcDttxc cc 
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         (1) 

Dc, Dg and Dh are the diffusion constants for oxygen, glucose and hydrogen. They 

are given values Dc=1.8×10
-5

cm
2
s

-1
 (Grote et al. 1997), Dg =9.1×10

-5
cm

2
s

-1
 and 

Dh=1.1×10
-5

cm
2
s

-1
 Crone and Levitt (1984). The actual target was to explore the 

TPZ effects on tumour morphology and cell killing during the treatment. The 

whole tumour mass was divided into five hypoxic regions based upon available 

pO2 for each cell. These five identified hypoxic regions were hypoxia I, II, III, IV 

and V based upon pO2 values; 20.9%, 10%, 2%, 0.2% and 0.02% respectively.  

Using experimentally measured and published data in the literature, the values of 

drug concentrations required to kill cells at various oxygen tensions was entered 

into the model: Above 500 µM TPZ was cytotoxic towards all cells at O2 tensions 
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of 20.9% and 10% 50 µM was toxic towards cells at 2% O2 while 10 µM was 

enough to kill cells at 0.2% and 0.02% O2 (Lartigau and Guichard 1994). We in-

troduced 10 µM, 50 µM and 100 µM as initial concentrations of TPZ in our simu-

lations.  In the model, blood vessel has surrounded the tumour using boundary 

condition and the cell that is residing at outer most edge closest to the blood vessel 

and first to be infused with TPZ. Now the tumour is surrounded by blood vessel, 

an  infused drug penetrates downward passing through the cells at outer boundary 

of tumour i.e. the proliferating rim moving towards the inner part and reaches to 

the inner most area i.e. the severe hypoxic region. With increasing distance from 

blood vessel drug penetration decreases and becomes less effective at distal areas. 

As shown from literature TPZ is less toxic to rapidly dividing cells, so we as-

sumed it as a nontoxic agent to proliferating rim. We calculated the drug concen-

tration for each cell following (2) (Kevin et al.  2003).  

tMdvTpzDtTpz MCL  /// 22 
 

                             
TpzKTpzVTpzktM mmet  // max            (2) 

  Where DMCL is the diffusion coefficient for TPZ Tpz gives the individual cell 

captured tirapazamine concentration at the time instance t and at position x. Now 

the drug diffusion is function of time and the distance from blood vessel dv. The 

initial drug concentration was considered as an initial condition for Tpz. The me-

tabolism factor of the available drug concentration for the specific position at spe-

cific time step has been calculated using (3).  The description of the other used pa-

rameters is given in table 1.   

RESULTS AND DISCUSSION  

     Main aim was to explore TPZ pharmacology, especially inside hypoxic regions 

of tumour. The model was executed to calculate tumour mass for continuous 6 

days and divided the tumour mass into five different hypoxic regions based upon 

their pO2 criteria. Fig. 1 differentiated these five regions using five different co-

lours: cells that fall in hypoxic I region have been shown in blue, hypoxia 2 with 

yellow, hypoxia 3 with red, hypoxia 4 with black and the most severe and oxygen 

deprived one i.e. the hypoxia 5 in magenta colour. During the growth of tumours, 

the oxygen level decreases in gradients as shown in fig 1. The cell closest to the 

blood vessel was considered to be first infused with TPZ. The drug infusion was 

modelled in layers, from top to bottom one. First drug penetrates to cells of proli-

ferating region when infused through surrounding blood vessel. Then it penetrates 

to hypoxia I region underlying the dividing cells and further penetrates to down-

ward areas. We selected 10 µM, 50 µM and 100 µM as three TPZ initial concen-

trations in separate simulations and continued the treatment for 25 continuous 

cycles. The model must meets the criteria of supplying drug first to hypoxia layer 

I completely. Then it comes to hypoxia II, III and so on. Fig. 2 shows the tumour 
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morphology after 5 days with TPZ 100 µM as an initial concentration. It shows 

that no cell is alive from hypoxia IV and hypoxia V regions. Because in simula-

tions it was assumed that if the available penetrated drug concentration is greater 

than 10 µM then it is enough to kill cells of these two regions. This was the reason 

that on day 5 no cell of this area was alive. Then drug was infused and results 

were collected on 10
th

 day of treatment in fig. 3. On 10
th

 continuous TPZ cycle all 

the cells from hypoxia III region were dead. As the cell killing threshold of this 

region was set at 50 µM and when the cells from this region experienced enough 

damage equivalent to 50 µM drug exposure, they were got killed. On 16
th

 day of 

treatment no hypoxic cell was observed, only cells with good amount of oxygen 

were alive.  Only the cells with good amount of oxygen were present because TPZ 

was nontoxic to these cells (fig. 4).  Results showing TPZ toxicity and number of 

survived hypoxic cells using initial drug concentrations of 10 µM, 50 µM and 100 

µM are compared in fig. 5. Total number of hypoxic cells was plotted against the 

number of days (TPZ cycles). This comparison showed highest toxicity i.e. high-

est cell death rate against 100 µM concentration. Cell death was observed with 

first few treatment cycles and on 16
th

 day hypoxic cell survival rate approached 

zero. Cytotoxicity level was also high at 50 µM concentrations but was bit less 

than that observed using100 µM. The cell survival approached to zero on the 23
rd

 

day of treatment. Cytotoxicity at 10 µM concentration was the lowest and failed to 

kill all hypoxic cells on 25
th

 day of treatment.  

 

Fig. 1.  Tumour mass is divided into 5 different hypoxic regions.   

 
 Fig. 2. On 5

th
 day of treatment with TPZ 100 µM as initial concentration. 
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Fig. 3.  Shows alive cells after 10 days of treatment with 100µM TPZ initial con-

centration. 

    
Fig. 4. Shows tumour morphology on 16

th
 day of treatment with TPZ 100µM ini-

tial concentration. 

 

Fig. 5. TPZ cytotoxicity measured in 25 days of treatment with 10µM, 50 µM and 

100 µM as initial concentrations. 
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CONCLUSIONS AND FUTURE WORK 

This paper presented an in-silico model to observe the pharmacology of biore-

ductive drug tirapazamine inside solid tumour.  The model calculated the amount 

of TPZ and its efficient cell killing on each day of continuous drug infusion during 

the whole treatment cycle. Drug metabolism and drug concentration inside each 

cell was calculated using PDEs and solved in one dimension inside each cell. Drug 

resistance and cytotoxicity effects on tumour morphology were also calculated us-

ing 10 µM, 50 µM and 100 µM as initial TPZ concentrations. Highest toxicity was 

measures at 100 µM and lowest at 10 µM while we proposed that its highest 

amount should be given to solid tumour to exploit hypoxia fully. As TPZ have no 

or less toxic effects on normal cells. This model with integration of laboratory data 

and parameters modifications can be used by oncologists and pharmacologist to 

explore TPZ dynamic behaviour inside multicellular spheroids, animal and human 

tumours. A quite strange behavior of bioreductive drugs has observed in clinical 

practice that its considerable amount disappears inside the blood vessel before 

reaching to the targeted locations. Our next aim is to capture the effects of Tirapa-

zamine inside the blood vessel and then its combination with chemotherapy treat-

ment. 

 

TABLE 1: Parameters used for various experiments 
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