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Abstract— Rapidly growing distributed renewable networks make an increasing demand on 

various types of power converters to feed different loads. Power converters with constant power 

load are one typical configuration that can degrade the stability of the power conversion system 

due to the negative impedance characteristic. This paper presents a nonlinear analysis method 

using the developed complete-cycle solution matrix method by transforming the original linear 

time-variant system into a summation of segmented linear time-invariant systems. Thus, the 

stability of the nonlinear system can be studied using a series of the corresponding state transition 

matrix and saltation matrix. As this derived matrix contains all the comprehensive information 

relating to the system’s stability, the influence of the constant power load to system’s 

fast-timescale stability in both continuous conduction mode and the discontinuous conduction 

mode can be fully investigated and analyzed. The phenomena of fast-timescale instability around 

switching frequency for power converters with a constant power load are observed and 

investigated numerically. Finally, experimental results have proven the analysis and verified the 

effectiveness of the developed method. 

 

Index Terms—Nonlinear analysis, boost converters, constant power loads, bifurcation, the complete-cycle 

solution matrix 

 

Stability study and nonlinear analysis of DC-DC 

power converters with constant power loads at 

the fast timescale 



I. INTRODUCTION 

Facing the rapid exhaustion of fossil fuel and environmental deterioration, renewable power distribution 

systems based on power electronics converters are becoming increasingly common. They can be commonly 

found in grid-connected applications such as smart grids and renewable power integration, and the electric 

power system (EPS), underpinning the electrical propulsion evolution in automotive systems, aircraft and 

ship applications [1-3]. The fast-expanding EPS feature multi-converter structures, encompassing different 

downstream converter blocks such as DC-DC and DC-AC converters to feed electrical loads, whereas they 

normally manifest the characteristics of a negative impedance as a constant power load (CPL) by tightly 

regulating their outputs. Consequently, such configuration of power converters with CPL can degrade the 

stability of the entire system due to this negative impedance characteristic and the corresponding complex 

dynamic interaction of such systems can lead to instability issues [4]. These issues of CPLs have been widely 

reported and discussed in various multi-converters power systems, such as LED lighting system [5], DC 

microgrids and distribution system[6, 7] and Electric vehicle system [8].  

In recent years, there has been an incentive to analyze and overcome the potential instability caused by 

CPL [9-12]. A large amount of research work has been conducted in this context with numerious proposed 

strategies. Simple and effective passive damping methods have been developed with usage of additional LC 

fliter[13], whereas these systems can be costly with increased weight. Alternatively, a variety of active 

damping approaches have been proposed to stabilize the system from the perspective of control by 

introducing ‘virtual components’, such as ‘virtual inductor’[14], ’virtual resistor’[15] and ‘virtual 

impedance’[16]. Other active stabilization techniques have also been presented to mitigate the instability 

issues which either applies the small-signal methods based on the state-space averaging models or the 

large-signal approaches based on the nonlinear models. Specifically, the small-signal analysis methods using 

state-space averaging models describes the small-signal behavior of the converter system – the behavior 

linearized around any operating point while being subjected to perturbations [17]. Thus, classical linear 

analysis tools can then be effectively employed, which are widely used. For example, [18] investigates the 



system stability of the power converters with CPL in terms of the system transfer functions at different 

operational modes and control modes (voltage and current mode control). A virtual-impedance based 

stabilizer is proposed using a comprehensive small-signal model and the criteria of impedance matching to 

damp the negative impact caused by CPLs in dc microgrids [16]. Besides, the controllability of non-isolated 

DC-DC converters feeding CPL has also been studied in [19]. Whereas the high-frequency behavior or 

sampling effects are not considered, which only proves such systems are controllable as switched affine 

nonlinear systems. Therefore, some effects caused by the nonlinear components are ignored in these 

approaches, which may jeopardize its validity in some cases [20]. 

For large-signal analysis techniques, the objectives and a simplified hypothesis of a CPL usually 

determine the level of the complexity of the models. Large-signal phase plane analysis and Lyapunov-based 

stability analysis methods are often employed to estimate the domain of attraction of the system operating 

point. Based on the large-signal models, the local behavior around the operation point and its basin of 

attraction can be defined [9]. Compared to the small-signal linear methods, these approaches are less intuitive 

but dependable as far as validity is concerned. A comprehensive investigation on stability analysis 

approaches for switching-mode power converters has been presented, which mainly summarizes the methods 

for predicting instabilities in the power converters from the perspective of discrete-time modelling [21]. 

Based on large-signal analysis methods, numerous control approaches have been presented to stabilize 

power converters with CPL in various applications [8, 22, 23]. The investigation of a buck converter loaded 

by a CPL as well as the corresponding design of a feedback strategy has been carried out in the sea and 

undersea vehicles application [24]. In addition, a phase plane analysis and the attraction region have been 

presented to demonstrate system stability, and a reduced-order large-signal model for a cascaded step-down 

system with a CPL is proposed based on Lyapunov stability theory [25, 26]. An adaptive sliding mode 

control strategy for boost converters with CPL is proposed to improve the system stability using Lyapunov 

function [27]. The bifurcation phenomena and the stability boundaries of the photovoltaic-battery hybrid 

system have been investigated in [28]. A circular switching surface technique is proposed to mitigate the 



instability created by CPLs in electric vehicle systems where tight-speed controllers in the vehicle’s traction 

system and tightly regulated dc–dc converters produces the constant power behavior [8]. Also, both 

small-signal and large-signal stability criteria have been derived for the analysis of such hybrid power system 

with a CPL using Jacobian matrix [29].  

 Despite the large volume of existing research on the stability analysis methods above, most publications 

study the stability of DC-DC converters based on a conventional resistive load and slow-timescale instability 

of a CPL to the system. However, nonlinear phenomena such as fast-timescale bifurcation and chaos in the 

converters with CPL have rarely been reported and studied in literature to date. Also, SiC and GaN 

downstream power converters will only accelerate this problem due to their superb high-switching frequency 

capabilities, which make the need of the presented work even more important. To investigate such fast 

timescale instability issues of power DC-DC converters,  a nonlinear analysis technique based on the 

Monodromy matrix has been developed and applied in the bidirectional and interleaved boost converters with 

a resistive load [30, 31] whereas this method cannot be directly applied to CPL due to the inherent 

characteristics of linear time-variant in CPL.    

In this paper, a study of fast-timescale stability analysis for power converters with a CPL is demonstrated 

using a complete-cycle solution matrix, which is developed from the Monodromy matrix. By transforming 

the original linear time-variant system into a series of segmented linear time-invariant systems, the 

corresponding state transition matrix and saltation matrix can be obtained to evaluate the influence of the 

control parameters and load conditions to system stability. The rest of this paper is organized as follows: The 

characteristics of CPL and the theoretical principle of the proposed method is discussed in Section II. Section 

III introduces the operation of a boost power converter with a CPL and the calculation of the complete-cycle 

solution matrix. The investigation of demonstrated nonlinear phenomena and stability analysis is given using 

numerical results and experimental validation. Section V summarizes the conclusions drawn from the study 

work. 



II. CHARACTERISTICS OF CPLS AND THEORETICAL PRINCIPLES 

A. Characteristics of CPLs 

In general, various types of loads can be seen in a power electronics system: 1) constant load voltage, 

where the voltage across the load terminals is constant regardless of load current levels; 2) constant load 

current, which sinks constant current from the feeder converter and the voltage across the load is determined 

by the load impedance; 3) constant resistive load, where load voltage and load current change proportionally, 
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Fig. 1 A typical DC-AC inverter system and a DC-DC power converter using a voltage regulator 
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Fig. 2 Characteristics of constant power load and conventional resistive load. 

resulting in a constant resistive load behaviour and 4) CPL that requires constant power from the feeder 

converter, permitting the converter voltage and current fluctuations at the terminal.  

Fig. 1 shows a diagram of a typical DC-AC inverter system and a controlled DC-DC power conversion 



system. In this system, when the DC-AC inverter drives a motor to regulate the constant speed tightly, the 

subsystem of the inverter and motor can be regarded as a CPL to the system. CPL can also be found in 

DC-DC power converters with closed-loop voltage feedback control. 

The characteristics of a CPL and a conventional resistive load are demonstrated in Fig. 2. In a CPL, the 

power is a constant value and can be represented by the product of voltage and the current of the load. 

Therefore, if the voltage across a CPL is increasing, the corresponding current through it is decreasing and 

vice versa. In the steady state, the CPL operates at the equilibrium operating point around the output voltage 

of the feeder converter. This can produce a destabilizing effect on this feeder converter to which the CPL is 

connected [32]. Specifically, despite the feature of instantaneous positive impedance (V/I > 0), the 

incremental impedance of CPL is always negative (dV/dI < 0), which is different when compared to the 

positive impedance of the typical resistive load. This characteristic of negative impedance might affect the 

stability of distributed power generation systems. Therefore, the classical linear control methods show their 

limitations on coping with this characteristic of the negative impedance and some effective stabilizing control 

approaches are proposed to ensure large-signal stability. 

B. Proposed method developed from Monodromy matrix 

To investigate the fast-timescale instability of power converters with CPL, the Monodromy matrix-based 

approached is introduced and the basic concept of this method is to determine the stability of the periodic 

solution by linearizing the system around the whole periodic orbit rather than equilibrium points. This 

method is developed from the theory of Fillipov that gives a generalized definition of system solutions 

containing switching behavior[33]. The state transition matrices have been utilized to describe the evolution 

of the variables before and after each switching action, and the saltation matrix has been employed to express 

the change of variables during switching action. The system can be proved to be stable if the given initial 

perturbation 
0( )tX  at t0 tends to zero when the time t is approaching infinite. Assuming there is a matrix 

0 0( , )T t t   that represents the state transition matrix (STM) of the perturbation over a whole period T.  



DC-DC switching converters are toggled among subintervals in a complete cycle. For each subinterval, state 

variables evolve continuously in a smooth trajectory, and thus the system is regarded as linear time-invariant 

(LTI), and the corresponding solution of STM is shown as: 
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Because most power electronics systems are piecewise smooth and the vector field is discontinuous at the 

switching instant, the STM cannot be utilized directly for stability analysis. Thus, to describe the behavior of 

vector field at switching instants, the saltation matrix S is utilized and its expression can be found in [34, 35]: 
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where I is the identity matrix of the same order of state variables; h defines the switching condition; n 

represents the normal vector to the switching and n
T
 is its transpose form; f− and f+. are vector fields before 

and after the switching instant respectively. By implementing the STM before and after the switching instants 

and saltation matrix, the fundamental solution of a periodic system for one complete cycle can be obtained, 

which is called as the Monodromy matrix. The stability of the system can be investigated by the magnitudes 

of the eigenvalue of this matrix [36].  

   Power DC-DC converters with resistive loads is a nonlinear system that can be described as an LTI system 

when the switch is in the on and off state. However, for power converters powering a CPL, the state matrices 

are not independent of time, and thus it becomes a linear time-variant (LTV) system. Because of the 

nonlinear characteristics of CPL, the analytical expressions of the state transition matrices cannot always be 

derived from the differential equations in the closed-form. Therefore, the method based on the Monodromy 

matrix cannot be directly applied to this type of system. To obtain the STM for an LTV system, the concept of 

differencing and accumulation has been utilized.  Assuming f’(x) is the vector fields of the original system, 

the following equation can be applied:  
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where '' ( 1)f X i   is a constant value obtained from the derivative expression ''( )f x  during the small period 

time t . Thus, the original LTV system can be transformed into a summation of segmented LTI system. As 

this derived matrix contains all the comprehensive information relating to the system’s stability, the influence 

of the constant power load to system’s fast-timescale stability can be fully investigated and analysed. For 

systems in periodic operation, the eigenvalues of this matrix can be calculated to indicate the stable 

operational region using the given parameters. The varation of the system parameters can make the location 

movements of the eigenvalues in a unit circle and if the eigenvalues are closer to the boarder of the unit circle, 

a less stable operational region is obtained. 

III. CALCULATION OF THE COMPLETE-CYCLE SOLUTION MATRIX 

A. Operation of a boost converter with CPL 

A peak-current controlled power DC-DC boost converter with CPL is illustrated in Fig. 3(a).  When the 

converter is in the operation of continuous conduction mode (CCM), it is toggled between two subintervals 

① and ② as shown in Fig. 3 (b), and the corresponding key operational waveforms of the output voltage vc, 

the voltage across inductor vL , the current through inductor iL and the PWM control signals are illustrated in 
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(a)                                                                (b) 
Fig. 3 Operation states of a power boost converter with CPLs 
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 Fig.4 Key waveforms of boost converters (a) CCM operation (b) DCM operation 

Fig.4 (a). By contrast, the converter is switched among three subintervals ①, ②and ③ in the discontinuous 

conduction mode (DCM) and the corresponding key operational waveforms are presented in Fig.4 (b). 

In the controller, Kp and Ki represent the coefficients of the proportion and integrator; Kvc and Kil are 

symbols of the gains, which are from the sampled values of output voltage vc and the inductor current iL to the 

signals fed to the controller. Three state vectors x1, x2, x3 are used to represent the capacitor voltage vc, the 

inductor current iL, and the output of the integrator in the feedback loop vip respectively. The switches S1 and 

S2 are operating complementarily with the PWM control algorithm and thus the corresponding differential 

equations and the vector fields are given in Table I according to the different operational conditions. 

  From the equations shown in Table I, the variable vc is not independent with time t, and the system is 

defined as a non-homogenous LTV system in the subinterval 2. Thus, there is no analytical solution that can 

be solved. In order to analyze the system stability using the Monodromy matrix-based approach, the STM 

must be obtained. Applying (3), the vector fields can be divided into a series of small piecewise subintervals 

and the trajectory of variables is described by the form of partial differential or the discrete expression, which 

is presented as follows: 
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Table I: Differential equations and vector fields at different subintervals 

 Differential equations Vector fields 

Subinterval 1 

10 st DT   

① 

P

( - )

C

c

c

iL

ip

I ref vc c

dv

dt v

Vdi

dt L

dv
K V K v

dt


 









 (5) 

1

1

1

P

C

( - )

i

I ref vc

x

V
f

L

K V K x

 
 

 
 

  
 
 
 
  (6) 

subinterval 2 

1 1 2( ) sD T t D D T  

② 

 
( )

C

-

Pc L

c

i cL

ip

I ref vc c

dv i

dt C v

V vdi

dt L

dv
K V K v

dt


 


 






 (7) 

2

1

1
2

1( )

P

C

i

I ref vc

x

C x

V x
f

L

K V K x

 
 

 
 

  
 

 
 
  (8) 

subinterval 3 

1 2( ) s sD D T t T  

③ 

C

(

P

0

- )

c

c

L

ip

I ref vc c

dv

dt v

di

dt

dv
K V K v

dt












         (9) 

1

3

1

P

0

C

( )I ref vc

x

f

K V K x

 
 

 
  
 

 
   (10) 

  

Fig.5 illustrates how the varaiables have been represented as a number of pieces in diagram of voltage - 

cuurent phase potriat in CCM mode. Each interval has been devided into i equal parts, within each small 

subinterval ∆t, the STM can be calculated by  
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Fig. 5 Concept of the proposed method and corresponding matrices (CCM) 

The equations hi(x,t)=0 (i=1,2,3) describe the switching conditions and the corresponding Saltation matrices 

Sti(i=1,2,3) represent the evolution of variables the in the switching instants. Vc_(i-1) is a value computed from 

the last small interval when I equals 1, Vc_0 is the sampled value at the beginning of the switching instant. The 

following expression is used to calculate the variables analytically.   
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Therefore, the STM in subintervals 1 and 2, is obtained in the following:  
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If the converter is in DCM mode, the phase portrait of the inductor current and the output voltage is shown as 

Fig.6. The expression of the STM Φ1 and Φ2 are same as (14),  the experession of Φ3 can be obtained by using 

the equations in subinterval ③. 



x(0)

x(d1T)

Ф1(0,d1T) Ф2(d1T,d2T)

St1(T)

St2(d1T)

h1(x(T))=0

  

V

I h2(x(d1T))=0

x(d2T)

h3(x(d2T))=0

St3(d2T)

Ф3(d2T,T)

 

0
 

Fig. 6 Phase portrait of inductor current and output voltage (DCM) 

Thus, the corresponding state matrices for each subinterval are shown as follows: 
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B. Linear approximation method 

Based on the calculation results of the state transition matrices, the voltage ripple slightly affects the 

fast-timescale instability of the system, and thus, alternatively, the approximation method of neglecting the 

output ripple voltage could be employed to transform the original system to the LTI system. The expressions 

of the approximated linear vector fields and the state matrices for every subinterval are obtained in Table II.  

Table II: Approximated differential equations and vector fields at different subintervals 
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Consequently, the characteristic of constant power load can be changed as a constant current load after the 

approximation. 

C. Derivation of the complete-cycle solution matrix 

For power converters with peak current control, quadratic slope compensation (QSC) method can increase 

the stable operational region compared with the conventional linear ramp compensation (LRC) [37, 38]. Fig. 

7 (a) presents the diagram of the control algorithm for boost converter with CPL, where voltage feedback 

peak current control with proportional-integral (PI) and QSC method is applied. When the measured inductor 

current signal viL is equal to the output of the PI controller vcon after signals scaling,  an RS flip-flop changes  

 

(a) 

 

(b) 

Fig. 7 (a) Diagram of the control algorithm for boost converter with CPL (b) Illustration of quadratic slope compensation 

(QSC) method 

the output state from on to off so that switch S1 (Fig. 3 (a)) switches accordingly. Fig. 7 (b) shows the 

illustration of QSC scheme and the corresponding waveforms. The equation y(t)=-am(t/Ts)
2
 + Vcon can be 



used to describe the waveform of the compensation slope in a switching period, where Vcon equals 

Kp(Vref-Kvcx1)+vip. x1, x2 and x3 are utilized to represent the three variables of capacitor voltage vc, the 

inductor current iL, and the output of the integrator in the feedback loop vip, respectively. The switching 

condition 
2 ( , )h x t  which is related to the action from ON to OFF state can be specified as follows: 

 
2

2 1 3 2( , ) ( ) ( / )p ref vc m iLh x t K V K x x a t T K x    
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Hence, its normal vector can be obtained as:  
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And its rate of change is given by: 

 
2 mah

t
t T



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At the switching instant (t=DT), the value of this term equals 2amD. The other terms involved in equation (2) 

can be expressed as follows:     
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Hence the saltation matrix St2 can be obtained as: 
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As the rising edge of the periodical clock signal causes the term in (2) to be infinite, it makes the 

corresponding saltation matrix an identity matrix, and thus both the first saltation matrix in CCM and DCM 

operation are given as identity matrices.  

 1t S I
  (34) 

If the third switching function is defined as h3(x,t), the following is obtained 

 3 2( , ) 0h x t x                               (35) 

Thus: 
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and:  
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By applying the following equations, the complete-cycle solution matrix M, which is also the STM of the 

whole clock period, can be calculated as follows:  

 
1 1_ 2 2_

1 1

1 1_ 2 2_ 3 3_

1 1 1

n n

t i t i

i i

n n n

t i t i t i

i i i

CCM

DCM

 

  


   



      


 

  

M S Φ S Φ

M S Φ S Φ S Φ

 (41) 

IV. STABILITY ANALYSIS 

A. Simulation verification  

     The power boost circuit with CPL is implemented in Matlab/Simulink using the specifications of 

parameters given in Table III. In the CCM operation, half of the peak current is less than the average input  

TABLE III 

SPECIFICATIONS OF SYSTEM PARAMETERS 

Parameters Value Parameters Value 

Input voltage （V） 6~18 Frequency （kHz） 50 

Output voltage （V） 24 KiL 1/8.5 

Power rating （W） 0-50 Kp1 0.5 

Inductance （µH） 75 Ki1 2000 

Output capacitance (µF) 40 Kvc 1/3 

 

 

Fig. 8 boundary power curve of CCM and DCM operation 

current in the steady state. With the assumption of the ideal power conversion the following equation must be 



satisfied for CCM operation: 
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Using the parameters given in Table III, the boundary power curve of CCM and DCM operation can be 

obtained as illustrated in Fig. 8. In the simulation, the CPL is represented by using an embedded Matlab 

function and a voltage controlled current source.  The instantaneous input voltage V and the given output 

power P are the inputs of the MATLAB Function block, where the output current can be calculated by the 

equation of I=P/V. This output signal is fed to the block of the voltage controlled current source to generate 

an instantaneous load current for the power converter.  Fig. 9 shows the bifurcation diagram of a bidirectional 

boost converter with 25W CPL at different input voltages and am in CCM. The bifurcation diagram is a 

graphical representation method generally used to study nonlinear phenomena. To generate the bifurcation 

diagram in the simulation, Vin and am are chosen as two bifurcation parameters with variation of defined steps. 

The system runs until reaching steady state and the last N periods of output voltage and inductor current (e.g. 

N=50) are sampled accordingly. Subsequently, this process has been repeated using a different set of  the 

bifurcation parameters to obtain other outcomes. Thus, the 3D bifurcation diagram can be produced in 

Matlab, where Vin and am are varied and plotted along x and y axis, and the output voltage and inductor 

current are and plotted on the Z axis, respectively. The converter can be proved to run in a stable state 

(period-1), if only one overlapped point is plotted after continuous sampling of the variables (inductor current 

and capacitor voltage) at switching frequency for a dozen times. Two points can be identified in the diagram 

when the converter is operating in period-2 (period-doubling bifurcation). Randomly scattered points can be 

observed when the converter is in a chaotic state. 

To validate the expression of the complete-cycle solution matrix M, the calculated results using analytical 

expression in Matlab has been checked with the corresponding numerical simulation results using Simulink. 

The eigenvalue of the matrix can be calculated for each set of given parameters when the system is in stable 

operation. With the increase of the radius of these eigenvalues (within the unit circle), the system will 



gradually lose the stable margin and eventually lose stability when the locus of eigenvalues are located on the 

boarder of unit circle. The corresponding status of the system can be observed using the simulation result. 

 

(a)                                                                                    (b) 

Fig. 9 (a) Bifurcation diagram of the boost converter with CPL (25W) at different input voltages and am in Simulation: (a) 

Output voltage (b) Inductor current 

 

(a)                                                                                       (b) 

Fig. 10 The key operational waveform and FFT power spectrum (a) period-1 (b)chaotic state 

It is evident that the stable region of the converter is extended when the amplitude of compensation slope am 

is increased. Specifically, when there is no compensation slope (am=0) than Vin equals to 12V becoming the 

bifurcation point; when am equals 0.05 and 0.10, the corresponding bifurcation point becomes 10.2V and 

7.4V, respectively. In contrast, there is no bifurcation point identified when am equals 0.15. Fig. 10 presents 

two examples of key operational waveforms using different compensation slopes am when input voltage 



equals 6V.The periodic waveform and FFT spectrum at switching frequency of 50kHz demonstrate the 

converter operates in a stable state in Fig. 10 (a) when am=0.15 and the nonperiodic and random-like 

waveforms show the converter is in a chaotic state as illustrated in Fig. 10 (b) when am is reduced to 0.05. 

 

Fig. 11 Locus of relevant eigenvalues when am=0.05 (25W CPL) 

The third-order matrix M can obtain three relevant eigenvalues using the specific parameters. However, 

according to the calculation results, only one eigenvalue that relates to the inductor current plays a dominant 

role in indicating the period-doubling bifurcation and the other two eigenvalues have slight changes in the 

variation of parameters. Fig. 11 shows an example of the locus of the calculated relevant eigenvalues to 

fast-timescale instability at the variation of input voltage when am equals 0.05. The eigenvalue moves to the 

border of the unit circle along the negative real line when Vin is decreased from 18V to 10.2V, which also 

demonstrates that the system will exhibit the period-doubling bifurcation beyond the point of 10.2V. 

To study how load can affect the stability of power converter, Fig. 12 (a) illustrates an example of the 

influence of the variation of CPL and am to the system’s stability when Vin equals 8V, it is evident that when 

am is bigger than 0.1, the power converter can be in stable operation at the entire power range from 5 to 50W. 

Also, when am is less than 0.1 with steps of 0.01, the corresponding bifurcation points of am and Pout can be 

found using the bifurcation diagram, and the 2
nd

 order polynomial fitting curve is given in Fig. 12 (b). Fig.12 

(c) shows the bifurcation diagram of output voltage at different input voltage and output power when am 

equals 0.05. It can be seen that the bifurcation point is about 8.8V (Vin) when Po equals 10 W, whereas the 



output power has less influence on the bifurcation points when Po equals 20 to 50 W, respectively, which 

have bifurcation around 10V. 

 

(a)                                                                           (b) 

 
(c) 

Fig. 12 (a) Influence of output power and am to the stability of boost converter with CPL (b) The bifurcation points with 

corresponding fitting curve (am <0.1) (c) Bifurcation diagram of output voltage at different input voltage and output 

power 

B. Experimental verification 

Using the specification given in Table 1, a boost power converter and control circuit has been designed to 

verify the stability analysis discussed in the simulation section. A programmable DC electronic load, Chroma 

63210, is utilized to configure at CPL mode as shown in Fig. 13 (a). To generate the control signal with QSC 

method, a mixed-signal controller is applied to measure the inductor current iL and capacitor voltage vc as 



well as processing the PI control algorithm, which is illustrated in Fig. 13 (b). Labview with SPI 

communication has been used to capture and to transfer the measurement data from DSP controller to the 

computer. The output voltage vc and inductor current iL have been sampled once at each switching period. 

When the power converter is in operation with CPL, there is a control button on the labview panel to execute 

the consecutive 50 time sampling action. Then the measured data will be stored in the computer to process, 

generating the experimental bifurcation diagram. 

 

(a) 

 

(b) 

Fig. 13 (a) Designed power converter with DC electronic CPL (b) control blocks of the mixed-signal controller 

The experimental results of the bifurcation diagram at different input voltages and am are shown in Fig. 14. 



Compared with the simulation results in Fig. 9, both profile and bifurcation are quite close but with some 

differences in terms of the practical values of am employed. Slightly larger values of am are required in the 

experiment to achieve a similar control effect in the simulation. This could be caused by the difference of 

ideal models used in simulation and parasitic parameters existing in the prototype and the errors produced in 

the sampling and signal processing circuits. In general, there is a good agreement between the simulation and 

experiment results, and both prove that the phenomena of fast-timescale instability around switching 

frequency can take place in the power converter with CPL. Furthermore, the stability of the power converter 

with CPL regulated by a controller can be investigated by the developed nonlinear analysis method based on 

the Monodromy matrix. 

 
(a)                                                                                         (b) 

Fig. 14 (a) Experimental bifurcation diagram of the boost converter with CPL at different input voltages and am (a) 

output voltage (b) inductor current 

Fig. 15 demonstrates the experimental results of key operational waveforms at different am (0.10, 0.15, 0.20) 

when Vin equals 6V, and the output voltage is 24V. The power converter performs chaotic state (am=0.10), 

period-2 (am=0.15), and period-1 stable operation (am=0.15), respectively, as shown in Fig. 13 (a), (b), and 

(c). 



              

(a)                                                                                             (b) 

  

(c) 

Fig. 15 Experimental results of key operational waveforms with 25W CPL using QSC control (Vin=6V, Vc=24V): (a) 

am=0.10; (b) am=0.15; (c) am=0.20 

To further investigate how the power level can affect the performance of the converter, the CPL is set from 5 

to 50 W with steps of 1 W. As shown in Fig. 16 (a), the experimental bifurcation diagram of the inductor 

current is obtained when am equals 0.1. Curve 1 presents that bifurcation takes place when the load is 18W, 

and the input voltage equals 8V, in contrast, Curve 2 is recorded when the input voltage is changed to 12V, 

the bifurcation phenomena can only be observed when the power load is less than 6 W. Fig. 16 (b) and (c) 

shows the key operational waveform at 5W and 50W load, respectively when the input voltage equals 12V. It 

is evident that the converter operates in a doubling period (period-2) state when having the load of 5W. Using 

the knowledge gained from the stability study of the power converter with CPL as presented in Fig. 12, an 

advanced controller with appropriate control parameters can be designed to control the stable operation of the 



power converter in a wide range of load. 

 

(a) 

 

(b)                                                                                    (c) 

 Fig. 16 (a) Experimental bifurcation diagram of inductor current at the variation of power load (Vin equals 8 and 12V) 

(b) Key operational waveform at 5W, 12V input (c) Key operational waveform at 50W, 12V 

V.  CONCLUSION 

Power boost converters with CPL are identified as an LTV system, which cannot be studied by the classical 

stability analysis approaches for LTI system. This paper develops a nonlinear analysis method based on the 

complete-cycle matrix that can be applied to investigate the nonlinearity of the LTV system, introducing the 

concept of differencing and accumulation to the Monodromy matrix-based approach. In addition, a linear 

approximation method is proposed to reduce the calculation of the matrix with all the analytical expression 



given in details. The influence of the characteristics of the CPL on system stability at fast-timescale is fully 

studied in simulation which is also verified in the experiments. The result shows the effectiveness of this 

nonlinear analysis approach in the investigation of fast-timescale instability in power converter with CPL. 
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