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We develop a theoretical model for the recently reported integrated optical vortex beam emitters that incorporate angular 
gratings in micro-ring resonators. Using azimuthally polarized dipole oscillators to represent emission scattered from the 
grating elements that are located along the inner wall of the ring waveguide, we obtain expressions for far-field components 
under the paraxial approximation. The results show that the emission is of the form of cylindrical vector Bessel beam with 
exactly defined optical orbital angular momentum, and can have azimuthal, radial, and longitudinal field components after 
propagation.  The calculation results for field distributions in both near and far zone agree well with the experimental results.  
© 2013 Optical Society of America 
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Orbital angular momentum (OAM) is a degree of freedom 
of the photon in addition to polarization/spin. Unlike spin, 
OAM occupies an unbounded Hilbert space [1,2]. Classical 
manifestation of OAM is found in the azimuthally varying 
phase around the light beam axis leading to spiral wave 
fronts. Until recently, the manipulation of the OAM states 
of light has been restricted to complex and bulky optical 
components that are slow to respond, cumbersome to use, 
and with no clear route to scaling or integration [3,4]. A 
recent progress in OAM optics is the realization of 
integrated OAM beam emitters built on silicon platforms 
[5,6]. The principle of operation of the micron-sized OAM 
device in Ref. [6] is to extract light confined in the 
whispering gallery mode (WGM) of micro-ring resonator 
using a 2nd-order Bragg grating that scatters the WGM 
to a vertically emitted OAM mode. The device is capable 
of emitting optical beams with variable OAM states by 
detuning wavelength or by tuning the ring resonance. 
That is, for a micro-ring resonator with fixed number of 
grating elements, the OAM state of the emitted beam is 
only dependent on the wavelength. For quasi-transverse 
electric (TE) WGM with the dominant e-field component 
being Er in the radial direction of the ring, the state of 
polarization (SOP) of the emitted near-field was found to 
be predominantly in the azimuthal (ϕ) direction. This 
stems from the position of the grating elements on the 
sidewall, where Er is minimal but a strong Eϕ exists.  As 
the size of the grating element is very small (60 nm) 
compared to wavelength in the silicon waveguide (~650 
nm for vacuum wavelength of 1550 nm), azimuthal 
polarized dipole radiation is a reasonable representation 
of the scattered field at each of the grating elements. In 
this Letter, this dipole-model is elaborated to give 
analytical expressions of the emitted field distribution. It 
is also demonstrated that the SOP of the vortex beams 
emitted is vectorial in nature, and a beam with topological 
charge of l is a linear combination of left and right circular 
polarized waves of charges l – 1 and l + 1 respectively. 

Given the axial symmetry of the angular grating 
distribution, we establish the model in a normalized 
cylindrical coordinate ( ρ, ϕ, ζ ), in which ρ and ζ are the 
polar radius and distance from ring plane normalized to 
the radius of the resonator, R. Normalized propagation 
constant ν = 2πR / λ is also used, where λ is the vacuum 
wavelength. Azimuthal dipoles 0

ˆ P exp( )m m mjlϕ ϕ=P , m = 1, 
2, …, q, are located evenly along the resonator 
circumference with ρ = 1 on the emitter plane (ζ = 0), as 
illustrated in Fig. 1. All dipoles are assumed with a 
uniform moment of P0 and a time dependence of exp( –jωt ), 
l = p – q is the topological Pancharatnam charge, p being 
the azimuthal order of the WGM involved and q the 
number of grating elements or dipoles. {ϕm = 2πm / q} are 
the azimuthal angles of the dipoles. For all simulations in 
this work, q = 36 and R = 3.9 μm are used, corresponding to 
one of the real devices demonstrated in Ref. [6]. 

If some point Q( ρ, ϕ, ζ ) is located in the upper 
hemisphere (ζ > 0, see Fig. 1), the field results from the 
interference among the radiation of all dipoles [7]: 
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where A = P0 / ( 4πε0 ), mr  is the distance between Q 
and the mth dipole point Pm(1, ϕm, 0), and m̂r  is the 
unit vector in the direction of PmQ, pointing from Pm. 

First, at a near-zone plane (ζ ≪ λ / R or ζ ~ λ / R), 
the terms of near-field (1 / r3 decay) and middle-field 
(1 / r2 decay) prevail, thus making the interference 
between adjacent dipoles dominant. Based on Eq. (1), 
Fig. 2(a) and 2(b) present the calculated normalized-
intensity of the azimuthal and non-azimuthal 
components of the emission at ζ = 0.4λ / R when l = 0, 
suggesting that the SOP of the near-zone emission is 
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predominantly azimuthal. Alternatively, transverse 
components can be decomposed into Ex and Ey in 
Cartesian coordinates, as shown in Figs. 2(c) and 2(d), 
and these near-zone SOP patterns have been verified 
by the experiments (see Figs. 2(b) and 2(d) in Ref. 
[6]). Yet it is noteworthy that even in this near-zone 
some azimuthally polarized concentric ring patterns 
appear near the origin (Fig. 2(a)), indicating the 
emergence of far-field patterns. 

On the other hand, in the far zone (ζ ≫ λ / R), the 
field mainly results from the interference of far-field 
radiation of all dipoles, and the near-zone terms (~1 / 
r2 and ~1 / r3) are neglected. Using the Fresnel 
diffraction approximation in the paraxial limit, the 
radial component of the vector field can be derived as: 
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where Φ(ρ,ζ) = exp{jν[ζ + (ρ2 + 1) / 2ζ]} is the 
propagation phase factor, Θ = tan-1(ρ / ζ) is the 
diffraction angle, and Δϕm = ϕm – ϕ is the azimuthal 
angle difference between Q and grating element m. 
By taking an approximate integral representation of 
the Bessel function of the first kind (2π / q ≪ 1) 
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and with the relation Jn-1(x) + Jn+1(x) = (2n / x) Jn(x), we 
obtain the analytical expression for the far-field 
radial component 
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where Ji = Ji (–ν tanΘ). Taking a similar process as 
above and with the relation Jn-1(x) – Jn+1(x) = 2dJn(x) / dx, 
we have the other field components as 
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Eqs. (4a)-(4c) present a set of orthogonal 
cylindrical vector Bessel (CVB) modes for each of the 
cylindrical components. In Ref. [8], Hall has proven 
that the vector paraxial wave equation (PWE) has a 
family of Bessel-Gauss beam solutions. Here we 
demonstrate that the novel integrated OV beam 
emitters produce another class of Bessel beams, 
which shall be admitted by the vector PWE 
automatically, since the radiation of each single 
dipole element satisfies the wave equation. In other 
words, this CVB beam can be regarded as a special 
case of the diffraction integral theory for azimuthally 
polarized beam perturbed by circularly symmetric 
disturbance [9], and the disturbance in our case can 

be modeled as P(r)Eϕ(r,0) = δ(r – R) exp(jlϕ) (see Eq. (12) 
in Ref. [9]), where δ(x) is the delta function.  

These CVB modes possess several interesting 
features. Firstly, all components have the amplitudes 
proportional to the lth-order Bessel function of the 
first kind or to its first derivative: 

,lEρ , ( ), tanl lE Jζ ν∝ − Θ , ( ), tanl lE Jϕ ν′∝ − Θ  (5) 

therefore all orders of diffraction propagate in 
constant angles Θl 

i  = tan-1( –χ l 
i  / ν ) to the ζ axis, where 

χ l 
i  is the ith extreme point of Jl ( Jl′ for Eϕ,l ). Fig. 3 

shows the normalized intensity distribution of all 
field components as a function of Θ in different l 
orders. The order of the Bessel function, l, is an 
arbitrary charge, and can be adjusted by tuning the 
wavelength of the injected light [6].  

Then, note that the amplitudes of the radial and 
longitudinal components are also proportional to l, 
thus these two components will not exist when l = 0, 
making the emitted beam purely azimuthal-
polarized in the far field: 
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Cylindrical vector (CV) beams with pure azimuthal 
or radial polarization have been widely studied for 
their interesting properties and potential 
applications, and various methods have been 
proposed to generate CV beams [10]. Eq. (6) suggests 
that the angular grating-based OV beam emitter is a 
potential purely-polarized CV beam emitter as well. 
It is also worth to mention that, in contrast with 
scalar vortex beams, the CVB beam is characterized 
by the existence of an on-axis intensity null when l = 
0 [11], as illustrated in Fig. 3(a). This null results 
from a polarization singularity, where the direction 
of the electric vector of the locally linear-polarized 
field is undefined, and this is also referred to as a V 
point in singular optics [12]. 

Above all, although each cylindrical component has 
a phase difference of π / 2 or π to others, all of them 
have an azimuthal phase dependence of exp(jlϕ) (see 
Fig. 4), which identifies the OAM carried by this 
CVB beam [1]. In Ref. [6], Cai et al. have been able to 
experimentally measure the charge l, and here the 
complete theoretical expression is given. The Jones 
vector of the transverse field is 
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This indicates that the radiated CVB beam can be 
described as the superposition of two orthogonal 
scalar waves: a left hand circularly polarized (LHCP) 
beam with topological charge of l – 1 and a right 
hand circularly polarized (RHCP) beam with l + 1 [6]. 
As a result, l – 1 and l + 1 spiral arms are produced 
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when the emitted vortex is interfered with LHCP 
and RHCP Gaussian reference beams respectively 
(see Fig. 3 in Ref. [6]). It should be noted that for l = 
+1, the transverse field consists of a scalar wave with 
charge 0 and a wave with charge +2, and the wave 
with 0 charge causes the bright center (see Fig. 3(b)). 
For l = –1, the on-axis intensity is non-zero for the 
same reason. Besides, for l = 0, the CV beam in Eq. (6) 
is decomposed into two circularly polarized beams of 
opposite topological charge (–1 and +1); interpreted 
with the higher-order Poincaré sphere proposed by 
Milione et al., these two components are exactly the 
polar basis of a l = 1 sphere, and the l = 0 beam of Eq. 
(6) locates on the equatorial point of (π, 0) [13].  
  In summary, using a model built on a simple dipole 
representation of grating scattering, we have derived 
the near- and far-zone emission characteristics of a 
novel angular grating-based OV beam emitters that 
agree well with the experimental results. Analytical 
expressions for the far-field paraxial beam have been 
obtained that reveal the emission as a class of CVB 
beams with tunable OAM, and predict the device as 
a potential pure CV beam emitter. 
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Figures 

 
Fig. 1. (Color online) Schematic diagram of the dipole-
model in the normalized cylindrical coordinate for 
interference analysis. 

 
Fig. 2. (Color online) Simulated near-zone intensity 
distribution of different components at ζ = 0.4λ / R with l = 
0: (a) Eϕ, (b) Eρ and Eζ, (c) Ex, (d) Ey. 

 
Fig. 3. (Color online) Calculated cross sections of the far-
field intensity distribution of Eϕ (red curves), Eρ (blue 
curves), and Eζ (green curves) as a function of diffraction 
angle Θ, with charges: (a) l = 0, (b) l = 1, (c) l = 2, (d) l = 3. 
Paraxial approximated results are presented (solid curves) 
as well as the nonparaxial ones (dashed curves). 

 
Fig. 4. (Color online) Calculated transversal phase 
distribution of the far-field (a) Eϕ (l = 0), (b) Eρ (l = 1), (c) Eρ 

(l = 2), (d) Eϕ (l = 3). 
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