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a
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b
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Abstract: 
The antimicrobial behaviour of Cu85Zr15 at. % thin films prepared by magnetron sputtering was studied 

in both wet and dry conditions. Small variations in key deposition processing parameters (pressure 

and substrate temperature) enabled the growth of thin films with similar nanostructures but different 

degrees of compactness, according to the Thornton’s structural zone model. This model has proven 

its effectiveness in providing sensitive structural information to explain significant differences in 

antimicrobial behaviour of the CuZr thin films, even when processing conditions lie within the same 

structural zone. The antimicrobial behaviour has been studied for E. coli and S. aureus for up to 4 

hours of “dry” contact. Structures of lower compactness, grown at higher deposition pressure, are 

shown to provide higher antimicrobial activity for “dry” conditions than for “wet” conditions. For thin 

films of CuZr deposited at 0.5 Pa, the reduction percentage of bacteria is 99.47 %, which is much 

higher than the results of 70-80 % obtained for the films deposited at 0.1 and 0.3 Pa. Microscopy 

studies indicate that for 4 hours of contact time, bacteria exhibit inner damage and even lysis, 

however, no morphological changes are detected because of the short timeframes used. 

 

Keywords: Antimicrobial properties; Thornton’s model; Thin film; Magnetron sputtering; Processing 

conditions 
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1. Introduction 

Over the years, many authors have studied the antimicrobial behaviour of copper (Cu), Zinc 

(Zn) and silver (Ag) and their alloys because they can kill a broad spectrum of bacteria. The 

first papers about the biocidal properties of metallic thin films were focused on the addition of 

Ag, while those dealing with the antimicrobial properties of Cu were relatively scarce [1, 2]. 

The antimicrobial behaviour of Ag-containing thin films [3] is attributed to the interaction of 

Ag ions with the thiol groups of bacteria proteins, affecting the replication of DNA, uncoupling 

the respiratory chain from oxidative phosphorylation or collapsing the proton motive force 

across the cytoplasmic membrane [4]. The antimicrobial properties of this element are highly 

temperature and humidity dependent, optimally at 35°C and 95 % RH, respectively [5] and 

are considered to be caused by silver oxide rather than pure silver [6-8].  
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However, in comparison, copper can kill bacteria across all levels of temperature and 

humidity [5] and its outstanding biocidal performance is associated to the liberation of Cu+1 

and Cu+2 ions [9-11] as observed in alloy systems such as Cu-Zr-Ag [3] and Cu-Ti [12]. Most 

of the reported antimicrobial studies have been carried out on fully crystalline copper and 

copper based alloys, while the antimicrobial activity of these materials with 

amorphous/nanocrystalline structures obtained by rapid solidification techniques (i.e., 

magnetron sputtering) has been mostly overlooked. This is remarkable since these material 

structures are known to display very interesting properties such as higher strength, lower 

elastic modulus and superior corrosion resistance compared to their crystalline counterparts 

[13, 14]. Some recent examples of the latter are Cu-Zr thin films that exhibit antimicrobial 

activity even for low Cu concentrations [15]. Even for copper concentrations as low as 30 at. 

%, such as in (Zr55Al10Ni5Cu30)100-xYx (x= 0 or 1 at. %) alloys, the number of S. aureus was 

significantly reduced after 4 h of contact compared to the Ti-6Al-4V control [16]. As could be 

expected, increasing the concentration of Cu in the alloy increases the killing efficiency (i.e., 

less time to kill bacteria) [17] of bacteria attached to the alloy.  

There are several methods for the production of such nanostructured thin films, such as 

electroless plating [18], but physical vapour deposition (PVD) is perhaps the most widely 

used. Among the PVD processes, magnetron sputtering is especially relevant due to its 

ability to accurately the high deposition rates and widely control the microstructure and 

composition of the growing thin film [19, 20] by fine tuning various key process parameters 

such as the substrate temperature and sputtering pressure. The microstructure of the thin 

film also depends on its chemical composition since the glass forming ability is composition-

dependent. For example, co-sputtered binary ZrxCu100-x thin films [21] containing more than 

80 at. % Zr or Cu are crystalline while for intermediate compositions they exhibit a low order 

phase (i.e., amorphous) according to both experimental results and molecular dynamic 

simulations. Among all the amorphous thin films, the one with highest copper content 

reported until now is Zr20Cu80 at. % and there is no experimental information whether thin 

films of higher Cu concentrations (between 80 and 97 at. %) are amorphous or crystalline. 

Moreover, the antimicrobial activity of such alloys has not been studied despite their 

potential interest attributed to the high copper content.   

There are several methods to quantify the antimicrobial activity of surfaces in the literature 

[22] that are similar to those observed in catheters or drainages, but these are “wet” test 

conditions, where the liquid phase in the broth media is always present.  While for 

applications such as touch surfaces the conditions are always “dry”. Consequently, some 

authors have begun to investigate this issue, encouraging the development of “dry” tests, 

where the media is completely evaporated [23-25]. However, the influence of air-drying on 
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the morphology of E. coli and S. aureus is still not completely understood [26, 27]. As 

previously mentioned, the antimicrobial activity may depend on the environmental 

conditions, and, it is of interest to explore the possibility of tuning the processing conditions 

of magnetron sputtering to control the antimicrobial performance. For this reason, this 

manuscript aims to shed light on the effect of varying the magnetron sputtering processing 

conditions of pressure and substrate temperature on the antimicrobial performance of Cu85-

Zr15 thin film evaluated when the liquid phase in the LB media is always present (considered 

as “wet” conditions), in contrast to samples where the media completely evaporated 

(denominated as “dry” tests). 

 

 

2. Methods 

2.1. Thin film fabrication 
Thin films were prepared by the magnetron sputtering technique using a Teer Coatings UDP 

multi-cathode deposition plant. Substrates of 314 stainless steel (314SS) (5 x 5 x 1 mm 

thick) with a surface roughness, Ra<0.5 µm and soda lime glass slides (25.4 x 76.2 x 1mm 

thick) were used. Before deposition all substrates were thoroughly cleaned in 1:5 ratio of 

DECON90 solution to water for 60 seconds, rinsed in deionised water and dried with a 

nitrogen blast to clean off residues and particles before being loaded on a rotating carousel 

in the centre of the deposition chamber. The chamber was then evacuated to a base 

pressure of 5x10-4 Pa before pure argon was introduced at the required flow rate to control 

the working pressure. A rectangular copper (Cu) target (248 x 133 x 10 mm thick) and 

circular zirconium (Zr) target (100 mm dia. X 3 mm thick), both of 99.99 % purity, were then 

sputtered cleaned at dc powers of 200 W and 160 W respectively for 10 min. Following 

cleaning, the cathode shutters were opened and the Cu and Zr targets were co-sputtered for 

90 min onto the substrates mounted at a distance of 130 mm from the targets on the central 

carousel, which was rotated at a fixed speed of 5 rpm. These deposition conditions resulted 

in thin films of approximate chemical composition Cu/Zr 85/15 at. % and 1 µm in thickness. 

In total four different batches of Cu-Zr films were deposited; three at room temperature and 

varying working pressures of 0.1, 0.3 and 0.5 Pa and an additional batch at a substrate 

temperature of 403K and working pressure of 0.3 Pa. Full details of the deposition conditions 

for these four batches are given in Table 1. 

 

Table 1 Cu-Zr thin film deposition conditions 

Batch Base Ar Working Substrate Cathode power (W) 
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ID pressure 
(Pa) 

flowrate 
(sccm) 

pressure 
(Pa) 

temperature 
(K) 

Cu Zr 

1RT 5x10-4 10 0.1 RT 200 160 

3RT 5x10-4 30 0.3 RT 200 160 

5RT 5x10-4 45 0.5 RT 200 160 

3HT 5x10-4 30 0.3 403 200 160 

 

2.2. Structural and physical properties of thin films 

The surface morphology and chemical composition of the Cu-Zr film samples sputtered on to 

314SS substrates and borosilicate glass slides were analysed using a Tescan Mira 3, 

Scanning Electron Microscope (SEM) with 5-10 kV of acceleration voltage, coupled with an 

Oxford Instruments X-Max 150 Energy Dispersive X-ray (EDX) detector. The surface 

topography and roughness of the films was analysed and measured using a Digital 

instrument DimensionsTM 3100 atomic force microscope (AFM) system scanning in contact 

mode across a 3 x 3 µm2 sample area; data was visualised using Gwyddion software and 

processed in MATLAB software suite. The structural properties of the films were determined 

from X-ray diffraction (XRD) patterns collected using a Siemens D5000 diffractometer with 

Cu Kα radiation (λ = 1.54184 Å) at 40 kV and 40 mA, with a scanning speed of 0.01°/s in the 

2θ range 10° to 90°.  

Film thickness was measure using a Dekatak XTL stylus type profilemeter equipped with a 

12.5 µm tip.  A square edge step was created in the films grown on glass slides using a strip 

of 3 mm wide Kapton tape, which was removed after deposition. 

Contact angle measurements were carried out using the sessile drop technique (Krüss drop 

size DSA30 analyser). A volume of 1 µL of deionised water was deposited at a rate of 30 

µL/min on the surface of the samples, and the angle was immediately observed to prevent 

droplet shape change due to evaporation. Contact angle results are the average of five 

sessile drop tests (ten contact angle measurements). 

 

2.3. Antimicrobial behaviour of thin films 

The antibacterial activity of the thin films was assessed by following the reduction in colony 

forming units (CFU) recovered from the surface of the thin films over contact time using E. 

coli K12 (Gram-negative) and S. aureus NCTC 6571 (Gram-positive) [28]. For the 

antimicrobial tests, bacteria were cultured in an orbital incubator (37°C, 200 rpm), in 25 mL 

of LB (Luria Bertani) broth for 16 h. Culture yield was quantified by measuring optical density 

and bacteria were then diluted in sterile LB Broth to an optical density (OD600) of 0.01. The 

diluted cultures were incubated at 37°C until they reached an OD600 ~ 0.3; approx. 3x108 per 
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mL. Thin films and control samples (bare 314SS) were immersed in pure ethanol and 

sonicated for 5 min to ensure a clean and disinfected surface. A quantity of 2 μL of the 

culture was dispensed directly onto the test surfaces. For the wet tests, these samples were 

placed inside a sterile petri dish containing tissue paper wetted with 1 mL of sterile LB Broth 

to prevent sample drying. For the dry tests, all samples were placed inside petri dishes, but 

no wetted tissue was added. To ensure complete drying, after inoculation, the petri dishes 

were placed 100 mm away from a Bunsen burner with the lid partially open. After the 

inoculum vehicle evaporated completely (around 8-9 min), all petri dishes were closed and 

left on a bench at room temperature. After the designated exposure time, the “wet” and “dry” 

samples were diluted in 198 μL of Tween 20 0.148 g/L (2 × CMC) and sonicated for 5 min. 

Finally, the recovered bacterial suspension was subjected to serial decimal dilution, spread 

onto LB agar plates and the resulting colonies were counted after 16 h of incubation at 37°C. 

All tests were performed five times, with mean counts and standard deviation reported. 

 

2.4. Morphological characterization of bacteria 

The morphology of the bacteria was analysed from Scanning Electron Microscopy (SEM) 

and Transmission Electron Microscopy (TEM). 

SEM images of deposited bacteria in “dry” and “wet” conditions were collected using a 

variation of the method described by Fisher et al. [29]. Inoculum preparation and disinfection 

of the samples was done as previously described for the antibacterial tests in section 2.3. 2 

μL of inoculum was deposited on the samples and left for up to 4 h at room temperature (i.e., 

the bacteria-surface contact time for this work) in a sterile petri dish with a wetted cloth with 

1 mL of LB broth, for the wet conditions, and without it in the dry conditions. Each sample 

was transferred to a 24 well tissue culture plate (circular well diameter 15mm) and 1 mL of 

2.5 % glutaraldehyde was added gently against the wall of the well to limit disruption of 

surface attachment. After 1 h, samples were washed with phosphate-buffered saline (PBS) 

three times for 2 min each. Fixed samples were dehydrated using an ethanol/water series 

(25 %, 50 %, 75 % and 95 % v/v); samples were immersed in 1 mL of each ethanol dilution 

for 5 min, and 10 min in pure ethanol. After drying, samples were coated with platinum (2-3 

nm) using a Q150R Rotary-Pumped Sputter Coater (Quorum Technologies). 

TEM images of E. coli and S. aureus cells deposited in “dry” conditions on the 5RT thin film 

sample after 4 h, were taken with a Philips Cm 100 Compustage (FEI) TEM, while digital 

images were collected using an AMT CCD camera (Deben). Inoculation and recovery was 

carried out as described in the antimicrobial methods in section 2.3. After 5 min of sonication 

in 198 μL of Tween 20, samples were centrifuged at 5000 x g until a pellet was visible. 

Supernatant (Tween 20) was removed by pipetting without disturbing the pellet and cells 
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were re-suspended in 2 % glutaraldehyde in sodium cacodylate buffer (4°C) for 1 h. In the 

following steps, samples were centrifuged at 3000 rpm in 5 min cycles until a pellet was 

visible in the bottom of the microcentrifuge tubes. Cells were rinsed in cacodylate buffer 

twice for 10 min each, followed by a secondary fixation in 1% osmium tetroxide in deionised 

water for 30 min. Samples were washed in deionised water twice for 10 min and subjected to 

dehydration through a serial dilution of acetone in dH2O (25 %, 50 %, 75 % for 15 min each) 

and twice in pure acetone for 20 min each. All samples were impregnated with 25 %, 50 %, 

75 % resin (TAAB epoxy resin) in acetone (30 min) and 100 % resin for a minimum of 3 

changes over 24 h. After the impregnation, microcentrifuge tubes were filled with 100% fresh 

resin, re-suspended and polymerised at 60°C for 24 h. Once complete polymerisation was 

achieved, 0.5 µm sections were cut and stained with 1 % toluidine blue in 1% borax. 

Ultrathin sections (~70 nm) were obtained using a diamond knife on a RMC MT-XL 

ultramicrotome. Sections were stretched with chloroform to eliminate compression and 

mounted on Pioloform-filmed copper grids. 

 

2.5. Copper ion diffusion 

To measure the number of copper ions released from our samples, 2 µL of LB broth were 

deposited on the 1RT and 5RT samples. All samples were disinfected and degreased using 

the same protocol described in the antimicrobial test (section 2.3), and placed into a sterile 

petri dish with a wetted cloth for “wet” tests, and without for “dry” tests. After 1 and 4 h of 

contact time, samples were introduced into a cleaned and disinfected universal bottle 

containing 2.0 mL of deionized water from a Mil-li-DI purification system. Samples were 

sonicated for 5 min and MGs were subsequently recovered. Dilutions were processed using 

Inductively Coupled Plasma spectrometry (PerkinElmer Optima 8000 ICP-OES). All tests 

were carried out three times with mean counts and standard deviation reported. 

 

3. Results and discussion 

 

3.1. Structural and physiochemical properties 

Thin films were produced by magnetron sputtering under a variety of conditions with regards 

to substrate temperature and working pressure. The chemical composition of the Cu-Zr films 

grown on 314SS as well as the film thickness on both 314SS and glass substrates are 

reported in Table 2. The composition was measured by EDX in the SEM. 
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Table 2 Chemical composition and thickness of the Cu-Zr thin films. All results are based on 

the measurement of 5 film samples from each batch. 

 

Batch 
ID 

Composition (at.%) Film thickness (µm) 

Cu Zr Glass 314SS 

1RT 84.1 ± 0.2 15.9 ± 0.2 1.02 ± 0.02 1.12 ± 0.04 

3RT 84.7 ± 0.1 15.3 ± 0.1 1.10 ± 0.06 1.07 ± 0.05 

5RT 85.7 ± 0.2 14.4 ± 0.2 1.06 ± 0.06 1.19 ± 0.13 

3HT 84.6 ± 0.1 15.4 ± 0.1 1.17 ± 0.10 1.33 ± 0.05 

 

The chemical composition of the films was found to be consistently close to the target of 

Cu/Zr 85/15 at. % for all samples and the distribution Cu and Zr in the film was found to be 

homogeneous with no noticeable agglomeration. There was a slight increase in Cu 

concentration of around 1.5 at. % with increase in sputtering pressure, from a mean value of 

84.1 at. % for films deposited at 0.1 Pa (1RT) to 85.7 at. % for those deposited at 0.5 Pa 

(5RT). This slight increase can be related to variation in sputter yield of the two target 

elements with increase in deposition pressure [30]. The difference in composition is similar 

to the accuracy of the technique and therefore can be regarded as identical. No significant 

difference in composition was measured for the films deposited at 0.3 Pa with and without 

substrate heating (3HT and 3RT).  The mean thickness of the films deposited on both 314SS 

and glass substrates ranges from 1.02 to 1.33 µm, with no significant difference observed for 

films deposited at different pressures or substrate temperatures. 

 

Figure 1 shows SEM micrographs from the cross-section and from the surface of the Cu-Zr 

thin films deposited at varying sputtering pressures. The surface of the films shows fine 

grains of up to about 100 µtypical of nanocrystalline/amorphous structures, which are 

frequently observed when sputtering multi-component materials due to the reduction in grain 

boundary scattering [31, 32]. At the same time, some nodular growth flaws (see arrows) 

caused by imperfections on the substrate (SS314) can be noticed. There is a slight 

coarsening of the grains and the development of a more columnar semi-crystalline structure 

with increase in sputtering pressure to 0.3 Pa (3RT) and a slightly more porous surface 

morphology for the films deposited at 0.5 Pa (5RT). The development of this columnar 

structure is also apparent for the films grown with substrate heating at 0.3 Pa (3HT); 

however, the surface of these films exhibited a more fibrous texture due to the elevated 

substrate temperature during deposition [33]. These observed changes in film structure can 

be adequately explained using Thornton’s structural zone model (SZM) [34] depicted in 

Figure 2. In this model, an increase in sputtering gas pressure allows more Ar adatoms to be 
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adsorbed at the substrate surface. This limits the mobility and hence the surface diffusion of 

arriving atoms resulting in a structure with porous grain boundaries. Conversely, an increase 

in substrate temperature enhances surface mobility and conventional bulk diffusion, 

producing a film structure consisting of more columnar grains with denser boundaries. 
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Figure 1 Secondary electron SEM images showing the cross section and the surface of the 

Cu-Zr thin films analysed.  

 

Figure 2 Thornton’s structural zone model (SZM) of sputtered metallic thin films (Tm~1333K) 

[35]. Adapted from [36]. 

 

For the conditions used in our deposition set-up, the thin film prepared at the highest 

pressure at room temperature (5RT) will lie in Zone 1. This area of the Structure Zone Model 

(SZM) is characterized by tapered columnar grains separated by voids [37, 38], due to the 

preferential collection of incident atoms at protuberances in the substrate. A decrease in 

pressure with low substrate temperature (1RT) will change the structure to that of Zone T. 

This region is defined by a structure, which retains the columnar structure of Zone 1 but 

without the presence of voids, increasing the compactness of the thin film. In contrast, the 

films grown at the mid-range pressure of 0.3 Pa with and without substrate heating (3HT and 

3RT) will lie in between Zones 1 and T, with the same structure as 5RT but with slightly more 

compactness [37, 38]. Consequently, variations in the structure of the films depicted in 

Figure 1 can be related to changes in pressure and substrate temperature during their 

deposition.  

 

Figure 3 shows XRD spectra for the Cu-Zr thin films deposited on glass substrates at varying 

sputtering pressures and substrate temperature. All films exhibit a relatively broad halo peak 

of low intensity indicating a low ordered structure. These results are in good agreement with 

the film structures observed in the SEM images in Figure 1. 
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Figure 3 XRD patterns for the Cu-Zr thin films deposited at varying pressures (a) 1RT, (b) 

3RT, (c) 5RT and (d) 3HT. 

 

Considering that the deposition conditions have an effect on the structure and therefore on 

the surface roughness, the roughness values have been measured by AFM for the Cu-Zr 

thin films deposited on 314SS at varying sputtering pressures, are shown in Figure 4. The 

3D images show crack-free surfaces consisting of grains of good repeatability for all 

samples. As sputtering pressure was increased from 0.1 (1RT) to 0.5 Pa (5RT), a slight 

coarsening of the grains and an increase in porosity was observed. Results for surface 

roughness measured from the AFM images are reported in Table 3.  The ten-point mean 

roughness (Rz) showed a decrease in value from 26.39 to 20.79 nm with increase in 

sputtering pressure from 0.1 to 0.5 Pa, while the roughness average (Ra) value was in the 

range 4.97 to 6.02 nm for all film samples. A small increase in Ra to from 4.97 to 5.77 nm 

was observed for the films grown at 0.3 Pa with and without substrate heating (3HT and 

3RT), which could be due to the development of the fibrous surface texture reported in the 

SEM image for the 3HT film in Figure 1. 
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Figure 4 AFM images of the Cu-Zr thin films deposited on 314SS at varying pressures (a) 

1RT, (b) 3RT, (c) 5RT and (d) 3HT. 

 

Table 3. AFM roughness of the analysed thin films and of the uncoated steel substrate. 

314SS 

  Ra (nm) Rz (nm) 

Uncoated 3.49 ± 0.38 15.83 ± 2.94 

1RT 6.02 ± 0.44 26.39 ± 3.33 

3RT 4.97 ± 0.34 22.46 ± 2.90 

5RT 5.33 ± 0.63 20.79 ± 2.24 

3RT 5.77 ± 0.70 21.74 ± 2.03 

 

 

3.2. Surface wettability 

 

It is commonly accepted that the antimicrobial behaviour of copper is correlated to the 

diffusion of copper ions (i.e., Cu+1 and Cu+2) into bacteria [39-41]. For antimicrobial touch 

surfaces this depends on the bacteria-surface contact area and therefore on the process 

which enables bacteria to adhere to surfaces. This process is complex and depends on 

numerous variables such as motility (i.e. ability to move actively), chemotaxis (i.e., ability to 
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move in relation to a concentration gradient for a specific chemical), as well as, physical 

features that directly promote adhesion such as flagella, glycocalyces or fimbriae. The 

sessile drop technique is known to be a simple and useful method to estimate the adhesion 

of bacteria by measuring the contact angle [42]. For this reason, the contact angle of the thin 

films and the substrate (314SS) was analysed using the sessile drop technique (Figure 5). 

 

 

Figure 5 Average water contact angle for SS314 and the analysed Cu-Zr thin films 

 

The contact angle measured for the stainless steel substrate was 79.12 ± 4.62°, which is 

smaller than for the Cu-Zr thin films: 88.95 ± 3.77° (1RT), 88.70 ± 5.17° (3RT), 93.04 ± 3.39° 

(5RT) and 93.18 ± 5.46° (3HT).  The contact angle for SS314 is therefore the smallest, while 

a slight increase in contact angle can be noticed as the chamber pressure and temperature 

rises. These values of contact angle for Cu-Zr thin films of around 90 degrees, are 

comparable to the values obtained by Zeman et al. [43] for Cu-Zr thin films in the 

compositional range 10-90 Cu at. % (87° to 108°). On the other hand, they are slightly higher 

than that reported for other Cu-based thin films like Cu90Ti10 (74.1°) [12] but lower than for 

Cu-rich alloys such as Zr53Cu30Ni9Al8 (between 99.5° and 104.0°) [44]. The wettability 

depends on numerous parameters such as the surface roughness, as observed by Kubiak et 

al. [45]. In this paper, the authors showed that the apparent contact angle decreases with 

increasing roughness up to about 300 µm. The measurements obtained seem to follow this 

trend, however, there are some discrepancies since for 3HT the contact angle is maximum 

(93.18 ± 5.46°) but the roughness is not minimum (i.e., it is higher than for 3RT and 5RT). In 

any case, differences in contact angle are practically within the error range. 
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3.3. Influence of drying on the recovery of bacteria from surfaces 

 

 

In order to assess the influence of drying on the recovery of bacteria from metallic surfaces, 

E. coli and S. aureus  were applied to stainless steel 314 (a corrosion resistant material 

without antimicrobial activity that can be used as a control) and subsequently recovered, 

plated and counted. Figure 6 shows the number of colony forming units (CFU) per millilitre 

recovered in dry conditions for 0, 15, 30 and 45 min contact times. The recovery of bacteria 

diminished with increasing contact times from ~108 (0 min) to ~104 (45 min) for E. coli and 

from ~109 (0 min) to ~108 (45 min) for S. aureus, therefore the largest reduction (i.e., 5 log10) 

was detected for E. coli. The difference in recovery rates between E. coli and S. aureus are 

interesting and not easily explained by reference to a single factor. In general, Gram positive 

bacteria (like S. aureus) tolerate desiccation better than Gram-negative bacteria (like E. coli) 

[46] but it is important that the lack of recovery here is not interpreted as death, especially 

over the short times applied in this study. The lack of recovery may also reflect a more avid 

binding of the bacteria promoted by the desiccation of its outer layers or by adaptive 

responses to their new environment, for instance the synthesis of adhesion molecules. 

 

Figure 6 Recovery of E. coli and S. aureus deposited on 314SS for “dry” conditions after 0, 

15, 30 and 45 min contact time. Each surface was inoculated with 2 μL of bacteria culture 

growth until OD600~0.3. 
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To investigate the drying effect in more detail, the morphological differences of E. coli and S. 

aureus have been studied in “wet” and “dry” conditions using SEM. E. coli cells fixed in “wet” 

conditions (Figure 7a) consist of relatively smooth surfaces, revealing the presence of low 

bumps and valleys from the outer membrane layer. On the other hand, the E. coli cells in 

“dry” conditions (Figure 7c) exhibit slight morphological differences. The width of the “dry” 

cells is slightly smaller (0.7 μm in the healthy bacteria to 0.5 μm in the “dry” cells) while the 

length of wet and dry E. coli bacteria is about 2.5 μm. In addition, the surface morphology is 

slightly different, with the “dry” cells displaying a shrivelled outer membrane. 

 

 

Figure 7 Secondary electron images for “wet” conditions, E.coli and S. aureus (a,b) and 

“dry”  conditions for E. coli and S. aureus (c,d) deposited on 314SS after 1h. 

 

The S. aureus, undried samples (Figure 7b) display a rough surface; while the dried samples 

seem smoother (Figure 7d). The morphological differences might be attributed to the 

removal of the outer “fuzzy” layer of fine fibres of teichoic acids and proteins during the cell 

processing (i.e., SEM fixing) and upon drying [47]. The drying of the cells could have 

damaged the agglomeration of fine fibres attached to the peptidoglycan layer, which could 

be removed during the fixing. Then, the smooth surface observed in Figure 7d will be the 

thick peptidoglycan layer common to Gram Positive bacteria [47]. 

 

The reduction in colony forming units in “dry” conditions for the 314 SS substrate cannot be 

attributed to the materials since it lacks any antimicrobial behaviour. Therefore, it should be 
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mostly attributed to the drying of the LB broth. To investigate this in more detail, 314SS 

samples were inoculated with pure broth and subsequently observed in the SEM. Once the 

broth dries, a substance of dendritic geometry was observed on the surface of the samples. 

EDX measurements indicated a composition of C60.0Cl14.2Na13.9O8.6Zn0.5Cu0.4K0.2P0.2Fe0.2S0.1 

at. %. Consequently, the dendrites are expected to be crystals of sodium chloride and other 

components of the LB broth used in the tests (Luria Bertani broth: Peptone 10 g/L, Yeast 5 

g/L and NaCl 5 g). The increasing sodium chloride concentration experienced by the 

bacteria during the evaporation of the water may have some impact on their differential 

recovery (Figure 6) as S. aureus is particularly halotolerant [48], but it should be noted that 

this is a short-lived temporary state in the transition to dryness. Consequently, the 

composition of LB broth has to be carefully selected to develop “dry” antimicrobial tests. 

 

3.4.  “Wet” vs “Dry” antimicrobial tests  

 

The antimicrobial properties of all thin films was assessed by the differential reduction in 

recovery of E. coli and S. aureus recovered from the coated and uncoated surfaces over 

time in “wet” and “dry” conditions. The influence of drying on recovery of E. coli K12 

described above would greatly complicate the analysis and, consequently, only S. aureus 

cells were used to compare the “wet” and “dry” methodologies. This focus on S. aureus is 

warranted as, unlike E. coli, it is often found on human skin and is relevant for surface 

transmission in healthcare and other settings [49]. 

Figure 8 shows the number of S. aureus recovered in “wet” and “dry” assay conditions for 1, 

2.5 and 4 hours contact time. The stainless steel coupons (314SS) show a relatively 

consistent recovery of bacteria for both “wet” (~3x108 CFU/mL) and “dry” (~5x107 CFU/mL) 

conditions, especially for the “wet” tests. For the “dry” applications, the number of cells has 

not only been reduced when compared to the “wet” conditions (from ~3x108 CFU/mL to 

~8x107 CFU/mL), but less cells were recovered during the next 1.5 hours (to about ~5x107 

CFU/mL). As steel does not have any antimicrobial activity this reduction must have been 

caused during the drying process and was taken into account to obtain a reliable 

antimicrobial activity result. 
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Figure 8 Recovery of S. aureus (Colony Forming Units per mL) after 1h, 2.5 h and 4 h for 

the Cu-Zr thin films analysed in wet and dry conditions. 

 

For the “wet” thin films, the bacteria recovery is similar during the first hour of contact killing 

(~2x108 CFU/mL) with a slight decrease in recovered bacteria as the contact time increases. 

This decrease is similar in the 1RT and 3RT films, while the 3HT and 5RT samples reveal a 

slight decrease (to about ~3x107 CFU/mL). For the “dry” tests, the number of recovered 

bacteria are lower than those of the “wet” conditions, but the antimicrobial behaviour follows 

a similar trend. The sample deposited with the lower chamber pressure (1RT) continues to 

display the highest number of recovered bacteria (with a minimum of ~2x107 CFU/mL), 

indicating low antimicrobial properties. In contrast, the 3RT thin film has been able to lower 

the number of recovered bacteria to levels similar to those of 3HT (~1x107 CFU/mL after 4 h 

of contact killing). However, the thin films with lowest number of surviving bacteria are those 

deposited at 0.5 Pa (5RT), reaching minimums of about 2x105 CFU/mL, which is two orders 

of magnitude lower than that for the thin films grown at lower pressures of 0.1 Pa (1RT) and 

0.3 Pa (3RT). 

 

The antimicrobial activity and percentage of reduction were calculated using the equations 

provided by the Japanese JIS Z2801:2010 “Antibacterial products—Test for antibacterial 

activity and efficacy” (Table 4) and the American US EPA “Protocol for the Evaluation of 
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Bactericidal Activity of Hard, Non-Porous Copper Containing Surface Products” (Table 5) 

respectively. The resulting antimicrobial activity and percentage reduction were calculated 

using the number of viable colony forming units of stainless steel in “wet” or “dry” conditions 

as a reference, since this material does not possess any antimicrobial behaviour (i.e. 

antimicrobial activity and reduction percentage values of 0 and 0.00% respectively, for more 

details see [22]). Both results have been shown for comparison purposes since the 

Japanese standard gives an accurate estimation of the antimicrobial performance due to the 

logarithmic scale (log10 reduction), while the American standard provides a more intuitive 

result (percentage reduction). It should be noted that we use significantly higher bacterial 

challenges (i.e. ~3x108 CFU/mL) than those defined in these standards (i.e. 2.5x105 to 1x106 

CFU/mL) in order to be able to perceive activity differences with greater resolution. 

 

Table 4 Antimicrobial activity calculated as stated in JIS Z 2801:2010 “Antibacterial 

products—test for antibacterial activity and efficacy” for the Cu-Zr thin films after 1, 2.5 and 

4h of contact killing. 

Sample 

Antimicrobial activity 

Wet Dry 

1h 2.5h 4h 1h 2.5h 4h 

1RT 0.23 0.56 0.77 0.22 0.23 0.29 

3RT 0.30 0.56 0.81 0.15 0.53 0.55 

5RT 0.53 0.68 1.02 0.88 1.61 2.25 

3HT 0.35 0.67 1.01 0.51 0.49 0.54 

 

Table 5 Percentage reduction calculated as stated in U.S. EPA “Protocol for the Evaluation 

of Bactericidal Activity of Hard, Non-Porous Copper-Containing Surface Products” for the 

Cu-Zr thin films after 1, 2.5 and 4h of contact killing. 

Sample 

Percentage reduction 

Wet Dry 

1h 2.5h 4h 1h 2.5h 4h 

1RT 28.14 56.87 74.66 12.02 64.09 51.09 

3RT 33.78 60.02 80.40 18.41 83.07 73.91 

5RT 61.55 67.82 83.90 94.50 99.20 99.47 

3HT 45.63 65.90 83.15 70.00 75.98 74.16 

 

The data described here have been adjusted for loss of recovery due to drying and can be 

considered as losses due to cell death. In general for the “wet” tests recovery of viable 

bacteria decreases as the contact time increases, however, the antimicrobial activity is low, 

between 0.77 and 1.02 log10 reductions and percentage reductions between 74.66 % and 
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83.90 %. The increase in deposition pressure, as well as the increase in substrate 

temperature reveals superior antimicrobial activity. The activity in “wet” conditions for the 

5RT sample is similar to that observed for the 3HT film, suggesting that, besides chemical 

composition, the film deposition parameters can influence the antibacterial properties of the 

material. This idea was previously proposed by Chiang et al. [1] who revealed that variations 

in target power during deposition had an influence on the antimicrobial properties of E. coli 

cells deposited on Zr61Al7.5Ni10Cu17.5Si4 thin films. It should be noted that higher antimicrobial 

reductions of thin films can be found in the literature, but most of them involve much longer 

contact times (i.e., 24h), limiting their possible application as antimicrobial touch surfaces [3, 

50]. These low antimicrobial properties are consistent with the nanograin structure of the 

deposited thin films which limits the diffusion of copper ions [17]. 

 

The same trend can be observed for the “dry” tests. Overall, four hours of contact killing 

eliminated a small number of cells, between 0.29 to 0.55 log10 values of antibacterial activity, 

or reduction of bacteria percentage between 51.09 % and 74.16 %, for the Cu-Zr films 

deposited at the lower pressures (1RT and 3RT) as well as that with substrate heating 

(3HT). The lower concentration of S. aureus cells caused by the drying of the surface, has 

not increased the antimicrobial rates, contradicting the idea that drying may increase the 

copper intake of bacteria [23, 24]. Interestingly, the film deposited at room temperature and 

0.5 Pa (5RT) exhibited better antimicrobial rates (2.25 log10 reduction or 99.47 %) after just 4 

h, which is similar to that reported for other thin films after 24 h of contact time [3]. The 

increase in antimicrobial performance can be explained by the compactness of the films 

seen in Figure 1. The most compact thin film (1RT) will be unable to release high amounts of 

Cu ions, limiting bacterial exposure. As the pressure and deposition temperature increased 

(3RT and 3HT), film compactness decreased and the antimicrobial activity improved, 

reaching a maximum in samples deposited at 0.5 Pa (5RT). This result can be related to 

Thornton’s structural zone model [34] (see Figure 2), where increasing substrate 

temperature and lower sputtering pressure leads to a more compact and dense film. 

 

To better understand the reason for the antimicrobial behaviour under the different 

processing conditions, the surface morphology of S. aureus have been studied under the 

SEM for the two most extreme conditions, 1RT and 5RT in “dry” and “wet” conditions (Figure 

9). For the 1RT sample, the contact in “wet” conditions (Figure 9a) reveals the expected 

spherical shape proper of cocci, while the antimicrobial tests in “dry” conditions (Figure 9c) 

seem to have cells with a smoother surface. This change between “wet” (Figure 9b) and 

“dry” (Figure 9d) is more pronounced in cells deposited on the 5RT thin film. The contact 
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between S. aureus cells and copper has been reported to cause damage to the cell in the 

form of flattening, pitting and lysis [51, 52]. However, the lack of these defects seems to 

indicate that such low contact times (1-4 h) did not result in a marked loss of integrity for S. 

aureus, suggesting that the antimicrobial mechanisms responsible for the killing of bacteria 

generate more subtle damage to essential proteins and DNA that has removed the ability of 

the cells to replicate. 

 

 

Figure 9 Secondary electron SEM images showing the morphology of S. aureus in 1RT a) 

“wet” and c) “dry” conditions and 5RT in b) “wet” and d) “dry” conditions after 4h of contact 

killing. 

 

To understand the mechanisms of copper diffusion and estimate the corrosion of the 

deposited thin films, SEM images of the samples were taken after 4 h of contact killing 

(Figure 10). The surface of the samples 1RT, 3RT and 3HT prepared in “wet” conditions do 

not display great changes, while the surface of the 5RT thin film has developed a rougher 

surface with protrusions growing from its surface. On the other hand, after “dry” applications 

of bacteria on both 3HT and 5RT samples, surface cracks are evident, especially for the 5RT 

sample, where some pits could be observed. In contrast, the 3RT sample showed minor 

changes, while the surface of the 1RT sample remained unchanged. 
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Figure 10 Secondary electron SEM images of the thin films surface in the as deposited 

conditions and after the antimicrobial tests in “dry” and “wet” conditions after 4h of contact 

killing. 

 

No great surface changes were observed for the 1RT and 3RT samples, while little 

degradation (i.e. pitting) of the films could be noticed in the 3HT and 5RT films for the dry 

conditions (not shown in the images). The results of Bouala et al. [3] and Etiemble et al. [53] 

suggest that chloride-containing media, such as the culture broth used for this research, can 

increase the flow of Cu ions into the deposited bacteria. This process can only take place 

when the anodic potential is higher than the equilibrium potential of Cu/Cu+2 [54]. The 

addition of Cl- ions in concentrations higher than 0.01 mol/L can promote the formation of 

CuCl thus increasing the transfer of metallic ions to the contact media [54]. In our 

experiments, the LB broth contains 5 g/L of NaCl (0.141 mol/L of Cl-), much higher than 

0.01mol/L, and therefore it favours the release of Cu ions. Pitting and cracking similar to the 

ones shown in Figure 10 can be found in the literature as a sign of corrosion due to the 

presence of chlorine salts in Cu-based thin films [3, 53]. Considering the available literature, 

and our own antimicrobial results, it seems likely that the changes in antimicrobial properties 

between “dry” and “wet” conditions have been caused by a higher degradation of the film, 

induced by the increase in NaCl during the evaporation of the LB broth. This will explain the 

higher antimicrobial properties of the 5RT film, as the surface degradation will be higher due 

to the lower density and compactness of the film shown by Thornton’s model [34] (Figure 2). 
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To analyse the copper ion release, ICP-OES measurements of thin films produced under the 

two most extreme conditions (1RT and 5RT) were taken in both “dry” and “wet” conditions 

(Table 6). Although the error bars of these measurements are high, some interesting 

differences can be observed. The ion release test reveal higher copper values for the films 

deposited at 0.5 Pa, with a maximum of 1088.13 ± 305.19 ppb after 4 h in “wet” conditions. 

This agrees with the more porous structure revealed from the cross section analysis (Figure 

1), thus suggesting that the changes in compactness shown by Thornton’s SZM are a good 

indicator of changes in the copper ion diffusion. For both thin films, the release of copper 

ions rises as the contact time increases from 1 to 4 h, which concurs with the reduction in 

viable bacteria. It is of interest to notice that for 1RT, the thin film with highest compactness, 

the number of copper ions in “wet” conditions is lower than those measured in “dry” 

conditions (i.e. 132.60 ± 49.89 ppb in the former and 262.21 ± 81.34 ppb in the latter). 

However, after 4 h of contact this trend reverses, with higher copper ion release in the “wet” 

conditions (i.e. 349.51 ± 139.37 ppb in the former and 270.45 ± 74.40 ppb in the latter). This 

phenomena is not observed in the less compact film (5RT), where the number of copper ions 

diffused is always higher in the “wet” conditions, which may be a result of surface damage 

promoted by the formation of sodium chloride crystals. The copper ion release from the Cu-

Zr thin films is much higher than those reported by Chu et al. [44] (i.e. 45 ppb after 24 h of 

contact). However, the copper content of our samples is 85 at. %, while for the Zr-Cu-Ni-Al 

alloy deposited in the aforementioned paper the maximum copper content is 30 at. %. 

 

Table 6 Copper ion release (ppb) for the 1RT and 5RT thin films 

 

  Contact time 

 
1h 4h 

Condition wet dry wet dry 

1RT 132.60 ± 49.89 262.21 ± 81.34 349.51 ± 139.37 270.45 ± 74.40 

5RT 841.43 ± 267.77 632.24 ± 192.22 1088.13 ± 305.19 934.97 ± 103.77 

 

 

3.5. TEM analysis 

To understand the morphological changes driven by copper to E. coli and S. aureus, TEM 

images (Figure 11) were taken from bacteria recovered from the 314SS and the thin film with 

highest antimicrobial activity (5RT) after 4h of “dry” contact. E. coli cells recovered from steel 

(Figure 11a) reveal an undamaged cell membrane similar to those reported in other TEM 

analyses [55]. On the other hand, exposure to the Cu-based thin films (Figure 11c) has led 

to a partial lysis (i.e. disintegration of a cell by rupture of the cell wall or membrane). In 
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addition, dark spots can be observed in the cytoplasm of the cell that may be attributed to 

copper oxidation during the denaturation of proteins [56, 57]. Damage to the exterior of E. 

coli in the form of cell shrinkage, apparition of pits and cavities and loss of its natural rod 

shape is commonly reported in the literature as a direct effect of copper contact with E. coli 

[56, 58, 59]. The TEM images reveal that while some degree of damage has been done to 

the cell membrane, it has not been enough to affect its rod-like morphology. The irregular 

outer layer observed in Figure 7c would have increased the inflow of copper ions into the 

cell, confirming the idea that copper ions alter the permeability of cellular membranes and 

destabilize the cell wall [56, 59]. At the same time, the high affinity of Cu2+ ions with 

phosphorus- and sulphur- containing compounds rich in the inner part of the cells will further 

the damage, conferring copper its high contact killing properties [44, 60]. 

 

 

Figure 11 TEM images of E. coli and S. aureus cells deposited on steel (a, b) and Cu-Zr thin 

film for 5RT condition (c, d) after 4h of “dry” contact. 

 

For the S. aureus deposited on steel (Figure 11b) and Cu-Zr thin film (Figure11d), the cells 

retain the morphology typical of coccus. The cell wall reveals a slight detachment from the 

cytoplasmic membrane with punctual lysis and a clear decolouration surrounding the inner 
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side of this membrane. These results are in agreement with the limited outer damaged 

observed in the SEM imaging of both GP and GN bacteria (Figures 9b and 9d), supporting 

the idea of inner damage. Analysis of cell damage in other Gram positive cocci (i.e. 

Streptococcus mutans) deposited on copper-rich surfaces indicates progressive damage to 

the cell wall [61], but the timeframes are much longer (up to 24 h) than those used in the 

present work (up to 4 h). In addition, S. aureus is more resistant to damage caused by 

copper due to their the ability to agglomerate and the numerous mechanisms available to 

resist environmental copper [62]. Consequently, it is reasonable to anticipate that obvious 

cell damage will not be discerned for short timeframes. 

 

4. Conclusions 

In this work we have shown that the Thorton’s structural zone model provides sensitive 

enough information to observe differences in the microstructures of Cu-Zr thin films grown at 

varying sputtering pressure and substrate temperature, even within the same structure zone 

of the model. While other authors have focused on structural variations at different zones of 

the model (i.e., at very different processing conditions), we have proven that, at least for the 

Cu-Zr system, even within the same zone it is possible to detect differences in antimicrobial 

behaviour.  

The evolution of the antimicrobial behaviour over the contact time is, in general, not higher in 

“dry” than in “wet” conditions and therefore the copper ion diffusion over the contact time is 

similar.  However, for the least compact Cu-Zr thin film grown at 0.5 Pa (5RT) the evolution 

of the antimicrobial behaviour over the contact time is much higher in “dry” than in “wet” 

conditions and is significantly higher than that for films grown at lower pressures of 0.1 Pa 

(1RT) and at 0.3 Pa, both with and without substrate heating (3HT and 3RT). These results 

suggest that for “dry” tests to provide higher antimicrobial performance than “wet” tests, the 

thin film structure should exhibit low compactness. This suggestion is further supported by 

the higher copper ions measured in these samples.  

TEM analysis of E. coli and S. aureus after 4 h of “dry” contact with Cu-Zr thin films show 

that both exhibit partial lysis and inner damage but not enough to result in morphological 

changes of the bacteria. 
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Highlights 

 

 Thorton’s model provides sensitive information to observe structural differences. 

 Even within the same zone, differences in antimicrobial behaviour are detected.  

 Low thin film compactness is required for high dry test antimicrobial performance. 

 4h dry contact on Cu-Zr thin films results in inner damage of E. coli and S. aureus. 
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