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Learn to Recognise: Exploring Priors of Sparse
Face Recognition on Smartphones

Yiran Shen,Member, IEEE, Mingrui Yang,Member, IEEE, Bo Wei,Member, IEEE,

Chun Tung Chou,Member, IEEE, and Wen Hu, Senior Member, IEEE

Abstract—Face recognition is one of the important components ofmany smart devices apps, e.g., face unlocking, people tagging and

games on smart phones, tablets, or smart glasses. SparseRepresentationClassification (SRC) is a state-of-the-art face recognition

algorithm, which has been shown to outperformmany classical face recognition algorithms inOpenCV, e.g., Eigenface algorithm.

The success of SRC is due to its use of ‘1 optimization, whichmakesSRC robust to noise and occlusions. Since ‘1 optimization is

computationally intensive, SRC uses randomprojectionmatrices to reduce the dimension of the ‘1 problem. However, randomprojection

matrices do not give consistent classification accuracy as they ignored the prior knowledge of the training set. In this paper, we propose

to exploit the prior knowlege of the training set to improve the recognition accuracy. It first learns the optimized projectionmatrix from the

training set to produce consistent recognition performance then applies ‘1-based classification based on the group sparsity structure of SRC

to further improve the recognition accuracy. Our evaluations, based on publicly available databases and real experiment, show that face

recognition using optimized projectionmatrix is 8-17 percent more accurate than its randomcounterpart and Eigenface algorithm, and

the recognition accuracy can be further improved by up to 5 percent by exploiting group sparsity structure. Furthermore, the optimized

projectionmatrix does not have to be re-calculated even if new faces are added to the training set.We implement the SRCwith optimized

projectionmatrix on Android smartphones and find that the computation of residuals in SRC is a severe bottleneck, taking up 85-90 percent

of the computation time. To address this problem, we propose amethod to compute the residuals approximately, which is 50 times faster

with little sacrificing recognition accuracy. Lastly, we demonstrate the feasibility of our new algorithm by the implementation and evaluation

of a new face unlocking app and show its robustness to variation of poses, facial expressions, lighting changes, and occlusions.

Index Terms—Face Recognition, smartphones, random matrices, sparse representation, group sparsity, android, JavaCV/OpenCV,

face unlocking

Ç

1 INTRODUCTION

FACE recognition is an important research problem in com-
puter vision. With the availability of Open Source Com-

puter Vision (OpenCV: opencv.org) on both Android and
iOS, face recognition has also found its way into many smart
devices apps such as people tagging and mobile gaming. In
fact, we have observed more than 500 Android apps making
use of face recognition. As an example, a recent update of
Android includes a face unlocking app which replaces tradi-
tional password-access control with face recognition.

There are three face recognition algorithms in OpenCV:
EigenFace [1], FisherFace [2] and LBPFace [3]. All these three
algorithms use feature extractions (where different algo-
rithms use different set of features) followed by the nearest
neighbourhood classifier (NNC) to match the test image with

a best fit image in the training set. Recently, Wright, et al. [4]
propose a new face recognition classifier based on sparse
representation classification (SRC). SRC introduces a few new
ideas into the face recognition algorithms. First, SRC uses
image pixels directly which means feature selection is not
required. Second, it uses ‘1 optimisation tomake face recogni-
tion robust to lighting changes and occulsion. SRC has been
shown in [4] to outperform NNC-based algorithms such as
EigenFace and FisherFace. However, although ‘1 optimisa-
tion makes SRC robust, it introduces intensive computational
cost [5]. In order to reduce the processing timewhile preserv-
ing the accuracy of recognition, SRC uses random projection
matrices to reduce the dimensionality of ‘1 minimisation. In
particular, SRC uses random Bernoulli or Gaussian matrices
because of their information preserving properties, inspired
by the recent theory of compressive sensing (CS) [6], [7]. We
will refer to the SRC algorithm based on random projection
matrices as rand-SRC.

Although random projection matrices can significantly
reduce the computation time of SRC, the classification accu-
racy of rand-SRC is not consistent. The projection matrices are
randomly generated irrespective to the training set. In fact,
the accuracy of rand-SRC can change by up to 15 percent
depending on the random projection matrix used. As the
training set is known and collected, it is possible to learn an
optimal projection matrix for the specific training set. The
sparse representation of the face recognition tends to have
group sparsity structure [8] which can be expoited in the
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optimisation model to further improve the recognition accu-
racy. In this paper, we first propose a novel strategy to opti-
mise the projection matrix to remove the variability in the
performance of SRC. We will refer to SRC that uses an opti-
mised projectionmatrix as opti-SRC.We then apply optimisa-
tion model with/ without considering the group sparsity
structure to solve the sparse representation classification
problem. We refer to opti-SRC using group sparsity model as
opti-GSRC. As the results, in addition to providing consistent
classification accuracy, opti-SRC and opti-GSRC, respectively,
is up to 17 and 22 percent, more accurate than rand-SRC and
the Eigenface algorithm. The contributions of this paper are:

� We propose a novel strategy to optimise the row coher-
ence of a projectionmatrixwhile preserving lowmutual
coherence. The resulting combinatorial optimisation
problem has a large search space and we propose an
efficient off-line heuristic based on tabu search. The
SRC algorithm based on the optimised projection
matrix significantly outperforms its counterpart based
on random projection matrices as well as face recogni-
tion algorithms in OpenCV. The optimised projection
matrix is also robust in the sense that it does not have
to be re-optimised even if new faces are added to the
training set after optimisation. We also show that our
optimised projection matrix outperforms other exist-
ingmethods of optimising projectionmatrices [9], [10].

� Wepropose opti-GSRC to exploit group sparsity struc-
ture inherent from sparse representation classification
problem to further improve the recognition accuracy.
Although the optimisation solver for opti-GSRC is too
computationally intensive for in-situ implementation
on smartphones, the cloud based approach which
shifts the computation burden to high performance
server or cloud can be the solution.

� We implement the lightweight opti-SRC on Android
platforms to evaluate its efficiency. We find that the
computation of residuals in SRC is a severe bottle-
neck, taking up 85-90 percent of the computation
time. To address this problem, we propose a method
to compute the residuals approximately. The method
reduces the residual computation time by 50-fold
while maintains the classification accuracy.

� We evaluate the efficiency, in terms of computation
time and energy consumption, of opti-SRC on three
different smartphonemodels.We find the efficiency of
opti-SRC is comparable to the OpenCV algorithms.

The organisation of this paper is as follows. We provide a
brief introduction to SRC andmatrix coherences in Section 2.
In Section 3, three challenges and solutions on optimising
performance of sparse representation classification are dis-
cussed. Section 4 evaluates the performance of opti-SRC
and opti-GSRC using two publicly available databases.
Section 5 evaluates opti-SRC on different smartphone plat-
forms. Section 6 discusses related work and Section 7
concludes the paper.

2 TECHNICAL BACKGROUND

In this section, we introduce the rand-SRC face recognition
algorithm in [4] and discuss the roles of matrix coherences
in sparse representation.

2.1 Sparse Representation Classifier (SRC)

In [4], the authors formulate the face recognition as a sparse
representation problem computed via ‘1 optimisation. The
formulation uses a random projection matrix for dimension-
ality reduction. The steps of rand-SRC are:

(i) Dictionary and Sparse Representation. To model face rec-
ognition as a sparse representation problem, one needs to
first build a dictionary D. We assume there are K subject
classes and T training images per class. All the images used
should be scaled into the same size. Each training image
consists of p pixels and is vectorised into a p-dimensional
column vector. We then assemble the vectorised training
images of the ith subject in a p� T sub-dictionary Di. A
p�KT dictionary D ¼ ½D1; D2; . . . ; DK � is then formed
from the K classes. Let y denotes a vectorised test image,
then its representation under the dictionary D is obtained
by solving the following linear equation with the knowl-
edge of y andD:

y ¼ Du; (1)

where the unknown vector u contains n ¼ KT unknowns
which is equal to the number of columns in D. If the vector-
ised test image y belongs to the kth class, then ideally y is
within the space spanned by the T vectors in Dk class and
independent of the other classes. If the ideal condition
holds, then the representation vector u for y has the form

u ¼ ½0; 0; . . . ;ak;1;ak;2; . . . ;ak;T ; . . . ; 0; 0; . . . ; 0�T ; (2)

where �T denotes the matrix transpose, and the non-zero ele-
ments appear only in those positions related to the kth class
in D. If the number of classes K is large, then u is a sparse
vector if the ideal condition holds.

(ii) Random Projections. Because the dimension p of the
image vectors is huge, solving Equation (1) can be computa-
tionally expensive. A random projection matrix can be
applied to improve the computational efficiency while pre-
serving recognition accuracy. The random projection matrix
F in this application is generated from a Gaussian distribu-
tion with zero mean and unit variance [4] and does not con-
sider the prior knowledge of the dictionary. Incorporating
anm� p Gaussian matrix F in Equation (1), we have

Fy ¼ FDu; (3)

where m � n makes the systems of linear equations under-
determined. Since we are looking for a sparse representa-
tion u, we aim to solve the following ‘0 optimisation
problem

û ¼ argminkuk0 subject to Fy ¼ FDu; (4)

where û is the sparse representation of y under dictionary D
and k � k0 represents the ‘0 norm, which counts the number

of non-zero coefficients in û. We remark that a basic require-
ment is that each test image must have a unique sparsest
representation under training set D; this will be discussed
further in Section 2.2.2. The optimisation problem (4) is NP-
hard [11], which means no known algorithms can solve the
problem within polynomial time.

(iii) ‘1 Optimisation. Inspired by the recent theory of CS,
the solution of ‘0 optimisation in Equation (4) can be well



approximated by the following ‘1 optimisation problem,

uopt ¼ argminkuk1 subject to kFy�FDuk2 < �; (5)

where � is a small positive value used to account for noise.
The solution uopt from the ‘1 optimisation is used in the fol-
lowing classification procedure.

(iv) Minimal Residual for Classification. After obtaining the
coefficient vector uopt, we can determine the class of the test
vector y by using residuals. The residual for class i is:

ri ¼ ky�Diu
ðiÞ
optk2; (6)

where u
ðiÞ
opt is a T -dimensional vector containing the T ele-

ments in uopt related to class i. Then the final classification is
determined by

î ¼ argmin
i¼1;2;:::K

ri; (7)

i.e., the class having the minimal residual among all classes.

2.2 Random Matrices and Coherence

Though random projection matrices can significantly reduce
the dimension of the optimisation problem, they introduce
substantial variation in classification accuracy too. More-
over, random projection matrices are not optimal. We will
show later on that an optimised projection matrix can signif-
icantly improve the classification accuracy of SRC. We will
optimise projection matrix using row coherence and this
section provides background on matrix coherences.

2.2.1 Matrix Coherences

We consider the coherences of the sensing matrix A, where
A ¼ FD, i.e., the product of the projection matrix F and dic-
tionary D.

Mutual Coherence. Let ai and aj denote the ith and jth col-
umns of A respectively. The mutual coherence mðAÞ, which
is the coherence between columns, is defined as:

mðAÞ ¼ maxi< j
jaTi ajj

kaik2kajk2
: (8)

In words, mðAÞ is the maximum absolute value of cross-cor-
relations between the columns of A which stays in between
0 and 1.

Row Coherence. Let ~ai and ~aj denote the ith and jth rows
of A respectively. The row coherence is defined as

nðAÞ ¼ maxi < j

j~ai~aTj j
k~aik2k~ajk2

; (9)

which is the maximum absolute value of cross-correlations
between the rows of the matrix A.

Mutual coherence has been well studied in literature [12],
[13], while row coherence has not attracted as much atten-
tion. In fact, both mutual coherence and row coherence
affect the classification accuracy of SRC as discussed in
Section 2.2.2.

2.2.2 The Importance of Coherences

A basic requirement for SRC to work is that each test image
must have a unique sparsest representation under training

set D in (4). According to [14], the uniqueness of sparsest
representation requires the following two conditions to hold

mðAÞ � c0
logn

; s � c0n

logn � kAk22
; (10)

where mðAÞ is the mutual coherence, c0 is a constant and s is
the sparsity of u. kAk2 is the 2-norm of the sensing matrix
(also known as spectral norm) which equals to the largest
singular value of A. These two conditions guarantee that a
unique sparsest representation exists with a probability of

1�Oðn�1Þ.
The second condition of (10) can be rewritten as

1

kAk22
	 logn � s

c0n
; (11)

which means a smaller spectral norm for A makes it easier
to satisfy this condition.

We now impose the standard condition that the columns
of A has unit norm. By applying the theory of tight
frames [15], the spectral norm of the m� n matrix A (which
equals to the redundancy of A) has the property

kAk22 	 n=m; (12)

where the equality holds if the rows of the matrix A are
orthogonal to each other or in other words, the row coher-
ence of A is zero. This inequality suggests that a way to
reduce kAk2 is to increase the number of projections m.
Alternatively, we can reduce kAk2 by making the matrix A
more orthogonal by reducing its row coherence. This will
be the approach taken by this paper. In particular, we pro-
pose a method to minimise the row coherence while pre-
serving low mutual coherence. Intuitively, a sensing matrix
with a lower row coherence means there is less overlap in
the information provided by different projections. In fact,
we will show a lower row coherence leads to better classifi-
cation accuracy.

3 CHALLENGES AND PROPOSED SOLUTIONS

There are a number of challenges to produce robust and effi-
cient face recognition via SRC on smartphones. We will
point out the challenges and present the proposed solutions.

3.1 Challenge I: Random Matrices

As mentioned above, the recognition accuracy of rand-SRC
varies substantially with different random projection matri-
ces. To solve this challenge, we propose an approach to opti-
mise the projection matrix by minimising the row coherence
while preserving relatively low mutual coherence of the
sensing matrix. Moreover, opti-SRC requires a smaller num-
ber of projections compared to rand-SRC to achieve the
same recognition accuracy. This means opti-SRC requires
less computational requirement than rand-SRC on
smartphones.

3.1.1 Optimizing Row Coherence in Finite Space

From the discussion in Section 2.2.2, a good sensing matrix
requires both low row coherence and mutual coherence. A
na€ıve method is to minimise the row coherence alone. While



such a method can reduce row coherence, it can at the same
time increase the mutual coherence significantly, which is
undesirable. To address this problem, we propose an opti-
misation approach in a finite feasible space to minimise the
row coherence of the sensing matrix while preserving a low
mutual coherence.

It is well understood that random sampling strategies,
such as projection matrices F generated through either i.i.d.
Gaussian or Bernoulli distributions, produce sensing matri-
ces with relatively low mutual coherence [16].

Let us assume we have a finite (but still very large) set V
of projection matrices stemming from either a random
Gaussian or Bernoulli distribution. We know that any pro-
jection matrix F stemming from the set V will result in a
sensing matrix A which with high probability has relatively
low mutual coherence. Furthermore, we know from Equa-
tion (9) that the row coherence of A can be minimised by
choosing the sampling matrix F that minimises

argmin
F

nðFDÞ subject to F 
 V: (13)

The strength of this strategy lies in its ability to directly reduce
the row coherence ofAwhile with high probability maintain-
ing a relatively low mutual coherence. The high probability
guarantees that the sensing matrix A will have low mutual
coherence stems from the fact that V is finite. For example,
if V contained the infinite set of all possible projection matri-
ces drawn from a Gaussian distribution then there clearly
exists (but is extremely unlikely when drawn from a random
distribution) a sensing matrix that has zero row coherence,
but unity mutual coherence. Since the objective in Equa-
tion (13) is searching for the Fwith the lowest row coherence
of the sensing matrix in the infinite set, it would inevitably
choose this projection matrix which would result in a sensing
matrixA that has the highmutual coherence.

By constraining V to a finite set of randomly generated
projection matrices one then guarantees with overwhelm-
ingly high probability that all projection matrices in the set
will produce a sensing matrix with relatively low mutual
coherence. It is clear that this probabilistic guarantee on the
mutual coherence is a function of the size of the finite set V.
It is also clear that since the set V is finite and random the
set is not convex making the objective in Equation (13) non-
convex. Further, the search space for this combinatorial
optimisation problem is enormous (even though V is finite)
and is in fact substantially complex in computation. We
remark that there is another reason why we restrict our-
selves to find the optimal projection matrix within the set of
Bernoulli or Gaussian matrices, rather than the set of all
matrices. This will be discussed in Section 3.3.

3.1.2 Efficient Solutions

Because the optimisation problem (13) is NP-hard. We pro-
pose an efficient algorithm based on: Tabu search to mini-
mise the objective although neither strategy is guaranteed
of finding the global minima.

The algorithm explores the role of the set sizeV versus per-
formance of recognition accuracy. We found that the larger
the chosen set the better the recognition accuracy so in all our
experiments we chose the largest finite set V possible for a
tractable solution. This result is not entirely unexpected due

to the strong probabilistic guarantees of a random sampling
forming sensing matrices with good mutual and row
coherence.

Algorithm 1.Tabu Search Projection Matrix Optimisation

1: Input: Dictionary D, search space Sn and number of rows of
the projection matrixm.

2: Initialisation: allocate four empty lists: Lin, Lout, �L and L̂,
stop criteria StabilityLimit ¼ 500, BestCov ¼ Inf , i ¼ 0

3: while i < StabilityLimit do
4: CurrentCov ¼ Inf , j ¼ 0
5: Randomly choosem vectors to form bPm, record the

indices list of bPm as L̂ (L̂ \ Lout ¼ ;, L̂ \ Lin ¼ Lin). The lists
are first-in-first-out;

6: while j < m do
7: bPm�1 ¼ bPmnf bPmfjgg
8: Sn�mþ1 ¼ Snn bPm�1

9: Covj ¼ minsd2Sn�mþ1
max

pk2bPm�1
jðpkDÞT sdDj

10: //sd and sk are rows from Sn�mþ1 and bPm�1 respectively.
11: if Covj < CurrentCov then
12: CurrentCov = Covj, PotentialObj = bPmfjg
13: Store indices of current solution bPm in �L
14: end if
15: j++
16: end while
17: if CurrentCov > BestCov then
18: BestCov ¼ CurrentCov; BestList ¼ �L
19: Clear Lout, push PotentialObj in Lin

20: i ¼ 0
21: else
22: Push bPm in Lout

23: i++
24: end if
25: end while
26: Outputs: The indices list of the optimised projection matrix

in BestList chosen from the search space Sn

Tabu Search Algorithm. (Algorithm 1) Greedy search is one
of the most popular used heuristics to search in large space.
However, the solution of the greedy algorithm is known to
converge to a local optimum which heavily depends on the
starting point. This local optimum could be significantly dif-
ferent from the global optimum. To address this problem, we
propose another algorithm based on tabu search [17] to find
an improved and robust solution. Tabu search is metaheuris-
tic algorithm for combinatorial optimisation problems. It
enhances the performance of the local search algorithm by
exploring the unreached area of the greedy algorithms. The
computation complexity of tabu search is Oðn2Þ [18] which
means it can be solved in polynomial time.

Tabu search algorithm utilises memory structures by
defining the neighborhood of the current solution and two
tabu lists. The size of the neighbourhood can be as large as
the size of the search space. It can be tuned according to the
processing capability of the devices. The tabu lists store the
specific atoms. In our case, one tabu list stores the row indi-
ces which can not be visited for a specific number of itera-
tions and the other list stores the row indices that cannot be
removed from the solution for another number of iterations.
The number of iterations are determined by the size of the
tabu lists. The tabu lists should be large enough to avoid



cycles and we tuned them as half of the size of search space
and the solution respectively. Details of the algorithm are
shown in Algorithm 1.

This algorithm aims to pick m feasible rows (to form the
projection matrix) in the search space to minimise the row
coherence of the sensing matrix. Lines 1-2 represent the ini-
tial setup which specifies some parameters and creates two
empty tabu lists. The proper algorithm starts in Line 3 by ran-
domly choosing m rows in the search space satisfying the
constraints of the tabu lists. This loopwill continue searching
for an optimal solution until the solution has not been
updated by a number of StabilityLimit iterations. During the
inner loop presented in Lines 6-16, it updates one of the rows
in the chosen matrix by one row in the defined neighbour-
hood to find the local minimum (this is called Intensification
stage). When the newminimum is larger than the one found
previously, the algorithm explores the unreached area in the
next iteration inDiversification stage (Lines 17-23); otherwise,
when Aspiration Level condition (Line 17) is satisfied, it will
reset the status of the algorithm (counter of the iteration,
tabu list). The algorithm will terminate when the minimum
has not been updated by a number of StabilityLimit (in Line
3) iterations. StabilityLimit should be large enough to guaran-
tee the robustness of the algorithm. During the search prog-
ress, the algorithm will not search the recently reached area
due to constraints of the tabu lists. By these approaches, tabu
search can avoid converging to a local minimum by exhaus-
tively searching the new area.

With the tabu search algorithm, we can obtain an opti-
mised projection matrix. We replace the random matrix
used in SRC approach with the optimised matrix to improve
the performance of recognition accuracy. To distinguish
SRC with different matrices, we call original SRC as rand-
SRC and our approach as opti-SRC.

3.2 Challenge II: Group Sparse Structure

As discussed in Section 2.1, the sparse representation of the
face images can be obtained by solving ‘1 optimisation
problem. The ‘1-norm is applied in Eq. (5) to boost the spar-
sity of the optimisation solution. Although ‘1-norm is
shown to be widely useful in CS and sparse representation,
the performance can be even better with a more realistic

model by considering the prior knowlege of the specific
application.

Model-based CS [8] was introduced to reduce the
degrees of freedom of the sparse coefficients. The prior
knowledge of the specific signals is exploited and only cer-
tain configurations of the sparse representations are
allowed. By imposing more constraints in the optimisation
problem, the true sparse representation can be more distin-
gushable from the artifacts. A sparse representation prob-
lem is regarded as having certain Group Sparsity structure if
the solution tends to have grouping property. Namely, the
dominant non-zeros only exist in few number of groups.
Fig. 1 presents an example of the sparse representation of a
classification problem. The training set in the example con-
tains 10 classes and each class has 10 atoms (face image vec-
tors). The test face image belongs to class 1. The results
show that the dominant coefficients group together in the
first class (index number between 1 to 10), which coincides
with the intuition. As the test face image belongs to the first
class, it should be linearly represented by atoms from the
first class. We do observe there are a few small coefficients
located at the sixth, seventh and ninth classes which are
caused by the noises. These small turbulences, however,
does not affect the classification result.

In this paper, we apply the group lasso formulation [19] to
model the group sparsity in face recognition problem where
the solution space can be considered as a union ofK T -dimen-
sional subspaces. To enforce a solution with group sparsity
structure, group lasso imposes the ‘1 norm on the ‘2 norms of
the coefficient vectors from theseK subspaces. Byminimizing
the ‘1 norm of the vector of ‘2 norms subject to certain con-
straints, a group sparsity solution residing in one of the sub-
spaces could be found. Specifically, Eq. (5) can be rewritten as

uopt ¼ argmin S
K
i¼1kuLik2 subject to kFy�FDuk2 < �;

(14)

where Li denotes u restricted to the index set Li for group i.
The optimisation problem finds the solution which mini-
mises the number of groups containing non-zeros. It can be
solved by SPGL1 [20], [21] which is widely used solver for
sparse representation problem with group sparsity struc-
ture. The group sparsity model exploits more prior knowl-
ege of the sparse representation classification problem.
Therefore, it is expected to provide more accurate face rec-
ognition results. We term the opti-SRC exploring group
sparsity structure as opti-GSRC. As the evaluation with mul-
tiple datasets in Section 4, the recognition accuracy of opti-
GSRC is up to 5 percent better than that of opti-SRC
approach. However opti-GSRC is too computationally
intensive for implementation on smartphones. As our eval-
uation in Section 4.4, it consumes 25 times more computa-
tion time for each classification compared with opti-SRC on
the same platform, making it infeasible for in-situ imple-
mentation on smartphones. Fortunately, thanks to the avail-
ability of high speed networks (Wifi/4G) and cloud
computing resources, it is possible to provide solutions for
realtime implementation. For example, the smartphones
detect and offload the face images to the cloud via high
speed networks. The cloud performs the recognition tasks
and sends the recognition results back to the smartphone.

Fig. 1. Distribution of sparse coefficients.



The total computation time will be significantly saved by
the power of cloud computing resources.

Note thatwe use for simplicity the standard group sparsity
model to demonstrate the benefits of combining it with our
optimised projection matrix. However, our optimised projec-
tion matrix is transparent to the choice of group sparsity
model. Therefore, it is not difficult to apply our optimised pro-
jection matrix to other more complicated models, such as the
locality-constrained group sparsity model proposed by Chao
et al. [22], to obtain better recognition accuracy.

3.3 Challenge III: Residual Calculation

The SRC in [4] was designed to solve the face recognition
problem assuming abundant computing power is available.
However, if the algorithm is to be implemented on embed-
ded systems (e.g., smartphones), we will need to optimise
the computations in SRC to improve its efficiency. Our eval-
uation of SRC on various smartphone platforms shows that
the computation of residuals in Equation (6) is a severe bot-
tleneck, accounting for 85-90 percent of SRC’s running time.
The computation of residual ri in Equation (6) is of the order
Oðpþ pT Þ where in particular p is the number of pixels in
the training image, which is generally a large number.
Instead of computing the exact ri using (6), we propose to
compute an approximate ri by making use of the Johnson-
Lindenstrauss (J-L) Lemma [23]. Let F be the m� p (with
m � p) projection matrix used in the ‘1 optimisation, which
is either Gaussian or Bernoulli distributed, the J-L Lemma
provides an approximation of the residual by:

ky�Du
ðiÞ
optk2 � kFy�FDu

ðiÞ
optk2: (15)

Since both Fy and FD are used in the ‘1 optimisation prob-
lem (5), they have already been computed. Also, both of them
have m rows, so the computation on the right-hand side of
(15) has a complexity of OðmþmT Þ, which is much lower
becausem � p. We will refer to the computation of residuals
using the right-hand side of (15) as compressed residuals.

Note that the validity of the J-L Lemma requires that the
projection matrix is either Gaussian or Bernoulli distributed.
This is another reason why we have restricted the optimisa-
tion problem in Section 3.1.1 to search for a Gaussian or
Bernoulli projection matrix.

The classification is then carried out using the com-
pressed residuals after they have been computed. Our
experiments show that the recognition accuracy of using
compressed residuals is almost the same as that of using
full residual calculations when sufficient number of projec-
tions are used.

4 PERFORMANCE EVALUATION ON PUBLICLY

AVAILABLE DATABASES

4.1 Goals, Metrics, and Methodology

The aim of this section is to evaluate the classification accu-
racy of opti-GSRC and opti-SRC then compare them with
rand-SRC as well as Eigenface recognition algorithm in
OpenCV. The comparison makes use of one publicly avail-
able database: the Extended Yale database B (Ext-YaleB) [24]
and one private face database. Yale database is a popular
choice [4], [25] to evaluate the recognition accuracy of face

recognition algorithms and our private database is collected
by off-the-shelf smartphones because we aim at face recog-
nition system on smartphones in this paper.

For fair comparison between different algorithms, a com-
mon parameter m is used as the number of projections in
the three SRC-based algorithms as well as the number of
features in Eigenface algorithm in OpenCV. For the SRC-
based algorithms, projections play the same role as features.

We compare our strategy against two existing methods
for optimising projection matrix. We also investigate the tol-
erance of the optimised projection matrix to training set
changes. The evaluation in this section is carried out on a
computer. Experimental results on smartphones will be pre-
sented in the next section.

In this paper, we use the percentage of correct recogni-
tion as the performance metric (same as [4]) for the recogni-
tion evaluation, which is simply the number of true
recognitions over the total number of tests. We express the
recognition accuracy of different methods under different
number of projections/features and plot the recognition
accuracy curves of different face recognition methods.

4.2 Extended Yale Database B

The Extended Yale Database B contains K ¼ 38 subjects
under nine poses and 64 illumination conditions. We choose
the first T ¼ 32 images from each subject as the training
images and the following 10 images forms the test set. We
remark that our choice of training images from each subject
is different from the the work applying original SRC [4] and
the work with locality and group sparsity [22], where train-
ing images were chosen randomly from each subject.
Because the images are sorted by the time that they are cap-
tured, our choice is more consistent with the face recogni-
tion practice on smartphones where training images are
added well before the test images. We have reproduced the
results in [4] and [22] with same settings and observed that
their choice tends to produce a better recognition accuracy
because it distributes more similar face images into the
training and test sets (empirically, images of one subject
taken on temporal contiguity share more information. They
are more likely to be classified into the same class).

The evaluation in [26] shows that face recognition can tol-
erate some degree of resolution reduction. We scale the
images from the original size of 192� 168 to 96� 84 (i.e., 4
times reduction), which does not affect the recognition accu-
racy. (We also try to reduce the resolution by 16 times, but
the accuracy decreases significantly). This setting gives an
dictionary D of size 8;064� 1;216. We choose to reduce the
image resoultion because of two considerations: first, the
high resolution of the image will introduce intensive com-
putation especially for solving the sparse representation;
second, the resolution of the embedded cameras varies
among the smartphones, a face recognition system using
low resolution images can be readily used on different
smartphones.

4.2.1 Coherence Analysis

We compare the row coherence of the sensing matrix FD
where F comes from minimising (13) or is randomly gener-
ated. We vary the number of projections from 10 to 100. For



each number of projection, we find an optimised F using
tabu search algorithm with the search domain V consisting
of Gaussian distributed vectors and compute the row coher-
ence of the sensing matrix using the optimised F. We also
generate 30 random Gaussian matrices, and calculate the
mean and standard deviation of their row coherence for the
corresponding sensing matrices. The results are plotted in
Fig. 2. The x-axis is the number of projections from 10 to 100
and the y-axis is the row coherence of the sensing matrix.
Fig. 2 shows that tabu search provides sensing matrices
with lower row coherence. It can reduce the row coherence
of the sensing matrix by up to four times when the number
of projections is 10. Moreover, our algorithm can provide
more consistent row coherence while the random approach
shows a large variance (error bars in the figure). We have
also calculated the mutual coherence of the sensing matrix
with the optimised projection matrix. The result in Fig. 3
shows that our optimisation approach will not increase the
mutual coherence (actually it reduces the mutual coherence
a bit). Note that for face recognition, D is a dictionary con-
sisting of face image vectors as its columns. The faces in the
same class can be very similar to each other. So the mutual
coherence can be high (over 0:99 in random selection
approach). The large row coherence in Fig. 2 arises for a
similar reason: images have high spatial coherence. The
adjacent pixels tend to have similar pixel values which lead
to high row coherence.

4.2.2 Recognition Accuracy

To show that our strategy gives good face recognition accu-
racy, we compare opti-SRC (with optimised projection
matrix tabu search) opti-GSRC (with optimised projection
matrix and exploiting group sparsity structure), rand-SRC
and Eigenface algorithm from OpenCV. The results from
the rand-SRC are represented by the average and standard
deviation over 30 independent trials where a different ran-
dom projection matrix is used in each trial. The solver for
opti-SRC and rand-SRC is the ‘1-Homotopy implemented
in [27] as it is computationally efficient while the solver for
opti-GSRC is SPGL1 implemented in [21]. The reconstruc-
tion tolerances of the optimisation problems (e.g., � in Equa-
tions (5) and (14)) for the three SRC based approaches are
all set to be 0:001 considering the trade-off between the rec-
ognition accuracy and computational efficiency. In Fig. 4,
the x-axis represents the number of features/projections
ranging from 30 to 300 and the y-axis is the recognition
accuracy. The results show that opti-SRC with projection
matrix from tabu search algorithm improves the recognition
accuracy by up to 12 percent compared with other existing
algorithm, and opti-GSRC using group sparsity model per-
forms up to 5 percent better than opti-SRC. The results give
strong evidence that our strategy of minimising the row
coherence of the sensing matrix delivers a face recognition
algorithm with consistently high accuracy. In other words,
for a given accuracy, opti-SRC needs less projections than
rand-SRC; this translates to less computation resource
requirement for opti-SRC. Moreover, exploiting the group
sparsity structure can further improve the accuracy of SRC
based classification.

4.2.3 Stability to Training Set Evolvement

For many face recognition applications, new classes are con-
stantly added to the training set. This means the dictionary
D evolves constantly over time. According to our evalua-
tion, the projection matrix optimisation is not suitable to be
implemented on smartphones because it is too computa-
tionally intensive. Therefore, it is not convenient to recalcu-
late the optimised projection matrix frequently. Since the
projection matrix F is optimised for a given dictionary D
(see Equation (13)), we investigate whether it is necessary to
re-optimise F if new classes are added to the dictionary. For

Fig. 2. YaleB: Comparison of row coherence of the sensing matrices.

Fig. 3. YaleB: Comparison of mutual coherence of the sensing matrices.

Fig. 4. YaleB: Comparison of face recognition accuracy of different
methods.



this evaluation, we do not consider opti-GSRC. Since as dis-
cussed earlier, opti-GSRC is designed for a cloud-based
approach. The high performance computing resources can
be used to re-optimise the projection matrix.

We begin with an initial training set containing 16 clas-
ses. We use tabu search to obtain an optimised projection
matrix based on the initial dictionary. We then add training
classes to the dictionary: four classes at a time until 36 clas-
ses and then two additional classes are added to reach 38
classes. We consider two different strategies. The first strat-
egy, which we call opti-SRC-fixed, uses the optimised pro-
jection obtained from the initial dictionary with 16 classes
even when the dictionary evolves. The second strategy,
called opti-SRC-adaptive, re-optimises the projection matrix
each time new classes are added to the dictionary. The num-
ber of projections is kept at 100.

Fig. 5 compares the classification accuracy of opti-SRC-
adaptive, opti-SRC-fixed and rand-SRC. It is not surprising
that opti-SRC-adaptive gives the best performance while
rand-SRC is the worst. The interesting observation is that
opti-SRC-fixed gives fairly stable performance in spite of the
increase in number of classes. In fact, the performance of opti-
SRC-fixed and opti-SRC-adaptive differs by atmost 3 percent.
Moreover, part of the degradation in the performance of opti-
SRC-fixed is due to the use of the same number of projections
as the number of classes increases. This is a very encouraging
result which shows that re-optimisation of projection matrix
is only required occasionally. Note that there is performance
improvement when the number of classes increases from 16
to 20. One explanation is the newly added test images bear
some similarity to those in the dictionary.

4.2.4 Comparison with Other Projection Matrix

Optimization Approaches

The idea of computing a projection matrix that is optimally
designed for a certain signal class is not new. Elad [10], and
Duarte-Carvajalino and Sapiro [9] recently proposed strate-
gies for learning projection matrix directly from a dictionary
to improve the performance of signal recovery in CS. The
algorithm in [10] aims to find a projection matrixF to reduce
the mutual coherence of the sensing matrix A ¼ FD while

that in [9] finds aF so thatATA is close to the identitymatrix.
There is another work on designing projection matrix with
orthogonal rows. However, the “orthoprojectors” proposed

in [28] aim to make the rows of projection matrix orthogonal.
They do not take the dictionary into account. Therefore, we
only compare with the approaches in [10] and [9]. For this
comparison, we use the optimised projection matrices from
these two algorithms for face recognition; note that residual
calculations use (6) because it is not known whether these
optimised projection matrices satisfy the J-L Lemma. The
comparison is against opti-SRC and rand-SRC. The results
are shown in Fig. 6, which shows that the optimised projec-
tion matrix from [10] and [9] cannot improve the recognition
accuracy. It is probably because the requirements on F for
signal recovery and classification are different.

4.3 Private Mobile Dataset

To make the results more convincing, we collected another
dataset using mobile phones to evaluate the recognition
accuracy of our proposed methods. Ten subjects, seven
males and three females, with different skin tones are
recruited for the experiment. We take 40 photos of each sub-
ject in random poses, lighting conditions and expressions.
We then use the Android OS face-detection API to automati-
cally crop the face region of the images to a size of 92� 56
and store them on the phones’ memory. The resolution of
the face images is much lower than that of the embedded
cameras on off-the-shell smartphones. We will refer to this
database as Private database.

We use the first half of the images of each subject as train-
ing and the rest as test. Therefore, the training set D is a
matrix of size 5;152� 200. Thenwe evaluate the performance
of different face recognitionmethods as in Section 4.2.

Fig. 7 compares the recognition accuracy of opti-GSRC,
opti-SRC, rand-SRC and Eigenface algorithm from OpenCV.
Opti-SRC achieves consistently better recognition accuracy
than the existing methods. The improvement is up to 7 per-
cent compared with the rand-SRC. Opti-GSRC further
improves the recognition accuracy by up to 5 percent com-
pared with opti-SRC.

4.4 Computation Cost

Although opti-GSRC is more accurate than opti-SRC, it is too
computationally complex for implementation on smart-
phones. We use matlab on a laptop to evaluate and compare
the computation cost of opti-GSRC and opti-SRC. The laptop

Fig. 5. YaleB: Tranining set evolvement. Fig. 6. YaleB: Comparison of different optimized matrices.



we use has 2.5 GHz Core i7 and 16 GBmemory and the oper-
ating system is Mac OS X Yosemite. The evaluation is based
on YaleB database. The number of projections are set as 100
and the trainingset contains 1;216 face image vectors. We run
760 classification trials and compute the average computation
time for each classification task. The avarge computation time
of opti-GSRC is about 25 timesmore than that of the opti-SRC.
Considering the fact that the computation time of opti-SRC is
about 300-400 ms on off-the-shelf smartphones according to
our implementation in Section 5.4, opti-GSRC is not applica-
ble for implementation on smartphones. However, opti-
GSRC can be used in cloud-based approach which shifts the
computation burden to the high performance local server or
cloud through high speed network. In this work, we only
implement in-situ approach, namely, opti-SRC face recogni-
tion system on smartphones as demonstration.While the real-
time implementation of opti-GSRC is possiblewhen the cloud
computing resources are available and they are becoming
pervasive.

4.5 Conclusions of This Section

From the results of this section, we can conclude that 1) opti-
SRC has significantly better recognition accuracy compared
with the state-of-the-art face recognition algorithms; 2)
exploiting group sparse structure (i.e., opti-GSRC) further
improves the recognition accuracy 3) the optimised projec-
tion matrix can tolerate the evolvement of the training set
which makes it more convenient to use on smartphones.

5 EXPERIMENT ON SMARTPHONES

5.1 Experiment Description

The aim of this section is to evaluate the performance of
opti-SRC, and compare it with rand-SRC as well as the
OpenCV algorithms on the smartphones.

We implement opti-SRC on the Android platform. The ‘1
minimisation uses the ‘1-homotopy solver [27] because it is
much more efficient than linear programming: complexity

of Oðs3 þ smnÞ (where s is the sparsity of the solution, with

s � n) versus Oðn3Þ.
In this section, we present experimental results on com-

putation time and resource consumption (Section 5.4), and
recognition accuracy (Section 5.5) of opti-SRC and OpenCV
algorithms on the chosen smartphone platforms. We have
also designed a group face unlocking app (Section 5.6) with
the opti-SRC and compared it against the Android built-in
face unlocking app on under various different conditions to
test its robustness.

5.2 Platforms

In order to demonstrate the feasibility of opti-SRC, we
implement it on three different popular smartphones: Sam-
sung Galaxy S3, Google Nexus 4, and HTC OneX (shown in
Fig. 8). The specifications of these smartphones relating to
the application are shown in Table 1.

5.3 Preliminary Experiments

5.3.1 Number of Projections

The training set used for the experiment is built from our Pri-
vate database as the same group of subjects are recruited for
the experiment on smartphones. From the results shown in
Fig. 7, the recognition accurracy becomes level when the
number of projections is over 100. We therefore choose to use
100 projections for further experiments on the smartphones.
Then we randomly pick 20 images from each subject to form
the training set. The training set will be a matrix of size
5;152� 200. The size of the projectionmatrix is 100� 5;152.

5.3.2 Compressed Residual

According to challenge III in Section 3.3, the computation of
residuals using the full-size image vectors as in Equation (6) is
computationally intensive (complexity of Oðpþ pTÞ where
p ¼ 5;152 is the size of the image) and we propose to approxi-
mate the residual calculations by Equation (15) (complexity of
OðmþmT Þwherem ¼ 100 is the number of projections). We
measure the computation time (per test image classified) of
both methods of residual calculations on the smartphones

Fig. 7. Face recognition accuracy comparison under different number of
projections/features with private database.

Fig. 8. Android smartphones used in the experiment; from left to right:
Samsung Galaxy S3, Google Nexus 4, and HTC OneX.

TABLE 1
Smartphones Specifications Relating to the

Face Recognition Application

Galaxy S3 Nexus 4 HTC OneX

CPU Quad 1.4 GHz Quad 1.5 GHz Quad 1.5 GHz
Storage 16 GB 8 GB 16 GB
RAM 1 GB 2 GB 1 GB
Screen 4.7 inches 4.7 inches 4.7 inches
Battery 2,100 mAh 2,100 mAh 1,800 mAh
Android OS v4.0.4 v4.2.2 v4.1.1



and show the results in Table 2. We see that, by using com-
pressed residuals, the computation time is reduced by a factor
of 45-50 times. This is consistent with the complexity expres-
sionswhich predict a p

m � 52 times reduction.

Table 3 shows that the computation time of opti-SRC
without the residual calculation component (i.e., face detec-
tion and ‘1 minimisation components only) is 200-350 ms
for the three platforms. If the original method of residual
calculations is used, then it will take up 85-90 percent of the
computation time, which is a severe bottleneck. By using
compressed residuals, the total classification time per image
is reduced by about 6 times.

5.4 Resource Consumption on Smartphones

Table 3 shows the resource consumption (running time and
energy consumption) of opti-SRC on different smartphones.
The running time is obtained from the console of Eclipse
development environment and the energy consumption is
evaluated using the PowerTutor (powertutor.org) app on
Android.

In terms of processing speed, Table 3 shows that the SRC
component (‘1 minimisation + compressed residual calcu-
lation) is the dominant factor of time consumption which is
about 3 times of the face detection component. Therefore,
the use of compressed residual can drastically reduce the
total processing time. Another noticeable result is that
most of the energy is consumed by the display which is
inevitable for visualisation of the applications. The CPU
only takes 10-15 percent of the total energy consumption.
Considering the fact that the smartphones mostly target to
a lifespan of one day usage which indicates an average
energy consumption of 1.25 kJ per hour, with only 1 per-
cent of the hourly budget, our proposed system can per-
form face authentication about 63 times. It is significantly
more than the number of authentications required in com-
mon usage per hour. Therefore the proposed face recogni-
tion system only has minimal impact on the lifespan of the
smartphones.

To provide a benchmark for comparison, we also imple-
ment the OpenCV based face recognition applications
on the smartphones. Because the original OpenCV library
was coded in C++, we use the Java Native Interface

(JavaCV-v0.6) which is based on OpenCV-v2.4.6. The aver-
age processing time for detecting and recognising one face
is shown in Table 4. ‘1 minimisation is known to be compu-
tational intensive. However, with the power of dimension-
ality reduction and compressed residual, opti-SRC achieves
the same order of speed as the algorithms in OpenCV,
which are known to be fast. It means that our algorithm
is quite efficient for face recognition. Note that our ‘1-
homotopy implementation uses Java which is known to be
less efficient than C++. The speed of classification can be
further improved with C++ implementation but it is out of
the scope of this paper.

5.5 Recognition Accuracy on Smartphones

In this section, we evaluate the recognition accuracy of opti-
SRC, rand-SRC and OpenCV algorithms using a new test
set. This new test set has 400 photos, 40 from each subject.
(Note the 400 photos from this new test set are different
from those in the Private database. These photos are taken
at two different locations with lighting conditions: bright
(above 100 lux) and dark (below 50 lux) respectively. The
luminance can be measured by using the light sensor
embedded on the smartphones. Twenty photos are taken
for each lighting condition per subject. These 20 photos
come from 20 different (expression, pose) pairs where expres-
sion is neutral, happy, sad or neutral with glasses; and pose
is front, up, down, left or right as shown in Fig. 9. All the
photos are manually labelled by their lighting condition,
expression and pose. This new test set presents a rich vari-
ety of situations to test the face recognition algorithms.
Also, there is mobility when the experiments were con-
ducted. During the experiments the subjects walk around in
the lab and take pictures freely.

For this evaluation, the training set is Private-Training
used in Section 5.3.1. Note that there are only 20 images per
subject in the training set, but there are 40 images per sub-
ject in the test set. Therefore, the test set presents a much
richer variations than the training set. The number of projec-
tions/features remains as 100.

Table 5 shows the recognition accuracy of opti-SRC using
different subsets of the test set. For example, the accuracy

TABLE 2
Time for Original/Compressed Residual Calculations

Per Face Classification

Galaxy S3 Nexus 4 HTC OneX

Compressed Residual 42 ms 33 ms 43 ms
Original Residual 1,923 ms 1,926 ms 2,105 ms

TABLE 3
Resource Consumption of opti-SRC on Different Smartphones

Galaxy S3 Nexus 4 HTC OneX

Face Detection (ms) 100 70 97
‘1 (ms) 240 136 247
Residual (ms) 42 33 43
Total (ms) 382 239 387
Display Energy (mJ) 1,500 1,040 1,300
CPU Energy (mJ) 175 139 246

TABLE 4
Speed of Face Detection and Recognition with Feature

Based Recognition Methods in OpenCV

Galaxy S3 Nexus 4 HTC OneX

EigenFace (total) 177 ms 143 ms 161 ms
FisherFace (total) 221 ms 159 ms 186 ms
LBPFace (total) 268 ms 220 ms 257 ms

Fig. 9. Face samples of different poses.



under Happy means we take the 100 photos (= 10 subjects �
2 lighting conditions � 5 poses) in the test set with the label
Happy and test whether opti-SRC can recognise the subject
in the photo correctly. For the accuracies under Dark and
Bright, 200 test photos are used in each subset. From the
results we can see that, opti-SRC is more sensitive to the
change of expressions than the small occlusion (wearing
glasses). This is reasonable because the change of expres-
sions is related to much larger area of face than the small
occlusion. Another observation is that the well-lighted envi-
ronment can improve the recognition accuracy (about 10
percent improvement).

For the methods in OpenCV and rand-SRC, the classifica-
tion accuracy of EigenFace, FisherFace, LBPFace and rand-
SRC is only 81-82 percent which is significantly lower than
those of opti-SRC (90 percent).

5.6 Group Face Unlocking

Face unlocking is a built-in security feature in the recent
Android OS release. It uses face, rather than password, for
unlocking the smartphone. Here we design a new face
unlocking app for smartphones based on opti-SRC. Differ-
ent from the built-in face unlocking function, our app con-
siders the situation that the smartphones can be shared by a
small group of users. We call our app group face unlocking.

5.6.1 Resistance to Intruders

Because a security system should have “zero” tolerance to
intruders, we include a criterion to validate the recognition
results so that intruders are rejected. In our experiments, we
choose three subjects as the “true” persons in the group
unlocking apps and consider the other seven subjects as
intruders. There are K ¼ 3 training classes where each class
corresponds to a subject in the group.

We apply opti-SRC as before and compute the compressed
residual for each class. Let rcj be the compressed residual of
class j. If a person, say person 1, in the group is presented for
recognition, we expect the residual rc1 is much lower than rc2
and rc3. We can define the confidence of recognition as

confidence ¼
�

1

K

XK
j¼1

rcj � min
j¼1;...;K

rcj

�
=
1

K

XK
j¼1

rcj: (16)

The confidence is in the range ½0; 1� and should be close to 1 if a
subject in the group is presented for recognition. On the other
hand, if it is an intruder, the confidence should be close to 0.

The unlocking algorithm will first use opti-SRC to per-
form a recognition. After that, a confidence level is calcu-
lated and a person will be considered to be an intruder if
the confidence level is lower than a pre-defined threshold.
The threshold can be tuned according to the security level
of the application. There is a trade-off between the security
level and the recognition of true users: a higher threshold

makes the system more resistant to intruders but true users
are also more likely to be rejected. We use a threshold of
0.16 in the following experiment so that no false positives
(an intruder is recognised as user) are shown with the test
of the seven intruders.

5.6.2 Robustness to Variations

In this part, we evaluate the recognition accuracy of our
group unlocking app under many different conditions to
test its robustness. This is important because a good face
unlocking app needs to recognise the right user under
different facial expressions and environment variations.
We compare our group unlocking based on opti-SRC
against the built-in face unlocking app under different
variations, including lighting, occlusion, expression and
poses. During the evaluation, we carefully control the
factors so that only one type of variation is present at a
time. Unlike most of the Android OS, the built-in face
unlocking is closed source, therefore we cannot use exactly
the same face image to compare these two apps. Instead,
we have to capture two images for each test and make
these two images as similar as possible. We again use 20
face images for each class as the training set for opti-
SRC and we train the face unlocking with the default
conditions mentioned below.

Lighting Variation: The capability of recognition under
different lighting conditions is the key for the face unlocking
app because the users will use the app under different envi-
ronment. The robustness to the lighting changes is evalu-
ated in five locations with different illumination intensity
which are around 5, 20, 100, 200 and 800 lux respectively
during the experiments. The default lighting illuminance
under which the face unlocking is trained is around 100 lux.

Occlusion: We test the face unlocking apps for the differ-
ent ratio of occlusions. The users wear either normal pre-
scription glasses, headphones or large black sunglasses
during the test. The faces in the training set do not contain
any occlusions.

Expression Variation: Expression is another common vari-
ation when the face images are taken. The expressions of
neutral, happy and sad are used during the test. The default
expression is neutral.

Pose Variation: Pose changes should be addressed because
direction of the faces to the camera cannot be always strictly
frontal. To compare the robustness of the face unlocking apps
to the variation of the pose, the users gradually change their
pose of face from front to two directions (up, down) until the
false recognition appears (the angles to the gravity direction
can be measured with built-in sensor in smartphones). The
front pose is used as default pose.

The evaluation results are shown in Table 6. The pose
change limit is demonstrated by angles to the gravity direc-
tion. It is the largest angles that the face unlocking apps can
recognise the users correctly. (We are not able to do experi-
ments for the left and right poses because they cannot be
directly measured. However, our experience shows that
opti-SRC can tolerate larger pose angles in right and left
directions.) The check/cross markers (@=�) represent the
face unlocking app recognises the face of users correctly/
wrongly under the corresponding variance (true positive/
false negative).

TABLE 5
The Recognition Accuracy of opti-SRC Under

Different Subsets of the Test Set

Neutral Happy Sad Glasses Dark Bright Total

92% 89% 89% 90% 85% 95% 90%



The results shown in Table 6 demonstrate that our group
unlocking app ismore robust than the built-in app for lighting
and pose changes and the two face unlocking apps achieve
the same results on the expression and occlusion changes.

6 RELATED WORK

In sparse representation, random matrices are often used to
reduce the dimensionality of the problem while preserving
the accuracy of the applications. They have been applied to
speed up background subtraction on embedded system [29]
and cross-correlation computation in sensor networks [30].
In [5], SRC is used for acoustic classification and a column
reduction procedure is proposed to reduce the dimension of
‘1 minimisation. Note that column reduction in [5] is com-
plementary to the techniques of projection matrix optimisa-
tion and compressed residuals proposed in this paper; all
three can be applied to improve the performance of SRC.
The most recent work by Xu et al. [31] proposed a sensor-
assisted face recognition system for smart glasses based on
SRC which exploited face images from multi-view angles to
improve the recognition accuracy. Other application of ran-
dom projection matrix is to enable efficient moisture data
collection in sensor networks [32], privacy preservation of
voice data [33], device free activities recognition [34] and
efficient GPS signals acquisition [35]

In this paper, we apply the standard group sparsity for-
mulation, i.e., group lasso norm, which was proposed by
Yuan et al. [19]. The group lasso norm was applied to deal
with visual classification problem in [36]. To further
improve the recognition accuracy, Chao et al. [22] jointly
considered the data locality and group sparsity to formulate
the sparse representation classifier. As our major contribu-
tion in this paper is the optimised projection matrix which
is transparent to the usage of different group sparsity mod-
els, we apply the standard group lasso norm to formulate
the face recognition problem.

7 CONCLUSION

In this paper, we address the challenges of performing face
recognition accurately and efficiently on smartphones by
designing new face recognition algorithms called opti-SRC
and opti-GSRC. A key idea behind opti-SRC is a novel strat-
egy to optimise the projection matrix so that the resulting
sensing matrix has both low row and mutual coherence.
Opti-GSRC takes a step forward by exploting the group

sparsity structure in the sparse representation classification
problem to further improve the recognitiona accuracy. We
show that opti-SRC is 8-17 percent more accurate than the
state-of-the-art face recognition algorithms and opti-GSRC
further improves the recognition accuracy by up to 5 per-
cent. The use of optimised projection matrix means that
opti-SRC can achieve the same recognition accuracy using a
lower dimension projection matrix. This translates to a
lower computation requirement on smartphones. In addi-
tion, we propose the use of compressed residuals in order
to significantly reduce the computational time of opti-SRC
on resource constrained smartphones. We compare the run-
ning time of opti-SRC against OpenCV algorithms on three
smartphone platforms and find they have comparable run-
ning time.
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