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Abstract 18 

 19 

Microclimate has been known to drive variation in the distribution and abundance of insects for some time. Until 20 

recently however, quantification of microclimatic effects has been limited by computing constraints and the 21 

availability of fine-scale biological data. Here, we tested fine-scale patterns of persistence/extinction in 22 

butterflies and moths against two computed indices of microclimate derived from Digital Elevation Models: a 23 

summer solar index, representing fine-scale variation in temperature, and a topographic wetness index, 24 

representing fine-scale variation in moisture availability. We found evidence of microclimate effects on 25 

persistence in each of four 20 x 20 km British landscapes selected for study (the Brecks, the Broads, Dartmoor, 26 

and Exmoor). Broadly, local extinctions occurred more frequently in areas with higher minimum or maximum 27 

solar radiation input, while responses to wetness varied with landscape context. This negative response to 28 

solar radiation is consistent with a response to climatic warming, wherein grid squares with particularly high 29 

minimum or maximum insolation values provided an increasingly adverse microclimate as the climate warmed. 30 

The variable response to wetness in different landscapes may have reflected spatially variable trends in 31 

precipitation. We suggest that locations in the landscape featuring cooler minimum and/or maximum 32 

temperatures could act as refugia from climatic warming, and may therefore have a valuable role in adapting 33 

conservation to climatic change. 34 

 35 

Keywords 36 

 37 

Global change, topoclimate, microrefugia, range shift, habitat, topography.  38 
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Introduction 39 

 40 

British butterflies and moths have been the subject of a rich history of research into their relationship to climate, 41 

and particularly their response to recent climatic change (e.g. Pollard 1988, Warren et al. 2001). This research 42 

has helped conservation organisations plan for and manage future change. However, as the focus shifts 43 

towards conducting conservation at the landscape level (Lawton et al. 2010, Ellis et al. 2012), these 44 

organisations need to know where in the landscape species stand the best chance of persisting, so that the 45 

protection of these areas can be prioritised (Lawson et al. 2012, 2014). If these more resilient locations can be 46 

determined, and the specific attributes of the land that lead to their high quality ascertained, then the 47 

performance of spatial prioritisation undertaken across the wider landscape can be improved. 48 

 49 

A small but growing body of literature suggests that microclimate (fine-scale climate, and its spatial variation) 50 

may play an important role in modifying species’ responses to climatic change. Microclimate has been known to 51 

be an important modifier of the broader macroclimate for some time (Kraus 1911, Geiger 1927), but measuring 52 

it (Chen et al. 1999) and modelling it (Gillingham et al. 2012) at fine spatial and temporal resolutions has not 53 

been possible until recent advances in microchip technology and computing. Fortunately, comprehensive 54 

databases of high resolution natural history records, such as those in the Butterflies for the New Millennium 55 

(BNM) and National Moth Recording Scheme (NMRS) datasets, present the means to identify associations of 56 

species with local habitat features like microclimate. Although some studies have tested these fine-scale 57 

species data for a response to temporal variability in the climate (e.g. Suggitt et al. 2012, Letten et al. 2013, 58 

Oliver et al. 2013), the microclimatic features of landscapes or regions that can help species persist under 59 

climatic change have rarely been tested  (but see Suggitt et al. 2014). While our mechanistic understanding of 60 

microclimate is improving (Wang et al. 2013), deployment of this type of model is often limited to resolutions of 61 

1 km or coarser, and to limited spatial extents (for which ground-truthing data are required for validation 62 

purposes). Statistical downscaling (e.g. Haylock et al. 2008) offers a useful proxy for climatic conditions on the 63 

ground, but its reliability is constrained by the quality and density of meteorological observations, which will not 64 

be available for all landscapes of interest (Ashcroft and Gollan 2012).  65 

 66 

Hence tests involving a combination of fine-scale, multispecies datasets and microclimate beyond the 67 

boundaries of wildlife sites are rare (see Bennie et al. 2013 and Ashcroft et al. 2014 for single species 68 

examples). Here, we attempt such a test. We assembled fine-scale records of a well-recorded species group 69 
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(Lepidoptera) for four British landscapes whose topographic and land cover features were identified as 70 

providing potentially refugial conditions from climatic change for species at a national level (Suggitt et al. 2014). 71 

The landscapes were 20 x 20 km grid squares in two upland landscapes of south-west England (Dartmoor and 72 

Exmoor in the county of Devon), and two lowland landscapes of eastern England (The Brecks and The Broads 73 

in Suffolk and Norfolk). We tested recent (~ 40 year) patterns of persistence in the Lepidoptera for a signature 74 

of microclimate, while controlling for other effects (e.g. agricultural intensity) that may have modified responses 75 

at this scale. We used simple, topographically-derived indices of microclimate to represent spatial variation in 76 

temperature and wetness at this scale. We tested the following hypotheses: 77 

 78 

1) Patterns of persistence and extinction in the Lepidoptera have responded to spatial variation in the 79 

microclimate. 80 

2) Patterns of persistence and extinction in the Lepidoptera have responded to spatial extremity in the 81 

microclimate. 82 

3) Responses consistent with 1) or 2) were stronger in heterogeneous landscapes where spatial variation 83 

in the climate was larger. 84 

 85 

Methods 86 

 87 

Biological data 88 

Butterfly (BNM) and macromoth (NMRS) data were obtained from Butterfly Conservation and the Centre for 89 

Ecology and Hydrology’s (CEH) Biological Records Centre for four 20 km x 20 km landscapes (Table 1, 90 

Appendix 1 and 2). Two of these (The Brecks, The Broads) have low topographic heterogeneity, while the other 91 

two have high topographic heterogeneity (Dartmoor, Exmoor). This provided a test of the microclimate indices 92 

in both types of landscape. The four landscapes offered different mixes of species: The Broads records 93 

included moth species, and with Dartmoor also had more records of habitat specialists than Exmoor or the 94 

Brecks (Appendix 2). 95 

 96 

Records from the BNM & NMRS are tagged with a location on the Ordnance Survey of Great Britain (OSGB) 97 

national grid. Since 2000, most records are located to a resolution of 100 m x 100 m grid squares, but coarser 98 

resolutions (up to 10 km x 10 km) were common in earlier years. We conducted our analysis at 1 km precision 99 

to maximise the inclusion of older records whilst minimizing the probability that records were assigned to the 100 
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wrong grid square. Records were sorted into two temporal groupings 1971-1990, and 1991-2010, which were 101 

treated as pre- and post-climatic warming conditions. We classified each occupied 1 km grid square in the first 102 

time period as either a ‘persistence’ or an ‘extinction’ depending on whether the species was also recorded 103 

during the second time period. Extinctions were only confirmed if the corresponding grid square had been 104 

visited by a (Lepidoptera) recorder in the second time period. For each 20 km landscape, we included only 105 

those species for which persistence or extinction could be classified in at least fifteen separate 1 km grid 106 

squares. 107 

 108 

Microclimate data 109 

NEXTMap Digital Elevation Models (DEMs, Intermap Technologies 2007) for the four study landscapes were 110 

obtained from NERC’s Earth Observation Data Centre. These report terrain elevation at the 5 m grid square 111 

level. For each of these 5 m grid squares in each study landscape, we calculated two indices of microclimate 112 

(also see Figure 1 panels a,b): 113 

 114 

1) Temperature proxy- Summer solar index 115 

To provide a proxy of fine-scale variations in surface temperature, we calculated a solar index. This index 116 

measures the proportion of direct beam solar radiation (i.e. that which is not reflected or scattered – also 117 

termed insolation) that reaches a surface. Although differences between fine-scale surface and regional 118 

temperatures are also affected strongly by factors such as cloud cover and wind speed, direct beam radiation 119 

has been shown to serve as a useful proxy of fine-scale variations in surface temperatures (Bennie et al. 2008) 120 

and concomitant variations in the biota (Bennie et al. 2006). Topography influences direct beam radiation by 121 

affecting the incidence angle between the sun and surface, and can be calculated from the slope inclination 122 

and aspect and from the solar altitude and azimuth, which are themselves contingent on the time of day and 123 

year and geographic location of the surface. Because different species of Lepidoptera are sensitive to 124 

temperature at different times of year, we calculated this index for Midsummer’s day (21
st
 June) to approximate 125 

mid-season conditions. Our algorithm, based on that provided in Šúri and Hofierka (2004), also accounted for 126 

shading, whereby the direct radiation may be obscured by topographic features at certain times of day. 127 

 128 

2) Water availability proxy- Topographic wetness index 129 

The topographic wetness index provides a proxy of fine-scale variations in water availability. Basin flow 130 

accumulation was calculated from the DEM, which in turn was used to define the contributing area (the property 131 

known as a, Equations 1 and 2) for each grid square. This was combined with information on slope angle to 132 
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generate the index (following Beven and Kirkby 1979). Using this approach, valley bottoms (which have a high 133 

contributing area) are considered to be wetter than mountain tops, and flat areas (which have low surface run-134 

off) are considered to be wetter than areas with steep slopes. 135 

 136 

 137 

 138 

Both microclimate indices rely on information from the surrounding landscape to calculate values for the target 139 

grid square robustly. We therefore included a five kilometre buffer around our landscapes to ensure that 140 

estimates of topographic shading and basin flow were accurate (this was checked via watershed analysis). To 141 

summarise the 5 m indices at the 1 km level, we calculated measures of variation (standard deviation, 142 

hypothesis 1) and extremity (5
th
 and 95

th
 percentiles, hypothesis 2) within each 1 km grid square for the 143 

landscape (i.e. drawing from 200 x 200 = 40,000 observations in each 1 km square, Figure 1 panels c, d). 144 

 145 

Control variables 146 

The persistence or extinction of species can respond to multiple drivers of change. Perhaps most prominent 147 

among these, habitat change and loss have been a key driver of biodiversity loss worldwide, notably so in 148 

British butterflies (Warren et al. 2001) and moths (Fox et al. 2014). We used the CEH Land Cover Map (Morton 149 

et al. 2011) to calculate the proportion of each 1 km grid square containing arable land, horticultural land, or 150 

improved pasture (unfortunately a national dataset of habitat change- specifically agricultural intensification- is 151 

not available, Mair et al. 2014). This measure of agricultural intensity was inserted into our statistical models as 152 

a control. Because recorder effort in almost all large biological datasets is variable, and low effort increases the 153 

chance of determining the false absence of (any) species, we also calculated the recorder effort (total number 154 

of recorder visits between 1971 and 2010) for each 1 km grid square to include as a control. Because this 155 

recorder effort has increased over time, both in Britain and in our four study landscapes (Asher et al. 2001), 156 

apparent extinctions are more likely to be genuine (although this is an implicit assumption of our analyses). 157 

 158 

Statistical modelling framework 159 

Equations 1 and 2 Calculating the topographic wetness index 
 
Topographic wetness index = loge ( a / Tan β)       (1) 
 
Where β is the slope angle and a is the contributing area, which can be derived from flow accumulation 
as follows: 
 
a = (flow accumulation + 1) x grid square resolution

2
      (2) 
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For each landscape, we matched the 1 km records of Lepidoptera to the microclimatic indices and control 160 

variables in R (R Core Team 2013), before constructing logistic regression models to test our hypotheses. We 161 

fitted Generalised Linear Mixed Models (GLMMs) to our binomial (Persist/Extinct) response data using the 162 

‘lme4’ package (Bates et al. 2014) with a ‘logit’ link function. Species identity was treated as a random 163 

intercept; hence models were built on all the species records within a landscape. We built 24 separate models 164 

to test each microclimate measure (n=6) in each study landscape (n=4). Conventional (Wald-type) means of 165 

estimating 95% confidence intervals for parameter estimates within a GLMM framework may not be robust for 166 

lower sample sizes. Here, we used the (more conservative) profile log-likelihood method (Venzon and 167 

Moolgavkar 1988). Akaike’s Information Criterion (AIC, Burnham and Anderson 2002) was calculated for each 168 

model to assess the performance of models including microclimate against models including only control 169 

variables (recorder effort, agricultural intensity), in an information-theoretic approach. 170 

 171 

Fitting models to the data permitted the testing of hypotheses 1) and 2), namely a response of persistence to 172 

spatial variation or extremity in the microclimate (in a manner that was statistically detectable). However, to test 173 

how useful this information could be in a conservation sense, we generated model predictions of persistence in 174 

response to an example microclimate measure. If the relationships described above (Figure 4, Appendix 3) 175 

were apparent in these predictions once the control effects of levels of recording and agricultural intensity had 176 

been included, then it can be inferred that the effect in question is driving differences in rates of persistence in 177 

that landscape, over and above the controls. For example, a model fitted with a microclimate variable could still 178 

achieve an AIC improvement of more than two over the controls-only model even if patterns of agricultural 179 

intensity were actually the dominant driver of persistence in that landscape. In this case, the relationship to a 180 

particularly variable or extreme microclimate could be a genuine one, but its effect would be overwhelmed by a 181 

response to the other measure. Model predictions for persistence at the 1 km level were generated using the 182 

‘predict’ function within lme4 (Bates et al. 2014). Agreement between these predictions and the corresponding 183 

observations was assessed by calculating the degree of covariance (σ) between the two. 184 

 185 

We used a number of techniques to measure and account for spatial autocorrelation in the data, including 186 

repeating analyses at the 2 km grid square level. The 2 km analyses also provided a check of the sensitivity of 187 

our results to potential false absences in the second period. 188 

 189 

Results 190 
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 191 

Temperature proxy- Summer solar index 192 

We estimated larger levels of variability in summer insolation in the two more topographically heterogeneous 193 

landscapes (Dartmoor, Exmoor) than in the flatter landscapes (Brecks, Broads; Figure 2). Exmoor seemed to 194 

generate the widest range of solar index values of all the landscapes, with the Brecks being the least variable. 195 

These differences were apparent in all three measures of insolation at the 1 km level: low (5
th
 percentile, Figure 196 

2 panels a,b), low (95
th
 percentile, Figure 2e,f) and variable (SD, Figure 2c,d) insolation. The standard deviation 197 

in solar index was an order of magnitude greater in the more variable landscapes than in the less variable 198 

landscapes. 199 

 200 

Water availability proxy- Topographic wetness index 201 

The flatter landscapes were estimated to be (topographically) wetter than the heterogeneous landscapes 202 

(Figure 3a,b,e,f), particularly so for 1 km grid squares with extremely dry conditions (5
th
 percentile wetness). 203 

Although median variability in topographic wetness was broadly similar across both types of landscape, the 204 

range of standard deviation values in the heterogeneous landscapes was larger (Figure 3c,d). 205 

 206 

Statistical modelling of persistence 207 

There was evidence that variability and extremity in the microclimate affected persistence in all landscapes 208 

(Table 2, Figure 4, Appendix 3). Models including some measure of microclimate performed better than 209 

controls-only models (including land cover and recording effort effects) in 7 of the 8 combinations of landscape 210 

and microclimate proxy. Broadly, responses to higher minimum and maximum values of solar index were 211 

negative (Figure 4), while responses to wetness differed between the landscapes. We proceed with detailed 212 

descriptions of the model results by landscape. 213 

 214 

Brecks 215 

For the Brecks data, a single model performed better (Δ AIC < 2) than the controls-only model. This model was 216 

fitted with the 5
th
 percentile topographic wetness index values, and the response was positive, indicating that 217 

persistence responded positively to higher minimum wetness conditions (Appendix 3). The slope value of 0.67 218 

(Table 2) can be interpreted thus: every unit increase in the 5th percentile of our topographic wetness measure 219 

(calculated per 5 m grid square in each 1 km grid square) increased the log odds of a typical species of 220 

butterfly persisting by a factor of 0.67 (holding all other effects constant). By taking the exponent of this value, a 221 

unit increase in the 5th percentile of our topographic wetness measure increased the odds of a butterfly or moth 222 
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persisting by a factor of 1.96, or in other words, for every unit increase in wetness, a typical species was almost 223 

twice as likely to persist in 1 km grid squares with fewer areas of extreme dry conditions as go extinct. In terms 224 

of the control variables, agricultural intensity had a predictably negative effect on persistence. Here, a unit 225 

increase in agricultural intensity decreased the odds of butterfly persistence by a factor of 0.17 (an 83% 226 

decrease in the odds). Given that our measure represents the proportion of the land occupied by arable and 227 

horticultural land, ranging between 0 and 1 (i.e. an entire ‘unit’), this effect could be interpreted as being 228 

relatively modest: a 1% increase in agricultural intensity reduced the odds of persistence by 0.83%. 229 

 230 

Broads 231 

Lepidoptera in the Broads showed the widest range of responses to microclimate of all the study landscapes, 232 

with five of the six microclimate models performing better than control (Table 2). Models built with the 5
th
 233 

percentile topographic wetness index values and the 95
th
 percentile summer solar index values performed 234 

notably better than other types of microclimate model, however. These models implied a negative response to 235 

high maximal solar index values and a positive response to higher minimum wetness (Figure 4a,b, Appendix 3). 236 

These results suggest that species were less likely to have persisted in 1 km grid squares that contained either 237 

the driest or hottest conditions in the landscape. Note that parameter estimates for all models containing the 238 

summer solar index (Appendix 3) were divided by 100 prior to calculating the probabilities in Figure 4a, to aid 239 

readability and ensure the resulting ratios have more ‘real world’ relevance. Hence, for example, the Dartmoor 240 

5
th
 percentile probability of 0.48 in Figure 4a represents a decrease in the probability of persistence by 0.02, or 241 

2% (0.5-0.48), for every increase of 0.01 in the 5
th
 percentile summer solar index. 242 

 243 

Dartmoor 244 

Dartmoor was the only landscape in which Lepidoptera responded negatively to wetness, with species 245 

persistence higher in grid squares with a lower minimum (5
th
 percentile) wetness score (Figure 4b) i.e. the 246 

driest parts of the squares appeared to favour persistence. Species also responded negatively to higher 247 

minimum insolation, and positively to heterogeneity in solar regime (Figure 4a). These models could not be 248 

separated based on our performance criterion (Table 2): the former model suggested that species had a 249 

greater chance of persistence in 1 km squares where some very cool conditions were available; while the latter, 250 

potentially related, model suggested that a wide variety of levels of solar insolation favoured persistence in 1 251 

km squares.  252 

 253 

Exmoor 254 
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Microclimate models performed better than control in two of the six combinations of microclimate index and 255 

measure, although the improvement in AIC was marginal in both cases (Δ AIC < 4). These implied responses 256 

were a negative response to extremely high solar index values (Figure 4a; note that the confidence intervals 257 

are masked by the plot symbol), and a positive response to higher minimum wetness (Figure 4b). The direction 258 

of the responses was thus similar to that estimated for the Broads, with species less likely to persist in squares 259 

containing the hottest or driest conditions in the landscape. 260 

 261 

Testing model predictions 262 

Models including the 5
th
 percentile measure of topographic wetness index were responsible for the ‘best’ model 263 

in two of the four landscapes (Brecks and Dartmoor), and had an AIC score of only 1.1 and 3.2 above the ‘best’ 264 

model in the other two landscapes (Exmoor and Broads, respectively). The 5
th
 percentile topographic wetness 265 

measure was also the only variable to achieve an AIC score improvement in all four landscapes relative to the 266 

controls-only model (Table 2). Therefore, for consistency we proceeded with this variable to assess the 267 

predictive ability of models fitted with microclimate in each landscape. 268 

 269 

Evidence for the signature of microclimate effects on lepidopteran persistence in the four landscapes was 270 

mixed (Figure 5), although the beneficial effect of extreme low wetness in Dartmoor was apparent (Figure 5c), 271 

with a close fit between the observed and modelled probability of persistence for species in the landscape. 272 

Observed and predicted persistence values exhibited positive covariance in two landscapes (Dartmoor σ: 273 

0.0700; Broads σ: 0.0300) and negative covariance in the other two landscapes (Brecks σ: -0.0040; Exmoor σ: 274 

-0.0003), indicating that established relationships to topographic wetness were more likely to be the dominant 275 

driver of persistence in these former two landscapes (Dartmoor, Broads) than in the latter two (Brecks, 276 

Exmoor). Results from analyses at 2 km grid square level were consistent with those conducted at 1 km grid 277 

square level (Appendix 4). 278 

 279 

Discussion 280 

 281 

Did patterns of persistence and extinction in the Lepidoptera respond to spatial variation in, or 282 

extremity of, the microclimate? 283 

We detected a number of effects of spatial variation and extremity in the microclimate on persistence patterns 284 

in the Lepidoptera (Table 2, Appendix 3). Our model selection criteria identified that 11 of the 24 possible model 285 
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combinations of microclimate variable and landscape performed better than control, and in all these cases, the 286 

microclimate effect was statistically significant. In terms of Hypothesis 1 (namely: “Patterns of persistence and 287 

extinction in the Lepidoptera have responded to spatial variation in the microclimate”), standard deviation in 288 

solar index was (jointly) responsible for the ‘best’ model in the Dartmoor landscape, and 3 of the 8 possible 289 

models for microclimate variability across the four landscapes performed better than the controls-only 290 

equivalent. In three landscapes (and jointly in Dartmoor, Table 2) ‘best’ models comprised responses to 291 

extreme microclimate, and models fitted with measures of extreme microclimate outperformed the controls-only 292 

model in 8 of 16 cases, offering support for Hypothesis 2 (“Patterns of persistence and extinction in the 293 

Lepidoptera have responded to spatial extremity in the microclimate”). 294 

 295 

Taking the measure with the most evidence of an effect on persistence across the Lepidoptera group in our 296 

study landscapes (5
th
 percentile measure of topographic wetness index), the ability of these models to predict 297 

persistence was mixed (Figure 5). It is perhaps relevant that the microclimate effects were more evident in the 298 

predicted values for the landscapes that offered more records for model fit (Dartmoor and the Broads, n = 299 

1719, 2133 respectively), while the microclimate effects were less apparent in landscapes that were less well 300 

observed (Exmoor and the Brecks, n = 538, 1051). Positive covariance between observed and predicted 301 

persistences in the Broads and Dartmoor landscapes lends weight to the predictive ability of these models. The 302 

(weakly negative) covariance observed in the other two landscapes (Brecks, Exmoor) may however reflect a 303 

lack of statistical power in their respective datasets, which would reduce the likelihood of discerning a 304 

microclimate effect. There may also be a genuinely diminished effect of microclimate in these landscapes 305 

(Brecks, Exmoor), variation in the hydrological requirements of the constituent species within each landscape, 306 

or differential patterns of rainfall change, which are often variable in space (Jenkins et al. 2008). It is also 307 

important to remember that the microclimatic conditions created by topography interact with habitat 308 

management to determine both the probability of population presence, and vulnerability to change. If the 309 

populations of many Lepidoptera are associated with relatively warm or dry pockets of the landscape at their 310 

northern range limits (e.g. Lawson et al. 2012, Suggitt et al. 2012), then populations in precisely such locations 311 

could be vulnerable to climatic variability, or to changes in management.   312 

 313 

Were responses to microclimate stronger in landscapes where microclimatic heterogeneity was 314 

greater? 315 

Solar index heterogeneity was estimated to be an order of magnitude greater in Dartmoor and Exmoor than in 316 

the Brecks and Broads (Figure 2c,d), while heterogeneity in topographic wetness in these landscapes was 317 
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estimated to be broadly similar (Figure 3c,d). Models containing some measure of solar index were the ‘best’ 318 

models for both Dartmoor and Exmoor, according to AIC. In Exmoor, the AIC values would suggest that this 319 

was predominantly a negative response to extremely high insolation values, rather than heterogeneity per se. 320 

The Lepidoptera in Dartmoor seemed to respond both: a) negatively where local availability of ‘cooler’ solar 321 

index values was low, and b) positively where local heterogeneity in solar index was high. This is the type of 322 

response that could be expected for any temperature-sensitive species subject to warming at a given location, 323 

with availability of the coolest microclimates increasingly important in hotter years. In these cases, such 324 

habitats may offer an escape from hotter conditions, with heterogeneity being of benefit to any species that can 325 

modify its habitat association to dampen the extremes of macroclimate fluctuation (Krämer et al. 2012, Suggitt 326 

et al. 2012, Oliver et al. 2013). 327 

 328 

Conservation implications 329 

We found evidence for microclimatic effects in all our study landscapes, but these effects were not necessarily 330 

consistent in their direction. Species can respond to extremely high or low temperatures, or neither; for our 331 

study, this will have depended on the position of our study landscapes within the species’ thermal niches 332 

(Settele et al. 2008), and the thermal requirements of the study species during midsummer. Responses to 333 

extreme levels of higher incoming solar radiation were mostly negative (Figure 4), while in Dartmoor, species 334 

seemed to benefit from higher levels of heterogeneity in local solar regime. Although there is little that 335 

conservationists can do at the site level to alter the solar regime, at a regional level, landscape-scale 336 

conservation projects could incorporate microclimatic diversity (especially ensuring protections of habitats or 337 

locations supporting cooler microclimates) into approaches to spatial prioritisation. In areas lacking this 338 

heterogeneity (in this study the Brecks and Broads), an alternative approach could be slope creation, which has 339 

already been implemented successfully in a number of conservation projects elsewhere (e.g. in Wiltshire, 340 

RSPB 2010; Sussex, Danahar 2011), Managing the height and density of vegetation may also be an option, 341 

and indeed some lepidopterans have already demonstrated that they can shift into taller vegetation if required 342 

(Polyommatus bellargus, cf. Roy and Thomas 2003). Such interventions should always form part of a wider 343 

consideration of species’ habitat requirements, and although we exclude new colonisations from our analysis, 344 

the conditions necessary to encourage such colonisations (thereby enhancing the probability of successful 345 

range shifting) must also be preserved and encouraged wherever possible. 346 

 347 

Reponses to wetness were both positive and negative, depending upon the context. This could reflect the 348 

varying patterns (and indeed direction) of change in precipitation that landscapes in Britain have experienced 349 
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over the last 40 years (Jenkins et al. 2008), making a generic prescription for hydrological management for the 350 

benefit of Lepidoptera more difficult. Future rainfall in Britain, as in many mid-latitude regions, is projected to 351 

become more erratic and more intense. The likely effect of these projected trends on the conservation of 352 

Lepidoptera and insects generally is unclear. Nevertheless, the impact of any shift towards less reliable rainfall 353 

and a greater prevalence of drought-type conditions is likely to negate any benefit for Lepidoptera from a 354 

broader shift in the climate towards warmer mean temperatures (Oliver et al. 2013), despite many species 355 

being at the northern limits of their distributions and hence expected to be limited by the availability of warm 356 

conditions. Given the drying trend already observed and expected under future warming for the East of England 357 

region (Jenkins et al. 2008, Murphy et al. 2009), the negative effects of extreme dryness we discerned for the 358 

Brecks and Broads are likely to become more pronounced in the future. Prioritisation of wetter areas for 359 

conservation will in fact be easier to achieve than a prioritisation of heterogeneity, as mapping them does not 360 

require fine-scale analyses of the type required to adequately capture topographic heterogeneity. The likelihood 361 

of a positive regional or landscape-level response by Lepidoptera to climatic change is mitigated by the size, 362 

quality and configuration of suitable habitat (Oliver et al. 2013, Mair et al. 2014), meaning that adapting our 363 

conservation approach to climatic change cannot proceed without a broader approach that also addresses 364 

these factors. However, our observations suggest that the underlying effects of microclimate need to be taken 365 

account when planning conservation measures to enhance connectivity or local habitat quality. 366 

 367 
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Fig. 1 Indices of microclimate were calculated for every 5 m OSGB square in the study landscapes. Panels (a) 
and (b) show an example calculation of summer solar index values for Dartmoor at the 5 m level. Summary 
measures of the microclimate within each 1km square were derived from these data (c), while retaining spatial 
information (d). This process was repeated across each landscape (example of the standard deviation in 
summer solar index for Dartmoor, panel e; see also Fig. 2). These values were matched to data describing 
persistence and extinction in the Lepidoptera (e.g. Green hairstreak, panel f) for statistical analysis. 
 
(a)       (b)  

  
 

(c)       (d) 

 
(e)       (f) 

  

5% -s.d. Mean +s.d. 95% 



Fig. 2 Values of the summer solar index used in analyses. First, summer solar index was calculated for every 5 
m grid square in each landscape. Second, these data were summarised at the 1 km grid square level by 
calculating the 5

th
 percentile (panels a and b), standard deviation (c and d), and 95

th
 percentile (e and f) the 5 m 

values within that square. Landscapes selected for study offered both low topographic heterogeneity (panels 
a,c,e)  and high topographic heterogeneity (b,d,f). 
 
(a)       (b) 

 
(c)       (d) 

 
(e)       (f) 

 



Fig. 3 Values of the topographic wetness index used in analyses. First, topographic wetness index was 
calculated for every 5 m grid square in each landscape. Second, these data were summarised at the 1 km grid 
square level by calculating the 5th percentile (panels a and b), standard deviation (c and d), and 95th percentile 
(e and f) of the 5 m values within that square. Landscapes selected for study offered both low topographic 
heterogeneity (panels a,c,e)  and high topographic heterogeneity (b,d,f). 
(a)       (b)

 
(c)       (d) 

 
(e)       (f) 

 



Fig. 4 Effects of microclimate on the probability of persistence in Lepidoptera. Effects are only included if the 
GLMM it was built with achieved an AIC of more than two points below the control model. The effects of: (a) a 
0.01 unit increase in summer solar index measures, and (b) a unit increase in topographic wetness index 
measures on persistence probability are presented. The ‘best’ model for each landscape (lowest AIC) is 
coloured in black, with other models coloured in grey. The two Dartmoor solar index models differed by less 
than two in their AIC score, and hence a ‘best’ model could not be determined. See Appendix 3 for full models. 
 
(a) Summer solar index 
 

 
(b) Topographic wetness index 
 

  



Fig. 5 Predicted and observed persistence in the Lepidoptera at various levels of the 5
th
 percentile topographic 

wetness index measure (calculated at the 1 km level). Solid lines indicate mean persistence observed in the 
raw data at each level of wetness. Dotted lines indicate model predicted persistence at the corresponding level 
of wetness. Values for the level of covariance between observed and predicted persistence in each landscape 
appear in brackets. 
 
(a) Brecks (σ = -0.0040)     (b) Broads (σ = 0.0300) 
 

    
 
 
(c) Dartmoor (σ = 0.0700)    (d) Exmoor (σ = -0.0003) 
 

      
 



Fig. S1 Semivariograms for values of species persistence recorded across the four study landscapes. 
Semivariance (y-axis) was calculated between pairs of points at separation distances (x-axis) of up to 20km. 
 
 
(a) Brecks        (b) Broads 

   
 
 
(c) Dartmoor        (d) Exmoor  

 



 
 

 
  

 
Table 1 Lepidoptera species data included in statistical models. Here, we use the word ‘record’ to represent the 
recorded persistence or extinction of a species in a 1 km grid square. Species lists for each landscape are 
included in Appendix 2. 
 

Landscape n (species) n (records) n (persistences) n (extinctions) 

Brecks 22 1051 647 404 

Broads 88 2133 734 1399 

Dartmoor 30 1719 901 818 

Exmoor 9 538 118 420 



 
 

Table 2 Change in information theoretic estimates of Akaike’s Information Criterion (‘ΔAIC’, Burnham and 
Anderson 2002) for Generalised Linear Mixed Models (GLMMs) fitted with indices of microclimate, relative to 
those fitted solely with control variables. Values in bold highlight models including microclimate that achieved 
an improvement in AIC of more than 2 points. A star indicates the microclimate variable was statistically 
significant (p < 0.05). 

Landscape 

ΔAIC for models featuring a microclimatic explanatory variable 

Topographic wetness index  Summer solar index 

Low Variable High  Low Variable High 

Brecks -9.0* -0.3 +1.8   +1.9 +1.5 +1.9 

Broads -38.4* -20.4* -6.0*   -0.2 -5.3* -31.7* 

Dartmoor -5.7* +1.0 +0.3   -8.9* -8.2* 1.5 

Exmoor -2.5* +1.7 +0.8   -0.1 -1.1 -3.6* 

   



 
 

Appendix 1 OSGB 10km (hectad) codes for the study landscapes. 
 

  
Landscape 10k hectad codes (grid squares) 

Brecks TL78, TL79, TL88 & TL89 

Broads TG31, TG32, TG41 & TG42 

Dartmoor SX67, SX68, SX77 & SX78 

Exmoor SS62, SS63, SS72 & SS73 



 
 

Appendix 2 List of species included in statistical models (by landscape). 
 

(a) Brecks (n=22) 

Scientific name Common name 

Aglais urticae Small Tortoiseshell 

Anthocharis cardamines Orange-tip 

Aphantopus hyperantus Ringlet 

Aricia agestis Brown Argus 

Coenonympha pamphilus Small Heath 

Gonepteryx rhamni Brimstone 

Hipparchia semele Grayling 

Inachis io Peacock 

Lycaena phlaeas Small Copper 

Maniola jurtina Meadow Brown 

Ochlodes faunus Large Skipper 

Pararge aegeria Speckled Wood 

Pieris brassicae Large White 

Pieris napi Green-veined White 

Pieris rapae Small White 

Polygonia c-album Comma 

Polyommatus icarus Common Blue 

Pyronia tithonus Gatekeeper 

Thymelicus lineola Essex Skipper 

Thymelicus sylvestris Small Skipper 

Vanessa atalanta Red Admiral 

Vanessa cardui Painted Lady 
 

(b) Broads (n=88) 

Scientific name Common name 

Abraxas grossulariata The Magpie 

Acronicta psi Grey Dagger 

Aglais urticae Small Tortoiseshell 

Agrotis exclamationis Heart & Dart 

Agrotis puta Shuttle-shaped Dart 

Anthocharis cardamines Orange-tip 

Apamea lithoxylaea Light Arches 

Apamea monoglypha Dark Arches 

Aphantopus hyperantus Ringlet 

Arctia caja Garden Tiger 

Arenostola phragmitidis Fen Wainscot 

Axylia putris The Flame 

Biston betularia Peppered Moth 

Cabera exanthemata Common Wave 

Cabera pusaria Common White Wave 

Campaea margaritata Light Emerald 

Celaena leucostigma The Crescent 

Coenonympha pamphilus Small Heath 



 
 

Broads species list continued… 

Scientific name Common name 

Cosmia trapezina Dun-bar 

Crocallis elinguaria Scalloped Oak 

Deilephila elpenor Elephant Hawk-moth 

Diachrysia chrysitis Burnished Brass 

Diarsia rubi Small Square-spot 

Discestra trifolii The Nutmeg 

Drepana falcataria Pebble Hook-tip 

Eilema griseola Dingy Footman 

Eilema lurideola Common Footman 

Ennomos alniaria Canary-shouldered Thorn 

Epirrhoe alternata Common Carpet 

Euproctis similis Yellow-tail 

Euthrix potatoria The Drinker 

Furcula furcula Sallow Kitten 

Gonepteryx rhamni Brimstone 

Habrosyne pyritoides Buff Arches 

Hoplodrina alsines The Uncertain 

Hydriomena furcata July Highflyer 

Hypena proboscidalis The Snout 

Idaea aversata Riband Wave 

Idaea dimidiata Single-dotted Wave 

Inachis io Peacock 

Lacanobia oleracea Bright-line Brown-eye 

Laothoe populi Poplar Hawk-moth 

Lasiommata megera Wall 

Lomaspilis marginata Clouded Border 

Lycaena phlaeas Small Copper 

Maniola jurtina Meadow Brown 

Mythimna ferrago The Clay 

Mythimna impura Smoky Wainscot 

Mythimna pallens Common Wainscot 

Mythimna straminea Southern Wainscot 

Noctua comes Lesser Yellow Underwing 

Noctua fimbriata Broad-bordered Yellow Underwing 

Noctua interjecta Least Yellow Underwing 

Noctua janthe Lesser Broad-bordered Yellow Underwing 

Noctua pronuba Large Yellow Underwing 

Notodonta dromedarius Iron Prominent 

Notodonta ziczac Pebble Prominent 

Ochlodes faunus Large Skipper 

Ochropleura plecta Flame Shoulder 

Opisthograptis luteolata Brimstone Moth 

Papilio machaon Old World Swallowtail 

Pelosia muscerda Dotted Footman 

Peribatodes rhomboidaria Willow Beauty 

  



 
 

Broads species list continued… 

Scientific name Common name 

Phalera bucephala Buff-tip 

Pheosia tremula Swallow Prominent 

Phlogophora meticulosa Angle Shades 

Phragmatobia fuliginosa Ruby Tiger 

Pieris brassicae Large White 

Pieris napi Green-veined White 

Pieris rapae Small White 

Polygonia c-album Comma 

Pterostoma palpina Pale Prominent 

Ptilodon capucina Coxcomb Prominent 

Pyronia tithonus Gatekeeper 

Rivula sericealis Straw Dot 

Scopula immutata Lesser Cream Wave 

Selenia dentaria Early Thorn 

Simyra albovenosa Reed Dagger 

Smerinthus ocellata Eyed Hawk-moth 

Thumatha senex Round-winged Muslin 

Thymelicus sylvestris Small Skipper 

Vanessa atalanta Red Admiral 

Vanessa cardui Painted Lady 

Xanthorhoe ferrugata Dark-barred Twin-spot Carpet 

Xanthorhoe spadicearia Red Twin-spot Carpet 

Xestia c-nigrum Setaceous Hebrew character 

Xestia triangulum Double Square-spot 

Xestia xanthographa Square-spot Rustic 

 

(c) Dartmoor (n=30) 

Scientific name Common name 

Aglais urticae Small Tortoiseshell 

Anthocharis cardamines Orange-tip 

Aphantopus hyperantus Ringlet 

Argynnis adippe High Brown Fritillary 

Argynnis aglaja Dark Green Fritillary 

Argynnis paphia Silver-washed Fritillary 

Boloria euphrosyne Pearl-bordered Fritillary 

Boloria selene Small Pearl-bordered Fritillary 

Callophrys rubi Green Hairstreak 

Celastrina argiolus Holly Blue 

Coenonympha pamphilus Small Heath 

Euphydryas aurinia Marsh Fritillary 

Gonepteryx rhamni Brimstone 

Hipparchia semele Grayling 

Inachis io Peacock 

Lasiommata megera Wall 

  



 
 

Dartmoor species list continued… 

Lycaena phlaeas Small Copper 

Maniola jurtina Meadow Brown 

Melanargia galathea Marbled White 

Neozephyrus quercus Purple Hairstreak 

Ochlodes faunus Large Skipper 

Pararge aegeria Speckled Wood 

Pieris brassicae Large White 

Pieris napi Green-veined White 

Pieris rapae Small White 

Polygonia c-album Comma 

Polyommatus icarus Common Blue 

Pyronia tithonus Gatekeeper 

Vanessa atalanta Red Admiral 

Vanessa cardui Painted Lady 

 

(d) Exmoor (n=9) 

Scientific name Common name 

Aglais urticae Small Tortoiseshell 

Anthocharis cardamines Orange-tip 

Aphantopus hyperantus Ringlet 

Maniola jurtina Meadow Brown 

Pararge aegeria Speckled Wood 

Pieris brassicae Large White 

Pieris napi Green-veined White 

Pyronia tithonus Gatekeeper 

Vanessa atalanta Red Admiral 
  



 
 

Appendix 3 Summary tables of GLMMs including microclimate that achieved an improvement in AIC of more 
than 2 points relative to a model including control variables only. Models fitted with measures of low (5

th
 

percentile), variable (standard deviation) and high (95
th
 percentile) microclimate are presented, for summer 

solar and topographic wetness indices. 
 

 
(a) 5

th
 percentile topographic wetness index, Brecks landscape 

 

Term Estimate S.E. z-value p 

Intercept -10.55 1.79 -5.91 3.42E-09 

log(records) 1.45 0.1 14.41 4.49E-47 

Agricultural intensity -1.79 0.39 -4.55 5.45E-06 

5th percentile topographic wetness index 0.67 0.20 3.33 0.000867 

 
 
 

 
(b) 5

th
 percentile topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -8.55 0.49 -17.38 1.14E-67 

log(records) 1.20 0.05 22.51 3.27E-112 

Agricultural intensity 0.76 0.25 3.02 0.002527 

5th percentile topographic wetness index 0.23 0.04 5.59 2.26E-08 

 
 
 

 
(c) Standard deviation (SD) in topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -6.32 0.37 -17.24 1.42E-66 

log(records) 1.25 0.05 22.67 7.94E-114 

Agricultural intensity -0.18 0.27 -0.69 0.492803 

SD in topographic wetness index -0.14 0.03 -4.83 1.39E-06 

 
 
 

 
(d) 95

th
 percentile topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -6.20 0.38 -16.22 3.63E-59 

log(records) 1.22 0.05 22.59 5.24E-113 

Agricultural intensity 0.05 0.26 0.19 0.845971 

95th percentile topographic wetness index -0.03 0.01 -2.87 0.004078 

  



 
 

 
(e) Standard deviation (SD) in summer solar index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -6.50 0.36 -18.12 2.08E-73 

log(records) 1.20 0.05 22.60 3.94E-113 

Agricultural intensity 0.32 0.24 1.34 0.180165 

SD in summer solar index -102.30 36.31 -2.82 0.004846 

 
 
 

 
(f) 95

th
 percentile summer solar index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept 20.86 34.96 0.60 0.55078 

log(records) 0.87 0.05 18.01 1.77E-72 

Agricultural intensity 1.03 0.31 3.39 0.000712 

95th percentile summer solar index -73.66 98.82 -0.75 0.456074 

 
 
 

 
(g) 5th percentile topographic wetness index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -0.59 1.08 -0.54 0.587215 

log(records) 0.90 0.05 16.76 4.50E-63 

Agricultural intensity -2.12 0.54 -3.90 9.69E-05 

5th percentile topographic wetness index -0.46 0.17 -2.78 0.005362 

 
 
 

 
(h) 5th percentile summer solar index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -0.32 1.02 -0.31 0.756238 

log(records) 0.91 0.05 17.23 1.58E-66 

Agricultural intensity -1.76 0.53 -3.34 0.000836 

5th percentile summer solar index -9.39 2.88 -3.25 0.001134 

  



 
 

 
(i) Standard deviation in summer solar index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -3.70 0.23 -16.14 1.24E-58 

log(records) 0.91 0.05 17.16 5.12E-66 

Agricultural intensity -1.78 0.53 -3.39 0.000711 

Standard deviation in summer solar index 28.98 9.19 3.15 0.001616 

 
 
 

 
(j) 5th percentile topographic wetness index, Exmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -11.28 2.81 -4.02 5.79E-05 

log(records) 1.52 0.16 9.47 2.75E-21 

Agricultural intensity 1.60 1.17 1.37 0.171372 

5th percentile topographic wetness index 0.99 0.46 2.14 0.03268 

 
 
 

 
(k) 95th percentile summer solar index, Exmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept 52.28 23.74 2.20 0.027673 

log(records) 1.47 0.15 9.48 2.58E-21 

Agricultural intensity 2.46 1.11 2.22 0.026702 

95th percentile summer solar index -159.85 65.82 -2.43 0.015155 

 
  



 
 

Appendix 4 Accounting for possible effects of spatial autocorrelation. 
 
The results of spatial analysis can be confounded by spatial autocorrelation effects (Dormann et al. 2007). We 
tested for the presence of this non-independence in our persistence data by the construction of semivariograms 
using the package ‘geoR’ in R (Ribero and Diggle 2001). We calculated the semivariance between pairs of 
points at separation distances of up to 20 km, finding no evidence of a consistent spatial autocorrelation effect 
across the landscapes (Figure S1). In this figure, there is not a consistent ‘sill’ (flattening) present across the 
four landscapes that would be indicative of an obvious choice of spatial scale at which to aggregate the data. In 
the Broads the sill is reached at 1 km separation distance (i.e. the ‘range’ = 1 km), while in the Brecks the curve 
shows some signs of change (perhaps arguably) at 10 km. 
 
We also aggregated our data at the 2 km grid square level as a further check of the robustness of our results to 
a possible effect of spatial autocorrelation, finding 10 of the 11 effects presented in Figure 4 to be consistent 
across both grain sizes (Tables below). Furthermore, the one effect that was not consistent with the 1 km 
results (Standard deviation in solar index, Broads landscape) was non-significant at the 2 km level. 
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Appendix 4 Tables (Format analogous to Appendix 3 data tables, but for analyses conducted at the 2 km grid 
square level). Summary tables of GLMMs fitted with measures of low (5th percentile), variable (standard 
deviation) and high (95th percentile) microclimate are presented, for summer solar and topographic wetness 
indices. 
 
 
 

 
(a) 5

th
 percentile topographic wetness index, Brecks landscape 

 

Term Estimate S.E. z-value p 

Intercept -0.34 2.03 -0.17 0.86583 

log(records) 0.85 0.07 11.64 2.67E-31 

Agricultural intensity -0.09 0.47 -0.19 0.847091 

5th percentile topographic wetness index 0.40 0.24 1.62 0.105454 

 
 
 

 
(b) 5

th
 percentile topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -3.78 0.66 -5.73 9.88E-09 

log(records) 0.91 0.05 17.42 6.09E-68 

Agricultural intensity 0.57 0.33 1.72 0.084618 

5th percentile topographic wetness index 0.18 0.07 2.54 0.01101 

 
  



 
 

 
(c) Standard deviation (SD) in topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -4.90 0.41 -12.03 2.34E-33 

log(records) 0.90 0.05 17.77 1.16E-70 

Agricultural intensity 0.55 0.36 1.53 0.126882 

SD in topographic wetness index -0.10 0.05 -2.11 0.034748 

 
 
 

 
(d) 95

th
 percentile topographic wetness index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -4.77 0.44 -10.86 1.85E-27 

log(records) 0.91 0.05 17.37 1.31E-67 

Agricultural intensity 0.62 0.35 1.77 0.077413 

95th percentile topographic wetness index -0.03 0.02 -1.96 0.049717 

 
 
 

 
(e) Standard deviation (SD) in summer solar index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept -5.26 0.40 -13.18 1.15E-39 

log(records) 0.87 0.05 17.88 1.83E-71 

Agricultural intensity 0.99 0.30 3.32 0.000896 

SD in summer solar index 28.52 49.98 0.57 0.568247 

 
 
 

 
(f) 95

th
 percentile summer solar index, Broads landscape 

 

Term Estimate S.E. z-value p 

Intercept 20.86 34.96 0.60 0.55078 

log(records) 0.87 0.05 18.01 1.77E-72 

Agricultural intensity 1.03 0.31 3.39 0.000712 

95th percentile summer solar index -73.66 98.82 -0.75 0.456074 

 
  



 
 

 
(g) 5th percentile topographic wetness index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept 1.31 2.37 0.55 0.581976 

log(records) 0.85 0.07 11.81 3.41E-32 

Agricultural intensity -2.13 0.81 -2.63 0.008523 

5th percentile topographic wetness index -0.86 0.36 -2.42 0.015626 

 
 
 

 
(h) 5th percentile summer solar index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept 7.59 2.33 3.26 0.00111 

log(records) 0.81 0.07 12.27 1.27E-34 

Agricultural intensity -2.03 0.69 -2.94 0.00324 

5th percentile summer solar index -34.25 6.63 -5.16 2.43E-07 

 
 
 

 
(i) Standard deviation in summer solar index, Dartmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -4.71 0.33 -14.28 2.90E-46 

log(records) 0.80 0.07 11.89 1.26E-32 

Agricultural intensity -2.21 0.70 -3.13 0.001734 

Standard deviation in summer solar index 107.47 21.73 4.95 7.58E-07 

 
 
 

 
(j) 5th percentile topographic wetness index, Exmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept -4.69 3.85 -1.22 0.222845 

log(records) 1.18 0.14 8.50 1.95E-17 

Agricultural intensity 3.67 1.52 2.41 0.016172 

5th percentile topographic wetness index 0.12 0.64 0.18 0.85633 

 
  



 
 

 
(k) 95th percentile summer solar index, Exmoor landscape 
 

Term Estimate S.E. z-value p 

Intercept 47.40 45.13 1.05 0.293619 

log(records) 1.18 0.14 8.66 4.71E-18 

Agricultural intensity 3.40 1.50 2.27 0.023392 

95th percentile summer solar index -145.96 124.84 -1.17 0.242334 
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