
Northumbria Research Link

Citation: Naik, Nitin, Jenkins, Paul, Savage, Nick and Yang, Longzhi (2019) Cyberthreat
Hunting - Part 1: Triaging Ransomware using Fuzzy Hashing, Import Hashing and YARA
Rules. In: Fuzzy Systems (FUZZ-IEEE), IEEE International Conference. IEEE, Piscataway,
NJ. ISBN 9781538617281

Published by: IEEE

URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/38877/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Cyberthreat Hunting - Part 1:
Triaging Ransomware using

Fuzzy Hashing, Import Hashing and YARA Rules
Nitin Naik1, Paul Jenkins1, Nick Savage2 and Longzhi Yang3

1Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
2School of Computing, University of Portsmouth, United Kingdom

3Department of Computer and Information Sciences, Northumbria University, United Kingdom
Email: nitin.naik100@mod.gov.uk, paul.jenkins683@mod.gov.uk, nick.savage@port.ac.uk,

longzhi.yang@northumbria.ac.uk

Abstract—Ransomware is currently one of the most significant
cyberthreats to both national infrastructure and the individual,
often requiring severe treatment as an antidote. Triaging ran-
somware based on its similarity with well-known ransomware
samples is an imperative preliminary step in preventing a
ransomware pandemic. Selecting the most appropriate triaging
method can improve the precision of further static and dynamic
analysis in addition to saving significant time and effort. Cur-
rently, the most popular and proven triaging methods are fuzzy
hashing, import hashing and YARA rules, which can ascertain
whether, or to what degree, two ransomware samples are similar
to each other. However, the mechanisms of these three methods
are quite different and their comparative assessment is difficult.
Therefore, this paper presents an evaluation of these three
methods for triaging the four most pertinent ransomware cate-
gories WannaCry, Locky, Cerber and CryptoWall. It evaluates
their triaging performance and run-time system performance,
highlighting the limitations of each method.

Index Terms—Ransomware; Triaging; Similarity Preserving;
Fuzzy Hashing; SSDEEP; SDHASH; Import Hashing; IM-
PHASH; YARA Rules; WannaCry; WannaCryptor; Locky; Cer-
ber; CryptoWall; Context-Triggered Piecewise Hashing.

I. INTRODUCTION

Ransomware is currently one of the most dominant forms
of malware affecting major institutions and the public, with
its threat and ransom amount rapidly escalating over time.
Additionally, ransomware threat actors are developing limitless
versions or variants of their ransomware by reusing their code-
base to perform the same set of operations [1]. The majority
of ransomware encrypts files on the compromised system or
network, however, a few ransomware erases files or block
access to the system or network [2]. Several categories of ran-
somware are affecting users such as WannaCry/WannaCryptor,
Locky, Cerber, CryptoWall, Petya, Notpetya, GandCrab, Bad
Rabbit and CryptoLocker [2], [3], [4]. Triaging ransomware by
finding the similarity with well-known ransomware samples is
a critical initial step in saving significant time and effort, to
enable further advanced analysis to be undertaken promptly.

Cryptographic hashing methods are useful to identify a
unique file, based on its unique hash/digest. Nonetheless, it

cannot be used to determine similarities between two almost
similar files as their cryptographic hashes are quite different
[5]. In digital forensics, there are several similarity metrics
available to identify whether, or to what degree, two malware
binaries are similar to each other [6]. Some of the most popular
and proven triaging methods are fuzzy hashing, import hash-
ing and YARA rules. Using these methods, security experts
can determine whether a suspected malicious file bears any
resemblance to already verified malicious files and to triage
them accordingly, which is one of the most effective ways to
assess numerous malicious samples swiftly.

The main issue in the triaging process is, how accurately
a method can match the sample, and what is the system per-
formance or complexity of that method. Generally, a method
is applied to a large number of samples for their assessment;
therefore, selecting a method is a balance between the accuracy
and the system performance of that method. This paper inves-
tigates this issue by applying three of the most popular triaging
methods used in digital forensics, namely: import hashing,
fuzzy hashing and YARA rules, as applied in ransomware.
An evaluation of the accuracy and performance is presented
of their corresponding methods (import hashing- IMPHASH,
fuzzy hashing- SSDEEP and SDHASH and YARA rules)
by applying them to the four most pertinent categories of
ransomware WannaCry, Locky, Cerber and CryptoWall. All
four methods are evaluated based on their triaging perfor-
mance, ascertaining the similarity within the same ransomware
category and additionally across the other three categories.
Furthermore, the run-time performance of each method is
compared during the experiments, building a comparative
assessment of three completely different triaging methods.

The paper is divided into the following sections: Section
II explains fuzzy hashing - SSDEEP and SDHASH methods,
import hashing- IMPHASH method and YARA rules. Section
III discusses the process of collecting ransomware samples
for this experimentation. Section IV presents the experimental
analysis of IMPHASH, SSDEEP, SDHASH and YARA rules.
Section V discusses the main limitations of import hashing,

fuzzy hashing and YARA rules. Finally, Section VI concludes
the paper with the possible future enhancement and brief
discussion about the second part of the paper [7].

II. BACKGROUND INFORMATION

A. Fuzzy Hashing

The comparison of files to ensure its uniqueness can be
performed utilising cryptographic hashing and hence can be
used to locate duplicate files, although it is mostly used to
verify the integrity of data. However, this technique cannot be
applied in computer forensics as malware may be of a similar
strain, having only changed a binary digit, nonetheless this
renders the file different from the original, cryptographically.
Therefore, the quest to discover malware files necessitates
the use of a similarity preserving hash function, to determine
similarity [8]. Fuzzy hashing is such a function capable of
identifying similar files, producing a similarity score expressed
as a percentage of their similarity.

Fuzzy hashing techniques divide a file into multiple blocks,
calculating a hash value for each block [9]. The final fuzzy
hash value is produced by concatenating all these hashes
(see Fig. 1). The length of the resulting fuzzy hash value
depends on several factors such as the block size, the file
size, and the output size of the selected hash function. This
is contrary to the cryptographic hash function, where the
complete file is hashed contemporaneously, and the output
has fixed size irrespective of the size of the input file. Fuzzy
hashing techniques can be classified into different categories:
Context-Triggered Piecewise Hashing (CTPH), Statistically-
Improbable Features (SIF), Block-Based Hashing (BBH) and
Block-Based Rebuilding (BBR) [10], [11], [12]. The similarity
preserving property of fuzzy hashing is useful in forensic
investigations to compare unknown files with known malware
families based on their similarity and to triage and cluster
malware which use multiple variants from the same malware
family performing the exact same set of operations, but have
different cryptographic hashes.

The similarity can be defined either as syntactic similarity
or semantic similarity [13]. The syntactic similarity between
the two files can be determined based on the byte structure
of the files (i.e. raw byte sequences of data) and does not
consider the interpretation of the data, whereas, the semantic
similarity between the two files can be determined based on
the interpretation and context of the data and does not consider
the byte structure of the files. Commonly, similarity hashing
or fuzzy hashing techniques work on a syntactic level, without
considering the interpretation and context of the data.

1) SSDEEP: SSDEEP is one of the most popular fuzzy
techniques based on a spam detector called spamsum [8].
The algorithm divides an input file into blocks of variable
size (random blocks), based on the content of that file. A
rolling hash is used to determine block boundaries (also known
as trigger points) in the file, depending on the content of
sections of seven bytes at a time according to a predefined
criteria, based upon the Adler32 function [9]. Subsequently,
SSDEEP calculates the hash value of each block separately

Fig. 1. Fuzzy Hash Generation

and produces the final SSDEEP hash value by concatenating
all the hashes into one hash. This method ensures that two
similar files will have similar block boundaries and similar
SSDEEP hash values. This method employs an edit distance
algorithm based on the Damerau-Levenshtein algorithm used
in a number of applications. The algorithm compares two
suspected similar blocks calculating the minimum number of
operations required to transform one block into the other, using
a combination of operations including insertion, deletion, and
substitution of a single character, and transpositions of two
adjacent characters.

2) SDHASH: SDHASH is a relatively different fuzzy tech-
nique from SSDEEP, presented by Vassil Roussev in 2010,
based on the concept of statistically-improbable features [14].
The premise is that, any file consists of several statistical
features, where some are rare (statistically-improbable) and
some are very common. Therefore, similar files will probably
have the same rare features, while dissimilar files will probably
have different rare features. The more common rare features,
probably the more similar files are. Commonly, a SDHASH
feature is a 64-byte string. Instead of dividing a file into blocks,
SDHASH identifies rare features using an entropy calculation,
hashing the selected features with the cryptographic hash
function SHA-1, storing them in multiple Bloom filters [15].
A Bloom filter is a space-efficient probabilistic data structure,
and has a maximum of 128 features that can be stored in one
Bloom filter and the number of Bloom filters is dependent
on the total number of features. The concatenation of the
resulting Bloom filters constitutes the final SDHASH fuzzy
hash value. While comparing the two files for similarity,
SDHASH employs Hamming distance for faster comparison.

B. Import Hashing - IMPHASH

Import hashing is a hashing technique used to detect the
similarity between two files/malware based on the hash gen-
erated from the Import Address Table (IAT) of a Portable
Executable (PE) file [16]. Imports are the functions that a piece

of software (e.g. malware) calls from other files (typically
various DLL, EXE, SYS files that provide functionality to the
Windows operating system). Import hashing generates a hash
called IMPHASH, which is created based on the library/API
names and their specific order within the executable file. Both
the order of functions in the original source code and the order
of source files at compile time affect the generation of the
resulting IAT and thus, the IMPHASH value. Therefore, two
files were compiled from the same source code will result the
same IAT and thus, same IMPHASH value. Similarly, if the
source code of the two files is not organized in the same way
it will result in different IATs and thus, different IMPHASH
values. Import hashing is comparable with fuzzy hashing with
respect to speed, computation, complexity, memory and hash
size. However, unlike fuzzy hashing which offers the degree
of similarity, import hashing can only determine the binary
similarity, i.e. whether the two files are similar or not.

C. YARA Rules

YARA tool is a pattern matching swiss knife developed
to discover and classify malware, mainly for the research
community [17]. It provides an easy and efficient method of
writing custom rules (YARA rules), containing descriptions
of targeted malware based on strings or byte sequences found
in malware, utilising these rules to discover malicious files
or processes. YARA syntaxes and semantics closely resemble
the C programming language [17]. It can be used through
its command-line interface or Python scripts with the yara-
python extension. YARA rules are a flexible and powerful
way to dispense with the rapidly growing problem of malware,
furthermore, it supports all major operating systems Windows,
Linux and Mac OS X [18].

III. COLLECTION OF RANSOMWARE SAMPLES

Ransomware attacks are growing more common and they
are more expensive to remediate than their counterpart Denial
of Service (DoS) attacks, which can be used as a smoke-
screen for ransomware infiltration [19], [20], [21]. There are
several ransomware categories in existence, however, some
are most pertinent in terms of their attacks, ransom amount
and geography, and hence for investigation. Initial research of
different ransomware revealed that the four most significant
ransomware categories are WannaCry/WannaCryptor, Locky,
Cerber and CryptoWall and are selected for this study [1],
[2], [3], [4]. The hardest task, with the highest work intensity
was the collection of credible samples of these four types
of ransomware due to the large number of fake or vague
ransomware samples. As a result of this process, it was
decided for the initial and manual investigation to collect
50 samples of each ransomware category, a total of 200
ransomware samples for all four categories. All the samples
were collected from two sources Hybrid Analysis [22] and
Malshare [23] with the majority of the analysis performed
based on the information obtained from VirusTotal [24]. A
significant issue in determining the credibility of samples and
verification is that they are members of the correct category

of ransomware. The criteria for the credibility of that sample
was determined by a VirusTotal detection engine score of 40
or greater, i.e. at least 40 well-known engines identified the
sample as a ransomware/malware. To verify their classification
into the correct category, their type was manually verified
from all the identified detection engines, where some of the
detection engines identified the particular sample as a specific
type of ransomware such as WannaCry/WannaCryptor, Locky,
Cerber and CryptoWall. Nonetheless, this process was not
straightforward, and mostly based on the discretion of the
authors [25], [26], [27], [28]. This whole process of collecting
and manually analysing samples was time consuming, finally,
the 50 samples of each category were collected.

IV. EXPERIMENTAL ANALYSIS OF IMPHASH, SSDEEP,
SDHASH AND YARA RULES

All four methods IMPHASH, SSDEEP, SDHASH and
YARA rules were evaluated for their ability to discover
similarity in the samples, therefore, they were assessed against
the 200 samples of four categories of ransomware Wan-
naCry, Locky, Cerber and CryptoWall (with 50 samples of
each category). There is an assumed behavioural similarity
among all 200 samples of the four ransomware categories
as they are all ransomware, however, their structure may be
completely different from each other. Furthermore, there may
be structural similarity within the 50 samples of the same
category of ransomware. Therefore, for evaluating the triaging
performance of each method, it is applied to find the similarity
within the same ransomware category and across all the other
three categories. As previously discussed, all the 200 samples
were meticulously verified as a strong ransomware sample,
therefore, the main focus of this experiment was to check how
many samples are either matched or not by each method.

The first three methods IMPHASH, SSDEEP, SDHASH are
hashing methods (generating hashes for files), consequently,
they are directly comparable. However, YARA rules are some-
what different, having a different way of finding similarity
amongst files, with the caveat that they can be generated in
different ways either manual or automatic, with different sets
of attributes and therefore, their performance may vary. In this
experiment, the applied YARA rules are generated by yarGen
tool [29]. It is based on Fuzzy Regular Expressions, Naive
Bayes Classifier and Gibberish Detector [30] with the default
setting of the top 20 strings based on their score and without
IMPHASH, as IMPHASH is considered as a separate method
in this paper. To ensure that YARA rules are comparable with
the other three methods, individual rules are tested alongside
super rules.

Table I shows the similarity detection and comparison
results of all four methods. Here, IMPHASH matched 112
samples with at least one other sample in the same cate-
gory. Similarly, SSDEEP matched 110 samples with at least
one other sample in the same category. Likewise, SDHASH
matched 138 samples with at least one other sample in the
same category. Lastly, YARA rules matched 129 samples with
at least one other sample in the same category. Their overall

Fig. 2. Overall Similarity Detection Rate of IMPHASH, SSDEEP, SDHASH
and YARA Rules for WannaCry, Locky, Cerber and CryptoWall Ransomware

similarity detection rate is shown in Fig. 2, where SDHASH
is relatively better than other three methods for the selected
ransomware samples. SDHASH generated better results for the
three categories WannaCry, Locky and CryptoWall, however,
YARA rules generated slightly better results for the Cerber
ransomware category.

The second evaluation was to determine their triaging
performance across different ransomware categories, which
was somewhat complex due to the behavioural similarity
amongst different ransomware categories. The two methods
IMPHASH and SSDEEP were unable to find any correlation
across the ransomware categories. Whereas, SDHASH and
YARA rules were able to find only a few correlations as shown
in Table I. SDHASH was again relatively better than YARA
rules and found 37 matching samples in three categories
Locky, Cerber and CryptoWall, whereas YARA rules found
25 matching samples in two categories Locky and Cerber.
However, this cross-category comparison was to further check
the effectiveness of these methods.

Based on all the experiments, the system performance of
all four methods IMPHASH, SSDEEP, SDHASH and YARA
rules are also evaluated as shown in Table II. IMPHASH has
outperformed all other three methods with respect to run-
time efficiency, memory and hash/rule size; therefore, it is the
fastest and an efficient way of similarity comparison of files.
However, it should be noted that is has a major dependency
on the Import Address Table (IAT) and specific order of
library/API functions. The system performance of SSDEEP
fuzzy hashing method was very close to IMPHASH, however,
its effectiveness is limited to simple structural modifications
in a file. The system performance of another fuzzy hashing
method SDHASH was relatively slower than SSDEEP despite
its best similarity performance. Finally, the system perfor-
mance of YARA rules was relatively the slowest amongst
all compared methods despite its impressive performance. It
should be noted that the system performance of YARA rules
is dependent on several factors such the type of rules, number
of rules and number attributes per rule.

TABLE I
SIMILARITY DETECTION AND COMPARISON RESULTS OF IMPHASH,

SSDEEP, SDHASH AND YARA RULES FOR WANNACRY, LOCKY,
CERBER AND CRYPTOWALL RANSOMWARE SAMPLES

Similarity Detection
and Comparison
of Ransomware
Samples

IMPHASH-
Import
Hashing

SSDEEP-
Fuzzy
Hashing

SDHASH-
Fuzzy
Hashing

YARA
Rules*

Total WannaCry sam-
ples matched with at
least one other Wan-
naCry sample

46 46 47 46

Total Locky samples
matched with at least
one other Locky sample

17 21 29 28

Total Cerber samples
matched with at least
one other Cerber sample

32 25 36 39

Total Locky samples
matched with at least
one other CryptoWall
sample

17 18 26 16

WannaCry matched
with Locky, Cerber and
CryptoWall

None None None None

Locky matched with
WannaCry, Cerber and
Cryptowall

None None 20 Cerber
and 8

CryptoWall

22
Cerber

Cerber matched with
WannaCry, Locky and
Cryptowall

None None 2 Locky 3 Locky

CryptoWall matched
with WannaCry, Locky
and Cerber

None None 7 Locky None

Where * represents that employed YARA rules are generated by yarGen tool
(based on Fuzzy Regular Expressions, Naive Bayes Classifier and Gibberish
Detector) with the default setting of the top 20 strings based on their score
and without IMPHASH.

V. LIMITATIONS OF IMPORT HASHING, FUZZY HASHING
AND YARA RULES

A. Limitations of Import Hashing

• Simply changing the order of library/API functions within
the file will result a different Import Address Table (IAT)
and thus, different IMPHASH values.

• Import hashing may not work for those files which have
a very few Import APIs.

• Import hashing is only effective on Portable Executable
(PE) file format.

• Import hashing can only determine the binary similarity,
i.e., whether the two files are similar or not.

• Import hashing methods mostly effective on a syntactic
level and check structural similarity but does not consider
semantic level i.e., behavioural similarity (context of the
data).

• Import hashing is severely affected by packers and may
not be able to detect similarity of packed files correctly.

B. Limitations of Fuzzy Hashing

• The similarity score generated by any fuzzy hashing
method is always difficult to interpret.

TABLE II
PERFORMANCE COMPARISON OF IMPHASH, SSDEEP, SDHASH AND
YARA RULES FOR WANNACRY, LOCKY, CERBER AND CRYPTOWALL

RANSOMWARE SAMPLES

Performance
Criteria

IMPHASH-
Import
Hashing

SSDEEP-
Fuzzy
Hashing

SDHASH-
Fuzzy
Hashing

YARA
Rules*

Matching
Criteria

Library/API
names and
their specific
order

Byte structure
of the files

Byte structure
of the files

Textual
or binary
patterns

Run-Time
Efficiency

4 times faster
than SSDEEP

3 times
faster than
SDHASH

2 times faster
than YARA
Rules

2 times
slower than
SDHASH

Hash/Rule
Size

Smallest Smaller than
SDHASH

Greater than
SSDEEP

Dependent on
the type of
rule and num-
ber of strings

Hash/Rule
Generation

Programmed Programmed Programmed Programmed/
Manual

Minimum
File Size

None 4 KB 512 Bytes None

Limitation/
Dependency

Dependent on
IAT (Import
Address
Table)

Effective
only when
modifications
are simple
and
mechanical

Effective
only when
modifications
are simple
and
mechanical

Dependent on
the selected
attributes

Applications VirusTotal,
Totalshare,
Peframe and
Pefile Module

VirusTotal,
Shad-
owserver,
It is the de
facto fuzzy
hashing
standard

Autopsy
Forensic
Browser of
the Sleuth Kit

VirusTotal
Intelligence,
Spam-
StopsHere,
Symantec,
Tanium, The
DigiTrust
Group,
ThreatCon-
nect, Thug,
Trend Micro,
VMRay, etc.

• Any similarity score is intuitively judged by the security
expert, which can lead to very different interpretations
between security experts.

• Fuzzy hashing methods mostly effective on a syntactic
level and check structural similarity but do not consider
semantic level i.e., behavioural similarity (context of the
data).

• Many fuzzy hashing methods (e.g. SSDEEP) are depen-
dent on the block sizes and the overall size of the file for
hashes. This can be easily evaded by appending data to
the end of the file, in which header and section data are
still identical.

• Bloom filters based fuzzy hashing methods (e.g. SD-
HASH) do not generate false negatives, however, false
positives are possible.

• Most fuzzy hashing methods are severely affected by
packers and unable to detect similarity in packed files.

C. Limitations of YARA Rules

• Extracting UNICODE and ASCII strings from malware
samples is a tedious task and requires experience and
expertise.

• YARA rules can be generated automatically, however,
generated YARA rules may not be as good as manually
created ones.

• Most automatically generated YARA rules still require
manual post-processing for optimisation.

• Ineffective YARA rules may generate many false posi-
tives.

• Public repositories of YARA rules may not be fit for the
purpose or targeted operation.

• Basic rules looking for a combination of predeter-
mined/unique strings may become ineffective and extra
overheads if those unique strings are changed in the
new/similar malware.

VI. CONCLUSION

This paper has presented an evaluation of the three most
popular and proven triaging methods: fuzzy hashing, import
hashing and YARA rules for triaging ransomware. These
experiments ascertained whether, or to what degree, two
ransomware samples are similar to each other. The paper has
evaluated four methods IMPHASH -import hashing, SSDEEP
and SDHASH -fuzzy hashing and YARA rules against the 200
samples of the four most pertinent categories of ransomware
WannaCry/WannaCryptor, Locky, Cerber and CryptoWall with
50 samples of each category. It evaluated their triaging perfor-
mance and run-time system performance. The evaluation for
similarity detection performance of each method was based on
the number of samples a method can match within the same
ransomware category and across all the other three categories.
The fuzzy hashing method SDHASH has performed relatively
better than the other three methods based on the total number
of samples matched in each category and across the three
categories. However, the triaging performance of YARA rules
is very close to the SDHASH method. This evaluation offers
a direct and valuable comparison among the three completely
different triaging methods; however, it requires further testing
on large samples of ransomware and in-depth analysis of
similarity scores of fuzzy hashing methods. In future, this
evaluation can be extended to check the degree of similarity
between the ransomware samples and the effects of using
opcodes in YARA rules.

In the second part of the paper, in order to discover
ransomware threat actors/groups or new ransomware families,
an efficient fuzzy analysis approach is proposed to cluster
ransomware samples based on the combination of two fuzzy
techniques fuzzy hashing (e.g. SSDEEP/SDHASH) and Fuzzy
C-Means (FCM) clustering [7]. In the future, this proposed
fuzzy analysis approach could be automated by generating
sparse fuzzy rules based on the pre-eminent results of FCM
[31] and employing an adaptive fuzzy rule interpolation tech-
nique [32], [33], [34], [35]. Moreover, this sparse fuzzy rule
base can be updated dynamically by employing dynamic fuzzy
rule interpolation (D-FRI) method [36], [37], [38], [39], [40],
[41], [42]. After further enhancing and automating this fuzzy
analysis approach, it can be employed in different security
frameworks [43].

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Hybrid-
Analysis.com, Malshare.com and VirusTotal.com for this re-
search work.

REFERENCES

[1] R. Richardson and M. North, “Ransomware: Evolution, mitigation and
prevention,” International Management Review, vol. 13, no. 1, pp. 10–
21, 2017.

[2] K. Savage, P. Coogan, and H. Lau, “The evolution of ransomware -
Symantec,” pp. 1–57, 2015.

[3] Y. Klijnsma. (2019) The history of Cryptowall: a large scale
cryptographic ransomware threat. [Online]. Available: https://www.
cryptowalltracker.org/

[4] Malwarebytes. (2019) Ransomware. [Online]. Available: https:
//www.malwarebytes.com/ransomware/

[5] N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data security analysis
approach using computational intelligence techniques in R for desktop
users,” in IEEE Symposium Series on Computational Intelligence (SSCI),
2016.

[6] N. Naik, P. Jenkins, B. Kerby, J. Sloane, and L. Yang, “Fuzzy logic aided
intelligent threat detection in cisco adaptive security appliance 5500
series firewalls,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 2018.

[7] N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 2: Tracking Ransomware Threat Actors using Fuzzy Hashing and
Fuzzy C-Means Clustering,” in IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). IEEE, 2019.

[8] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91–97, 2006.

[9] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University Canberra, 1999.

[10] F. Breitinger and H. Baier, “A fuzzy hashing approach based on random
sequences and hamming distance,” in Annual ADFSL Conference on
Digital Forensics, Security and Law. 15, 2012. [Online]. Available:
https://commons.erau.edu/adfsl/2012/wednesday/15

[11] C. Sadowski and G. Levin, “Simhash: Hash-based similarity detection,”
2007. [Online]. Available: www.webrankinfo.com/dossiers/wp-content/
uploads/simhash.pdff

[12] V. Gayoso Martı́nez, F. Hernández Álvarez, and L. Hernández Encinas,
“State of the art in similarity preserving hashing functions,” 2014.
[Online]. Available: http://digital.csic.es/bitstream/10261/135120/1/
Similarity preserving Hashing functions.pdf

[13] N. Naik and P. Jenkins, “Securing digital identities in the cloud by
selecting an apposite federated identity management from saml, oauth
and openid connect,” in 11th International Conference on Research
Challenges in Information Science (RCIS). IEEE, 2017, pp. 163–174.

[14] V. Roussev, “Data fingerprinting with similarity digests,” in IFIP Inter-
national Conference on Digital Forensics. Springer, 2010, pp. 207–226.

[15] ——, “An evaluation of forensic similarity hashes,” digital investigation,
vol. 8, pp. S34–S41, 2011.

[16] Mandiant. (2014) Tracking malware with import hashing.
[Online]. Available: https://www.fireeye.com/blog/threat-research/2014/
01/tracking-malware-import-hashing.html

[17] VirusTotal. (2019) YARA in a nutshell. [Online]. Available: https:
//virustotal.github.io/yara/

[18] Readthedocs. (2019) Writing YARA rules. [Online]. Available:
https://yara.readthedocs.io/en/v3.5.0/writingrules.html

[19] N. Naik, P. Jenkins, R. Cooke, D. Ball, A. Foster, and Y. Jin, “Augmented
windows fuzzy firewall for preventing denial of service attack,” in IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 2017.

[20] N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 759–766.

[21] ——, “Enhancing windows firewall security using fuzzy reasoning,” in
IEEE International Conference on Dependable, Autonomic and Secure
Computing, 2016, pp. 263–269.

[22] Hybrid-Analysis. (2019) Hybrid Analysis. [Online]. Available: https:
//www.hybrid-analysis.com/

[23] Malshare. (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. [Online].
Available: https://malshare.com/index.php

[24] VirusTotal. (2019) Virustotal. [Online]. Available: https://www.
virustotal.com/#/home/upload

[25] N. Naik, P. Jenkins, R. Cooke, and L. Yang, “Honeypots that bite back:
A fuzzy technique for identifying and inhibiting fingerprinting attacks on
low interaction honeypots,” in IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2018.

[26] N. Naik and P. Jenkins, “A fuzzy approach for detecting and defending
against spoofing attacks on low interaction honeypots,” in 21st Interna-
tional Conference on Information Fusion. IEEE, 2018, pp. 904–910.

[27] N. Naik, P. Jenkins, and N. Savage, “Threat-aware honeypot for discov-
ering and predicting fingerprinting attacks using principal components
analysis,” in IEEE Symposium Series on Computational Intelligence
(SSCI), 2018.

[28] N. Naik and P. Jenkins, “Discovering hackers by stealth: Predicting
fingerprinting attacks on honeypot systems,” in IEEE International
Symposium on Systems Engineering (ISSE), 2018.

[29] F. Roth. (2018) yarGen is a generator for YARA rules. [Online].
Available: https://github.com/Neo23x0/yarGen

[30] ——. (2017) How to post-process YARA rules generated
by yarGen. [Online]. Available: https://medium.com/@cyb3rops/
how-to-post-process-yara-rules-generated-by-yargen-121d29322282

[31] Y. Tan, H. P. H. Shum, F. Chao, V. Vijayakumar, and
L. Yang, “Curvature-based sparse rule base generation for fuzzy
rule interpolation,” Journal of Intelligent & Fuzzy Systems,
Feb. 2019. [Online]. Available: https://content.iospress.com/articles/
journal-of-intelligent-and-fuzzy-systems/ifs169978

[32] L. Yang, F. Chao, and Q. Shen, “Generalized adaptive fuzzy rule
interpolation,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp.
839–853, Aug 2017.

[33] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Transactions
on Fuzzy Systems, vol. 19, no. 6, pp. 1107–1126, Dec 2011.

[34] J. Li, L. Yang, Y. Qu, and G. Sexton, “An extended takagi–sugeno–kang
inference system (tsk+) with fuzzy interpolation and its rule base
generation,” Soft Computing, vol. 22, no. 10, pp. 3155–3170, May
2018. [Online]. Available: https://doi.org/10.1007/s00500-017-2925-8

[35] L. Yang and Q. Shen, “Closed form fuzzy interpolation,” Fuzzy Sets
and Systems, vol. 225, pp. 1 – 22, 2013, theme: Fuzzy Systems.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0165011413001486

[36] N. Naik, C. Shang, Q. Shen, and P. Jenkins, “D-FRI-CiscoFirewall:
Dynamic fuzzy rule interpolation for Cisco ASA Firewall,” in IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019.

[37] N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and its
application to intrusion detection,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 4, pp. 1878–1892, 2018.

[38] ——, “Genetic algorithm-aided dynamic fuzzy rule interpolation,” in
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014,
pp. 2198–2205.

[39] N. Naik, R. Diao, C. Quek, and Q. Shen, “Towards dynamic fuzzy
rule interpolation,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 2013, pp. 1–7.

[40] N. Naik, R. Diao, C. Shang, Q. Shen, and P. Jenkins, “D-FRI-
WinFirewall: Dynamic fuzzy rule interpolation for windows firewall,” in
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017.

[41] N. Naik, C. Shang, Q. Shen, and P. Jenkins, “Intelligent dynamic
honeypot enabled by dynamic fuzzy rule interpolation,” in The 4th IEEE
International Conference on Data Science and Systems (DSS-2018).
IEEE, 2018, pp. 1520–1527.

[42] ——, “Vigilant dynamic honeypot assisted by dynamic fuzzy rule
interpolation,” in IEEE Symposium Series on Computational Intelligence
(SSCI), 2018.

[43] N. Elisa, L. Yang, F. Chao, and Y. Cao, “A framework of blockchain-
based secure and privacy-preserving e-government system,” Wireless
Networks, Dec 2018. [Online]. Available: https://doi.org/10.1007/
s11276-018-1883-0

