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Abstract

We use the integrable Kaup-Boussinesq shallow water system, modified by a small

viscous term, to model the formation of an undular bore with a steady profile. The

description is made in terms of the corresponding integrable Whitham system, also ap-

propriately modified by friction. This is derived in Riemann variables using a modified

finite-gap integration technique for the AKNS scheme. The Whitham system is then

reduced to a simple first-order differential equation which is integrated numerically to

obtain an asymptotic profile of the undular bore, with the local oscillatory structure

described by the periodic solution of the unperturbed Kaup-Boussinesq system. This

solution of the Whitham equations is shown to be consistent with certain jump condi-

tions following directly from conservation laws for the original system. A comparison

is made with the recently studied dissipationless case for the same system, where the

undular bore is unsteady.

Undular bores are nonlinear wave-like structures, which are generated in

the breaking profiles of large-scale nonlinear waves propagating in dispersve

media. A general theory, based on the Whitham modulation equations, has

been previously developed for dissipationless, unsteady, undular bores on the

basis of completely integrable models such as the Korteweg-de Vries equation,

nonlinear Schrödinger equation etc. The introduction of physically important

small dissipation in the system dramatically changes its properties, allowing

in some cases for the presence of steady solutions. The most explored model

1

http://arxiv.org/abs/nlin/0412061v1


describing the effects of friction on an undular bore is based on the uni-directional

Korteweg-de Vries equation, modified by a small friction term, which can take

various forms. Appropriate perturbation techniques have been used to obtain

asymptotic solutions. However, unlike the case for conservative undular bores,

no general approach seems to be available. Here, using an integrable version

of the bi-directional Boussinesq equations, but modified by a small Burgers-

like dissipation term, we develop a modulation theory of frictional shallow water

undular bores, which can also be extended to other non-conservatively perturbed

integrable systems.

1 Introduction

It is well known that solution to an initial value problem for the inviscid dispersionless shallow
water equations may develop a wave-breaking singularity after a finite time, when the first
spatial derivatives become infinite. After the wave-breaking point, a formal solution becomes
multi-valued and loses its physical meaning. The divergence of the spatial derivatives at the
wave-breaking point suggests that higher-order terms must be taken into account. These
terms can be either dispersive or dissipative in nature, or, as here, a combination of both.
The form of the solution after the breaking time then strongly depends on the comparative
values of the dispersion and dissipative terms. If dissipation can be neglected in favour
of dispersion, the solution in a certain neighbourhood of the breaking point assumes the
form of an expanding nonlinear oscillatory structure with a solitary wave train generated in
the vicinity of its leading edge. This structure provides a dispersive resolution of a breaking
singularity, and is an unsteady undular bore (or a dispersive shock in a different terminology).
Unsteady undular bores have been studied extensively in the last thirty years on the basis
of exactly integrable nonlinear wave equations. The original formulation of the problem was
given by Gurevich and Pitaevskii (1973) who proposed to describe the expanding collisionless
shocks (a plasma analog of undular bores) with the aid of the Whitham-averaged equations
for the integrable Korteweg-de Vries (KdV) equation. The Gurevich-Pitaevskii theory has
been extended to other important integrable systems such as the nonlinear Schrödinger and
Kaup-Boussinesq equations (see Kamchatnov (2000), for instance, for the detailed account
on the Gurevich-Pitaevskii theory).

The introduction of small dissipation can, in some cases, balance the dispersive effects
so that the undular bore eventually acquires a steady profile, but remains oscillatory in
space. The analytical study of steady (frictional) undular bores was initiated in the classical
work of Benjamin and Lighthill (1954) on shallow water waves. Another important work on
the same subject, but in the context of collisionless plasma shocks with small dissipation,
is Sagdeev (1964). In both works the authors use a mechanical analogy with a weakly
damped nonlinear oscillator to explain the main observable features of undular bores: the
formation of the lead solitary wave and degeneration into linear sinusoidal waves at the rear.
It was also suggested that the undular bore transition conditions must be consistent with
the conservation of mass and momentum across the transition zone, while the violation of
hydrodynamic energy conservation is remedied by taking into account the generated waves.

A simple model with an analytic description of shallow water frictional undular bore
is provided by travelling wave solutions of the KdV-Burgers equation (see for instance
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Whitham(1974))
ut + uux + uxxx = νuxx (1)

with a small dissipation coefficient 0 < ν ≪ 1. A detailed study of such solutions was
made by Johnson (1970), who applied a direct perturbation procedure (Kuzmak 1959) to
the periodic solution of the unperturbed (ν = 0) equation (the KdV cnoidal wave), and
performed matching of the leading order approximation with the solitary wave to obtain
a closed description. Johnson’s (1970) solution has been used by Smyth (1988) for the
description of the effect of small dissipation on resonant flow over topography.

The description of the undular bore on the basis of the steady travelling wave solutions of
the KdV-Burgers equation has two inherent restrictions: (i) as it is based on a unidirectional
equation, it does not reveal the transition (jump) conditions across the undular bore and
can link any two given constant states u = u2 and u = u1, u2 > u1; (ii) it describes only the
established (steady) regime, and says nothing about the undular bore formation. The further
development of the Whitham modulation theory (Whitham (1965, 1974)) in 1970-80s due to
Gurevich and Pitaevskii (1973, 1987), Lax, Levermore and Venakides (see the review (1994)
and references therein), Flaschka, Forest and McLaughlin (1982), Dubrovin and Novikov (see
the review (1989) and references therein) and many other authors, has made it clear that the
consistent description of undular bores (both conservative and frictional) should be made
in the framework of the hydrodynamic-type Whitham equations describing the evolution of
nonlinear modulated waves. Although the Whitham equations, based on averaging over the
periodic wave family, correspond to the leading order of a direct perturbation procedure,
which formally diverges when the wave period tends to infinity ( the solitary wave limit),
their solutions reveal only a weak singularity at the leading edge of the undular bore (see
Gurevich and Pitaevskii (1973, 1987)) and yield the correct value for the lead solitary wave
amplitude (while its position, of course, is not determined accurately). Also, the Whitham
equations have been shown to inherit an integrable (or perturbed integrable) structure from
the original system and allow in some cases the effective construction of exact global solutions
using powerful methods developed in the theory of finite-gap integration, and in the theory
of integrable Hamiltonian systems of hydrodynamic type (Tsarev (1985, 1990), Dubrovin
and Novikov (1989)).

The modulation theory of the “integrable” shallow water undular bore has been con-
structed by El, Grimshaw and Pavlov (2001) using the extension to the case of the bi-
directional Kaup-Boussinesq system of the original formulation of Gurevich and Pitaevskii
(1974) for the decay of an initial discontinuity in the KdV equation. A more general case of
the formation of an undular bore in the vicinity of a “cubic” breaking point has been studied
in (El, Grimshaw and Kamchatnov, 2005). An asymptotic theory of the formation of soliton
trains from a “big” enough initial pulse for the Kaup-Boussinesq system was developed by
Kamchatnov, Kraenkel and Umarov, 2003.

The modulation equations for the KdV-Burgers equation were derived by Gurevich and
Pitaevskii (1987) and Avilov, Krichever and Novikov (1987). Other forms of the dissipa-
tive term have been considered by Gurevich and Pitaevskii (1991) (boundary layer-type),
and Myint and Grimshaw (1995) (boundary layer dissipation and Rayleigh friction). In
their work on the modulation theory of the KdV-Burgers equation, Gurevich and Pitaevskii
(1987) deduced an exact steady solution of the Whitham system corresponding to the steady
undular bore. It is worth noting that their solution exactly coincides with the leading-order
perturbation solution to (1) obtained much earlier by Johnson (1970). Avilov, Krichever and
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Novikov (1987) have shown numerically that this solution is indeed the large-time asymptotic
modulation solution of (1) with the initial conditions in the form of a smooth step.

A general procedure for obtaining perturbed modulation system for the KdV equation,
based on the finite-gap integration machinery, was formulated by Forest and McLaughlin
(1984). A more effective method for the case of periodic modulated waves, applicable not
only to the perturbed KdV equation, but also to the whole perturbed AKNS hierarchy has
recently been designed by Kamchatnov (2004).

In this paper, we apply Kamchatnov’s procedure to the Kaup-Boussinesq system mod-
ified by a small Burgers-like dissipative term. Being bi-directional, this system allows a
more realistic modelling of frictional undular bores than the KdV-Burgers equation (1). We
distinguish several characteristic stages of the undular bore evolution and construct exact so-
lutions of the Whitham equations describing the initial (unsteady) and final (steady) stages
of evolution of the KBB undular bore. The methods used in this paper also allow for the
analytic description of undular bores generated in presence of an external force. In partic-
ular, an important class of problems of this kind occurs in the description of resonant flow
over topography (see Grimshaw & Smyth (1986) and Smyth (1987, 1988)).

2 Formation of a frictional undular bore: general de-

scription

We consider formation of a frictional undular bore in the Kaup-Boussinesq system modified
by a small viscous term. In dimensionless variables this system has the form:

ht + (hu)x + 1
4
uxxx = 0,

ut + uux + hx = νuxx,
(2)

where h(x, t) denotes the height of the water surface above a horizontal bottom, u(x, t) is
related to the horizontal velocity field averaged over depth (see (Kaup (1976) for the detailed
derivation of the inviscid system) and 0 < ν ≪ 1 is a small viscosity coefficient. We shall
call Eq. (2) the Kaup-Boussinesq-Burgers (KBB) system.

Note that the frictional term appears only in the second equation, which represents the
momentum balance, and is absent in the first equation which represents the mass balance.
Also, the derivation of this system requires that the frictional term is a small term, of the
same order as the small dispersion term. In the sequel, however, we will be treating the
frictional term as a small perturbation to an inviscid system.

Compared to the KdV-Burgers equation (1), the KBB system (2) has the essential ad-
vantage of modelling bi-directional wave propagation, so the undular bore description would
necessarily include transition conditions, which should be consistent with the jump condi-
tions following from the conservation laws of the system (2). On the other hand, the KBB
system (2) is a perturbed integrable system, which retains the advantage of amenability to
an effective analytic study. A drawback of the KBB system as a model system is the presence
of a high-wavenumber instability of the constant solutions. That is, the linearized equations
allow for growing waves at large wavenumbers (see El, Grimshaw, & Pavlov 2001).

Also, there is the disadvantage for the description of undular bores that there is no
“physical” momentum conservation law, which leads to formally “nonphysical” transition
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conditions. We will show, however, that the transition conditions following from the solu-
tions of Eq. (2) are asymptotically consistent with the classical jump conditions for shallow
water bores within the range of applicability of the KBB system.

We consider initial data at t = t0: h0(x) = h(x, t0), u0(x) = u(x, t0) for the system (2) in
the form of a smooth transition between two constant states:

h = h1, u = u1 as x→ +∞,
h = h2, u = u2 as x→ −∞,

(3)

so that h2 > h1 and the characteristic width of the transition region l ≫ 1. There
are two typical spatio-temporal scales associated with the initial-value problem (2), (3):
characteristic “nonlinear-dispersive” scale ∆tnlin ∼ ∆xnlin ∼ l and the “dissipative” scale
∆td ∼ ∆xd ∼ ν−1. Let us suppose that the initial conditions are chosen such that td ≫ tnlin,
i.e. we have

l ≫ 1, ν ≪ 1, and νl ≪ 1 . (4)

Then, following Avilov, Krichever and Novikov (1987), we distinguish several stages in
the process of the formation of a frictional undular bore, and discuss some limitations of the
applicability of this scenario.

Stage 1. t0 < t < tbr ≪ ν−1, where the breaking time tbr will be defined below; tbr−t0 ∼ l.
Due to Eq. (4) the initial data satisfy the following inequalities:

1

4
|u0

′′′| ≪ |(h0u0)
′|, ν|u0

′′| ≪ |u0u
′
0|, (5)

Thus this stage of the evolution can be described by the ideal shallow water system

ht + (hu)x = 0, ut + uux + hx = 0, (6)

which can be represented in the diagonal form

∂λ+

∂t
+

1

2
(3λ+ + λ−)

∂λ+

∂x
= 0,

∂λ−
∂t

+
1

2
(λ+ + 3λ−)

∂λ−
∂x

= 0. (7)

Here
λ± =

u

2
±

√
h (8)

are the Riemann invariants of Eqs. (6).
Initial data are given by two functions λ+(x, t0) and λ−(x, t0) determined by the initial

distributions h0(x) and u0(x). The system (7) has two families of characteristics in the (x, t)
plane along which one of two Riemann invariants (either λ+ or λ−) is constant. The wave-
breaking point corresponds to the moment when characteristics of one of the families begin
to intersect, so that the corresponding Riemann invariant becomes a three-valued function
in the physical plane. Let such an intersection occur for the characteristics transferring
the values of λ+. Then at the wave-breaking point the profile of λ+ as a function of x
has a vertical tangent line and, hence, in vicinity of this point it varies very fast, whereas
the second Riemann invariant varies with x much slower and may be considered here as a
constant parameter:

λ− = λ0 = const. (9)
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Thus, in the vicinity of the breaking point at t = tbr we are dealing with a simple wave.
Without loss of generality we choose tbr = 0. The second equation in (7) is identically
satisfied by Eq. (9). The first equation in (7) then has the well-known solution

x− 1

2
(3λ+ + λ0)t = f(λ+), (10)

where f(λ+) is an inverse function to an initial profile λ+(x, 0). Due to our normalization,
the function x = f(λ+) must have an inflexion point with a vertical tangent line at t = 0.
In the vicinity of this point f(λ+) can be approximated by a cubic function,

x− 1

2
(3λ+ + λ0)t = −C(λ+ − λ0

+)3, (11)

where C and λ0
+ are constants. Without loss of generality Eq. (11) can be cast into the form

(see El, Grimshaw and Kamchatnov (2005) for details)

x− 1

2
(3λ+ + λ0)t = −λ3

+. (12)

It corresponds to the wave breaking picture shown in Fig. 1.

-10 -5 5 10 15

25

30

35

t<0

t=0
t>0

h

x

Figure 1: Wave breaking of the water elevation in the dispersionless limit; λ0 is taken equal
to -10.

Stage 2. tbr < t ≪ ν−1. At this stage, dispersion should be taken into account in the
vicinity of the breaking point which implies consideration of the integrable KB system:

ht + (hu)x +
1

4
uxxx = 0, ut + uux + hx = 0. (13)

with the initial data following from (12), (8), (9):

t = 0 :
u

2
+
√
h = −x1/3;

u

2
−
√
h = λ0 . (14)

The combined action of nonlinearity and dispersion leads to the generation of an expanding
nonlinear oscillatory structure occupying the finite space interval (x−; x+) (see Fig. 2). This
structure is an unsteady, “conservative” undular bore. Outside the interval (x−; x+) the
flow is smooth and is described by the solution (9), (12). The solution of the problem now
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consists of two parts. Following Gurevich and Pitaevskii (1973), we suppose that the region
of oscillations can be approximated by a modulated periodic solution of the KB system.
Its global evolution is then determined by the Whitham equations and the problem reduces
to finding the solution of the Whitham equations that matches the solution (12) at the
end points of the oscillatory region. One may say that this oscillatory region (the expanding
undular bore) “replaces” a non-physical multi-valued region of the solution (12). One should
emphasize, however, that the boundaries of the undular bore x± do not coincide with the
boundaries of the formal multi-valued solution.

-10 -8 -6 -4 -2

25

30

35

h

x

Figure 2: Initial stage of the undular bore development. The plot corresponds to the time
t = 1 and λ1 = −10. Dashed line shows the formal solution in the dispersionless limit.

The corresponding modulated solution of the KB system has been constructed by El,
Grimshaw and Kamchatnov (2005). Here we briefly outline the resulting formulas. The
derivation of the complete modulation system with the account of the dissipative corrections
will be presented in Section 4.

The local wave form of the undular bore is given by the periodic travelling wave solution
of the KB system (13), and is given by the expressions

u(x, t) = s1 − 2µ(θ), h(x, t) = 1
4
s2
1 − s2 − 2µ2(θ) + s1µ(θ), θ = x− 1

2
s1t, (15)

where

µ(θ) =
λ2(λ3 − λ1) − λ1(λ3 − λ2)sn

2
(

√

(λ4 − λ2)(λ3 − λ1) θ,m
)

λ3 − λ1 − (λ3 − λ2)sn2
(

√

(λ4 − λ2)(λ3 − λ1) θ,m
) . (16)

λ4 ≥ λ3 ≥ λ2 ≥ λ1.

Here sn(θ,m) is the Jacobi elliptic function with the modulus

m =
(λ3 − λ2)(λ4 − λ1)

(λ4 − λ2)(λ3 − λ1)
. (17)

The connection of the constants s1, s2 in Eq. (15) with the parameters λj in Eq. (16) is given
by

s1 =

4
∑

j=1

λj , s2 =
∑

i<j

λiλj . (18)
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The soliton limit (m = 1) is obtained either for λ1 = λ2 or for λ3 = λ4. For λ3 = λ4, which
corresponds to right-propagating solitons, Eq. (16) yields

µ(θ) = λ1 +
(λ2 − λ1)(λ4 − λ1)

λ2 − λ1 + (λ4 − λ2)/ cosh2[
√

(λ4 − λ2)(λ4 − λ1) θ]
, (19)

Modulations λi(x, t) in the travelling wave solution are described by the Whitham equations,
which have been derived for the KB system by El, Grimshaw, and Pavlov ( 2001) in the
Riemann form (see also El, Grimshaw and Kamchatnov (2005)).

∂λi

∂t
+ vi

∂λi

∂x
= 0, i = 1, 2, 3, 4. (20)

Here the characteristic velocities vi are expressed in terms of λj as

vi =

(

1 − L

∂iL
∂i

)

V, ∂i ≡
∂

∂λi
, i = 1, 2, 3, 4, (21)

where the phase velocity V and the wavelength L are given correspondingly by

V =
1

2

4
∑

i=1

λi , L =

∫ λ3

λ2

dµ
√

P (µ)
=

2K(m)
√

(λ4 − λ2)(λ3 − λ1)
, (22)

K(m) being the complete elliptic integral of the first kind.
The solution of the Whitham system (20) matching the dispersionless solution (9), (12)

is obtained using the generalized hodograph transform (Tsarev 1985, 1990) and has the form

x− vit = −16
35
w

(3)
i + 8

35
λ0w

(2)
i + 2

35
λ0

2w
(1)
i + 1

35
λ0

3, i = 2, 3, 4;

λ1 = λ0 = const,
(23)

where

w
(k)
i =

(

1 − L

∂iL
∂i

)

W (k), i = 1, 2, 3, 4. (24)

Here the functions W (k)(λ1, . . . , λ4) are obtained as coefficients of the series expansion

W =
λ2

√

4
∏

j=1

(λ− λj)

=
∑ W (k)

λk
= 1+ 1

2
s1·

1

λ
+

(

3
8
s2
1 − 1

2
s2

)

· 1

λ2
+

(

5
16
s3
1 − 3

4
s1s2 + 1

2
s3

)

· 1

λ3
+. . . .

(25)

One can see that w
(1)
i = vi coincide with the characteristic velocities (21).

Formulas (23)–(25) define λ2, λ3, λ4 implicitly as functions of x and t and, together with
the travelling wave solution (15)–(16), determine the evolution of the undular bore at stage
2. Dependence of the Riemann invariants on x at some fixed moment of time is shown in
Fig. 3.

The dynamics of the edges x±(t) of the undular bore at this stage 2 is given by the
formulas

x+(t) =
1

2
λ0t+

1

6

√

5

3
t3/2, (26)
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Figure 3: Dependence of Riemann invariants λ2, λ3, λ4 on x at fixed time t = 1 and with
λ1 = −10. The dashed line shows the corresponding dependence of λ+ for the formal multi-
valued solution of the KB equations in the dispersionless limit.

x−(t) ∼= 1

2
λ0t−

3
√

3

2
t3/2 +

75

14

t2

λ0

,
√

3t≪ |λ0|. (27)

We note that this solution is generically realized only at the initial stage of the undular
bore development, where the cubic approximation (14) of the initial function is valid. After
that, one should use the solution of the Whitham equations corresponding to the actual
initial data. Such a solution can also be constructed in a closed form using the generalized
hodograph method (see Gurevich, Krylov, El (1992) for the KdV case and El and Krylov
(1995) for the defocusing NLS case).

)(t∆

h2, u2

h1, u1

x

Undular bore

x

Rarefaction wave

Figure 4: Formation of an unsteady undular bore and rarefaction wave as an intermediate
asymptotic for l < ∆(t) < ν−1.

Stage 2a. If the dissipation coefficient ν is small enough such that for some time interval
the following inequality holds: l ≪ ∆(t) ≪ ν−1, where ∆(t) = x+(t) − x−(t) is the undular
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bore width, then an intermediate similarity asymptotic for the undular bore is realized where
all the modulation parameters λj in (20) are functions of τ = x/t only. These solutions have
been studied in detail in (El, Grimshaw and Pavlov 2001) where the problem of the decay of
an initial discontinuity for the KB system has been considered. Generally, owing to the two-
wave nature of the KB system such a solution would involve a rear rarefaction wave along
with the leading undular bore (Fig. 4). The similarity solution of the Whitham equations
(20) in the undular bore region has the form:

v3 =
x

t
; λ1 = λ

(1)
− λ4 = λ

(2)
+ , (28)

while the rarefaction wave is described by the similarity solution of the ideal shallow water
equations (7):

1

2
(λ+ + 3λ−) =

x

t
, λ+ = λ

(2)
+ (29)

in the interval where
λ

(2)
− 6 λ− 6 λ

(1)
− . (30)

so that it matches a plateau region {λ+ = λ
(2)
+ ; λ− = λ

(1)
− } at its leading edge and the

boundary values {λ+ = λ
(2)
+ ; λ− = λ

(2)
− } at the trailing edge (see the diagram in Fig. 5.).

Here
λ

(1)
± =

u1

2
±

√

h1, λ
(2)
± =

u2

2
±

√

h2, (31)

It follows from the solution (28)–(31) and relation (8) that two given constant states
(h1, u1) and (h2, u2), h2 > h1 could be connected with the aid of a single dissipationless

undular bore (i.e. with no rarefaction wave generated), provided the following condition is
satisfied

u2

2
−

√

h2 =
u1

2
−

√

h1 . (32)

One can notice that this condition (transition relation) coincides with the relationship be-
tween flow parameters at any two points in the formal simple wave solution for the ideal
shallow water equations (6). At the same time, as we stressed before, the solution of the
Whitham equations does not coincide with the three-valued simple wave solution of the
shallow water equations.

We emphasize that the similarity stage of the undular bore evolution may not be realized
at all if the dissipation coefficient is not small enough (see discussion in Avilov, Krichever
and Novikov (1987) for the KdV-Burgers case).

Stage 3. t ∼ ν−1. At this stage, the dissipation effects are accumulated to the degree
that they begin to compete with the combined action of nonlinearity and dispersion. The
dynamics of the undular bore is governed now by the full KBB system (2). The local wave
form in the undular bore is still described by the periodic solution (15), (16) but the Whitham
equations now become inhomogeneous

∂λi

∂t
+ vi

∂λi

∂x
= ρi, i = 1, 2, 3, 4. (33)

Explicit expressions for the functions ρi(λ1, . . . , λ4) will be derived in Section 4 of this paper.
We note that the undular bore at this stage is still unsteady.
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Figure 5: Riemann invariant behaviour in the similarity asymptotic of the modulation solu-
tion.

Stage 4. t≫ ν−1. At this stage, the undular bore is reaching its steady regime so that it
propagates as a whole with a single velocity, say c. The corresponding solution λj = λj(x−ct)
of the perturbed Whitham equations (33) will be constructed in Section 5. Nevertheless,
some important relationships for the steady frictional undular bore can be obtained from
very general reasoning.

Indeed, the original procedure for the derivation of the Whitham equations (Whitham
1965) implies averaging the conservation laws of the original system over the periodic solu-
tions. In the case of non-conservatively perturbed systems (which is the case for the KBB
system) the averaging is performed over the periodic family of the unperturbed KB system
(13).

In our case, we have only two conservation laws for the KBB system (2) at our disposal:

ht + (hu+ 1
4
uxx)x = 0, ut + (1

2
u2 + h− νux)x = 0. (34)

Of course, these are the KBB system (2) itself. However, while the first equation in (33) is
the representation of conservation of mass, the second equation is not that for momentum
conservation, as this should have the term (hu)t and not ut. Instead, the second equation is
in effect the conservation of the Bernoulli expression.

Averaging Eqs. (34) over the periodic solution u(θ), h(θ) of the unperturbed KB system
we obtain two modulation equations

ht + (hu)x = 0, ut + (1
2
u2 + h)x = 0. (35)

We note that the dissipative term drops out of the averaged conservation laws (35) so the
dissipation can only enter other modulation equations. But if the full perturbed modulation
system admits the travelling solutions of the form f(x − ct), c being constant, then the
equations (35) must also admit such a solution. Substitution of h = h(x− ct), u = u(x− ct)
into Eqs. (35) yields

−ch+ hu = −A, −cu+ 1
2
u2 + h = B, (36)

11



A, B being constants. Let the established undular bore satisfy the boundary conditions (3)
at infinity. Then considering Eqs. (36) at x− ct→ ±∞ we obtain

h2u2 − h1u1 = c(h2 − h1) ,
1
2
(u2

2 − u2
1) + h2 − h1 = c(u2 − u1) (37)

which can be conveniently represented as

c = u1 + h2

√

2

h1 + h2

, u2 = u1 + (h2 − h1)

√

2

h1 + h2

. (38)

Thus, we have obtained an important restriction on the admissible family of the initial steps
that may be eventually resolved into a single frictional undular bore with no additional
(rarefaction) wave involved (cf. analogous condition (32) for dissipationless case). These
conditions agree with the formal jump conditions obtained from the same two conservation
laws for h and u of the ideal shallow water dynamics (6).

However, it is well known that the usual “physical” jump conditions providing the
mass and the momentum balance across the bore have the form (Benjamin, Lighthill 1954,
Whitham 1974)

c = u1 + h2

√

h1 + h2

2h1h2
, u2 = u1 + (h2 − h1)

√

h1 + h2

2h1h2
. (39)

The discrepancy between the jump conditions (38) and (39) occurs due to absence of the
proper momentum conservation law for the KB-Boussinesq system. This apparent disagree-
ment, however, can be resolved by noticing that considered within the range of physical
applicability of the KBB system, i.e. for small h2 − h1 ≪ h1 the transition conditions (38)
and (39) are asymptotically equivalent. In both cases we have

c ≈ u1 +
√

h1 +
3

4

h2 − h1√
h1

, u2 ≈ u1 +
h2 − h1√

h1

. (40)

In the next section we will show that the transition conditions in the form (38) also follow
from the exact (non-periodic) travelling wave solution of the full KBB system (2).

3 Travelling wave solution of the KBB system: steady

undular bore

Here we shall study a steady travelling wave solution of the KBB system (2), i.e. we introduce
the ansatz

u = u(θ), h = h(θ), θ = x− ct. (41)

Its substitution into (2) leads to equations, which can be readily integrated once to give

−ch + hu+ 1
4
uθθ = −A,

−cu+ 1
2
u2 + h = νuθ +B,

(42)

where A and B are again integration constants. Then the boundary conditions (3) yield the
relations (38) and also

A =
h1h2(u2 − u1)

h2 − h1
,

B = u1(
1
2
u1 − c) + h1 = u2(

1
2
u2 − c) + h2

(43)

12
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Upon eliminating h from Eqs. (42) one arrives at the equation

uθθ + 4ν(u− c)uθ = 4u(1
2
u− c)(u− c) − 4B(u− c) − 4A . (44)

This can be considered as the Newton equation for a motion of a particle with a coordinate
u (with θ playing the role of time) in the potential

U(u) = −1
2
u4 + 2cu3 − 2(c2 − B)u2 − 4(Bc−A)u+ constant (45)

whose plot is shown in Fig. 6. A phase plane (u, uθ) for the undamped oscillator correspond-
ing to the potential (45) is shown in Fig. 7. There are three critical points (u1, 0), (u2, 0),
(u3, 0): the point (u2, 0) is stable and the points (u1, 0) and (u3, 0) are unstable. The closed
trajectories around the centre (u2, 0) correspond to a periodic motion and the separatrix
corresponds to a soliton. Introducing small damping (the second term in the left-hand side
of the Eq. (44)) leads to an aperiodic oscillatory solution with the phase trajectory starting
from the saddle point (u1, 0) and eventually arriving after spiralling at the stable focus at
(u2, 0). This trajectory corresponds to a steady undular bore.

The spatial oscillatory structure implied by this phase trajectory is the following. The
large amplitude oscillations starting at (u1, 0) correspond to the soliton train at the leading

13



edge of the undular bore and the small amplitude oscillations in the vicinity of (u2, 0) cor-
respond to its trailing edge. It should also be noted that the configuration of the potential
in Fig. 7 corresponds to the undular bore moving to the right. A bi-directional KBB system
allows also an alternative configuration of the potential curve (45) with the double roots at
(u3, 0). This would reverse the picture so that the phase trajectory would start at the saddle
point (u3, 0) and after spiralling would again arrive at the potential minimum at (u2, 0).
This trajectory corresponds to the left-propagating undular bore

The oscillatory profile of the bore can be found by numerical integration of Eq. (44).
However, a quite effective analytical theory can be developed on the basis of the Whitham
modulation theory. The idea of the Whitham description of the frictional undular bore
is to replace a weakly aperiodic motion of the particle in a given fixed potential with the
asymptotically equivalent conservative motion in the potential which is slowly deformed.
The Whitham equations then describe equivalent slow deformations of the potential. An
advantage of the Whitham description in the case of perturbed integrable dynamics is that it
utilizes the underlying integrable structure, and allows us to obtain the modulation equations
using a universal technique based on powerful methods from finite-gap integration theory.
At the same time, a straightforward application of the perturbation procedure would require
very specific and lengthy calculations.

It should also be noted that the modulations in the undular bore are not solely due to the
dissipation. Rather, weak dissipation modifies the structure of the dissipationless undular
bore.

4 Modulation equations

The derivation of the Whitham modulation equations for the KBB system (2) is based on
the complete integrability of the unperturbed KB system

ht + (hu)x + 1
4
uxxx = 0 ,

ut + uux + hx = 0 .
(46)

That is, on the possibility to represent it as a compatibility condition of two linear equations
for an auxiliary function ψ:

ψxx = Aψ, ψt = −1

2
Bxψ + Bψx (47)

with

A =

(

λ− 1

2
u

)2

− h, B = −
(

λ+
1

2
u

)

, (48)

where λ is a spectral parameter. In the framework of this approach, the parameters λi

entering the periodic solution (15), (16) of Eqs. (46) have the following meaning. The
second order differential equation (47) has two basis solutions ψ+ and ψ− from which we
can build the so-called ‘squared basis function’

g = ψ+ψ−. (49)

It is easy to show that it satisfies the equation

gxxx − 2Axg − 4Agx = 0, (50)

14



which after multiplication by g/2 can be integrated once to give

1

2
ggxx −

1

4
g2

x −Ag2 = −P (λ), (51)

where the integration constant denoted by −P (λ) can depend on the spectral parameter λ.
The second equation (47) gives

gt = Bgx − Bxg. (52)

In the finite-gap integration method (see, e.g. Kamchatnov, 2000), the periodic solutions
are distinguished by the condition that P (λ) be a polynomial in λ. Then g as a function of
λ should also be a polynomial in λ. The one-phase periodic solution (15), (16) corresponds
to

P (λ) =
4

∏

i=1

(λ− λi) = λ4 − s1λ
3 + s2λ

2 − s3λ+ s4 (53)

and
g = λ− µ. (54)

Then from Eqs. (51) and (52) we find at once the relations (15) as well as the equation for
µ,

µθ = 2
√

P (µ) (55)

whose integration yields (16).
As we see, the parameters λi are the zeroes of the polynomial P (λ) which determine the

periodic solution in the finite-gap integration method. At the same time, the parameters λi

are the most convenient modulation variables in terms of which the Whitham modulation
equations assume the diagonal Riemann form (21) for the unperturbed KB equations (46)
or its counterpart (33) for perturbed, KBB dynamics (2). As was shown by Kamchatnov
(2004), if the evolution equations are written symbolically as

um,t = Km(un, un,x, . . . , ) + Rm(x, t, un, un,x, . . . , ), m, n = 1, . . . , N, (56)

where the functions Km correspond to the “leading”, integrable part of the system, and the
perturbation terms Rm can be slow functions of x and t and can also depend on the field
variables un and their space derivatives, then the perturbed Whitham equations have the
form

∂λi

∂t
+ vi

∂λi

∂x
=

1

〈1/g〉
∏

j 6=i(λi − λj)

N
∑

m=1

Am
∑

l=0

〈 ∂A
∂u

(l)
m

∂lRm

∂xl
g
〉

i
, i = 1, . . . ,M, (57)

where

vi = −〈B/g〉i
〈1/g〉i

, i = 1, . . . ,M . (58)

Here the angle brackets denote averaging over the proper interval of x, M is the degree of
the polynomial P (λ), Am is the order of the highest derivative u

(Am)
m in A, and the index for

the bracket means that λ is put equal to λi.
In our case for the KBB system (2) we have M = 4 and

N = 2 : u1 = h, u2 = u;

R1 = 0, R2 = νuxx, A2 = 0, ∂A/∂u = u/2 − λ.
(59)
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Hence the perturbation terms on the right-hand side of Eqs. (57) take the form

ρi =
ν〈(λi − u/2)uxxg〉i
〈1/g〉i

∏

j 6=i(λi − λj)
, i = 1, 2, 3, 4. (60)

For the one-phase modulated solutions of our present interest, one can replace averaging in
(57), (58), (60) with the averaging over the unperturbed periodic family (55). Then, using
(54), (54) we have

〈

1

g

〉

i

=
1

2L

∮

dµ

(λi − µ)
√

P (µ)
= − 2

L

∂L

∂λi

, (61)

where the wavelength L is given by (22). Further, taking account of the relations u = s1−2µ,
µx = 2

√

P (µ), uxx = −4dP/dµ we have

〈B
g

〉

i

=
1

2L

∮

µ− λi − s1/2

(λi − µ)
√

P (µ)
dµ =

s1

L

∂L

∂λi
− 1 , (62)

〈(λi − u/2)guxx〉i =
1

L

∮

(

λi −
u

2

)

guxx
dx

dµ
dµ

= − 2

L

∮

(λi − s1/2 + µ)(λi − µ)
√

P (µ)

dP

dµ
dµ

= − 4

L

∮

(

−µ2 + 1
2
s1µ− 1

2
s1λi + λ2

i

) d
√

P (µ)

dµ
dµ

= − 8

L

∮

(µ− s1/4)
√

P (µ) dµ.

(63)

Then, the characteristic velocities (58) take the form

vi =
s1

2
− L

2

(

∂L

∂λi

)−1

(64)

coinciding with the unperturbed case (21), while the perturbation terms in the Whitham
equations (33) are given by

ρi =
8ν

(∂L/∂λi)
∏

j 6=i(λi − λj)

∫ λ3

λ2

(µ− s1/4)
√

P (µ)dµ. (65)

The integral here can be evaluated in terms of complete elliptic integrals. However, the
resulting expression is very complicated and it is easier to deal with its unevaluated form
(65). The Whitham equations (33), (65) determine the evolution of the parameters λi due to
nonuniform modulation of the wave, and the small of effect viscosity. It is natural to expect
that for the boundary conditions (3) the modulated wave will asymptotically, as t → ∞,
tend to the steady undular bore solution described in Section 3. In the next section we shall
find the corresponding stationary solution of the Whitham equations.

16



5 Steady solution of the Whitham equations

We look for the solution of the Whitham equations (33) in the form

λi = λi(θ), θ = x− ct, (66)

so that we must have

−cdλi

dθ
+

(

s1

2
− L

2∂L/∂λi

)

dλi

dθ
=

8ν

(∂L/∂λi)
∏

j 6=i(λi − λj)

∫ λ3

λ2

(µ− s1/4)
√

P (µ)dµ. (67)

Motivated by the meaning of s1/2 as the phase velocity one can suggest that equations (67)
can be split in the following way:

c =
s1

2
= const (68)

and
dλi

dθ
=

Q
∏

j 6=i(λi − λj)
, (69)

where the factor

Q = −8ν

L

∫ λ3

λ2

(µ− s1/4)
√

P (µ)dµ (70)

is the same for all i = 1, 2, 3, 4.
For Eqs. (68), (69) to be consistent with Eq. (67) s1 must be an integral of equations

(69). In fact, we will show that the special structure of these equations provides actually
three integrals s1, s2, s3. This statement can be proved with the use of the Jacobi identities
(Jacobi 1884), which follow at once in the most convenient for us from the obvious identity

n
∑

i=1

∏

j 6=i(λ− λj)
∏

j 6=i(λi − λj)
= 1 (71)

where in the left-hand side we have a polynomial in λ of the degree n− 1 which is equal to
unity at n points λ = λi, i = 1, . . . , n, and hence is equal to unity identically. Then equating
the coefficients of λm at both sides of (71) we get n− 1 identities for m 6= 0,

n
∑

i=1

1
∏

j 6=i(λi − λj)
= 0,

n
∑

i=1

∑′
j λj

∏

j 6=i(λi − λj)
= 0,

n
∑

i=1

∑′
j,k λjλk

∏

j 6=i(λi − λj)
= 0, . . . (72)

where prime means that all terms with the factor λi are omitted in the corresponding sum,
and the last identity for m = 0 can be written in the form

n
∑

i=1

1

λi

∏

j 6=i(λi − λj)
=

(−1)n−1

sn
, (73)

where sn =
∏

i λi. In our case n = 4 and Eqs. (69) and (72) yield

ds1

dθ
= Q

4
∑

i=1

1
∏

j 6=i(λi − λj)
= 0,

ds2

dθ
= Q

4
∑

i=1

∑′
j λj

∏

j 6=i(λi − λj)
= 0,

ds3

dθ
= Q

4
∑

i=1

∑′

j,k λjλk
∏

j 6=i(λi − λj)
= 0,

(74)
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that is the system (69) has n− 1 = 3 integrals of motion

s1 = const, s2 = const, s3 = const. (75)

Thus, in the steady solution only the last coefficient s4 varies with θ according to the equation

ds4

dθ
=

4
∑

i=1

s4

λi

dλi

dθ
= s4Q

4
∑

i=1

1

λi

∏

j 6=i(λi − λj)
= −Q, (76)

where we have used the identity (73).
Now, the zeroes λi, i = 1, 2, 3, 4, are the solutions of the algebraic equation

P (λ) =

4
∏

i=1

(λ− λi) = λ4 − s1λ
3 + s2λ

2 − s3λ+ s4 = 0 (77)

ordered according to
λ1 ≤ λ2 ≤ λ3 ≤ λ4 (78)

and for given s1, s2, s3 they can be considered as known functions of s4. As a result, we
arrive at the single first order differential equation

ds4

dθ
=

8ν

L

∫ λ3(s4)

λ2(s4)

(µ− s1/4)
√

P (µ) dµ, (79)

where L is given by Eq. (22). For the solution under study, λi = λi(s4), hence in the right-
hand side of (79) we have a known function of s4. The constants s1, s2, s3 can be expressed
in terms of the initial parameters h1, h2, u1, as in (38). To this end, we compare the equation

u2
θ = u4 − 4cu3 + 4(c2 −B)u2 + 8(Bc−A)u+ const, (80)

following from Eq. (44) with ν = 0, with the equation (see (55))

µ2
θ = 4(µ4 − s1µ

3 + s2µ
2 − s3µ+ s4) . (81)

Then taking account of the relation u = s1 − 2µ, these must coincide with each other, and
so we find that

s1 = 2c, s2 = c2 − B, s3 = −(A+Bc), (82)

where c is given by (38) and (see (43))

A = h1h2

√

2

h1 + h2
, B = h1 − 1

2
u2

1 − u1h1

√

2

h1 + h2
. (83)

To determine the interval within which the variable s4 can vary, we notice that at the
leading and trailing edges of the undular bore the polynomial P (λ) has double roots, that
is, its discriminant D vanishes. Hence, the limiting values of s4 must be the roots of the
equation (see, e.g. Fricke 1924)

D = g3
2 − 27g2

3 = 0, (84)
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where

g2 = s4 − 1
4
s1s3 + 1

12
s2
2,

g3 = 1
6
s2s4 + 1

48
s1s2s3 − 1

216
s3
2 − 1

16
s2
3 − 1

16
s2
1s4

(85)

are invariants of the polynomial P (λ). Equation (84) is cubic with respect to s4 and has

three roots s
(1)
4 < s

(2)
4 < s

(3)
4 . The variable µ (and, hence, u) oscillates with finite amplitude

as long as P (λ) has three real roots. Hence, s4 can vary between the two smaller zeroes of
the discriminant D,

s
(1)
4 < s4 < s

(2)
4 . (86)

Thus, all parameters in Eq. (79) are completely determined and can be expressed in terms
of h1, h2, u1, so that dependence of s4 on θ can be found by integration of Eq. (79) in the
interval Eq. (86) with the initial condition

ds4

dθ
= s

(2)
4 at θ = θ0, (87)

where we assume that the leading edge of the bore is located at θ = θ0.
At the trailing edge Eq. (79) reduces approximately to

ds4

dθ
∼= const · (λ3(s4) − λ2(s4))

2. (88)

Since in the vicinity of s
(1)
4 we have

λ2(s4), λ3(s4) ∝
√

s4 − s
(1)
4 , (89)

then here
ds4

dθ
∼= C · (s4 − s

(1)
4 ) (90)

which gives at once
s4 − s

(1)
4 ∝ exp(Cθ) (91)

where C is some constant proportional to ν. Thus, we see that the trailing edge is formally
located at θ → −∞, but with exponential accuracy we can take the width of the bore as

∆ ∼= const

ν
. (92)

The asymptotic analogous to Eq. (91) has been obtained in (Gurevich and Pitaevskii 1987)
and (Myint and Grimshaw 1995) for the KdV-Burgers equation.

At the leading edge we have a soliton solution (15), (19) with λi = λi(s
(2)
4 ). Its centre

corresponds to µ(0) = λ2 and hence Eqs. (15) give the values of the velocity us and elevation
hs at the centre of the leading soliton:

us = s1 − 2λ2(s
(2)
4 ), hs = 1

4
s2
1 − s2 − 2(λ2(s

(2)
4 ))2 + s1λ2(s

(2)
4 ). (93)

The dependence of all values entering the right-hand parts of Eqs. (93) on the initial param-
eters is given by Eqs. (82) – (85).
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Figure 8: The Riemann invariants as functions of s4.
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Figure 9: Dependence of s4 on θ in the bore.

To illustrate the developed theory, let us make some calculations and draw corresponding
plots for specific parameters of the undular bore. Although the asymptotic approximation
used in the derivation of the KBB system is consistent with the shallow water dynamics
only for small values of the initial step h2 − h1 ≪ h1 (see Eqs. (39),(40)) it is instructive
to consider the problem with noticeably distinct initial parameters h1 and h2 for a better
exposure of the details of the oscillatory structure. We choose ν = 0.1 and

u1 = 0, h1 = 1, h2 = 4. (94)

Then we get
u2 = 1.90, c = 2.53, A = 2.53, B = 1.0 (95)

and
s1 = 5.06, s2 = 5.4, s3 = −5.06. (96)

Equation (84) gives the limits for s4,

s
(1)
4 = −7.74, s

(2)
4 = −6.4. (97)

Solving Eq. (77) for λi, we find the Riemann variables λi as functions of s4 and the corre-
sponding plot is shown in Fig. 8. Integration of (79) leads to dependence of s4 on θ shown in
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Figure 10: The Riemann invariants as functions of θ.

Fig. 9. Substitution of this dependence into λi(s4), i = 1, 2, 3, 4, yields the Riemann variables
as functions of θ depicted in Fig. 10. As we see, the trailing edge is located at θ → −∞
where λ2(θ) and λ3(θ) tend to the same limit λ2(s

(1)
4 ) = λ3(s

(1)
4 ). Finally, substitution of

the slowly varying Riemann variables into (15) yields the profiles of velocity u(θ) and water
elevation h(θ) in the bore; see Figs. 11 and 12, respectively. Obviously, the “camel hump”
form of the lead soliton of the elevation profile in Fig. 12 is due to the properties of the
Kaup-Boussinesq system rather than actual properties of shallow water solitary waves. One
should note, though, that within the range of applicability of the Boussinesq approxima-
tion (i.e. for small enough initial steps) this deviation of the soliton shape from the regular
shallow water soliton profile ceases to be visible.
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Figure 11: Velocity profile in the steady undular bore.

One can see, that despite the different quantitative description, frictional and conservative
shallow water undular bores are structurally similar in many respects (cf. El, Grimshaw &
Pavlov 2001). There are, however, substantial qualitative differences. In particular: (i) the
conservative undular bore expands in time while the frictional undular bore with the Burgers-
like dissipative term asymptotically reaches a steady profile propagating with a single velocity
c; (ii) the transition relations across the frictional and the dissipationless undular bores are
different: for the frictional undular bore the transition relation (38) coincides with the jump
condition following from the conservation laws (34), while in the dissipationless case (see
(32)) it coincides with the simple wave relation for the ideal shallow-water equations.

21



-8 -6 -4 -2 2

1.5

2

2.5

3

3.5

4

θ

h(θ)

Figure 12: Elevation profile in the steady undular bore.

We note in conclusion, that it is clear that the method of solution of the perturbed inte-
grable Whitham equations used in this paper is essentially based on the special structure of
the perturbation term (65) where the integral is actually a function of just a single parameter
s4. Similar structure, however, can appear due to other than Burgers-type perturbation of
the original integrable equation. Generally, this is the case for any form of perturbation term
leading, after averaging, to the integrand in (65) containing only symmetric functions of the
Riemann variables λi rather than individual λi’s. Then one can find sufficient number of
integrals of the stationary Whitham equations to reduce the system to a single equation.

6 Conclusions

The formation of a shallow-water frictional undular bore has been studied analytically us-
ing the Kaup-Boussinesq system modified by a small friction term. The main stages of the
undular bore formation from the step-like initial profile were considered and the analytic so-
lutions were constructed for the initial unsteady (dissipationless) and final steady (frictional)
stages of the undular bore development, using the Whitham method. The perturbed inte-
grable Whitham equations for the Kaup-Boussinesq-Burgers system were derived using the
methods of finite-gap integration. It was shown that the stationary solution of the Whitham
equations describing modulations in the steady undular bore is consistent with the jump
conditions following from the original conservation laws for the KBB system.

The theory developed in this paper shows that the Whitham method provides a general
effective approach to describe frictional undular bores in perturbed integrable systems, and
can be used in different physical contexts provided the dissipation is small enough to not
prevent the generation of nonlinear dispersive waves, but sufficient to balance the combined
action of nonlinearity and dispersion at large times.
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