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Abstract 

In this paper, a scale-dependent coupled nonlinear continuum-based model is developed for 

the mechanical behaviour of imperfect nanoscale tubes incorporating both the effect of the 

stress nonlocality and strain gradient effects. The scale effects on the nonlinear mechanics 

are taken into consideration employing a modified elasticity theory on the basis of a refined 

combination of Eringen’s elasticity and the strain gradient theory. According to the Euler–

Bernoulli theory of beams, the nonlocal strain gradient theory (NSGT) and Hamilton’s 

principle, the potential energy, kinetic energy and the work performed by harmonic loads are 

formulated, and then the coupled scale-dependent equations of the imperfect nanotube are 

derived. Finally, Galerkin’s scheme, as a discretisation technique, and the continuation 

method, as a solution procedure for ordinary differential equations, are used. The effects of 

geometrical imperfections in conjunction with other nanosystem parameters such as the 

nonlocal coefficient as well as the strain gradient coefficient on the coupled large-amplitude 

mechanical behaviour are explored and discussed.  
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1. Introduction 

Nanostructures such as nanorings, nanotubes and nanosheets which form the 

fundamental building blocks of some nanoelectromechanical systems (NEMS) are scarcely a 

perfect structural element. During the fabrication process, a geometric imperfection is likely 

to be formed in the structure of nanomaterials since manufacturing at nanoscale levels is 

difficult to be implemented with high precision. Therefore, it is important to take these 

imperfections into account in a theoretical model or molecular dynamics (MD) simulations so 

as to obtain more accurate results.     

In addition to experimental measurements and MD simulations, theoretical modelling of 

nanoscale structures has attracted researchers’ attention in recent years due to its simplicity 

and low computational costs [1-7]. In addition to microscale structures [8-10], various size-

dependent continuum-based models for nanoscale structures have been proposed [11-16]. 

For instance, Guo et al. [17] examined the influence of length scale on the mechanical 

response of nanoscale beams while moving in the axial direction and rotating; the critical 

velocity of rotation is greater for forward waves than that of backward waves. Li et al. [18] 

studied the influence of the nonlocality along the thickness of nanoscale beams; analytical 

expressions were proposed for the buckling behaviour.  More recently, wave propagations in 

smart nanoscale tubes and shells have been investigated using a size-dependent continuum-

based formulation [19]. Lei et al. [20] examined the size-dependent elasticity of cantilever 

small-scale beams carrying out experiments. In addition, in an interesting article, an 

experimental scheme was proposed by Li et al. [21] for obtaining the scale parameter of a 

size-dependent theory. Now previous studies related to the continuum-based modelling of 

size-dependent imperfect nanostructures are reviewed. Farshidianfar and Soltani [22] used 
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the nonlocal continuum mechanics to investigate the transverse dynamics of a geometrically 

imperfect fluid-conveying carbon nanotube (CNT) with both edges immovable; they obtained 

an approximate explicit expression for the nonlinear natural frequencies employing a multi-

scale perturbation technique. Wang et al. [23] also developed a nonlocal beam model in order 

to examine the large-amplitude forced dynamics of imperfect single-walled CNTs; they 

utilised a one-term Galerkin approximation and the precise integration scheme to describe 

the nonlinear behaviour of the CNT. In another study, Mohammadi et al. [24] applied 

Eringen’s elasticity theory to nanoscale beams with a geometrical imperfection resting on an 

elastic foundation so as to explore their post-buckling behaviour. In order to examine the 

stability response of metal foam nanoscale beams with an initial deflection in the presence of 

structural porosities, a nonlinear nonlocal analysis was also performed by Barati and Zenkour 

[25]. The effect of out-of-plane defects on the free dynamics of a single-layered graphene 

sheets was investigated by Jalali et al. [26] via use of Eringen’s elasticity theory; they reported 

that out-of-plane defects have an important role to play in the free vibration of graphene 

sheets. Furthermore, Rafiee et al. [27] used the classical (local) continuum mechanics in 

conjunction with the first-order shear deformation theory in order to explore the large-

amplitude dynamic instability of imperfect piezoelectric functionally graded (FG) plates 

reinforced by CNTs. A nonlocal beam model was also developed by Arefi and Salimi [28] to 

study the influence of the small initial curvature on the mechanical behaviour of single-walled 

CNTs. In addition, the effects of geometrical imperfections on the vibration response of 

graphene sheets [29] and on the large-amplitude instability of FG nanopanels [30] have been 

investigated. In addition, size influences have been studied on the nonlinear mechanics of 

microscale structures in recent years [31-33].  
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Recently, it has been reported that taking into account both the stress nonlocality and 

strain gradients leads to a more reliable size-dependent theoretical model for nanorods [34], 

nanobeams [35-37], functionally graded nanostructures [38, 39], protein microtubules [40] 

and graphene sheets [41]. However, all of the above-described valuable theoretical models 

of size-dependent imperfect nanoscale structures contain only one scale parameter (mainly 

only one nonlocal parameter) which is incapable of incorporating the size effect thoroughly. 

In the present study, for the first time, a nonlinear size-dependent nanobeam model is 

developed for imperfect nanotubes with consideration of both the stress nonlocality and 

strain gradients. The effect of being nanosized is incorporated into the modified continuum 

model within the framework of the nonlocal counterpart of the classical continuum 

mechanics as well as a strain gradient-based theory. The Euler–Bernoulli beam theory (EBBT), 

as a deformation model, is employed together with Hamilton’s principle, as a work/energy 

law, for the derivation of the coupled scale-dependent equations of geometrically imperfect 

nanoscale tubes. The nonlinear mechanical behaviour of the imperfect nanosystem is 

obtained on the basis of Galerkin’s scheme and a continuation-based approach. It is predicted 

that the present modified continuum-based model would be useful in design and 

manufacturing of NEMS devices using different nanotubes such as silver, carbon and silicon 

nanotubes.  

 

2. Size-dependent formulation and solution technique 

Figure 1 illustrates a nanoscale tube with a geometrical imperfection subject to external 

harmonic force. The geometrical imperfection is described by an arbitrary initial curvature as 

shown in the figure. The length and thickness of the nanotube are respectively denoted by L 

and h while the inner and outer radii are indicated by Ri and Ro, respectively. Moreover, the 
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area and the inertia moment of the cross-section of the tube are denoted by A and I, 

respectively. E,   and v also represent the elasticity modulus, the mass density and Poisson’s 

ratio of the nanoscale tube, respectively.  

According the EBBT, the nonlinear axial strain ( xx
) of the geometrically imperfect 

nanoscale tube is obtained as 


    

    
    

2 2
0

2

1
,

2
xx

dwu w w w
z

x x x dx x
        (1) 

in which u, w and w0 represent the longitudinal, transverse and initial transverse 

displacements of the imperfect nanosystem, respectively; x, z and t are the longitudinal 

coordinate, the transverse coordinate and the time, respectively. There are various size-

dependent theories for nanoscale structures [42-46] as well as modified elasticity theories for 

microscale structures [47-49]. In this paper, the NSGT [38, 50, 51] is utilised for capturing size 

effects. The nonlocal strain gradient constitutive equation of the nanotube can be formulated 

as [52, 53] 

   l     
2 2 2 2

0 ,xx xx xx sg xxt e a t E E          (2) 

where txx, lsg and e0a are the total stress along the axial direction, the strain gradient 

parameter and the nonlocal parameter, respectively; 2  indicates the Laplace operator; e0 

and a are a scale parameter for calibrating the theoretical model and the internal 

characteristics length of the nanotube, respectively [54, 55]. The strain gradient parameter 

and the nonlocal parameter are determined using experimental measurements or MD 

simulations [21, 56, 57]. For instance, Li et al. [35] obtained the scale parameters of carbon 
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nanotubes for the wave propagation analysis via MD simulations. Using Eqs. (1) and (2), one 

can derive the following relations  

   l
                    

2
2 2 2 2 0

0

1
1 1 ,

2
xx sg

dwu w w
e a N EA

x x x dx
    (3a) 

   l
      

  

2
2 2 2 2

0 2
1 1 ,xx sg

w
e a M EI

x
       (3b) 

with Nxx being the longitudinal force resultant and Mxx being the bending couple resultant, 

which are defined by 

   
   

   


1
.xx

xx

xx A

N
t dA

M z
          (4) 

Applying the nonlocal strain gradient theory (NSGT) to the imperfect nanoscale tube, the 

variation of the elastic energy is obtained as  

        
 

      
 

    
(1) (1)

0 0 0

,

LL L

xx xx xx xx xx xx xx xx

A A A

U dAdx t dAdx dA    (5) 

in which  xx
 and  (1)

xx  are respectively the traditional nonlocal axial stress and the higher-

order nonlocal axial stress, and   represents the gradient operator; U stands for the elastic 

energy of the nanotube. It should be noted that the relation between the various stress 

components is given by    (1)
xx xx xxt  on the basis of the NSGT. Consider a nanoscale tube 

of mass per unit length m subject to the harmonic transverse loading    cosF x t  in which 

F and   represent the force amplitude and frequency, respectively. The corresponding 

motion and work variations can be written as 

  
    

  
    


0

,
L

u u w w
K m dx

t t t t
        (6a) 

      0 cos d .
L

FW F x t w x         (6b)  
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Here K and WF are the motion energy and the external work associated with the transverse 

harmonic force, respectively. To derive the differential equations of motion, the following 

steps are taken: 

1) Substituting Eqs. (5) and (6) into      
2

1

d 0
t

Ft
K W U t  (i.e. Hamilton’s principle).  

2) Integrating by parts and collecting the coefficient of u  and w . 

The resultant differential equations of motion are as 

 


 

2

2
,xxN u

m
x t

          (7a) 

   
     

     
     

2 2
0

2 2
cos .xx

xx

dwM w w
N m F x t

x x x dx t
     (7b) 

The related boundary conditions are also obtained as 

  
       

   

00  or  0,   0  or  0,    =0   or  0,xx
xx xx xx

dw Mw w
N u N w M

x dx x x
  (8a) 

    
       

    

2
(1) (1) (1)0

2
0   or   0,     0   or   0,    0   or  0,xx xx xx

dwu w w w
N N M

x x dx x x
  (8b) 

where 


   

   
  


(1)
(1)

(1)

1
.xx

xx

xx A

N
dA

zM
            (9) 

Using the relations of stress resultants (i.e. Eq. (3)) and the above differential equations (i.e. 

Eq. (7)), the following explicit relations are obtained 

   l
     

       
       

2 3
22 2 0

0 2

1
1 ,

2
xx sg

dwu w w u
N EA m e a

x x x dx x t
               (10a) 

   

       

l



 
    

 

   
    

   

2 2
22 2

02 2

2 2 0
0 0

1

cos .

xx sg

xx

w w
M EI m e a

x t

dww
e a F x t e a N

x x dx

               (10b) 

Substituting Eq. (10) into Eq. (7) leads to the following NSGT-based coupled nonlinear 

equations for the geometrically imperfect nanoscale tube  
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2 4
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m e a e a m e a

x dx x t x t x dx x t

w w
m m e a

t x t
          


   

2
2

0 2
cos cos .F x t e a F x t

x

             (12) 

Assuming the amplitude of the harmonic loading as    1F x F , and applying the following 

non-dimensional parameters to Eqs. (11) and (12) 
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0 0
0

3 4
1

1 2

,  ,  ,  ,   ,   ,
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sg
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                  (13) 

one can obtain the non-dimensional equations of motions as 
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                                  (15) 

Here asterisk superscripts are neglected for convenience purposes.  , r, nl  and sg  stand 

for the slenderness ratio, the gyration radius, the nonlocal coefficient and the strain gradient 

coefficient, respectively. Furthermore,   represents the non-dimensional harmonic 

excitation frequency. In order to obtain a numerical solution for Eqs. (14) and (15), first 

Galerkin’s procedure [58-61] as a discretisation method is utilised. In this way, the 

longitudinal and transverse displacements are as 

 



1

ˆ, ( ) ( ),
xN

j j
j

u x t r t u x                                                                                                                                     (16a) 

 



1

ˆ, ( ) ( ),
zN

j j
j

w x t q t w x                                                                                                                                  (16b) 

where Nx and Nz denote the number of shape functions along the x and z axes, respectively; 

rj and ˆ
ju  represent the axial generalized coordinate and the axial shape function of the 

imperfect nanotube; also, qj and ˆ
jw stand for the transverse generalized coordinate and the 

transverse shape function, respectively. Let us consider a geometric imperfection as 

0 0 1
ˆ ( )w A w x  for the nanotube; A0 indicates the imperfection amplitude. Assuming clamped-

clamped (C-C) boundary conditions for the tube, the appropriate shape functions are  
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sin

j j
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w x x x x x

u x
j x

                 (17) 
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in which  j  stand for the jth root of the classical frequency equation for C-C beams. It is worth 

mentioning that 1
ˆ ( )w x  is obtained from Eq. (17) when j is set to 1. Inserting Eq. (16) into Eqs. 

(14) and (15) and then applying the Galerkin discretisation technique, one obtains  
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To determine the large-amplitude mechanical characteristics of geometrically imperfect 

nanotubes subject to a harmonic loading, a numerical scheme in the context of a 

continuation-based technique is employed [62, 63]. In the present nonlinear analysis, a 

convergence test is carried out, indicating that eight base functions for each displacement 

component are sufficient to meet the requirement of calculation precision. In general, a 

system of sixteen base functions is considered (eight base functions for u and eight base 

functions for w).  

 

3. Numerical results 

The influence of a geometric imperfection together with other parameters such as the 

nonlocal and strain gradient coefficients on the large-amplitude mechanical behaviour of 

nanoscale tubes is studied in this section. Let us consider an imperfect nanoscale tube of 



13 
 

length 100 nm. The material properties are taken as E=1.0 TPa, ν=0.19, and ρ=2300 kg/m3. 

The outer and inner radii of the tube are, respectively, assumed as 0.84 and 0.5 nm. The 

slenderness ratio is determined as  =204.5935. In the nonlinear analysis, the modal damping 

ratio is chosen as ζ=0.005. 

The variation of the maximum values of some transverse generalised coordinates as well 

as the minimum value of the second axial generalised coordinate versus the excitation-to-

natural frequency ratio (excitation frequency ratio) is shown in Fig. 2. The values of the strain 

gradient and nonlocal coefficients are, respectively, taken as χsg=0.1 and χnl =0. The force and 

imperfection amplitudes are assumed as F1=0.1 and A0=0.8, respectively. A hardening-type 

nonlinearity with two saddle points (B1 and B2) is found for the geometrically imperfect 

nanoscale tube. As the excitation frequency ratio increases, the maximum value of q1 

increases until point B1 (the first saddle point) in which the nanotube experiences a dramatic 

jump to a lower value of the transverse amplitude. Decreasing the excitation frequency first 

increases the maximum value of q1, and then at point B2 (the second saddle point), the 

nanosystem displays a sudden increase followed by a gradual reduction in q1. In addition, 

from Fig. 2, modal interactions [64] around the first saddle point are clearly observed for 

higher generalised coordinates.  

Fig. 3 illustrates the effect of χsg on the frequency-amplitude plots for imperfect nanoscale 

tubes. The force and imperfection amplitudes are taken as F1=0.1 and A0=0.8, respectively. 

The nonlocal effect is neglected in this figure (i.e. χnl =0). The resonant frequency of the 

geometrically imperfect nanotube is higher when higher values are chosen for the strain 

gradient coefficient. Nonetheless, the peak amplitude of the imperfect nanosystem is lower 

for higher values of χsg. In addition, strong modal interactions are observed, especially for 
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higher generalised coordinates, when the strain gradient coefficient is set to χsg =0.05. 

However, increasing the strain gradient effect can gradually eliminates the modal 

interactions.  

The variation of some transverse and axial generalised coordinates of the imperfect 

nanoscale tube versus the excitation frequency ratio is depicted in Fig. 4; but this time, only 

the nonlocal effect is incorporated. The imperfection and force amplitudes are the same as 

those of Fig. 2. A nonlocal coefficient of 0.1 is selected for the nanotube while the strain 

gradient coefficient is zero. Again, a hardening-type nonlinearity with two saddle points is 

observed for geometrically imperfect nanotubes. However, stronger modal interactions are 

seen in Fig. 4 in comparison with those of Fig. 2, especially for the fifth generalised coordinate 

along the transverse direction. It means that the modal interaction may be overestimated 

when only the nonlocal effect is taken into consideration. 

Figure 5 depicts the influence of χnl on the frequency-amplitude plots of imperfect 

nanoscale tubes. The strain gradient coefficient is set to zero. A value of 0.8 is chosen for the 

non-dimensional imperfection amplitude while the dimensionless force amplitude is F1=0.1. 

It is found that imperfect nanotubes with higher nonlocal coefficients undergo resonance at 

lower excitation frequencies. Another interesting finding is that for higher nonlocal effects, 

the imperfect nanotube exhibits strong modal interactions (see Fig. 5c). 

The variation of maximum values of some transverse generalised coordinates and the 

minimum value of the second axial generalised coordinate of the nanotube versus the 

excitation frequency ratio is demonstrated in Fig. 6; a larger imperfection amplitude (A0=1.5) 

is taken into account. A value of F1=0.14 is taken for the force amplitude. The strain gradient 

coefficient is taken as χsg=0.1 while the nonlocal coefficient is assumed to be zero. A 
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combination of softening and hardening nonlinearities with four saddle points is observed in 

this case. Initially, the nonlinear mechanical behaviour is of softening type which is followed 

by a hardening-type nonlinearity. The transverse amplitude of the imperfect nanotube 

increases gradually with increasing the excitation frequency ratio until point B1 (the first 

saddle point) where it suddenly increases. Then, the transverse amplitude continuously 

increases until point B3 (the third saddle point) in which the imperfect nanotube jumps to a 

lower transverse amplitude. By comparing Fig. 2 with Fig. 6, it can be concluded that a small 

increase in the imperfection amplitude can substantially change the nonlinear mechanical 

behaviour.   

Figure 7 shows the influence of χsg on the large-amplitude mechanical behaviour of 

geometrically imperfect nanoscale tubes. The nonlocal effect is not taken into account. The 

imperfection amplitude and the force amplitude are set to A0=1.5, and F1=0.14, respectively. 

Imperfect nanotubes with higher strain gradient coefficients undergo resonance at higher 

excitation frequencies. Moreover, higher values of the strain gradient coefficient reduces the 

peak amplitude of both the motions along the x and z axes.  

The variation of the maximum values of some transverse generalised coordinates and the 

minimum value of the second axial generalised coordinate versus the excitation frequency 

ratio is depicted in Fig. 8; only the effect of the nonlocal coefficient is taken into consideration 

(i.e. χsg=0.0, χnl =0.1). The imperfection and force amplitudes are the same as those mentioned 

above for Fig. 6. It is observed that the nonlinear behaviour is still a combination of softening 

and hardening types with four saddle points. Increasing the excitation frequency ratio 

gradually increases q1 until point B1 where the value of the first transverse generalised 

coordinate suddenly increases. Then, the value of q1 decreases with increasing  1 . By 



16 
 

comparing Fig. 6 to Fig. 8, it is seen that although the general nonlinear mechanical 

characteristics of the imperfect nanotube such as the number of saddle points remain the 

same, some details are different. Figure 9 illustrates the influence of χnl on the frequency-

amplitude plots of imperfect nanoscale tubes for χsg =0.0, A0=1.5, and f1=0.14. It is found that 

in this case, non-zero nonlocal coefficients are associated with strong modal interactions, 

especially for higher generalised coordinates.  

 

4. Conclusions 

A nonlinear analysis has been performed in order to investigate the effect of 

geometrical imperfection on the large-amplitude mechanical behaviour of nanoscale tube 

subject to transverse distributed harmonic loading. A NSGT-based model incorporating both 

nonlocal and strain gradient effects was proposed to better describe the size-dependent 

softening and hardening behaviors of the stiffness. The EBBT as well as the Hamilton principle 

were utilised for deriving the coupled nonlinear equations. Galerkin’s procedure as well as a 

continuation-based approach were lastly used to discretise the differential equations and to 

determine the large-amplitude mechanical characteristics, respectively.    

 A geometrical imperfection can significantly change the nonlinear dynamic behaviour of 

nanoscale tubes. When the amplitude of the geometrical imperfection is low, the nanotube 

displays a hardening-type nonlinearity with two saddle points. However, when a large 

imperfection amplitude is taken into consideration, the nanotube displays a combination of 

softening and hardening nonlinearities with four saddle points. Higher strain gradient 

coefficients are associated with higher resonant frequencies. Furthermore, it was found that 

increasing the strain gradient coefficient can eliminate the modal interactions. On the other 
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hand, higher nonlocal coefficients make the imperfect nanotube undergo resonances at lower 

excitation frequencies. The modal interaction is overestimated by incorporating only the 

nonlocal effect.  

Appendix A. Verification study 

To verify the present results, a linear NSGT nanotube without any geometrical 

imperfections is considered. For this nanotube, Eqs. (14) and (15) are reduced to only one 

motion equation along the transverse direction. In Fig. 10, the results are compared with 

those obtained by Li et al. [53] for the linear vibration of nanobeams employing the NSGT. 

The material and geometrical properties are given in Refs. [53, 65]. A very good agreement is 

observed between the reported results and the available results in the literature.  
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Fig. 1. Schematic representation of a geometrically imperfect nanoscale tube subject to a harmonic loading. 
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Fig. 2. Frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the maximum of q1, q2, and 

q3, respectively; (d) the minimum of r2; for non-zero χsg and A0=0.8. 
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Fig. 3. Strain gradient effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the 

maximum of q1, q2, and q3, respectively; (d) the minimum of r2 for A0=0.8. 
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Fig. 4. Frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the maximum of q1, q2, and 

q3, respectively; (d) the minimum of r2 for non-zero χnl and A0=0.8. 
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Fig. 5. Nonlocal effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the 

maximum of q1, q2, and q3, respectively; (d) the minimum of r2 for A0=0.8. 
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Fig. 6. Frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the maximum of q1, q2, and 

q3, respectively; (d) the minimum of r2 for non-zero χsg and A0=1.5. 
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Fig. 7. Strain gradient effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the 

maximum of q1, q2, and q3, respectively; (d) the minimum of r2 for A0=1.5. 
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Fig. 8. Frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the maximum of q1, q2, and 

q3, respectively; (d) the minimum of r2 for non-zero χnl and A0=1.5. 
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Fig. 9. Nonlocal effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a-c) the 

maximum of q1, q2, and q3, respectively; (d) the minimum of r2 for A0=1.5. 
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Fig. 10. Comparison of the present results with those reported in Ref. [53] for linear perfect NSGT nanobeams.  
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