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A novel chemical sensing approach detecting airborne molecular contaminants (AMCs) or compounds is demonstrated by using
single-mode optical microfibre (OMF) coated with hollow silica nanoparticles (HSNs). The concentration of AMCs, which were
volatilized on the surface of the tapered microfibre coated with HSNs, influences the transmission loss of the microfibre. Tapered
OMF was fabricated using a high-precision electrically controlled setup, and coatings of HSNs were prepared by meniscus coating
method. The transmission loss of three OMFs with different diameters and the same thick coating were tested to determine
the relationship between AMC concentrations and transmission loss of coated OMFs. Experimental results showed that the
transmission loss increases with increasing concentration of AMCs. The sensitivity for volatile simethicone was 0.0263 dB/mg/m3
obtained by the coated OMF with diameter of 2.5 𝜇m, and the sensitivity values of coated OMF with diameters of 5 𝜇m and 6 𝜇m
were 0.0024 and 0.0018 dB/mg/m3, respectively. Thus the proposed coated OMF can be used in enclosed space for AMCs sensing.

1. Introduction

In the past decades, important applications for optical fibre
sensors have been developed in various fields, such as in
sensing temperature, magnetic field, strain, and pressure,
and they can work at different conditions based on various
structures or disparate optical transmission mechanisms
[1–5]. However, normal single-mode optical fibres cannot
directly satisfy the particular demands of chemical sens-
ing, but the microfibre has the potential to be used in
chemical sensing [6, 7], especially with the development of
the functionalization of microfibres. The coated microfibre
forms a three-layered waveguide. A dielectric microfibre
core is bounded by the coating and the surrounding air.
Generally, if the coating is contaminated, the refractive index
(RI) of the intermediate cladding will change and affect the
evanescent field of light propagating along themicrofibre, and
consequently the transmission loss of the microfibre will be
changed with the RI changing of the surrounding medium

[8]. Thus, it is promising to design microfibre sensors with
higher sensitivity and reliability.

For the coated microfibres, the coated layer plays an
important role in the sensitivity of chemical sensing. Luo et al.
[9] proposed a microfibre sensor with a cluster layer con-
sisting of silver nanoparticles to probe concentrations of
melamine and reported that the sensitivity can reach 1ug/mL.
Jesus et al. [10] fabricated a fibre-optic sensor coated with
porous silica xerogel film for the detection of airbornemolec-
ular contaminants, and the experimental results showed
that there was a stronger interaction between methanol
and ethanol with the silanol groups on the film, but the
adsorption process was irreversible. Park et al. [11] proposed a
selective chemical sensing approach by using a poly(dimethyl
siloxane)-coated fibre Bragg grating for detecting various
volatile organic compounds. Liu et al. [12] reported a high
sensitivity ammonia sensor based on a tapered small core
single-mode fibre structure for themeasurement of ammonia
concentration in water, and they estimated that the resolution
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Figure 1: Principle of molecular contaminants adhered on microfibre with HSNs film.

for ammonia concentration inwater can reach 4 ppb. Besides,
silica nanoparticle has been also used for gas or humidity
sensing [13, 14]; especially it showed a lower contact angle
about 27∘ in recent approach [15] that means some contami-
nation may easily be adsorbed.

In this paper, we proposed an OMF sensor coated with
HSNs for the detection of AMCs. OMFs with different
diameters were fabricated using a high-precision electrically
controlled setup, which was consisting of a microheater,
three motorized precision translation stages, and a main
control box. The shape-controlled HSNs were synthesized
by a soft-templating method which includes changing the
contents of the template, poly(acrylic acid) (PAA) [16], and
the HSNs were coated on the surface of the microfibre
uniformly by the meniscus coating method. The sensitivity
of coated microfibres with different diameters was measured,
and the relationship between the concentrations of AMC
and the transmission loss of microfibre was determined. The
proposed sensor has the advantages of competitive durability
and fast and real-time detection based on the evanescent
field coupling between the OMF and the polymer planar
waveguide.

2. Sensing Mechanism

The sensing mechanism of coated microfibre is based on the
change of transmission loss due to the RI changing of the
coatings caused by the adsorption of AMCs (simethicone) on
the HSNs film. When the sensitive waist region of the OMF
with HSN film is contaminated by the AMCs, the RI of the
coatingwill be changed and can be calculated by the following
equation:

𝑛𝑝 = √∑
𝑚

𝑛2𝑚]𝜕𝑚 (1)

wherenp andnm represent the equivalent RI of the coating
and the RI of the HSN film or the AMCs, respectively, 𝑚
represents the different chemical categories, and ]𝜕𝑚 is the
volume fraction of𝑚 layer.

With the increase of the deposition of AMCs on the
HSNs, the energy of evanescent field of OMF is absorbed
by the newly formed AMC layer. Thus, the additional trans-
mission loss will increase. The transmission loss of OMF is
related to the amount of deposited contaminants, and the

mass of contaminants can be obtained according to [17]. The
principle of the adhesion ofmolecular contaminants onOMF
with HSN film is shown in Figure 1.

3. Experimental Preparation

3.1. Fabrication of OMF. The single-mode optical fibre (SMF-
28, 9/125 𝜇m, core/cladding diameter, Corning, Inc.) was
tapered by using the conventional heating and drawing
method, as shown in Figure 2 (inset). Before tapering, the
protective polymer cladding was stripped by the commercial
cutting pliers for a length about 60mm, and then the stripped
single-mode optical fibre was clamped on the two translation
stages by fibre holders. The optical fibre was heated up to
1600∘C by precisely controlling the current of a microheater
by a DC power supply (TSX3510P, TTi, Inc.).Themovements
of the two translation stages were precisely controlled by
a programmed controller (TMC-USB Motion Controller,
Zolix, Inc.) to draw the fibre to the required diameter with
a desired waist length. The fabricated microfibre was then
coated with HSNs.

3.2. Synthesis of HSNs andMeniscus Coating. TheHSNs were
prepared by the modified Stöber method [18]. In accordance
with previous work [16, 19, 20], 0.15 g PAA was dissolved
in 7 mL ammonia hydroxide at room temperature and then
mixed with 180 mL of ethanol in a 250-mL glass conical
flask. After that, 1 mL Tetraethoxysilicate (TEOS, < 98 %)
was gradually injected into the solution within 5 hrs under
vigorousmagnetic stirring at 30∘C. Finally, the syntheticHSN
solution (RI 1.2, particle diameter ∼40nm) was obtained.

About 0.1 mL of synthetic solution of HSNs was fed
into a needle tube, which was placed on the clamp of the
translation stage. Then, the translation stage was driven by
the programmed motion controller step by step, and the
OMF traversed the centre of the liquid drop of the HSN
solution. Different thicknesses of HSN coating were obtained
by changing the cycle steps of the translation stage. Finally,
the pigtail of the OMF coated with HSNs was fusion-spliced
to standard FC pigtails so that it can be connected to other
optical devices.

3.3. OMF Sensor System. Figure 2 showed the schematic
diagram of experimental setup of OMF sensor, which is
comprised of an optical transmission measurement setup
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Figure 2: Experimental setup of coated OMF sensor.

(TMS), an airtight chamber, and an electric heater.TheAMCs
used in the experiment were prepared by heating a beaker
filled with simethicone. An input laser beam emitted by
a laser diode (RIO, 1mW, 𝜆 = 1550 nm) from the TMS
passed through the coated OMF sensor and entered the
terminal of the TMS to measure the transmission loss.
In our experiment, the sensor’s sensitivity S is defined as
S=Δ𝜑/C, where Δ𝜑 represents the additional loss change
under different AMC concentrations and C is the AMC
concentration, and the additional loss can be calculated by
the formula Δ𝜑=10log[Pout/Pin], where Pin and Pout are the
input and output energy, respectively.

4. Results and Discussion

4.1. Influence of HSN Coating on OMF. The sensitivity of
the OMF sensor was monitored during drawing and coating
processes. Figure 3 showed the transmission loss of the OMF
sensor for different processes. Initially, the transmission loss
of the fibre kept a steady state at approximately zero. During
the drawing process, the transmission loss decreased with
the fibre thinning and reached a constant value of 2.5%.
During the coating process, the naked OMF was soaked and
the HSNs were absorbed onto the surface of the tapered
OMF, and the transmission loss undulated regularly at the
first six coating processes. However, with the increase of
the coating thicknesses of the OMFs, the transmission loss
decreased sharply in the next four coating processes. Finally,
the transmission loss reached almost 77%.

The surface morphology of the OMF coated with HSNs
was characterized by using a scanning electron microscope
(SEM), as shown in Figure 4. The HSN coating layer was
not smooth. Due to the existence of the raised portions of

Figure 3: Transmission loss of OFM during drawing and coating
processes.

HSN coating, the interface between the AMCs and the HSNs
was increased, leading to the increased adsorption of the
AMCs onto the HSN layer. Figure 4(b) showed the detailed
surface morphology of the HSN coating. The rough surface
is comprised of sphere clusters of HSNs. Generally, the HSN
coatings acted as the main sensing part of the OMF.

The fabricated OMF sensor was placed on a glass disc
located in the container. At the beginning, the original
additional loss was tested for five minutes with the purpose
of obtaining initial records. Then a beaker filled with sime-
thiconewas heated using a controllable heater for tenminutes
in order to produce the volatile vapour.The containermust be
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Figure 4: Surface morphology of the OMF with HSNs (a) at 15kv and 10k × and (b) at 5kv and 100k ×.

Figure 5: Sensitivity and recovery responses of coated and naked
OMF sensors (diameter,∼5 𝜇m) toAMCs at a concentration of 106.3
mg/m3.

closed so that the prepared OMFwith HSNs coating interacts
with the AMCs vapour sufficiently during this time.Then the
container was opened and the additional loss was observed
in real time. As shown in Figure 5, the additional losses of the
OMF with and without HSN coating were obtained to assess
the sensitivity and recovery of the coated OMF to AMCs
with a specific concentration of 106.3 mg/m3. Obviously,
the OMF with HSN coating has a highly sensitive response
to AMCs when compared with the naked OMF under the
same conditions. Thus, the effect of temperature could be
ignored because the naked OMF had a lower response to
a concentration of 106.3 mg/m3 at 60∘C. According to the
experimental results, the additional losses for the OMF
with HSN coating increased sharply during the initial ten
minutes and then decreased gradually with time increasing.
Meanwhile, the AMCs were adsorbed and desorbed by the
HSNs coating during this process.

4.2. Measurements of Coated OMF with Different Con-
centrations of the AMCs and Fibre Diameters. Figure 6
showed the behavior of the coated OMF sensor at different
concentrations of AMCs between 25.7 and 134.2 mg/m3 with
three different diameters of 2.5 𝜇m, 5 𝜇m, and 6 𝜇m. It
can be seen that, as the concentration increases, the peak
of additional loss also increases nonlinearly. This is because
the energy of evanescent field around the OMF sensor was
absorbed increasingly with the increase of the concentrations
of AMCs. The adsorbed response was achieved after 10 min
of evaporation and the recovery response was found to
change nonlinearly with changing concentration, and it was
confirmed that a higher concentration of volatile simethicone
led to a longer recovery time.

Significantly, the OMF sensor with a diameter of 2.5
𝜇m exhibited a rapid response, as shown in Figure 6(a).
The peak of additional loss can reach up to 0.0458 dB at a
concentration of 25.7 mg/m3 and 17.102 dB at 134.2 mg/m3,
respectively. However, as observed in Figures 6(b) and 6(c),
for the other two OMF sensors with different diameters, the
peak of additional loss was approximately 0.016 dB and 0.007
dB at the concentration of 25.7mg/m3 with diameters of 5 𝜇m
and 6 𝜇m, respectively. This was because the additional loss
increases with decreasing of the OMF diameter [17].

It was clear from Figure 6(d) that the sensitivities of the
three coated OMF sensors with different diameters at the
same concentration of 106.3 mg/m3 were evidently different.
The highest sensitivity of approximate 0.0263 dB/mg/m3
was obtained for the coated OMF sensor with a diameter
of 2.5 𝜇m, and values of 0.0024 dB/mg/m3 and 0.0018
dB/mg/m3 were found with the other two OMF sensors with
diameters of 5 𝜇m and 6 𝜇m, respectively. It exhibited more
sensitive compared with reference [9], as showed in Table 1.
Consequently, the diameter of the testedOMF sensor plays an
important role in measuring the concentration of the AMCs.

4.3. Reliability of Coated OMF. In order to verify the repeata-
bility of the OMF sensor's response, the AMC coating was
cleaned using alcohol several times. Figure 7 showed the
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Figure 6: Responses of coated OMF sensor at different concentrations of AMCs from 25.7 to 134.2 mg/m3 with three different diameters of
(a) 2.5 𝜇m, (b) 5 𝜇m, and (c) 6 𝜇m and (d) response results of OMF sensor obtained at 106.3 mg/m3 with three different diameters.

Table 1: Summary of the responses shown by each sensor to the
different concentrations.

Content This paper Reference [9]
Diameter (𝜇m) 2.5 5 6 7
Concentration (mg/m3) 106.3 106.3 106.3 1 × 106
Response (dB) 2.79 0.26 0.19 6.64

results obtained during several times of cleaning, where the
time between each alcohol cleaning was around 20 min,
which suggested a consistent response of the OMF sensor,
and the relative error of the initial response was about 10%
to 12%. The proposed HSN-coated OMF sensors show good
reliability, which will provide a new approach in monitoring
volatile simethicone concentrations. In addition, the results
also indicated that the coated OMF has a potential use to
monitor AMCs online.

Figure 7: Repeatability of the response of an OMF sensor with a
diameter of 5 𝜇m when immersed in alcohol eight times.
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5. Conclusions

We fabricated and measured the properties of a high sen-
sitivity coated OMF sensor for AMCs. The tapered OMFs
with diameters of 2.5 𝜇m, 5 𝜇m, and 6 𝜇m were fabricated
by using a high-precision electrically controlled setup. The
coating of the OMF was produced by means of meniscus
coating method. The relationship between the transmittance
loss of the coated OMF and the AMC concentrations was
obtained.The experimental results showed that the proposed
coated OMF sensors exhibit high resolution and excellent
sensitivity. For the volatile simethicone, the sensitivity of the
OMF sensor was 0.0263 dB/mg/m3 with a diameter of 2.5 𝜇m
and 0.0024 dB/mg/m3 and 0.0018 dB/mg/m3 for the OMFs
with diameters of 5 𝜇m and 6 𝜇m, respectively. In addition,
the repeatable responses of the coated OMF sensor system
showed that the coated OMF sensor could be used in the
online monitoring of AMCs. Furthermore, the sensor system
exhibited high sensitivity and repeatability.
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